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ABSTRACT

Diffusion-based Large Language Models (dLLMs) parallelize text generation by
framing decoding as a denoising process, but suffer from high computational
overhead since they predict all future suffix tokens at each step while retaining
only a small fraction. We propose Diffusion Scratchpad (DPad), a training-free
method that restricts attention to a structured subset of suffix tokens, preserving fi-
delity while eliminating redundancy. DPad integrates two strategies: (i) a sliding
window, which maintains a fixed-length suffix window, and (ii) distance-decay
dropout, which deterministically removes distant suffix tokens before attention
computation. This concise design is compatible with existing optimizations such
as parallel decoding and prefix caching, and lends itself to a lightweight imple-
mentation. Comprehensive evaluations across multiple benchmarks on LLaDA
and Dream models demonstrate that DPad delivers up to 61.4× speedup over
vanilla dLLMs while maintaining comparable accuracy, highlighting its potential
for efficient and scalable long-sequence inference.

1 INTRODUCTION

Large Language Models (LLMs) have become foundational in numerous applications (Vaswani
et al., 2017; Devlin et al., 2019; Brown et al., 2020; Ouyang et al., 2022), yet their deployment is
often hindered by inference latency. As shown in Fig. 1 (a), the predominant autoregressive frame-
work generates text one token at a time (Radford, 2018; Radford et al., 2019), imposing a sequential
constraint that limits speed and scalability (Gu et al., 2018). This has driven interest toward parallel
decoding strategies.

Diffusion-based Large Language Models (Li et al., 2022; Austin et al., 2021a; Lou et al., 2024;
Shi et al., 2025; Israel et al., 2025) (dLLMs) offer a promising alternative by eliminating sequential
dependencies. Formulating text generation as a parallel denoising process, they can predict entire
sequences or generate text block-wise (i.e., semi-autoregressively) (Nie et al.; Ye et al., 2025), as in
Fig. 1 (b). However, this parallelism often incurs high computational cost (Nie et al., 2025): at each
step, predictions for all future (suffix) tokens are computed, though only a small fraction are retained.
Consequently, although dLLMs can generate multiple tokens in parallel, the resulting throughput
gains are undermined by a disproportionate increase in computation, posing a key bottleneck to
their widespread adoption (Song et al., 2025b).

To further understand this inefficiency, we analyze the role of suffix tokens under the block-wise
masking mechanism in dLLMs and reveal that suffix tokens act as a non-semantic information reser-
voir, or scratchpad. While this scratchpad collects contextual signals across Transformer layers to
guide the generation of the current block, it is highly inefficient. We find that most suffix tokens
are redundant and low-entropy, a problem that worsens with distance as their attention scores decay
sharply. This redundancy not only creates significant computational overhead but can also degrade
generation fidelity.

Based on the above insights, we propose the Diffusion Scratchpad (DPad), which in the forward
direction attends only to a small number of near-suffix tokens, as in Fig. 1 (c). It uses two suffix
drop strategies: sliding window and distance-decay dropout. For the sliding window, inspired by
prefix KV-cache optimizations (Beltagy et al., 2020; Xiao et al., 2023), we extend the idea to the
suffix. Here, the suffix window has a fixed length and moves forward along with the current block,
retaining only a limited number of nearby suffix tokens. In contrast to vanilla dLLMs, where suffix
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Figure 1: Comparison of (a) autoregressive LLMs, (b) block-wise diffusion LLMs, and (c) our
DPad. DPad restricts suffix attention via: (i) Sliding Window: fixed-length suffix window; (ii)
Distance-decay Dropout: removes distant suffix tokens without computing attention scores.

computation increases with the generation sequence length, our design keeps the cost bounded and
significantly reduces suffix-related computation.

For the distance-decay dropout, suffix tokens are removed according to their distance from the
current block: the farther they are, the higher the dropout ratio, until all tokens beyond the window
are omitted. Unlike conventional attention-score pruning (Wang et al., 2021; Kim et al., 2022; Song
et al., 2025a), which first computes attention scores and then prunes based on their magnitude,
DPad predetermines a distance-decay sparse pattern for suffix tokens prior to model execution and
eliminates them at the very beginning of each step. This further suggests that sparsity is an inherent
property of suffix attention. Additionally, the method is extremely simple to deploy, requiring only
a few lines of code to implement.

To illustrate the intuition behind DPad, we liken it to a real scratchpad used when writing a book,
as shown in Fig. 1 (c, right). For the current chapter (i.e., block), the writer (dLLM) devotes the
most attention, revising it multiple times, akin to denoising within a diffusion block. The upcom-
ing chapter receives focused drafts for consistency, while much later chapters contain only brief
outlines. Naturally, the “writer” should not, and indeed must not, fill all future chapters (all suffix
tokens) with low-entropy, repetitive content merely to satisfy the fixed sequence length constraints
of current dLLMs. Such uncontrolled filling distracts the “writer’s” attention and wastes storage and
computation, making it neither sustainable nor scalable.

Finally, we emphasize that DPad is a training-free inference strategy that enables efficient, com-
pact generation, overcoming the quality degradation from fixed sequence lengths in conventional
dLLMs (Ye et al., 2025; Nie et al.). It delivers robust acceleration across all settings, achieving up
to a 10.32× speedup on short sequences. As DPad is compatible with existing optimizations (Wu
et al.; Liu et al.; Wei et al.), including prefix caching (Wu et al.) and dLLM-Cache (Liu et al.),
its benefits compound for long-sequence generation. When combined with these methods, DPad
achieves up to a 61.39× speedup on LLaDA-1.5/GSM8K (1024, 1-shot) while maintaining accu-
racy, highlighting its potential to unlock new frontiers in dLLM efficiency.

In summary, our contributions are:

• We identify and formalize the Scratchpad mechanism in dLLMs, demonstrating that suffix
tokens act as a dynamic, cross-layer reservoir (which we term an Attention Connection)
that guides the denoising process.

• Through systematic empirical analysis, we are the first to reveal three key properties of
suffix tokens: inherent sparsity, a distance-decay pattern, and position insensitivity, which
expose a major yet overlooked inefficiency in dLLMs.

• We introduce the Diffusion Lottery Tickets (DLT) hypothesis for dLLM inference, positing
that a sparse set of “winning” suffix tokens suffices for high-quality generation, and we
frame DPad as a training-free method to discover such tickets on the fly.
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• We propose DPad, a training-free method that applies distance-decay dropout to suffix
tokens. This orthogonal design eliminates substantial redundancy and compounds with
existing optimizations, achieving up to 61.39× speedup while preserving accuracy.

2 PRELIMINARY

2.1 FOUNDATIONAL PRINCIPLES OF DIFFUSION LARGE LANGUAGE MODELS (DLLMS)

For a generated sequence x = (x1, . . . , xL), dLLMs leverage a non-autoregressive process (Austin
et al., 2021a; Shi et al., 2025; Lou et al., 2024). During training, the model learns to denoise a sample
where tokens are masked. This involves two processes: (i) Forward Masking Process: This process
systematically replaces a proportion of tokens in a clean text sequence x0 with a special [MASK]
token (Nie et al., 2025; Nie et al.), similar to applying noise in a conventional diffusion model
(Ho et al., 2020). The replacement is governed by a masking schedule where t ∈ [0, 1] represents
the masked level, and individual tokens in the clean sequence, xi

0 are masked independently with a
probability of t. (ii) Reverse Unmasking Process: The model pθ is trained to predict the original
tokens given the partially masked sequence xt, thereby learning to approximate the true unmasking
probability q(x0|xt) (Austin et al., 2021a; Lou et al., 2024). This is achieved by minimizing the
negative log-likelihood over the masked tokens (Shi et al., 2025; Ouyang et al., 2022):

L(θ) = −Et,x0,xt

1

t

∑
i:xi

t=[MASK]

log pθ(x
i
0|xt)

 (1)

2.2 INFERENCE AND SAMPLING IN DLLM

The inference process begins by initializing a sequence y0 through the concatenation of a prompt
sequence r and L mask tokens, denoted as y0 = r ◦ ([MASK])Li=1. Let Ms be the set of indices
corresponding to masked tokens at step s; initially, M0 = {|r| + 1, . . . , |r| + L}. The model then
iteratively refines this sequence over steps s = 1, 2, . . . , S until MS = ∅. At each intermediate
step s, the model pθ computes a probability distribution pθ(yi|ys−1) for every masked position
i ∈ Ms−1. From these distributions, the most likely token predictions ŷi from vocabulary V and
their corresponding confidence scores ci are determined:

ŷi = argmax
v∈V

pθ(yi = v|ys−1) and ci = pθ(yi = ŷi|ys−1). (2)

A scheduling function G(s, S) determines the number of tokens, ks, to unmask. The set of indices
to update, Us, is chosen by selecting the ks positions from Ms−1 with the highest confidence scores.
The new sequence ys is then formed by updating these selected masked position.

2.3 RELATED WORK ON DLLM ACCELERATION

Research in dLLMs has moved from fixed Top-k decoding to dynamic, confidence-aware unmask-
ing, that greedily unmask all tokens above a confidence threshold, to reduce generation bottle-
necks (Wu et al.; Wei et al.). A parallel focus is cache management to overcome the inapplicability
of conventional KV caching for bi-directional attention. Optimizations include reusing the cache
for tokens (e.g., prefixes) by observing their key and values ( (Wu et al.; Liu et al.) are stable across
inference step, and dynamically evicting entries based on low attention score to further improve
efficiency (Song et al., 2025a).

3 METHOD

3.1 SCRATCHPAD MECHANISM

We first revisit the role of suffix tokens in dLLMs. Due to the masking structure, suffix tokens carry
no direct semantic information but instead serve as an information reservoir, aggregating signals
propagated from prefix tokens across multiple Transformer layers. This latent memory, which we
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Figure 2: Attention score maps illustrating the Scratchpad mechanism in dLLMs. The attention
matrix is divided into 3×3 blocks over prefix, current, and suffix. Blocks 7 and 8 collect information
from the prefix and current into the suffix at layer n, while Block 6 feeds this stored information
back to the current block at layer (n+1).

refer to as DPad (Diffusion Scratchpad), stabilizes the denoising process by providing contextual
support for the current block.

As illustrated in Fig. 2 and the attention score maps, the token sequence can be partitioned into three
contiguous segments: Prefix indices [0, c−1], current indices [c, s−1], and suffix indices [s, L−1].
The corresponding attention matrix is thus divided into 3× 3 blocks. Among them, Blocks 6, 7, and
8 together define the scratchpad mechanism.

Considering only one head, at layer n, queries from prefix and current tokens attend to keys from
the suffix region. Formally, the global attention scores are defined as

A(n) = Softmax
(
Q(n)(K(n))⊤√

dk

)
∈ RL×L. (3)

We can partition A(n) into submatrices corresponding to prefix (P = [0, c − 1]), current (C =
[c, s− 1]), and suffix (S = [s, L− 1]). In particular,

A
(n)
S,P = A(n)[s : L, 0 : c], A

(n)
S,C = A(n)[s : L, c : s], (4)

represent the attention scores from suffix queries to prefix and current keys, respectively (Blocks 7
and 8 in Fig. 2). Multiplying these attention scores with the value matrix yields the actual outputs at
suffix positions:

H
(n)
S = A

(n)
S,PV

(n)
P + A

(n)
S,CV

(n)
C + A

(n)
S,SV

(n)
S . (5)

Here, H(n)
S denotes the hidden representations of suffix tokens after attention. This equation shows

that suffix tokens integrate information from prefix and current regions, effectively serving as a
DPad-n that records contextual information. After this aggregation, the outputs H(n) are processed
by the subsequent linear transformations (e.g., feed-forward layers and residual connections), which
operate independently on each token. At layer (n+1), this stored information can be retrieved by
the current block through

A
(n+1)
C,S = A(n+1)[c : s, s : L], (6)

which corresponds to current-to-suffix attention (Block 6 in Fig. 2). This path enables the current
block to reuse the information collected in the suffix at the previous layer. In practice, the influence
of the suffix on the prefix (Block 3) is negligible (Wu et al.). Therefore, the essential interaction of
the scratchpad mechanism lies in the current-to-suffix direction (Block 6), where the suffix serves as
temporary memory to assist the ongoing denoising process.

Therefore, we conjecture that the role of suffix tokens resembles a residual connection (He et al.,
2015), but specialized for attention, which we term an Attention Connection. Rather than directly
propagating representations, the model compresses high-dimensional signals from both the prefix
and the current tokens into the suffix, which is then re-injected into the current block at the subse-
quent layer. In this way, the suffix serves as a scratchpad that compacts contextual information and
forwards it for cross-layer reuse in dLLMs.
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Figure 3: Analysis of the suffix dropout strategy at the final layer 31 using LLaDA-1.5 on GSM8K
with max length 512. We gather attention scores from 100 samples across all heads, focusing on
current block queries (A[c:s, c-200:]). The plot shows the mean attention over key indices (green)
with min–max range (shaded).

3.2 SUFFIX DROPOUT STRATEGIES

As discussed in Sec. 1, the scratchpad intuition does not require populating all suffix tokens, which
is neither sustainable nor efficient. Empirically, we observe substantial redundancy among suffix
tokens (Appx. A), motivating a structured dropout design. As an example, at the final layer 31,
Fig. 3 shows a clear distance-dependent decay in attention: nearby tokens dominate, consistent with
general attention patterns and prior work on prefix sliding windows (Xiao et al., 2023).

Based on these findings, we propose two complementary suffix drop strategies, as illustrated in
Fig. 1(c):

• (i) Sliding window with fixed-length to retain only a bounded number of near-suffix tokens;
• (ii) Distance-decay dropout that progressively prunes distant suffix tokens.

Both mechanisms are efficiently realized through a Gaussian sampling process, which simultane-
ously enforces a bounded window and distance-dependent decay.

Formally, for a suffix token at distance d from the suffix boundary, its retention probability P (d) is
defined by the right half of a standard normal distribution with effective window size W :

P (d) = a · 1

σ
√
2π

exp

[
− 1

2

(
kσ
W ·d−µ

σ

)2
]
, 0 < d ≤W, (7)

where µ = 0, σ = 1, and the suffix boundary is the center of the Gaussian distribution. Two
hyperparameters, k and a, are introduced to control the distribution along the x- and y-axes: (1) kσ

W
maps the window size W to kσ (e.g., for W = 256, setting k = 3 ensures d = 256 corresponds
to 3σ); (2) a scales the overall sampling magnitude vertically. This formulation ensures that tokens
farther from the boundary are retained with exponentially decreasing probability, implemented via
rejection sampling. More implementation details and a hyperparameter analysis are provided in
Appx. B and Appx. D, respectively.

As a result, suffix attention only needs to focus on nearby tokens, making the suffix dropout window
decoupled from the overall sequence length. Unlike the vanilla setting, where the suffix grows with
the generation sequence, our approach keeps it constant. This yields a clear computational benefit:
suffix dropout effectively reduces suffix-related complexity by one dimension.

3.3 DIFFUSION LOTTERY TICKETS HYPOTHESIS

The analysis in Fig. 3 not only reveals the overall decay of current-to-suffix attention, but also
occasional sharp spikes in the maximum values. These spikes cannot be predicted in advance and, in
principle, pruning them could affect model accuracy. To investigate this, we conduct an additional
experiment shown in Fig. 4. We first run dLLM inference for one step, then forcibly prune the
top 10 highest-attention suffix tokens (“spotlight” tokens) occurring beyond the first 128 positions
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Figure 4: (a) Attention scores of suffix tokens paid by current block tokens (A[c:s, s:]) across layers
in LLaDA-1.5, showing overall decay with occasional spikes (e.g., d = 199, 298, 362). (b) After
forcibly pruning these spike positions, attention shifts to nearby tokens, indicating that adjacent
positions can absorb suffix information (e.g., pruning token 362 shifts the spike to token 359).

(e.g., at distances 199, 298, and 362). Surprisingly, pruning such distant suffix tokens, even those
corresponding to large spikes, has little effect on model accuracy.

When these spikes are removed, the model shifts its attention to nearby suffix tokens, for example,
the spotlight token at 362 in Fig. 4 (a) is replaced by increased attention at its neighbor token 359
in Fig. 4 (b), which effectively absorbs the lost information. This behavior is consistent with the
strong generalization ability of diffusion models and the fact that suffix tokens are initialized without
semantic content: through DPad mechanism, suffix tokens can dynamically learn and store infor-
mation during inference. Consequently, information carried by distant suffix tokens appears largely
position-insensitive, and pruning spike positions has almost no impact on final accuracy, as further
confirmed in our evaluation experiments, as shown in Table 1.

Table 1: Accuracy Score of LLaDA-1.5
(Length = 512).

Method GSM8K HumanEval

Strict Flex. Score

Baseline 0.405 0.787 0.378
Top-10 Pruning 0.417 0.786 0.390

These observations resonate with the Lottery Ticket Hy-
pothesis (LTH) (Frankle & Carbin, 2019), which posits
that properly pruned sub-networks with their original ini-
tialization can match the performance of dense networks
after training. We extend this intuition to dLLMs and
propose the Diffusion Lottery Tickets (DLT) hypothesis:
During inference, the suffix region contains redundant to-
kens, yet a sparse subset is sufficient to preserve semantic
consistency and generation quality. Through DPad mech-
anism, this subset can be adaptively reorganized into “winning tickets” within the forward pass. In
this view, suffix dropout becomes a training-free lottery ticket search, where Gaussian sampling
selects a compact set of suffix tokens that carry the essential information for denoising in dLLMs.

This explains why suffix dropout can be applied a priori, without computing exact attention scores,
and why it fundamentally differs from prefix cache pruning (Song et al., 2025a; Wang et al., 2021):
Prefix tokens carry dense, position-bound semantic information and thus cannot be arbitrarily dis-
carded, whereas suffix tokens act as a flexible, low-rank memory buffer.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Baselines. All experiments are conducted on an NVIDIA A100 80GB GPU. We
evaluate DPad on a suite of representative open-source dLLMs: two variants of LLaDA (8B-Instruct
and 1.5) (Nie et al.; Zhu et al., 2025) and Dream-v0-Base-7B (Ye et al., 2025). We compare our
method against three baselines: the unmodified LLaDA (Nie et al.; Zhu et al., 2025) and Dream
(Ye et al., 2025) backbones, denoted as Vanilla; the vanilla backbone augmented with parallel
decoding (Wu et al.), denoted as +Par.; and a version implementing prefix caching (Wu et al.),
denoted as PC.. Since our dropout already minimizes the computational cost of the suffix, we do
not adopt the Dual Cache mechanism proposed in (Wu et al.).
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Table 2: Consolidated performance of LLaDA-Instruct and Dream-Base on four benchmarks.

LLaDA-Instruct Dream-Base
Efficiency Accuracy (%) Efficiency Accuracy (%)

Benchmark Method Latency(s)↓ TPS↑ ℓ̄/ℓmax Flexible↑ Strict↑ Latency(s)↓ TPS↑ ℓ̄/ℓmax Flexible↑ Strict↑

GSM8K
4-shot

Vanilla 27.48 1.00× 8.44 1.00× 232 / 256 78.39 37.38 22.30 1.00× 11.43 1.00× 255 / 256 75.06 74.37
+DPad 18.35 1.50× 8.76 1.04× 161 / 256 78.54 63.84 10.27 2.17× 12.75 1.11× 131 / 256 75.28 75.06
+Par. 8.55 3.21× 27.14 3.22× 232 / 256 78.54 38.67 13.84 1.61× 18.43 1.61× 255 / 256 75.51 74.83
+Par.+DPad 6.64 4.14× 24.25 2.87× 161 / 256 79.76 64.97 5.24 4.25× 24.17 2.11× 127 / 256 74.83 74.75

MATH
4-shot

Vanilla 25.40 1.00× 9.79 1.00× 249 / 256 33.58 8.42 21.01 1.00× 12.19 1.00× 256 / 256 34.06 37.76
+DPad 21.61 1.18× 9.75 1.00× 211 / 256 33.42 28.04 16.64 1.26× 15.33 1.26× 255 / 256 34.14 37.64
+Par. 9.91 2.56× 25.09 2.56× 249 / 256 33.40 8.76 8.82 2.38× 29.03 2.38× 256 / 256 35.12 38.62
+Par.+DPad 9.20 2.76× 22.93 2.34× 211 / 256 33.30 27.98 7.72 2.72× 33.04 2.71× 255 / 256 34.44 38.32

HumanEval
0-shot

Vanilla 34.67 1.00× 13.64 1.00× 473 / 512 43.90 – 28.49 1.00× 17.93 1.00× 511 / 512 51.22 –
+DPad 27.41 1.26× 15.96 1.17× 438 / 512 47.56 – 8.20 3.47× 26.83 1.50× 220 / 512 51.22 –
+Par. 11.48 3.02× 41.40 3.04× 475 / 512 43.29 – 14.15 2.01× 36.11 2.01× 511 / 512 53.05 –
+Par.+DPad 9.14 3.79× 47.86 3.51× 438 / 512 46.34 – 4.06 7.01× 52.62 2.93× 214 / 512 52.44 –

MBPP
3-shot

Vanilla 62.11 1.00× 4.82 1.00× 299 / 512 15.00 – 49.15 1.00× 10.42 1.00× 512 / 512 52.40 –
+DPad 15.89 3.91× 6.85 1.42× 109 / 512 40.40 – 41.36 1.19× 12.38 1.19× 512 / 512 52.60 –
+Par. 14.26 4.36× 20.99 4.36× 299 / 512 15.00 – 12.38 3.97× 41.36 3.97× 512 / 512 55.40 –
+Par.+DPad 6.02 10.32× 18.28 3.79× 110 / 512 39.40 – 9.86 4.98× 51.92 4.98× 512 / 512 54.80 –

The DPad strategy introduces three hyperparameters: a decay rate factor k, a magnitude scalar a,
and a sliding window size. We tuned these on small subsets of each benchmark (see Sec. 4.3.2).

Unless otherwise specified, all experiments use a block size of 32, a batch size of 1, and a confidence
threshold of 0.9 for parallel decoding.

Benchmarks and metrics. We evaluate on reasoning benchmarks (GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021)) and code generation benchmarks (HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021b)). Accuracy is reported with task-specific metrics (e.g., pass@1,
flexible/strict-match). Efficiency is reported as (a) mean end-to-end latency per sample and (b)
tokens-per-second (TPS). We also report the average generated length ℓ̄ relative to the maximum
allowed sequence length ℓmax as ℓ̄/ℓmax to make length effects explicit.

4.2 MAIN RESULTS

Across all four benchmarks, DPad improves latency and achieves comparable or higher TPS relative
to Vanilla, while preserving or improving accuracy, as shown in Table 2. When combined with
parallel decoding (+Par.), DPad achieves additional improvement beyond +Par. alone; results
for LLaDA-1.5 are in Appx. C.1.

Efficiency. DPad contributes to latency gains through two mechanisms: (1) reduced suffix com-
plexity, which shifts suffix computation from quadratic toward linear scaling; (2) more concise
generations, as evidenced by the ℓ̄/ℓmax metric. This conciseness is beneficial, as case studies in
Appx. E demonstrate that suffix dropout suppresses the generation of tokens that play an auxiliary
role and do not contribute significantly to reasoning.

Overall, focusing on latency as the primary efficiency metric, DPad yields 1.18×–3.91× speedups
over Vanilla. With parallel decoding, total speedups reach 2.72×–10.32× relative to Vanilla.
This complementarity arises because the two methods target orthogonal bottlenecks: DPad elimi-
nates redundant KV-token computation, while parallel decoding mitigates dependency constraints.
By combining these approaches, we exploit both finer-grained token pruning and safe multi-token
prediction, yielding substantial efficiency gains.

In our analysis, we observe a subtle distinction between latency- and TPS-based efficiency metrics.
While DPad consistently reduces per-sample latency, its TPS gains may appear less pronounced be-
cause it often encourages the model to generate more concise and complete responses, reaching the
end-of-sequence token earlier. As discussed in Appx. E, this behavior reflects not a limitation but
an improvement: the model terminates naturally rather than exhausting its context with low-quality
continuations. However, when the generation length is substantially reduced, lower GPU utiliza-
tion can mechanically decrease TPS. Since the extra tokens produced by baselines often carry low
semantic value, we report raw throughput without post-processing. This also highlights a broader
point: the community may need to reconsider throughput metrics and develop alternatives that bet-
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ter balance sequence length and accuracy, rewarding models that achieve comparable accuracy with
meaningful generations.

It is also important to note that, to align with previous work, the benchmarks in this section focus
on multi-shot, short-sequence generation. In these settings, the prompt constitutes the majority
of the sequence, meaning suffix attention accounts for only a small fraction of the total compu-
tation. Per Amdahl’s law (Amdahl, 1967), the maximum achievable speedup is therefore inher-
ently bounded. Despite this limitation, DPad consistently delivers stable latency improvements even
without system-level optimizations. Its true potential emerges in low-shot, long-sequence settings
(discussed in Sec. 4.3.1), where the suffix becomes a more significant computational component,
allowing DPad to achieve substantial additional latency reductions.

Accuracy. In addition to improving inference efficiency, DPad also enhances accuracy across
nearly all tasks for the LLaDA models (Tbl. 2 and Tbl. 4), thereby defying the typical trade-off be-
tween speed and accuracy. For instance, DPad yields substantial gains in strict-match accuracy on
GSM8K (+26.46%) and MATH (+19.62%) for LLaDA-Instruct. This improvement in strict-match
score is particularly noteworthy, as it highlights DPad’s ability to enhance in-context learning. The
vanilla backbone typically exhibits low strict-match performance (e.g., only 37.38% on GSM8K for
LLaDA-Instruct), since this metric requires the model not only to produce the correct final answer
(Flexible-Match) but also to adhere to the specific reasoning format demonstrated in few-shot ex-
emplars, as illustrated in the Appx. E (Fig. 12). We posit that failures in strict matching often stem
from interference by distant suffix tokens, which introduce low-value or off-format patterns that
distract the model and encourage verbose or poorly structured outputs. By reducing the influence
of such suffix tokens and directing attention toward high-value, information-rich prefix exemplars,
DPad enables the model to replicate the structured reasoning formats required by strict matching
more faithfully. In addition, by suppressing redundant generations, DPad facilitates earlier con-
vergence to concise, well-formatted outputs, further improving strict-match performance without
altering model parameters.

By contrast, the Dream model shows less advantage, with accuracy broadly comparable to the base-
line and fluctuating only within a narrow margin. We attribute this discrepancy to the models’ dis-
tinct training protocols. Since LLaDA is trained as a diffusion model from scratch, it learns to rely
on the full suffix context during pre-training. Conversely, Dream is initialized from Qwen2.5 (Qwen
et al., 2025), a pre-trained autoregressive model that has no exposure to suffix tokens. We there-
fore hypothesize that LLaDA’s native dLLM architecture is inherently more sensitive to the suffix
context, allowing it to benefit more significantly from the regularization that DPad provides.

4.3 ABLATIONS AND ANALYSIS

4.3.1 MAXIMUM GENERATION LENGTH

Table 3: Performance on LLaDA-1.5
with GSM8K (1024 tokens, 1-shot).

Method Acc.
(Flex. / Str.) Lat.(s) / TPS Speedup

Vanilla 78.17 / 48.98 127 / 1.55 1.00×
+ DPad 78.77 / 74.07 6.28 / 18.4 20.3×

+Par. 78.77 / 49.43 11.7 / 16.9 1.00×
+ DPad 79.38 / 74.22 2.26 / 51.4 5.17×

+Par. + PC. 78.77 / 51.63 10.8 / 18.2 1.00×
+ DPad 77.10 / 70.66 2.07 / 55.5 5.21×

Overall (+Par.+PC.+DPad vs. Vanilla) 61.39×

To quantify efficiency gains in long-sequence generation,
we analyze the speedups of various acceleration strategies
on LLaDA-1.5/GSM8K (Tbl. 3). Our setup evaluates com-
binations of DPad, parallel decoding (+Par.), and pre-
fix caching (+PC.) to disentangle the contribution of each
technique. These findings are confirmed by a complemen-
tary analysis on the Dream-Base model (Appx. C.2.2).

Efficiency. We find that the acceleration benefits of DPad
grow substantially with generation sequence length. As
shown in Appx. C.1, for LLaDA-1.5 on GSM8K, improve-
ments are modest at shorter sequence lengths (up to 1.51×
under a 256-token limit). However, when the maximum length is extended to 1024 tokens (single-
shot setting), standalone DPad achieves a dramatic 20.3× speedup. Finally, when combined with
parallel decoding and prefix caching (Fast-dLLM), the efficiency gains compound, yielding an over-
all 61.39× speedup compared to vanilla LLaDA and a 5.21× improvement over Fast-dLLM alone.
These results demonstrate that suffix dropout and parallel decoding address orthogonal bottlenecks,
and their combination enables significant improvements in long-sequence generation. A deeper
analysis of these effects is provided in Appx. C.2.1.
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Figure 5: Ablation Study on Sliding Window Size and Dropout Function for DPad on LLaDA-
1.5/GSM8K (512, 4-shot). Heatmaps showing Flexible-Match Accuracy scores with (a) uniform
and (b) Gaussian dropout, and Strict-Match Accuracy scores with (c) uniform and (d) Gaus-
sian dropout, across varying sliding window sizes and number of preserved suffix tokens. The
(tokens,window size) = (512, 512) configuration corresponds to the baseline, as it involves no to-
ken dropout.

Accuracy. Low-shot settings further highlight DPad’s ability to preserve and even enhance model
accuracy. Compared with Tbl. 4, the strict-match score of the baseline drops significantly when the
shots reduces from 4 to 1 (from∼60% to∼50%), whereas DPad’s performance remains remarkably
stable (dropping only from ∼78% to ∼74%). This resilience demonstrates that DPad substantially
strengthens the model’s in-context learning capability, a significant achievement for a training-free
method.

4.3.2 SLIDING WINDOW SIZE AND DROPOUT FUNCTION

We conducted an ablation study on LLaDA-1.5/GSM8K to determine the optimal sliding window
size and dropout function for DPad, with results shown in Fig. 5.

Our analysis identifies a critical context window of 64-128 tokens immediately following the current
block. The key principle for maximizing performance is to maintain a high density of preserved
tokens within this critical window. Spreading a limited token budget (e.g., fewer than 128) thinly
across a larger window was found to be counterproductive, significantly degrading accuracy.

The study also validates our choice of a Gaussian dropout function over a uniform baseline.
While the two perform comparably with large token budgets, Gaussian dropout is consistently su-
perior under low-budget conditions, especially when the sliding window is large. This is because
it more efficiently allocates the limited token budget by prioritizing nearby tokens, a strategy that
aligns with the consistent decaying patterns observed in Rotary Positional Embeddings (RoPE) (Su
et al., 2021), attention scores (Fig. 4), and token confidence maps (Gong et al.).

Of course, Gaussian sampling may not be the optimal decay function, and other decay-based
schemes (e.g., exponential, linear, or step-wise cutoff) remain to be explored. Nevertheless, in the
training-free setting, we find that results are largely insensitive to the exact decay form, as long as
the scheme emphasizes nearer tokens.

5 CONCLUSION

We addressed the high cost of full suffix attention in dLLMs—a key bottleneck caused by redundant
computation—by introducing the Diffusion Scratchpad (DPad), a simple, training-free inference
strategy. DPad leverages the inherent sparsity of suffix attention, combining a fixed-length sliding
window with a distance-decay dropout that prunes low-value tokens a priori. This “winning ticket”
approach yields up to a 61.4× speedup when combined with existing optimizations, without sacri-
ficing accuracy. Our results establish DPad as a practical and scalable solution that helps advance
dLLMs from a promising alternative to a viable foundation for future language technologies.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research focuses on improving the efficiency of diffusion-based large language models
(dLLMs) through a training-free inference strategy (DPad). Our study does not involve human
subjects, user data, or personally identifiable information. All datasets used in evaluation (GSM8K,
MATH, HumanEval, MBPP) are publicly available and widely adopted benchmarks, cited appropri-
ately in the paper.

Bias and fairness. As our method is applied to pre-existing models and datasets, any biases or lim-
itations originate from the underlying training corpora of the base models and benchmarks. We do
not introduce new datasets, but we acknowledge that accelerated inference could facilitate broader
deployment of LLMs, which inherit and may propagate these biases.

Privacy and safety. Our work does not involve private data. The proposed method is model-agnostic
and does not alter the underlying training distribution.

Dual use considerations. Improvements in inference efficiency may enable faster and more
widespread use of LLMs. We encourage responsible application, with attention to fairness, trans-
parency, and safety in downstream use.

REPRODUCIBILITY

We provide all resources needed to reproduce our results. Implementation details, hyperparameters,
and ablation setups are described in Section 3 and 4 and Appendices B and C. Specifically: (i) code
and scripts for suffix dropout (DPad) and evaluation will be released with instructions for running on
each benchmark; (ii) exact hyperparameter settings (sliding window size, decay rate, scaling factor)
are reported in Section 4.1 and Appendix B; (iii) dataset usage (GSM8K, MATH, HumanEval,
MBPP) follows standard publicly available versions with citations; (iv) experiments were run on
NVIDIA A100 80GB GPUs, as noted in Section 4.1; (v) random seeds and evaluation commands
are documented in the code release. An environment will also be provided as “requirements.txt” .
All tables and figures can be regenerated directly from the released code and instructions, available
as supplementary material.
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A OBSERVATIONS

A.1 ANALYSIS OF SUFFIX TOKEN ENTROPY

To provide further intuition for our method, we analyze the local entropy of generated suffix tokens.
As shown in Figure 6, the entropy of suffix tokens decays rapidly with distance from the current
generation block. Tokens far into the suffix have near-zero entropy, indicating they are highly pre-
dictable and carry little new information (often consisting of repeated <eos> tokens or padding).
This empirical finding strongly motivates our distance-decay dropout strategy, which prioritizes
pruning these low-value, redundant tokens.
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Figure 6: Local entropy of suffix tokens. The plot shows the average local entropy (in bits) of suffix
tokens as a function of their distance from the current block. Entropy rapidly decays, approaching
zero for distant tokens. This confirms that distant suffix tokens are highly redundant and can be
pruned with minimal information loss, validating the core assumption of DPad.

Ċ To determine how much Janet makes every day at the 
farmers ' market , we need to follow these steps : Ċ Ċ 1 . 
Calculate Calculate the number of eggs eggs per day day 
day Ċ Ċ Ċ Ċ Ċ   6 6 per per per Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ 
Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ 
Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ 
Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ 
Ċ Ċ Ċ Ċ Ċ Ċ Ċ   Ċ Ċ    Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ 
Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ Ċ 
Ċ Ċ Ċ Ċ Ċ Ċ Ċ \ \ \ \ \ \ \ \ \ \ \ \ \ \ { \ \ =   \ \ \ dollars 
dollars dollars Ċ Ċ Ċ Ċ Ċ Ċ Ċ makes makes makes makes 
1 day day day at the market ' market . Ċ Ċ  1 4 Ċ <|
endoftext|>

Ċ To determine how much Janet makes every day at the 
farmers ' market , we need to follow these steps : Ċ Ċ 1 . 
Calculate the total number of eggs laid by Janet 's ducks 
per day Ċ Ċ 2 . Sub tract the number of eggs Janet eats 
for breakfast and b akes for her friends . Ċ 3 . Multiply the 
remaining eggs by the price per egg to find her daily 
earnings Ċ Ċ Ċ 1 . Janet 's ducks lay 16 eggs per day . Ċ 
2 . Janet eats 3 eggs for breakfast and b akes 4 eggs for 
her friends . Therefore , she uses a total of 3 + 4 = 7 eggs 
per day Ċ Ċ 3 . The number of eggs left for sale is 16 - 7 = 
9 eggs . Ċ 4 . Janet sells each egg for $ 2 ' Therefore , her 
daily earnings from selling the eggs are 9 * $ 2 = $ 18 Ċ Ċ 
Ċ So , Janet makes $ 18 every day at the farmers ' market 
Ċ Ċ #### 18 <|eot_id|> <|endoftext|>

Current Tokens Suffix Tokens

Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning andbakes muffins for her 
friends every day with four. She sells the remainder at thefarmers' market daily for $2 per fresh duck egg. 
How much in dollars does she makeevery day at the farmers' market?

Prompt

Block 0, Step 7 Final Answer

Ċ: Newline

Figure 7: Decoding of response tokens at an intermediate step. The plot shows the most likely
tokens predicted by the model at a given decoding stage, reflecting its intermediate understanding
and behavior in response to the prompt. Notably, the model repeatedly records key tokens in the
suffix, irrespective of position, revealing a scratchpad-like pattern that facilitates decoding of the
current block.
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A.2 PRE-DECODED SUFFIX TOKENS

To further illustrate the scratchpad mechanism, we present the most likely tokens that LLaDA
1.5 (Zhu et al., 2025) predicts at both the current and suffix positions, as shown in Figure 7 (bottom
left). The sample question is drawn from GSM8k (Cobbe et al., 2021), and a final generated re-
sponse is included for reference. From the intermediate predictions, we observe a recurring pattern
where key tokens are repeatedly placed across multiple suffix positions. This behavior resembles
the use of a scratchpad, where the model leverages available ”empty” positions to temporarily store
useful information that aids in decoding the current tokens.

B IMPLEMENTATION DETAILS

This section provides implementation details for DPad, including the core code logic, the early
termination mechanism, and the necessary adjustment to RoPE to ensure positional consistency.

This dropout strategy is not static but follows a block-wise schedule (Nie et al.). As shown in
Fig. 1 (c), after each block is generated, all previously dropped tokens are restored, and Gaussian
sampling is re-applied to the updated suffix set before decoding the next block. This dynamic re-
sampling prevents sampling bias and ensures that no token is systematically ignored.

Core Logic. DPad’s core mechanism can be implemented with only a few lines of Python code.
The primary operation involves sampling a subset of suffix token indices using a Gaussian distance-
decay function and then forwarding only this pruned sequence to the model.

Algorithm 1 DPad Suffix-Dropout Inference Step
Input: Indices of tokens ∈ x : P (prefix), C (current block), S (suffix); window W ; decay params

(k, a); model pθ
Output: model output for this step

1: /*select a near-suffix window */
2: SW ← the first W indices of S
3: /* Select suffix indices using distance-decay sampling */
4: K ← {j ∈ SW | uj ≤ P (dj)}

where dj=j −max(C)− 1 (dist to current) , uj∼Uniform(0, 1),
and P (dj) = min

{
1, a(2π)−1/2 exp

(
− 1

2 (
k
W dj)

2
)}

5: scratchpad← x[K]
6: x′ ← concat

(
x[P], x[C], scratchpad

)
7: output← pθ(x

′)
8: return output

As outlined in Algorithm 1, the Gaussian-based sampler selects a subset of suffix tokens according
to distance-aware probabilities. We then construct a pruned sequence x′ by indexing with K. The
rest of the model remains unchanged, except for a minor adjustment to the RoPE embeddings inside
the attention module to ensure correct positional encoding under suffix dropout.

RoPE Adjustment. Our suffix dropout mechanism requires only a minor adjustment to the
RoPE (Su et al., 2021) to maintain correct positional information. In standard RoPE, a token at
absolute position i is encoded using an angle θi = i · ∆. After dropout, however, only a sparse,
non-contiguous subset of suffix indices I = {i1, . . . , im} is preserved.

To handle this, we ensure that each preserved token retains its original positional information. Rather
than using their re-indexed positions after dropout, we apply a mapping function f(ik) that retrieves
the original absolute position of the k-th preserved token. The new angle is then computed as

θ′ik = f(ik) ·∆. (8)

Accordingly, the modified RoPE application becomes

RoPE′(xik , ik) = RoPE(xik , f(ik)). (9)
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This adjustment requires only a lightweight remapping inside the attention module and does not
alter the functional form of RoPE, confirming that suffix dropout is nearly cost-free while preserving
positional consistency.

Early Termination. To further enhance efficiency, we also implement an simple technique, called
early termination. It halts generation upon detecting an end-of-sequence (<eos>) token. This tech-
nique, which performs a check after each decoded block, addresses the computational redundancy
inherent in fixed-length generation models like LLaDA (Nie et al.). Its utility is most pronounced in
long-sequence settings where the maximum length significantly exceeds the actual generated con-
tent, particularly for models employing top-k decoding.

Conversely, the benefits of early termination are marginal when paired with parallel decoding, as
that method already minimizes post-<eos> redundancy by unmasking each remaining block in a
single step. Similarly, the technique is less impactful for Dream models, which tend to fully utilize
their token budget, as evidenced by ℓ̄/ℓmax in Tbl. 2. Therefore, to establish a more robust point
of comparison, we applied this optimization exclusively to the LLaDA vanilla baseline in our
long-sequence analysis, as discussed in Appx. C.2.1.

C EXTENDED EXPERIMENTAL RESULTS

This section provides supplementary experimental results, including a detailed performance break-
down for the LLaDA-1.5 model and an extended analysis of long-sequence generation on the Dream-
Base model.

C.1 FULL PERFORMANCE RESULTS FOR LLADA-1.5

We present a comprehensive analysis of DPad’s performance on the LLaDA-1.5 model across all
benchmarks. The full results are summarized in Tbl. 4.

Table 4: Performance of LLaDA-1.5 with DPad on four benchmarks.

LLaDA-1.5

Benchmark Method Efficiency Accuracy (%)

Latency(s)↓ TPS↑ ℓ̄/ℓmax Flexible↑ Strict↑

GSM8K
4-shot

Vanilla 27.61 1.00× 7.77 1.00× 215 / 256 80.59 61.87
+DPad 18.26 1.51× 8.56 1.10× 156 / 256 80.14 78.47
+Parallel (Fast-dLLM) 8.06 3.42× 26.61 3.43× 215 / 256 80.82 62.62
+Parallel+DPad 6.23 4.43× 25.23 3.25× 157 / 256 80.89 78.92

MATH
4-shot

Vanilla 25.12 1.00× 8.67 1.00× 218 / 256 33.52 32.72
+DPad 20.63 1.22× 9.48 1.09× 196 / 256 34.08 37.00
+Parallel (Fast-dLLM) 9.48 2.65× 22.96 2.65× 218 / 256 33.60 32.92
+Parallel+DPad 8.57 2.93× 22.76 2.63× 195 / 512 32.92 35.96

HumanEval
0-shot

Vanilla 34.80 1.00× 3.16 1.00× 110 / 512 40.85 –
+DPad 11.55 3.01× 7.19 2.28× 83 / 512 44.51 –
+Parallel (Fast-dLLM) 11.16 3.12× 9.80 3.10× 109 / 512 39.63 –
+Parallel+DPad 5.26 6.61× 15.64 4.95× 82 / 512 39.63 –

MBPP
3-shot

Vanilla 62.34 1.00× 1.02 1.00× 63 / 512 38.20 –
+DPad 14.95 4.17× 4.33 4.26× 65 / 512 39.80 –
+Parallel (Fast-dLLM) 5.47 11.39× 11.62 11.44× 64 / 512 38.60 –
+Parallel+DPad 4.41 14.14× 14.83 14.60× 65 / 512 41.60 –

Efficiency. On LLaDA-1.5, DPad achieves significant latency reductions, with speedups ranging
from 1.22× to 4.17× over the vanilla baseline. When combined with parallel decoding, the over-
all speedup reaches up to 14.14×. These gains are driven by DPad’s core mechanisms, including
the generation of more concise outputs. For instance, DPad reduced the average generation length
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on MATH by approximately 10% and on GSM8K by 27%, with the majority of the speedup still
attributable to reduced suffix computation. As shown in Figure 8, the benefits of DPad scale dra-
matically with sequence length, achieving a 61.39× combined speedup in a 1024-token setting.

Accuracy. Consistent with results on LLaDA-Instruct, DPad improves both efficiency and accu-
racy for LLaDA-1.5, demonstrating that speed enhancements do not compromise quality. The most
substantial improvements are observed in strict-match accuracy, where DPad helps the model better
adhere to the formatting of in-context examples. On GSM8K, DPad improves the strict-match score
from 61.87% to 78.47%. This highlights DPad’s ability to focus the model on high-quality signals
from the prompt by pruning noisy, low-entropy suffix tokens.

C.2 FULL LONG-SEQUENCE GENERATION ANALYSIS

C.2.1 LLADA-1.5

The 20.3× speedup of DPad over the vanilla baseline reported in Tbl. 3 warrants further analysis,
as it is disproportionately large compared to the 5.2× speedups over the +Par. and +Par.+PC.
baselines. Upon investigation, we find this discrepancy is primarily due to the vanilla model’s in-
efficiency: it often produces a concise answer (around 256 tokens) but then continues to generate
redundant <eos> tokens one by one to fill the 1024-token budget, a process that incurs significant
latency. In contrast, our DPad implementation eliminates this specific inefficiency by incorporating
the early termination technique discussed in Appx. B.

To disentangle the individual contributions of suffix dropout and early termination, we introduce a
stronger baseline by augmenting the vanilla model with an early termination mechanism (+Early
Termination). As shown in Fig. 8, our analysis reveals that a 4.8× speedup is attributable to
early termination alone. Nevertheless, even against this stronger baseline, suffix dropout contributes
an additional 4.2× speedup, demonstrating its significant and independent impact on efficiency.

LLaDA

+Eary Termination

+ DPad

Parallel-Only

+ DPad

Parallel + PrefixCache

+ DPad

Flexible Match (FM, %): 78.17, Strict Match (SM, %): 48.98

FM: 78.17, SM: 48.98

FM: 78.77, SM: 74.07

FM: 78.77, SM: 49.43

FM: 79.38, SM: 74.22

FM: 78.77, SM: 51.63

FM: 77.10, SM: 70.66

127s, 1.55TPS

26.4s, 7.47TPS

6.28s, 18.4TPS

11.7s, 16.9TPS

2.26s, 51.4TPS

10.8s, 18.2TPS

2.07s, 55.5TPS

1.0x

4.8x

20.3x

1.0x

5.2x

1.0x

5.2x

61.39x

Figure 8: Latency comparison on LLaDA-1.5 with GSM8K (1024 tokens, 1-shot).

C.2.2 DREAM

To further validate the scalability of our approach, we conducted an extended analysis on the Dream-
Base model using the HumanEval benchmark. We evaluated the same set of acceleration strategies
as in the main paper’s analysis. The results, shown in Figure 9, confirm that the benefits of DPad
generalize across different models and tasks.

Speedup. We observe a similar scaling trend on Dream-Base as on LLaDA-1.5. DPad alone ac-
celerates inference by 9.1× for 1024-token sequences and 17.1× for 2048-token sequences. When
combined with Fast-dLLM, the benefits are multiplicative, achieving a 30.58× speedup at 1024 to-
kens and an impressive 97.32× speedup at 2048 tokens. These results reinforce that suffix dropout
and parallel decoding address orthogonal bottlenecks, yielding nearly two orders of magnitude im-
provement in long-sequence generation.

Accuracy. On the 2048-token HumanEval task, we observed a 7.32% accuracy degradation when
applying DPad to the vanilla Dream model. This degradation is largely mitigated when DPad is
combined with Fast-dLLM. We hypothesize that this isolated performance drop arises from com-
plex interactions between our training-free pruning strategy and the model’s native Top-k sampling
behavior, pointing to an interesting direction for future investigation.
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Dream

+ DPad

Parallel-Only

+ DPad

Parallel + PrefixCache

+ DPad

Acc (%): 51.2294.4s

10.3s

31.8s

3.9s

26.9s

3.1s

1.0x

9.1x

1.0x

8.2x

1.0x

8.7x

30.58x

Acc: 49.39

Acc: 51.22

Acc: 53.05

Acc: 55.49

Acc: 54.27

Dream

+ DPad

Parallel-Only

+ DPad

Parallel + PrefixCache

+ DPad

Acc  (%): 56.71342.2s

20.0s
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4.7s
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1.0x
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15.8x
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Acc: 53.66

Acc: 52.44

Acc: 57.93

Acc: 54.88

Gen. Length: 1024

Gen. Length: 2048

Figure 9: DPad performance on long-sequence generation with Dream-Base. Latency and accu-
racy comparison on the HumanEval benchmark for generation lengths of 1024 and 2048 tokens (0-
shot). DPad’s speedup scales significantly with sequence length, achieving up to a 97.32× speedup
when combined with other optimizations at 2048 tokens.

D HYPERPARAMETER ANALYSIS

This section details the hyperparameter tuning process for our Gaussian sampler. Since attention
score distributions can vary across models and datasets, we tune hyperparameters on a small subset
of data for each benchmark to ensure optimal performance.

D.1 ABLATION STUDY ON GAUSSIAN HYPERPARAMETERS

Inspired by findings that dLLMs exhibit different behaviors on mathematical and code-generation
tasks (Gong et al.), we tune the hyperparameters for our Gaussian Sampler separately for each
domain. We perform a grid search over two key parameters: the decay rate, k, and a scale factor,
a. The parameter a is used to control the overall retention density, which we define as the expected
proportion of suffix tokens preserved by the Gaussian Sampler inside the sliding window.
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k1 2 3 4 1 2 3 4 1 2 3 4
Density25.0% 37.5% 50.0%

Performance across k and Density
Metric

GSM8K (Flexible)
GSM8K (Strict)
Humaneval
Baseline
Chosen

Figure 10: Ablation study on hyperparameters k and a for LLaDA-Instruct on subsets of GSM8K
and HumanEval. The parameter a is mapped to the retention density shown on the x-axis. Each
dashed line represents the baseline performance for the solid line of the same color and metric.

The results of this search for LLaDA-Instruct are presented in Figure 10, conducted on 50-sample
subsets of GSM8K and HumanEval. While using a small subset for tuning may introduce some
variance, the findings provide clear directional insights. Our method with Gaussian Dropout consis-
tently outperforms the baseline in nearly all configurations, with a single, minor exception for the
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GSM8K flexible-match accuracy score at k = 1 and a density of 25.0%. The suboptimal perfor-
mance at k = 1 is expected, as at this value the Gaussian curve is relatively flat across the sampling
window (as shown in Fig. 11), causing the sampling to degenerate into a near-uniform distribution.
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k=1, a=1.5, Density=50.0%
k=2, a=1.1, Density=25.0%
k=2, a=1.6, Density=37.5%
k=2, a=2.1, Density=50.0%
k=3, a=1.6, Density=25.0%
k=3, a=2.3, Density=37.5%
k=3, a=3.4, Density=50.0%
k=4, a=2.0, Density=25.0%
k=4, a=3.3, Density=37.5%
k=4, a=7.5, Density=50.0%

Figure 11: Different curvers of Gaussian pdfs with different parameters.

Focusing on the more effective range of k ∈ [2, 4], we identify distinct optimal settings for each do-
main. For the mathematical reasoning task (GSM8K), a density of 25.0% provides the best balance
of accuracy and efficiency. Although some settings with 50.0% density achieve a slightly higher
strict-match score, they do so by preserving twice as many suffix tokens, which significantly un-
dermines acceleration. We therefore select k = 4.0 and a density of 25.0% (from a = 2.0) as the
optimal configuration. For code generation (HumanEval), a configuration of k = 3.0 and a density
of 37.5% (from a = 2.3) yields the best performance.

Based on these findings, we adopt these hyperparameters for all subsequent math and code bench-
marks for LLaDA-Instruct, with similar tuning for other models, as listed in Tbl. 5.

D.2 HYPERPARAMETER SETTINGS

The primary hyperparameters for the Gaussian sampler are the decay rate factor k and the magnitude
scalar a, which controls the retention density. The optimal values used in our main experiments
(Section 4.2) are summarized in Tbl. 5.

Table 5: The hyperparameters for Gaussian Sampler used in main experiments in Sec. 4.2

Task
LLaDA-Instruct LLaDA-1.5 Dream-Base

k a Density Window k a Density Window k a Density Window

GSM8K 4.0 2.0 25.0% 256 3.0 1.6 25.0% 256 4.0 1.6 20.0% 256

Math 4.0 2.0 25.0% 256 3.0 1.6 25.0% 256 4.0 1.6 20.0% 128

HumanEval 3.0 2.3 37.5% 512 3.0 1.6 25.0% 128 3.0 2.3 37.5% 128

MBPP 3.0 2.3 37.5% 128 3.0 1.6 25.0% 512 3.0 1.6 25.0% 128

E QUALITATIVE CASE STUDIES

To provide qualitative insight into DPad’s impact, this section presents case studies illustrating its
effect on in-context learning, format adherence, and generation conciseness.
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E.1 IMPROVED IN-CONTEXT LEARNING AND FORMAT ADHERENCE

A key benefit of DPad is its ability to improve strict-match accuracy by helping the model faithfully
replicate the reasoning format from few-shot examples. Fig. 12 provides a clear example from
the GSM8K benchmark. The baseline model produces the correct numerical answer but fails to
follow the structured, step-by-step reasoning shown in the prompt. In contrast, DPad successfully
mimics the desired format, leading to a successful strict match. This demonstrates that by pruning
distracting, low-entropy suffix tokens, DPad allows the model to better focus on and learn from
high-quality prompt examples.

============== 4 shots ===============
Question: ……
#### 12
……
Question: ……
#### 200
=====================================
Question: Janet’s ducks lay 16 eggs per day. She 
eats three for breakfast every morning and bakes 
muffins for her friends every day with four. She 
sells the remainder at the farmers' market daily 
for $2 per fresh duck egg. How much in dollars 
does she make every day at the farmers' market?

First, let's determine how many eggs Janet uses each day:
- She eats 3 eggs for breakfast.
- She bakes 4 eggs for her friends.
Total eggs used per day = 3 + 4 = 7 eggs.

Next, let's find out how many eggs are left to sell:
- The ducks lay 16 eggs per day.
- Janet uses 7 eggs per day.
Eggs left to sell per day = 16 - 7 = 9 eggs.

Now, let's calculate how much Janet makes from selling 
the eggs:
- She sells each egg for $2.
Total earnings per day = 9 eggs * $2/egg = $18.

Therefore, Janet makes $18 every day at the farmers' 
market.
#### 18
(173 tokens)

Question

+DPad

To determine how much Janet makes every day at the 
farmers' market, we need to follow these steps:

1. Calculate the total number of eggs laid by Janet's 
ducks per day.
2. Subtract the number of eggs she eats for breakfast and 
bakes for her friends.
3. Multiply the remaining eggs by the price per egg to find 
her daily earnings.

1. Janet's ducks lay 16 eggs per day.
2. She eats 3 eggs for breakfast and bakes 4 eggs for her 
friends. Therefore, she uses a total of 3 + 4 = 7 eggs per 
day.
3. The number of eggs left to sell is 16 - 7 = 9 eggs.\n4. She 
sells each egg for $2, so her daily earnings are 9 eggs * $2/
egg = $18.

Therefore, Janet makes $18 every day at the farmers' 
market.
(195 tokens)

Flexible-Match Strict-Match Flexible-Match Strict-Match

LLaDA-Instruct/GSM8K 
(256, 4-shot)Baseline

Figure 12: Case study on format adherence from GSM8K. This example contrasts the output
of the baseline LLaDA-Instruct model with the DPad-enhanced version. The baseline provides the
correct answer (Flexible-Match) but fails to follow the prompt’s reasoning structure (failed Strict-
Match). DPad generates both a correct and well-formatted response, passing both criteria.

E.2 PROMOTING CONCISE AND EFFICIENT GENERATION

We also present a case study on the Dream model to illustrate how DPad influences generation
behavior. Unlike the LLaDA models, Dream tends to exhaust its full token budget, resulting in ver-
bose and inefficient outputs. DPad mitigates this by encouraging more concise and logically sound
generations. Figure 13 shows that the baseline model generates a lengthy, 1021-token response
that brute-forces a solution. DPad, however, produces a correct and elegant 69-token solution that
terminates naturally.

F DISCUSSION

F.1 BEYOND A TRAINING-FREE METHOD: SUFFIX DROPOUT WITH SFT

While DPad demonstrates improved accuracy and computational efficiency across diverse bench-
marks by strategically pruning the suffix space, we observe a performance degradation in very long-
sequence generation, particularly at a context length of 2048 tokens. We attribute this behavior to
a distributional shift introduced by suffix dropout. During pre-training, the model is optimized to
predict token distributions conditioned on a full, continuous sequence of masked suffix tokens. In
contrast, our distance-decay dropout forces the model at inference time to predict based on a much
smaller, discontinuous set of masked suffix tokens. While moderate dropout helps the model focus
on prompt semantics, such a large shift in the conditional distribution can hinder generalization,
leading to degraded performance.

This training–inference distribution gap may be mitigated with supervised finetuning (SFT). In par-
ticular, the attention lottery hypothesis offers a useful perspective that can be incorporated into
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def modp(n: int, p: int):
"""Return 2^n modulo p (be aware 
of numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1
“””

# Your code here

```
```python
def modp(n: int, p: int):
"""Return 2^n modulo p (be aware of 
numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1
"""
if n == 0:
    return 1
if n == 1:
    return 2
if p == 2:
    return 0
if p == 3:
...
if p == 313:
    return
(1021 tokens)

if n == 0:
return 1

result = 2
while n > 1:

if n % 2 == 1:
result = (result * 2) % p
n //= 2
if n == 0:

break
result = (result * result) % p
return result
(69 tokens)

Question

+DPad Baseline

Dream/HumanEval
(1024, 0-shot)

Figure 13: Case study on generation conciseness from Dream/HumanEval. A comparison of
generated code for a modular arithmetic problem. The baseline model (1021 tokens) produces a
highly verbose, unrolled solution to fill its token budget. In contrast, DPad (69 tokens) generates a
compact, efficient, and logically superior solution, demonstrating improved reasoning.

training. We revise the learning objective as:

LDPad(θ) = −Ex0,t,M

[
1

t

∑
i∈C

log pθ

(
x0

i | xt
(IR∪IP∪M)

)]
, (10)

where M denotes a subset of masked suffix tokens sampled via distance-decay dropout at each
training step, IR represents the prompt tokens, Ip represents the generated prefix tokens,θ represents
the model parameters, t ∈ [0, 1] is degree of masking of samples from the forward masking process
(Sec. 2.1), and the loss is computed over the current block tokens C. Using stochastic dropout masks
rather than a fixed deterministic pattern enhances robustness, as the model does not overfit to any
single dropout scheme. This revised objective explicitly integrates the notion of an attention lottery
into training, encouraging the model to avoid wasting capacity by writing redundant information
into distant suffix tokens that are likely to be pruned at inference.

Looking further ahead, one could even incorporate distance-decay dropout directly into the pre-
training phase, allowing the model to learn sparsity from scratch. Such pre-training with sparse
suffix attention would naturally align training and inference conditions, and may yield even stronger
efficiency–accuracy trade-offs.

F.2 COMPARISON TO SEMI-AUTOREGRESSIVE DIFFUSION AND BLOCK DIFFUSION

Block Diffusion models (Arriola et al., 2025) operate autoregressively at the block level, predicting
each block conditioned only on its predecessors. As a result, their attention mechanism excludes
access to subsequent blocks, in contrast to the directional attention employed by semi-autoregressive
models.
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While this design is computationally efficient, its strictly forward-looking nature introduces two
major limitations. First, it is vulnerable to the reversal curse (Berglund et al., 2024), since it cannot
capture long-range (beyond a single block) bidirectional dependencies that are crucial for tasks such
as code generation, which often require iterative back-and-forth refinement (Gong et al.). Second,
by discarding the suffix, it forfeits the ability to use suffix tokens as a scratchpad (see Sec. 3.1),
thereby losing an important medium for contextual organization.

Our proposed distance-decay dropout interpolates between these paradigms. It retains suffix tokens
to function as a scratchpad, while at the same time preserving the model’s bidirectional learning
ability, allowing information to be both written into and retrieved from the suffix scratchpad as
needed.

G LLM USAGE DISCLOSURE

LLMs were used for (i) language editing and (ii) limited code assistance in code writing and debug-
ging. All research code implementing our method and all experimental decisions were written and
validated by the authors. We independently verified the correctness and reproducibility of the result.
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