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ABSTRACT

Multiple instance learning (MIL) has been widely employed for gigapixel whole
slide image (WSI) diagnosis. Existing MIL methods, however, are found wanting
to align with the clinical practice of pathologists, who typically scrutinize WSIs
at varied scales and compare the local regions in a global perspective. Given that
WSIs usually boast immense dimensions peppered with large regions not pertinent
to diagnosis, we propose a novel hierarchical multiple instance learning method
based on the state space model (SSM) , called Mamba-HMIL, for WSI classi-
fication. Mamba-HMIL consists of three primary modules to enhance the per-
formance of MIL. First, the hierarchical feature extractor harvests features across
diverse scales. Second, for capturing the correlation among patches, the state
space model demonstrates robust modeling capabilities. A Mixture of Experts
(MoE) module is for stable SSM training. Third, the adaptive selection model
strives to reduce redundancies by focusing on disease-positive regions. We evalu-
ate Mamba-HMIL on two WSI subtype datasets (TCGA-NSCLC and TCGA-
RCC) and two WSI survival datasets (TCGA-BRCA and TCGA-BLCA). Our
results suggest that Mamba-HMIL outperforms existing MIL methods on both
WSI tasks. Our code will be made publicly available.

1 INTRODUCTION

Pathological image analysis serves as the gold standard for cancer diagnosis Kumar et al. (2014).
Rapid advancements in scanning technologies Farahani et al. (2015) have digitized pathological
scans into whole slide images (WSIs) of up to 100, 000×100, 000 pixels. Analyzing these WSIs can
be a labor-intensive and time-consuming task that demands considerable expertise and concentration
from pathologists Evered & Dudding (2011). Recent studies indicate that computer-aided methods
could alleviate these demands Tizhoosh & Pantanowitz (2018); Bera et al. (2019); Niazi et al. (2019);
Colling et al. (2019); Jiang et al. (2020). However, due to the immensity of WSIs, computer-aided
analysis needs huge computational resources,posing a considerable challenge Evered & Dudding
(2011). To address this, researchers have cropped each WSI into a large number of patches, which
can be treated as a bag of instances. Thus, cancer diagnosis using WSIs has been formulated into a
multiple instance learning (MIL) problem, where each bag (i.e., a WSI) has a label but each instance
(i.e., a patch) inside a bag has no label.

With the advent of convolutional neural networks (CNNs), numerous CNN-based MIL methods have
been proposed for WSI diagnosis Chikontwe et al. (2020); Lerousseau et al. (2020); Xu et al. (2014);
Feng & Zhou (2017); Ilse et al. (2018); Campanella et al. (2019); Lu et al. (2021); Li et al. (2021);
Shao et al. (2021). These methods can be categorized into instance-level and embedding-level ones.
Instance-level methods predict the pseudo-label of each instance based on bag-level labels, and then
aggregate instance-level pseudo-labels to form the bag-level prediction Chikontwe et al. (2020).
These methods usually have inferior performance due to their sensitivity to instance-level labels.
Embedding-level methods convert each instance into a feature embedding, and then feed the feature
embeddings from the same bag to an aggregator for bag-level prediction Xu et al. (2014); Feng &
Zhou (2017); Ilse et al. (2018); Campanella et al. (2019); Lu et al. (2021); Li et al. (2021); Shao et al.
(2021). Despite their notable success, these methods exhibit several major drawbacks. First, a WSI
may present variable diagnostic information at different scales (Figure 1). For instance, a pathologist
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Figure 1: Reading behavior of pathologists.

may examine a WSI at multiple scales before making the final diagnosis, e.g., determining if the tis-
sue is necrotic in a global view and whether there is mitoses or microvascular proliferation in a local
view ?. Second, given the enormous size of each WSI, there inevitably exists long-range correlation
among tissue/tumor regions that may be corrupted by partitioning the WSI into patches and extract-
ing patch-level features independently. Third, for each WSI, only a small number of patches contain
disease-positive regions, while the majority contain disease-negative regions, leading to severe in-
formation redundancy. Therefore, it is critical to select the most informative instances (patches) in
each bag before aggregation.

To address these drawbacks, in this paper, we propose a state space model-based hierarchical mul-
tiple instance Learning (Mamba-HMIL) method for cancer diagnosis using WSI. Our Mamba-
HMIL consists of three major parts. First, we deploy hierarchical encoders to extract multiscale
features, mirroring the practice of a pathologist. Second, we employ a state space model (SSM)
for feature aggregation to capture long-range correlations among tissue and tumor regions across
thousands of patches while maintaining a manageable computational cost. Additionally, to ensure
stable training, we incorporate a Mixture of Experts (MoE) and sequence fusion module to balance
the contributions of each SSM sequence. Third, we insert an adaptive selection module to filter
out disease-negative patches before classification. We verify the effectiveness of each component
of our Mamba-HMIL and evaluate it against existing subtype classification and survival prediction
methods using four public datasets. The contributions of this work are two-fold.

� We propose a novel solution to WSI classification, which extracts multiscale features, esti-
mates the long-range correlation among tissue/tumor regions, and utilizes sparse selection
to mitigate patch redundancy.

� The proposed Mamba-HMIL beats all competing methods on two public WSI classifica-
tion datasets, setting the new state of the art.

2 RELATED WORK

Various MIL methods have been proposed to solve the weakly supervised classification task Zhou &
Hua (2004). MIL was proposed for the first time and applied for drug activity prediction. Dietterich
et al. Dietterich et al. (1997) compared three kinds of methods: a noise-tolerant algorithm, an “out-
side” algorithm, and an “inside-out” algorithm. The “inside-out” algorithm named region growing
achieves the best results among these three methods. Maron et al. Maron & Ratan (1998) first used
MIL in natural scene image classification. Zhou et al. Zhou et al. (2012) defined a multiple instance
and multi-label (MIML) task for scene image classification. With the development of deep learning,
a large number of deep learning based MIL is proposed to solve various tasks.

In particular, MIL has been widely used in digital pathological image analysis. With the develop-
ment of deep learning, deep learning based MIL achieves great success in digital pathological image
analysis Xu et al. (2014); Ilse et al. (2018); Campanella et al. (2019); Lu et al. (2021); Li et al. (2021);
Shao et al. (2021). Xu et al. Xu et al. (2014) classified pathological images by establishing a deep
MIL paradigm, where instance feature representations were operated by deep learning networks and
aggregated by MIL. Pinheiro et al. Pinheiro & Collobert (2015) proposed a pooling-based method
such as mean-pooling or max-pooling. Ilse et al. Ilse et al. (2018) proposed an attention-based deep
MIL method, which was just a linear weighted combination. Campanella et al. Campanella et al.
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Figure 2: Framework of our proposed Mamba-HMIL, including three components: hierarchical
feature extractor (HFE), state space model (Mamba), Mixture of Experts (MoE), sequence fusion
(SF), and adaptive selection (AS) block. In particular, a WSI is first cropped into multiscale patches
(10× and 20×), which are regarded as multiscale bags of instances. The level 10× instances are
passed through the feature extractor E1 to produce level 10× embeddings. By combining these
embeddings in various ways, we generate different sequences Seq 1, Seq 2, ..., Seq N. These se-
quences are then fed into the Mamba, MoE, and SF blocks. These selected embeddings, together
with the level 20× embeddings, undergo hierarchical fusion processing to merge multiscale features.
Subsequently, the fused sequence embeddings are filtered by the AS block, selecting those with a
high probability of being positive. The embeddings with higher positive likelihood are retained and
passed through the MLP head, culminating in a bag-level prediction.

(2019) proposed a recurrent neural network (RNN) based MIL aggregation that took the relation of
neighboring instances into account. Li et al. Li et al. (2021) proposed a dual-stream MIL, which
used the relation between the most possible positive instance and other instances, but ignored the
correlation of other instances. Shao et al. Shao et al. (2021) developed a Transformer-based MIL
that considered the correlation among instances, but its performance improvement is largely de-
pendent on a pyramid convolutional block. Zhanget al. Zhang et al. (2022) proposed DTFD-MIL
to use pseudo bags and feature distillation. Chenet al. Chen et al. (2022a) proposed a hierarchi-
cal self-supervised learning method for WSI classification. Yanget al. Yang et al. (2024) explored
Mamba-MIL, and used Bi-Mamba for sequence correltaion.

3 METHOD

3.1 MULTIPLE INSTANCE LEARNING

MIL is an effective method to classify bags which contain uncertain number of instances. According
to the hypothesis of MIL for binary classification task, each bag has a label. If a bag contains at least
one positive instance, the label of bag is positive. On the other hand, if the instances in a bag are
all negative, the label of bag is negative. Supposing that X is a bag with label Y ∈ {0, 1}, which
contains several instances {x1, x2, · · · , xn} with labels {y1, y2, · · · , yn}, yi ∈ {0, 1}, an MIL task
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Algorithm 1 SSM+SS processing flow.
Input: A bag of instance embeddings Hl−1 ∈ R1×N×D

1: State Space Model (SSM)
2: H ′

l−1←Norm(Hl−1)
3: for i in {Forward,Reverse} do
4: Hi ← SSM(SiLU(Conv1D(Linear(H ′

l−1))))
5: end for
6: Hs ← SiLU(Linear(H ′

l−1))
7: HForward←HForward

⊗
Hs

8: HReverse←HReverse

⊗
Hs

9: Hl← Linear(HForward

⊕
HReverse)+Hl−1

Output: Instance embeddings HL ∈ RN×D

can be defined as

Y =

{
1, if

∑
yi = 0,

0, otherwise.
(1)

There are two main approaches in an MIL operator: the instance-level approach and the embedding-
level approach. These two approaches share a similar expression. The bag probability is regarded
as a score function S (X), which is defined as

S (X) = g

(
σ

xi∈X
(f (xi))

)
. (2)

For instance-level approach, f(·) is an instance-level classifier that returns each instance score. σ(·)
acts as a function to aggregate instance scores. g(·) is the identity function. For, embedding-level
approach, f(·) maps instances to a low-dimensional embedding. σ(·) is used to obtain a bag repre-
sentation that is independent of the number of instances. g(·) is a bag-level classifier.

3.2 HIERARCHICAL FEATURE EXTRACTOR

The feature extractor is flexible to various deep learning networks. In this paper, we choose ResNet-
50 He et al. (2016) and Vision Transformer Dosovitskiy (2020) as the feature extractor for comparing
with other methods easily.

ResNet-50 consists of a 7× 7 convolutional (Conv) layer, a 3× 3 max pooling layer, four stages of
residual blocks (each residual block is stacked by a fixed mode of 1×1, 3×3 and 1×1 Conv layers,
and four stages contain 3, 4, 6 and 3 residual blocks respectively), a global average pooling layer, a
fully connected layer (FC) and softmax. The FC layer and softmax are removed and the remaining
part is used as the feature extractor. We choose ResNet-50 pre-trained on ImageNet as the basic
model.

ViT consists of a linear projection layer followed by Transformer blocks, each containing a multi-
head self-attention (MHSA) mechanism, a feed-forward network (FFN), and two layer normaliza-
tion (LN) stages. Residual connections are applied after both the MHSA and FFN layers to improve
gradient flow. We choose ViT-Large pre-trained by UNI Chen et al. (2023) as the feature extractors.

E1 and E2 are the same encoders, which are used to extract different scales of features (10× and
20×) of WSIs.

3.3 STATE SPACE MODEL

The state space model (SSM) Mamba Gu & Dao (2023) maps 1-dimensional function or sequence
x(t) ∈ R 7→ y(t) ∈ R through a hidden state h(t) ∈ RN . SSM is represented as the linear ordinary
differential equation (ODE):

x′(t) = Ah(t) + Bx(t), (3)
y(t) = Ch(t), (4)

where A ∈ RN×N B ∈ RN×1 and C ∈ R1 are state parameters. The SSM consists of three
branches: the forward sequence flow, the reverse sequence flow, and a nonlinear flow. The forward
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Table 1: Performance comparison of subtype classification on TCGA-NSCLC and TCGA-RCC.

Method TCGA-NSCLC TCGA-RCC

ACC AUC ACC AUC

MIL 0.817±0.009 0.858±0.021 0.847±0.018 0.941±0.010

ABMIL 0.821±0.017 0.871±0.033 0.857±0.011 0.951±0.004
Mamba+ABMIL 0.836±0.019 0.905±0.027 0.896±0.019 0.955±0.008

CLAM-MB 0.853±0.012 0.933±0.007 0.897±0.010 0.979±0.008
Mamba+CLAM-MB 0.871±0.008 0.936±0.009 0.913±0.016 0.982±0.006

DSMIL 0.828±0.015 0.897±0.015 0.863±0.021 0.955±0.003
Mamba+DSMIL 0.846±0.017 0.918±0.009 0.901±0.017 0.974±0.007

TransMIL 0.813±0.013 0.881±0.020 0.890±0.014 0.962±0.009
DTFD-MIL 0.873±0.025 0.927±0.018 0.921±0.010 0.985±0.004
Mamba-MIL 0.863±0.014 0.924±0.011 0.913±0.009 0.974±0.009

HIPT 0.878±0.007 0.939±0.016 0.930±0.010 0.979±0.008
HIGT 0.872±0.011 0.925±0.019 0.919±0.010 0.974±0.007

Mamba-HMIL 0.884±0.025 0.944±0.012 0.936±0.011 0.989±0.008
Mamba-HMIL+UNI 0.911±0.008 0.964±0.008 0.946±0.004 0.989±0.001

Table 2: Performance comparison of survival prediction on TCGA-BRCA and TCGA-BLCA.

Method Modality TCGA-BRCA TCGA-BLCA

SNN G 0.565±0.035 0.517±0.053

ABMIL P 0.593±0.047 0.584±0.068
Mamba+ABMIL P 0.627±0.053 0.611±0.038

CLAM-MB P 0.635±0.044 0.623±0.032
Mamba+CLAM-MB P 0.657±0.047 0.633±0.061

DSMIL P 0.607±0.033 0.601±0.029
Mamba+DSMIL P 0.625±0.053 0.627±0.048

Propoise G+P 0.644±0.035 0.634±0.052
MCAT G+P 0.659±0.046 0.652±0.071
CMTA G+P 0.684±0.042 0.661±0.054

MOTCat G+P 0.663±0.045 0.657±0.058
PIBD G+P 0.696±0.071 0.643±0.062

Mamba-HMIL P 0.661±0.035 0.651±0.042
Mamba-HMIL G+P 0.677±0.039 0.658±0.052

Mamba-HMIL+UNI P 0.684±0.050 0.672±0.041
Mamba-HMIL+UNI G+P 0.698±0.068 0.682±0.063

and reverse sequence flows are the same, which comprise a linear layer, a 1-dimensional convolution
layer (Conv1D), a SiLU activation function, and the SSM layer. The nonlinear flow contains a
linear layer and a SiLU activation function. The features from the forward/reverse flow and the
nonlinear flow are merged by the Hadamard product. After that, the features are added together
and transformed to the output embeddings by a linear layer. The workflow of Mamba is shown in
Algorithm 1
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Table 3: Ablation study for HFE block on TCGA-NSCLC and TCGA-RCC datasets.

HFE level TCGA-NSCLC TCGA-RCC

ACC AUC ACC AUC

5×+10× 0.802 0.847 0.821 0.939
10×+20× 0.829 0.895 0.855 0.944

5×+10×+20× 0.821 0.880 0.847 0.935

3.4 MIXTURE OF EXPERTS MODULE

For stable training, we use the Mixture of Experts (MoE) for multi-squence fusion. The gating
mechanism is a simple linear layer, which computes relevance scores for each expert. The gating
mechanism then activates the top-k experts based on these scores, directing the input through only
those experts. The sequence passes through the selected experts, the outputs from these experts are
combined. The aggregation is a weighted combination based on the gate’s selection scores.

3.5 ADAPTIVE SELECTION MODULE

A adaptive selection (AS) module is used to discard redundant negative instances. It contains a
MLP layer and a Sigmoid function. We utilize the AS module to compute a weight score for each
sequence, and all sequences are then aggregated based on their respective weights. We set a temper-
ature parameter P to balance the number of instances in each bag.

4 EXPERIMENTS AND RESULTS

In this section, two publicly available clinical datasets in the cancer genome atlas (TCGA) ? are used
to demonstrate the effectiveness of our Mamba-HMIL in WSI classification. We also conduct an
ablation study on thest two datasets.

4.1 EXPERIMENT SETUP AND IMPLEMENTATION DETAILS

Experiment setup and evaluation metrics. In our experiment, each WSI of both two pathological
image datasets is cropped into 256× 256 non-overlapping patches to form bags with magnifications
of 10× and 20×, where the background region (entropy < 5) is discarded. Beyond that, we uti-
lize two standard evaluation metrics to evaluate the classification performance, which are accuracy
(ACC) and the area under the receiver operator characteristic curve (AUC).

Implementation details. Experiments are implemented on the device NVIDIA GTX 3080 GPU,
Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, in Python 3.10 on Anaconda with CUDA 12.1 and
Pytorch 2.1.0. We use Adam optimizer with learning rate 2e-4 to optimize SSM+SS training. The
batch size is 1 and the maximum epoch is 200. In order to find the most suitable training parameters,
cross-validation is formed from the whole slides in all the TCGA datasets.

4.2 DATASETS.

Subtype Classification. TCGA lung Non-small-cell cancer dataset (TCGA-NSCLC) includes two
sub-type projects, Lung Adenocarcinoma (TCGA-LUAD, 541 slides) and Lung Squamous Cell
Carcinoma (TCGA-LUSC, 512 slides), with a total of 1,053 diagnostic WSIs available from the
National Cancer Institute Data Portal. Each WSI is cropped into 256×256 non-overlapping patches
at 5×, 10×, and 20× magnification.

TCGA kidney chromophobe renal cell carcinoma cancer dataset (TCGA-RCC) consists of three
kinds of tumors, kidney renal clear cell carcinoma (TCGA-KIRC, 519 slides), kidney renal papillary
cell carcinoma (TCGA-KIRP, 300 slides) and kidney chromophobe renal cell carcinoma (TGCA-
KICH, 121 slides). We use the same pre-processed operation of the TCGA-NSCLC dataset.
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We follow the previous work and use 4-fold cross-validation to conduct our experiments. Both
datasets are split into training, validation, and testing sets by the ratio of 6:1.5:2.5.

Survival Prediction. TCGA-BRCA (1022 cases) and TCGA-LUSC (373 cases) are used for the
evaluation of survival prediction. 5-fold cross validation are used in our experiments.

4.3 RESULTS

We conducted a comparative evaluation of our proposed Mamba-HMIL against eight state-of-the-
art methods, including ABMIL Ilse et al. (2018), CLAM-SB Lu et al. (2021), DSMIL Li et al.
(2021), TransMIL Shao et al. (2021), DTFD-MIL Zhang et al. (2022), Mamba-MIL Yang et al.
(2024), HIPT Chen et al. (2022a), and HIGT Guo et al. (2023). As outlined in Table 1, our Mamba-
HMIL demonstrates superior performance, improving accuracy (ACC) by 0.9% and area under the
ROC curve (AUC) by 0.5% on the TCGA-NSCLC dataset. Similarly, it improves ACC by 0.6% and
AUC by 0.4% on the TCGA-RCC dataset. These improvements, although incremental, highlight
the robustness of Mamba-HMIL in addressing the complexities of these datasets.

We also compare our method against five state-of-the-art survival prediction models, including
Propoise Chen et al. (2022b), MCAT Chen et al. (2021), CMTA Zhou & Chen (2023), MOTCat Xu
& Chen (2023), and PIBD Zhang et al. (2024). Our proposed model, Mamba-HMIL, is built upon
the CLAM architecture. When compared to MIL-based methods that rely solely on pathological
image data, Mamba-HMILoutperforms all other methods, demonstrating superior performance in
survival prediction, as outlined in Table 2. Furthermore, when compared to multi-modality methods
that incorporate genomic data, our model produces competitive results. Notably, when using pre-
trained features, Mamba-HMILachieves the highest C-Index scores on both the TCGA-BRCA and
TCGA-BLCA datasets. This highlights the effectiveness of Mamba-HMILin leveraging pre-trained
features for improved survival prediction, making it a strong contender in both single-modality and
multi-modality scenarios.

Additionally, we integrated the Mamba block into existing models such as ABMIL, CLAM-MB,
and DSMIL, which led to general performance enhancements across both tasks. The inclusion of the
Mamba block in these established models underscores its effectiveness in capturing more nuanced
features and improving overall performance, making it a valuable addition to multiple architectures.
This comparison not only validates the efficacy of Mamba-HMIL but also shows the potential of
the Mamba block as a versatile component in other MIL frameworks.

4.4 ABLATION STUDY

Effectiveness of HFE. In our experiment, we use one fold of the dataset to determine the optimal
number of blocks for our model. We then compare the performance of hierarchical feature extractors
(HFE) with single-level feature extractors, as outlined in Table 3. The comparison is carried out on
two datasets, demonstrating the superior performance of our proposed method. Specifically, on the
TCGA-NSCLC dataset, the hierarchical feature extractor leveraging both 10× and 20× magnifica-
tion levels improves accuracy (ACC) by 2.7% and the area under the ROC curve (AUC) by 4.8%,
compared to the single-level feature extractor. On the TCGA-RCC dataset, the same hierarchical
approach leads to an improvement of 3.4% in ACC and 0.5% in AUC. These results highlight the
efficacy of using multi-scale features, showcasing that hierarchical feature extraction significantly
enhances both classification accuracy and robustness in capturing nuanced patterns across different
datasets.

Effectiveness of Mamba Block. For our baseline, we select ImageNet pre-trained ResNet-50 and
the ABMIL model to evaluate the performance of our method. One of our key goals is to deter-
mine the optimal number of Mamba layers for the best performance. As presented in Table 4,
the model incorporating two Mamba layers produces the best results on both the TCGA-NSCLC
and TCGA-RCC datasets. Specifically, Mamba-HMIL with two Self-Supervised Masking (SSM)
blocks achieves an accuracy (ACC) of 0.836 and an area under the ROC curve (AUC) of 0.905 on
the TCGA-NSCLC dataset. On the TCGA-RCC dataset, the model achieves an ACC of 0.896 and
an AUC of 0.955. These figures represent significant improvements over the baseline models: an
increase of 1.5% in ACC and 3.4% in AUC for TCGA-NSCLC, and gains of 3.9% in ACC and 0.4%
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Table 4: Ablation study for the number of Mamba blocks on TCGA-NSCLC and TCGA-RCC
datasets. ABMIL is chosen for the baseline with 0 Mamba blocks.

Mamba layers TCGA-NSCLC TCGA-RCC

ACC AUC ACC AUC

0 0.821±0.017 0.871±0.033 0.857±0.011 0.951±0.004
2 0.836±0.019 0.905±0.027 0.896±0.019 0.955±0.008
4 0.833±0.014 0.879±0.016 0.895±0.006 0.947±0.009
6 0.825±0.036 0.885±0.031 0.888±0.014 0.955±0.006
8 0.822±0.028 0.893±0.021 0.891±0.011 0.948±0.018

Table 5: Ablation study for the number of experts in MoE block and the fusion strategy of SF blocks.

MoE Type Experts SF Type TCGA-RCC

ACC AUC

MoE 16 - 0.881±0.021 0.964±0.011
STMoE 16 - 0.889±0.027 0.975±0.005
PEER 5122 - 0.894±0.009 0.973±0.004

Sinkhorn 16 - 0.862±0.034 0.951±0.032

STMoE 4 - 0.771±0.133 0.814±0.190
STMoE 8 - 0.783±0.140 0.801±0.184
STMoE 16 - 0.889±0.027 0.975±0.005
STMoE 32 - 0.887±0.014 0.938±0.011
STMoE 64 - 0.850±0.037 0.886±0.048

STMoE 16 Mean 0.883±0.019 0.950±0.012
STMoE 16 Max-Mean 0.899±0.020 0.978±0.005
STMoE 16 GAS 0.914±0.016 0.978±0.006

in AUC for TCGA-RCC. These results highlight the effectiveness of adding two Mamba layers into
the basic model.

Effectiveness of MoE Blocks. We conducted an evaluation of various MoE models using the base
ABMIL architecture to assess the performance, as shown in Table 6. The models tested include the
basic MoE Shazeer et al. (2017), STMoE Zoph et al. (2022), PEER He (2024), and Sinkhorn An-
thony et al. (2024). Among these, STMoE achieved the highest AUC, scoring 0.975, while PEER
delivered the best accuracy (ACC) at 0.894. Despite PEER’s strong performance in terms of accu-
racy, it employs a significantly higher number of experts (5122) compared to STMoE, which utilizes
only 16 experts. Given the substantial increase in computational complexity and resource demand
associated with PEER’s larger number of experts, we selected STMoE for further experimentation
in order to maintain a balance between performance and efficiency. In subsequent experiments, our
results indicate that STMoE with 16 experts delivers the best performance. Specifically, the 16-
expert configuration outperformed the 32-expert variant, with improvements of 0.2% in accuracy
and 3.7% in AUC. This demonstrates that increasing the number of experts beyond a certain point
can lead to diminishing returns, making 16 experts the ideal choice for maximizing performance
while minimizing computational overhead in our subsequent experiments.

Effectiveness of SF Blocks. To explore the most effective method for sequence fusion, we evaluated
three different SF blocks: Mean, Max-Mean, and GAS. Each of these blocks was assessed for
its ability to integrate information across sequences and improve model performance. Among the
three, GAS emerged as the best-performing block in terms of ACC, achieving a score of 0.914. This
highlights the robustness of the GAS block in accurately capturing relationships within the sequence
data. When comparing the AUC, both the Max-Mean and GAS blocks delivered identical top-tier
results with an AUC of 0.978. However, there was a notable difference in the stability of these
models, as reflected by the standard deviation. The Max-Mean block demonstrated a lower standard
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Table 6: Ablation study for the token selection block on TCGA-RCC dataset. We choose CLAM
with Top-K token selection as the baseline.

AS Type Value TCGA-RCC

ACC AUC

Top-K K=8 0.899±0.013 0.979±0.003
Adaptive P=0.7 0.905±0.026 0.980±0.004
Adaptive p=0.8 0.916±0.009 0.983±0.004
Adaptive p=0.9 0.895±0.020 0.975±0.009

Figure 3: The visualization of global WSI and local region by our Mamba-HMIL.

deviation compared to GAS, indicating more consistent performance across different experimental
runs.

Effectiveness of AS blocks. In our study, we selected CLAM with Top-K selection as the baseline
model due to its unique inclusion of a token selection block, which differentiates it from other
models. However, the fixed token selection approach (K=8) does not account for the variability in the
number of positive tokens present in different WSIs. Recognizing this limitation, we introduced an
adaptive selection model (AS) that adjusts the number of selected tokens based on the characteristics
of each WSI, rather than using a fixed value. We evaluated different values for the parameter P (0.7,
0.8, and 0.9), which controls the proportion of selected tokens. As shown in Table 5, we find that
P=0.8 yielded the best results, with an ACC of 0.916 and an AUC of 0.983. These results represent
a significant improvement over the baseline CLAM model, with a 1.7% increase in ACC and a 0.4%
increase in AUC.

Together, these results highlight the importance of a multi-faceted approach in designing a model for
pathological image analysis, combining hierarchical feature extraction, global correlation modeling,
sequence weighting, and instance selection to achieve superior results.

5 CONCLUSION

In this paper, we have proposed Mamba-HMIL to solve the WSI classification task. Mamba-
HMIL consists of three stages: the hierarchical feature extractor, the state space model, and the
sparse selection block. We design the hierarchical feature extractor to obtain multi-scale features like
a pathologist. The state space model is then utilized to calculate the correlation among instances, and
the sparse selection module is used to select the instance embeddings with high positive probability
and aggregate for a WSI-level prediction. Extensive experiments have been performed on two WSI
classification datasets. The experimental results indicate that Mamba-HMIL can dramatically
improve the performance of WSI-level classification. Our future work will focus on prognostic
analysis and validation of other external data.
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