MASSIVE-STEPS: MASSIVE SEMANTIC TRAJECTORIES FOR UNDERSTANDING POI CHECK-INS

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025 026 027

028 029

031

032

033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Understanding human mobility through Point-of-Interest (POI) trajectory modeling is increasingly important for applications such as urban planning, personalized services, and generative agent simulation. However, progress in this field is hindered by two key challenges: the over-reliance on older datasets from 2012-2013 and the lack of reproducible, city-level check-in datasets that reflect diverse global regions. To address these gaps, we present Massive-STEPS (Massive Semantic Trajectories for Understanding POI Check-ins), a large-scale, publicly available benchmark dataset built upon the Semantic Trails dataset and enriched with semantic POI metadata. Massive-STEPS spans 15 geographically and culturally diverse cities and features more recent (2017-2018) and longerduration (24 months) check-in data than prior datasets. We benchmarked a wide range of POI models on Massive-STEPS using both supervised and zero-shot approaches, and evaluated their performance across multiple urban contexts. By releasing Massive-STEPS, we aim to facilitate reproducible and equitable research in human mobility and POI trajectory modeling. Our code is available at: https://anonymous.4open.science/r/Massive-STEPS/.

1 Introduction

Importance of Human Mobility Data and Modeling Human mobility data and POI trajectory modeling are essential for understanding how individuals interact with and move through physical spaces. This understanding enables a wide range of applications, including urban planning (Yuan et al., 2025), travel service recommendations (Feng et al., 2025), improved commercial advertising strategies (Yang et al., 2022b), and Point-of-Interest (POI) recommendation (Ding et al., 2020; Li et al., 2024; Zhang et al., 2025). Recently, human mobility data has become even more crucial with the increasing use of large language models (LLMs) agents to simulate human-like behavior and routines (Zhou et al., 2024; Jiawei et al., 2024). However, while simulated human mobility data are starting to gain popularity (Feng et al., 2020; Qin et al., 2023), they may not accurately reflect real-world human behavior (Salim et al., 2020), highlighting the value of evaluating on real-world data. These advancements are enabled by and large with Location-based Social Networks (LBSNs), which generate vast amounts of spatio-temporal data through user check-ins (Zhang et al., 2025; Li et al., 2024). This rich data source has allowed the development of POI recommendation systems that leverage users' historical visiting behaviors to suggest relevant locations. Such systems enhance user engagement through personalization and provide commercial value to both users and businesses by aligning recommendations with individual preferences and available services (Ding et al., 2020).

Literature Gaps Our paper addresses three critical gaps in POI trajectory modeling research and datasets. First, as shown in Fig. 4, the field remains dominated by studies focused on just two cities, New York and Tokyo, based on the Foursquare dataset curated by Yang et al. (2014). This dataset, collected in 2012-2013, raises concerns about its temporal quality, as many POIs may no longer exist and user behavior may have changed (Yeow et al., 2021). While some recent studies have expanded to other cities (Zhang et al., 2024a; Merinov & Ricci, 2024; Feng et al., 2025), they often rely on the Global-scale Check-in Dataset (GSCD) (Yang et al., 2015; 2016), which, despite its large coverage, is also from 2012-2013 and contains nearly 50% erroneous entries (Monti et al., 2018).

Second, most existing studies are difficult to reproduce, either due to the lack of clearly defined geographic boundaries or the unavailability of the datasets themselves, hindering fair comparison

Figure 1: Massive-STEPS Benchmark Tasks.

and replication. Finally, we join recent efforts (Yuan et al., 2025) in advocating for the inclusion of low-resource and underrepresented cities. Expanding beyond well-studied urban centers is essential for building more generalizable and universally applicable POI models. Table 1 summarizes these limitations in terms of geographic coverage, temporal span, and reproducibility.

Massive-STEPS Dataset In this paper, we introduced the Massive Semantic Trajectories for Understanding POI Check-ins (Massive-STEPS) Dataset, derived from the Semantic Trails dataset (STD) (Monti et al., 2018). Massive-STEPS includes high-quality check-ins from 2012-2013 and 2017-2018, providing more modern and updated POI check-in data. This supports longitudinal POI trajectory modeling studies and addresses the limitations of older datasets commonly used in prior studies. The dataset covers 15 diverse cities across multiple regions, including East, West, and Southeast Asia, North and South America, Australia, the Middle East, and Europe. Notably, we placed a deliberate emphasis on under-explored regions by including cities such as Jakarta, Kuwait City, and Petaling Jaya, filling a key gap in POI trajectory research that has largely focused on major urban centers. We further enriched STD by aligning it with Foursquare's Open Source Places dataset, incorporating missing metadata such as POI coordinates, POI names, and addresses.

Benchmark Tasks To demonstrate the utility of this dataset, we conducted an extensive benchmark on three tasks: (1) supervised POI recommendation, (2) zero-shot POI recommendation, and (3) spatiotemporal classification and reasoning. Our benchmark covers a wide range of models, including traditional approaches, deep learning-based models, and more recent LLM-based methods. The goal of POI recommendation task is to predict a set of POIs that a user is likely to visit based on their current check-in trajectory and historical behavior. This reflects real-world applications such as personalized POI recommendations in location-based services. Similarly, the goal of spatiotemporal classification and reasoning is to assess how effectively models (e.g., LLMs) leverage, interpret, and reason about POI trajectories. In addition, the scale of our dataset allows us to examine how urban features influence POI modeling accuracy. Building on prior hypotheses, we propose a new insight: cities with more evenly distributed POI categories tend to be harder to model, as the absence of a dominant POI category makes user behavior less predictable.

Contribution This paper introduces the Massive Semantic Trajectories for Understanding POI Check-ins (Massive-STEPS) dataset, addressing gaps in existing POI trajectory modeling research. Current POI check-in datasets are often only from 2012-2013, skewed to a few cities, and lack semantic metadata, hindering the development of robust and globally applicable models. While datasets like GSCD and STD offer broad geographic coverage, they either suffer from an older timespan, contain erroneous data, or have missing information. Massive-STEPS overcomes these issues by providing high-quality check-ins from 2012-2013 and 2017-2018, improving temporal quality for longitudinal POI trajectory modeling studies. The dataset spans 15 diverse cities across multiple regions, with a focus on low-resource cities overlooked in previous research. Additionally, Massive-STEPS is enriched with metadata through alignment with Foursquare's Open Source Places, providing crucial details such as POI geographical coordinates, POI names, and addresses. We also conducted an extensive benchmark on both supervised and zero-shot POI recommendation and trajectory classification tasks, evaluating a wide range of models, including traditional methods, deep learning approaches, and recent LLM-based techniques. We further analyzed which urban features affect POI modeling accuracy and found that cities with no dominant POI category tend to be harder

Table 1: Comparison of check-in datasets commonly used for POI modeling tasks. [‡]GSCD (Yang et al., 2014; 2016) and Semantic Trails (Monti et al., 2018) are global datasets not grouped into individual cities, whereas others perform city-level grouping. [†]Replicable indicates whether city boundaries are clearly defined or can be reliably reconstructed.

Dataset		Scale		Completeness	Usability		
	#cities	Years	#months	POI Attributes	Replicable [†]	Open-source	
GSCD (Yang et al., 2014; 2016) Semantic Trails (Monti et al., 2018)	Varies [‡] Varies [‡]	2012-2013 2012-2013, 2017-2018	17 24	Coordinates, Category Category	N/A N/A	√ √	
NYC and Tokyo (Yang et al., 2014)	2	2012-2013	11	Coordinates, Category	✓	✓	
Gowalla-CA (Yuan et al., 2013)	1	2009-2010	21	Coordinates, Category	√	√	
AgentMove (Feng et al., 2025)	12	2012-2013	17	Coordinates, Category	Х	Х	
Massive-STEPS	15	2012-2013, 2017-2018	24	Coordinates, Category, Name, Address	✓	1	

to predict. By releasing this dataset and benchmark code publicly, we facilitate open and reproducible research, enabling future advancements in POI trajectory modeling studies.

2 RELATED WORKS

2.1 Existing Datasets

A survey conducted by Zhang et al. (2025) outlines the landscape of POI trajectory modeling research, covering a wide range of models and architectures used in prior studies. While it offers a high-level overview of the datasets used, it lacks a dedicated discussion or evaluation of POI datasets. We address this gap by analyzing commonly used datasets and positioning our dataset within this context.

LBSN Check-in Data Sources Building on the tabular summary provided by Zhang et al. (2025), which offers a representative overview of the broader literature, we investigated which datasets are most commonly used in prior studies. From their original table (Table IV), we filtered entries pertaining specifically to POI and next POI recommendation tasks and identified (1) the most frequently used LBSN check-in data sources and (2) the most commonly studied cities. As shown in Fig. 4, Foursquare remains the dominant source of LBSN data in existing studies, appearing in almost 50% of the surveyed works. While several variants of Foursquare datasets have been employed, the most widely used are the NYC and Tokyo Dataset (Yang et al., 2014) (often abbreviated as FSQ-NYC and FSQ-TKY) and the Global-scale Check-in Dataset (GSCD) (Yang et al., 2015; 2016), curated by the same authors. Other LBSN sources occasionally used include Gowalla (Cho et al., 2011), Brightkite (Cho et al., 2011), and Weeplaces (Liu et al., 2017).

Saturated to Two Cities and Old Timespan Due to the widespread use of FSQ-NYC and FSQ-TKY (Yang et al., 2014), the majority of POI trajectory studies are disproportionately focused on these two cities, as illustrated in Fig. 4. While there is nothing inherently problematic about NYC and Tokyo, there has been growing interest in expanding research to a broader range of cities, particularly those that are underexplored or considered low-resource (Yuan et al., 2025), as cultural and regional differences influence collective mobility behaviors. For instance, in some cities, residents tend to commute to business districts in the morning, whereas in others, nightlife activities such as visiting bars after work are more common (Yang et al., 2015). Ensuring diverse geographic coverage is increasingly important, especially as LLMs are adopted for POI trajectory modeling tasks. LLMs are known to exhibit geographical biases against regions with lower socioeconomic conditions (Manvi et al., 2024). Whether LLMs can generalize across diverse urban environments is to be investigated.

In addition, because many studies rely on the FSQ-NYC and FSQ-TKY, they are often constrained to the timespan it covers: check-in data from 2012 to 2013. However, POI data is inherently dynamic: venues may have closed, relocated, or changed in category over time. Yeow et al. (2021) underscores the importance of validating the temporal quality of POI datasets by recording whether and when a venue's information has been updated to reflect real-world changes. This is particularly critical, as recommender systems should avoid suggesting POIs that no longer exist or have undergone substantial changes (e.g., a former bookstore converted into a coworking space) and behave dynamically over

Table 2: **Summary statistics** of the 15 Massive-STEPS subsets, including the number of users, trajectories, POI locations, total check-ins, and train, validation, and test sample counts. For comparison, we also include statistics from existing Foursquare- and Gowalla-based datasets. †Due to variations in dataset preprocessing across studies, we report the version used by Yan et al. (2023).

City	Users	Trajectories	POIs	Check-ins	#train	#val	#test
NYC and Toky	yo Check-ii	n Dataset [†] (Yang	g et al., 201	.4)			
New York	1,048	14,130	4,981	103,941	72,206	1,400	1,347
Tokyo	2,282	65,499	7,833	405,000	274,597	6,868	7,038
Gowalla† (Ch	o et al., 201	1; Yuan et al., 2	013)				
California	3,957	45,123	9,690	238,369	154,253	3,529	2,780
Massive-STEF	PS						
Bandung	3,377	55,333	29,026	161,284	113,058	16,018	32,208
Beijing	56	573	1,127	1,470	400	58	115
Istanbul	23,700	216,411	53,812	544,471	151,487	21,641	43,283
Jakarta	8,336	137,396	76,116	412,100	96,176	13,740	27,480
Kuwait City	9,628	91,658	17,180	232,706	64,160	9,166	18,332
Melbourne	646	7,864	7,699	22,050	5,504	787	1,573
Moscow	3,993	39,485	17,822	105,620	27,639	3,949	7,897
New York	6,929	92,041	49,218	272,368	64,428	9,204	18,409
Palembang	267	4,699	4,343	14,467	10,132	1,487	2,848
Petaling Jaya	14,308	180,410	60,158	506,430	126,287	18,041	36,082
São Paulo	5,822	89,689	38,377	256,824	62,782	8,969	17,938
Shanghai	296	3,636	4,462	10,491	2,544	364	728
Sydney	740	10,148	8,986	29,900	7,103	1,015	2,030
Tangerang	1,437	15,984	12,956	45,521	32,085	4,499	8,937
Tokyo	764	5,482	4,725	13,839	3,836	549	1,097

longitudinal periods (Yabe et al., 2024). Moreover, behavioral patterns captured over a decade ago may no longer align with modern user preferences and routines. For example, the opening of a new train station may significantly shift commuting patterns and the popularity of surrounding POIs.

Low Data Quality: Erroneous Entries More recently, researchers have begun leveraging the broader Global-scale Check-in Dataset (GSCD) (Yang et al., 2015; 2016), which spans 415 cities across 77 countries. Despite its wider geographic coverage, GSCD is temporally limited to the same 2012-2013 period as FSQ-NYC and FSQ-TKY, and thus suffers from similar issues of temporal quality. More critically, Monti et al. (2018) demonstrated that GSCD suffers from significant data quality issues, with over 14 million check-ins (about 44%) of the dataset flagged as erroneous due to anomalous user behavior. These include (1) repeated check-ins at the same venue, (2) check-ins occurring within implausibly short time intervals (less than one minute), and (3) transitions between venues that would require travel speeds exceeding Mach 1, which are physically unreasonable.

To address these limitations, Monti et al. (2018) introduced the Semantic Trails Dataset (STD), which applies systematic filtering procedures to enhance data quality. STD comprises two subsets: a cleaned version of GSCD covering 2012-2013 (STD 2013), and a newer collection of check-ins from 2017-2018 (STD 2018), sourced from Foursquare Swarm. STD 2018 also spans a wider range of cities, making it valuable for capturing globally distributed user behavior, in contrast to GSCD's focus on densely populated urban centers. Both subsets follow the same rigorous filtering criteria, resulting in a higher-quality check-in dataset for downstream POI trajectory modeling tasks. Given these improvements, we adopted STD as the source for our check-in dataset.

Poor Reproducibility Another persistent challenge in POI trajectory research is the lack of reproducibility in dataset preprocessing. While some recent studies utilize datasets like GSCD to cover a wide range of cities, they often omit important details needed for replicating their data filtering processes. For example, Feng et al. (2025) and Zuo & Zhang (2024) conducted city-level filtering, but they did not specify how the city boundaries were defined or what distance-based thresholds were used. Similarly, the Weeplaces dataset used by Chen & Zhu (2025) and Cao et al. (2023) is no longer available. To further support this claim, we provide an extensive list of dataset reproducibility issues in all the studies reviewed by Zhang et al. (2025), in Table 6. As shown, **almost none** of the datasets used in these works are fully reproducible or publicly available, except for FSQ-NYC/TKY (Yang et al., 2014) and Gowalla-CA (Yuan et al., 2013), leading to a heavy reliance on these datasets.

Figure 2: World map highlighting the cities included in the Massive-STEPS dataset.

2.2 Understanding Urban Features and POI Trajectory Modeling

POI trajectory studies that evaluate models across multiple city-level datasets often include analyses to assess how well their methods generalize across different urban contexts. It is well understood that POI recommendation accuracy metrics (e.g., Acc@k, NDCG@k) can vary substantially between cities and can be interpreted as a proxy for how easy or difficult a city is to model. The assumption is that higher performance reflects more predictable or structured mobility patterns. This viewpoint is consistent with prior work highlighting the role of cultural and urban-specific factors in shaping mobility behaviors (Yang et al., 2015; Sun et al., 2024).

Several studies have proposed hypotheses connecting specific urban features to modeling difficulty. Yang et al. (2022c) hypothesized that cities with fewer check-ins and higher spatial sparsity of POIs are harder to model. Yan et al. (2023) suggested that a larger number of user trajectories improves predictive accuracy by providing richer collaborative signals, whose architecture is designed to leverage. Li et al. (2024) proposed that cities with a greater variety of POI categories are easier to model due to LLMs' contextual reasoning capabilities, whereas cities covering a broader geographic area tend to be more difficult to model. In the zero-shot POI recommendation setting, Feng et al. (2025) reported two key findings: (1) geospatial biases inherent in LLMs can hinder prediction quality across cities, and (2) LLMs are influenced by city-specific mobility patterns.

Building on these insights, we used Massive-STEPS to explore how urban features affect POI recommendations. Its diverse set of 15 cities allows for a comprehensive analysis across different cultural and urban contexts. We analyzed the correlation between urban features and model accuracy, and based on the results, proposed a new hypothesis that contrasts previous findings in the literature.

3 MASSIVE-STEPS DATASET

3.1 CREATION PROCESS

Massive-STEPS is derived from STD (Monti et al., 2018), incorporating check-ins from both the 2013 and 2018 subsets. We utilize two additional components from STD: (1) the **cities** metadata file, which provides the latitude and longitude of administrative regions (e.g., towns, suburbs) along with their corresponding country codes obtained from GeoNames; and (2) the POI **category** mapping, which links each Foursquare Category ID to its descriptive name (e.g., "Restaurant"). Based on this metadata, each POI is thus associated with several attributes: Foursquare Place ID, Foursquare Category ID, category name, latitude/longitude of the administrative region, the administrative region name, and the country code. For anonymization purposes and model training compatibility, we apply ordinal encoding to the Place IDs and Category IDs, assigning each a unique integer index.

3.1.1 Preprocessing

Trajectory Grouping Most POI trajectory models operate on sequences of check-ins, commonly referred to as trajectories. The model is tasked with predicting the next POIs a user is likely to visit, given the current trajectory. STD conveniently provides pre-grouped trajectories (trails) by applying a time interval-based grouping: for each user, check-ins that occur within a time interval of $\delta_{\tau}=8$ hours are grouped into the same trajectory.

Matching Trajectories to Target Cities To obtain city-specific datasets, we matched trajectories to the target cities. For each city, we obtain geographic boundaries from OpenStreetMap and retrieve its GeoJSON file via the Overpass API. The GeoJSON file contains a polygon defining the city's boundary in latitude and longitude. Using this boundary, we filter check-ins by comparing the latitude/longitude of each POI's administrative region and retain only those that are within the city's polygon. This ensures that all retained trajectories are spatially grounded within the designated city.

Filtering Short Trajectories and Inactive Users To ensure data quality, we apply an additional filtering step by removing trajectories with fewer than two check-ins and excluding users with fewer than three trajectories. This prevents the model from learning from overly sparse or irrelevant data.

Train, Validation, and Test Splits We split trajectories into training, validation, and test sets in a ratio of 7:1:2, following Feng et al. (2025). We ensure that all users in the test set appear at least once in the training or validation set, following prior studies (Yang et al., 2022c; Yan et al., 2023).

3.1.2 POI ENRICHMENT VIA FOURSQUARE OS PLACES

Since the POIs in STD include their corresponding Foursquare Place IDs, we matched them directly with entries in the Foursquare OS Places dataset using these IDs as the key. This one-to-one ID correspondence allows for a straightforward join operation, enriching each POI with additional metadata such as its precise latitude and longitude, name (e.g., of a restaurant or subway station), and address. However, not all POIs in the Foursquare OS Places dataset include the full metadata, particularly those categorized as private residences, which are excluded due to privacy restrictions.

3.2 DESCRIPTION AND ADDRESSING LITERATURE GAPS

Massive-STEPS is a city-level POI check-in dataset comprising user check-in trajectories from 15 cities: Bandung, Beijing, Istanbul, Jakarta, Kuwait City, Melbourne, Moscow, New York, Palembang, Petaling Jaya, São Paulo, Shanghai, Sydney, Tangerang, and Tokyo. It features anonymized POI check-ins enriched with geographical metadata to support spatiotemporal and sequential modeling tasks. City-level statistics, along with comparisons to existing datasets, are presented in Table 2. Fig. 2 shows a world map highlighting the locations of all cities included in the dataset. Table 7 shows the available fields in the dataset and provides an example for each field.

Massive-STEPS offers a more comprehensive and diverse representation of urban mobility compared to typical POI check-in datasets. As shown in Table 2, datasets like FSQ-NYC and FSQ-TKY (Yang et al., 2014) contain fewer than 10,000 candidate POI locations. In contrast, cities in Massive-STEPS cover significantly more POIs: Massive-STEPS New York has over 49,000 POIs, while Massive-STEPS Jakarta exceeds 76,000. Massive-STEPS Istanbul, one of the largest subsets, features a large user base of 23,700, offering a broad range of user behaviors. Although some Massive-STEPS subsets are smaller than their FSQ counterparts (e.g., Tokyo), we attribute this to the strict filtering procedures applied by STD to remove erroneous entries, as explained in Section 2.1. This scale introduces additional computational challenges. For instance, models that rely on dense POI-to-POI adjacency matrices require efficient implementations to reduce memory consumption.

Beyond scale, Massive-STEPS addresses the oversaturation of FSQ-NYC and FSQ-TKY in POI trajectory modeling research. Notably, Massive-STEPS includes low-resource and previously underexplored cities in human mobility studies, such as Petaling Jaya and Kuwait City, both of which are among the cities with the highest number of check-ins from STD. This broader coverage opens new research opportunities for studying location-based behaviors across diverse cultural and geographic contexts. Furthermore, since Massive-STEPS is based on STD, it benefits from the carefully

Table 3: **Benchmark results on POI recommendation task**. The metric reported is Acc@1. Full results, including other metrics, are available in Section C.4. **Bold** indicates the best performance for each city, while underline indicates the second-best.

Model	Bandung	Beijing	Istanbul	Jakarta	KC	Melbourne	Moscow	NY	Palembang	PJ	SP	Shanghai	Sydney	Tangerang	Tokyo
FPMC	0.048	0.000	0.026	0.029	0.021	0.062	0.059	0.032	0.102	0.026	0.030	0.084	0.075	0.104	0.176
RNN LSTPM DeepMove	0.062 0.110 0.107	0.085 0.127 0.106	0.077 0.142 <u>0.150</u>	0.049 0.099 0.103	$0.087 \\ \underline{0.180} \\ 0.179$	0.059 0.091 0.083	0.075 0.151 0.143	0.061 0.099 0.097	0.049 0.114 0.084	0.099	0.097 0.158 0.160	0.055 0.099 0.085	0.080 0.141 0.129	0.087 0.154 0.145	$0.133 \\ \underline{0.225} \\ 0.201$
GETNext STHGCN	0.179 0.219	0.433 0.453	0.146 0.241	0.155 0.197	0.175 0.225	0.100 0.168	0.175 0.223	0.134 0.146	0.158 0.246	0.139 0.174	0.202 0.250	0.115 0.193	0.181 0.227	0.224 0.293	0.180 0.250
UniMove	0.007	0.036	0.015	0.004	0.023	0.008	0.009	0.004	0.009	0.008	0.002	0.000	0.015	0.001	0.032

filtered, high-quality check-ins and a longer, more recent timespan. These characteristics make Massive-STEPS a more relevant and reliable resource for modeling human mobility patterns.

Massive-STEPS is designed to be easily extended to other geographical regions. Since the data processing code is open-source and fully reproducible, adding a new city only requires its geographic boundaries from OpenStreetMap. Moreover, Massive-STEPS is scalable to higher levels of geographic granularity, enabling the creation of provincial, state, and country-level POI check-in datasets, which support collective mobility studies at broader geographic scales.

4 BENCHMARK TASKS

4.1 POI RECOMMENDATION

 This benchmark focuses on POI recommendation, where the goal is to predict a user's next visit based on their previous check-ins. The input is a trajectory of visited places, and the model is expected to suggest a set of K POIs the user might visit next. It is a **supervised** task, trained on all available historical trajectories to learn personalized movement patterns. Appendix C provides details on problem formulation, hyperparameters, experimental setups, and full evaluation results.

Experimental Setup We adopted the predefined trajectories from the original STD, where checkins are grouped into sequences based on fixed time intervals (see Section 3.1.1). All input features are numerically encoded, enabling straightforward use across experiments. Models typically use four feature types: (1) social: user ID; (2) spatial: POI ID and geographic coordinates; (3) temporal: check-in timestamp; and (4) categorical: POI category. As not all POIs have exact geographic coordinates (see Section 3.1.2), we used the geographic coordinates of their administrative region as a proxy for all POIs. We evaluated four kinds of architectures: (1) Markov-based methods: FPMC (Rendle et al., 2010), (2) classical deep learning models: RNN (Wang et al., 2021a), LSTPM (Sun et al., 2020), and DeepMove (Feng et al., 2018), (3) Transformer-based graph neural networks: GETNext (Yang et al., 2022c) and STHGCN, and (4) Trajectory foundation model: UniMove (Han et al., 2025b). We employed two commonly used metrics in POI recommender systems: Acc@k, which checks if the true POI appears in the top-k predicted results, and NDCG@k, which measures the ranking quality of the suggested results.

Results As shown in Table 3, STHGCN achieves the highest average Acc@1 across all cities, followed closely by GETNext, demonstrating the effectiveness of GNNs. The top model attained a mean Acc@1 of 23.4%, comparable to previous studies on similarly sized datasets (Feng et al., 2025). Notably, pre-training UniMove (Han et al., 2025b) from scratch struggled to surpass recurrent model baselines. We attribute this to the high number of cold-start trajectories (see Fig. 6), which hinder performance as next-token prediction loss struggles with extremely short input sequences. We also examined the impact of urban features on POI recommendation accuracy by computing Spearman correlations between city features and model performance. As shown in Fig. 8, we found that **category entropy**, based on Shannon entropy, shows a strong negative correlation with accuracy (r = -0.684). Cities with more evenly distributed POI categories tend to be harder to predict. This result aligns with prior findings on other datasets. Further details are provided in Appendix D.

Table 4: **Benchmark results on zero-shot POI recommendation task**. The metric reported is Acc@1. Full results, including other metrics, are available in Section E.4. **Bold** indicates the best performance for each city, while <u>underline</u> indicates the second-best.

Method	LLM	Bandung	Beijing	Istanbul	Jakarta	KC	Melbourne	Moscow	NY	Palembang	PJ	SP	Shanghai	Sydney	Tangerang	Tokyo
	Gemini 2 Flash	0.105	0.115	0.080	0.100	0.095	0.060	0.130	0.095	0.135	0.090 0	.130	0.055	0.060	0.155	0.140
LLM-Mob	Qwen 2.5 7B	0.060	0.058	0.035	0.105	0.080	0.030	0.090	0.070	0.075	0.0300	.090	0.040	0.035	0.095	0.110
LLWI-WIOD	Llama 3.1 8B	0.010	0.000	0.020	0.055	0.030	0.010	0.030	0.025	0.005	0.0100	.030	0.005	0.020	0.020	0.005
	Gemma 2 9B	0.070	0.115	0.075	0.105	0.080	0.055	0.100	0.070	0.095	0.055 0	.085	0.050	0.030	0.145	0.145
	Gemini 2 Flash	0.095	0.058	0.090	0.110	0.080	0.065	0.125	0.080	0.130	0.110 0	.150	0.065	0.060	0.145	0.160
LLM-ZS	Qwen 2.5 7B	0.055	0.038	0.040	0.065	0.050	0.040	0.080	0.050	0.050	0.045 0	.095	0.045	0.045	0.100	0.120
LLM-ZS	Llama 3.1 8B	0.045	0.077	0.040	0.045	0.060	0.040	0.080	0.055	0.070	0.030 0	.030	0.060	0.040	0.080	0.110
	Gemma 2 9B	0.065	0.096	0.045	0.105	0.070	0.050	0.080	0.075	0.060	0.065 0	.075	0.050	0.045	0.100	0.110
	Gemini 2 Flash	0.225	0.096	0.205	0.295	0.220	0.225	0.220	0.235	0.260	0.210 0	.285	0.170	0.230	0.200	0.250
LLM-Move	Qwen 2.5 7B	0.100	0.192	0.175	0.115	0.160	0.110	0.230	0.120	0.130	0.135 0	.155	0.095	0.125	0.175	0.250
LLIVI-MOVE	Llama 3.1 8B	0.030	0.058	0.015	0.015	0.010	0.040	0.005	0.035	0.010	0.040 0	.045	0.020	0.055	0.000	0.030
	Gemma 2 9B	0.175	0.096	0.100	0.235	0.120	0.115	0.110	0.115	0.210	0.175 0	.195	0.105	0.125	0.125	0.130

4.2 ZERO-SHOT POI RECOMMENDATION

This benchmark focuses on zero-shot POI recommendation via LLMs, where the goal is to predict a user's next visit based on their previous check-ins (similar to its supervised counterpart) without additional model fine-tuning. The input is a user trajectory transformed into a textual prompt, and the model ranks a set of K candidate POIs to identify the next likely destination. Appendix E provides details on problem formulation, prompts, experimental setups, and full evaluation results.

Experimental Setup For zero-shot recommendation, trajectories are converted into textual prompts (Xue et al., 2022; Xue & Salim, 2024). We adapted the prompt templates from Feng et al. (2025), which implemented the three LLM methods evaluated in this study: LLM-Mob (Wang et al., 2023c), LLM-ZS (Beneduce et al., 2024), and LLM-Move (Feng et al., 2024a). Since LLMs can leverage contextual information, features do not need numerical encoding; we used each check-in's timestamp, POI category name, and POI ID. For a robust evaluation, we tested each method on four LLMs: one closed-source API (Gemini 2.0 Flash (Team & et al., 2024a)) and three open-source instruction-tuned models (Qwen 2.5 7B (Team, 2024), Llama 3.1 8B (Grattafiori et al., 2024), and Gemma 2 9B (Team & et al., 2024b)). We used the same metrics as in the supervised setting: Acc@k and NDCG@k.

Figure 3: Acc@1 of supervised and LLM-Move models across 15 cities.

achieved the highest accuracy across all prompting strategies, with Qwen 2.5 7B and Gemma 2 9B as strong open-source alternatives. Notably, as shown in Fig. 3, these zero-shot methods matched or exceeded supervised baselines in several cities (e.g., Jakarta, Kuwait City, Moscow), demonstrating their effectiveness without fine-tuning. Although serving LLMs requires more powerful hardware, running inference can still be faster overall than training supervised models from scratch.

4.3 Spatiotemporal Classification and Reasoning

This benchmark assesses whether LLMs can be leveraged for spatiotemporal trajectory classification by providing them with contextual information about a user's behavior. The task evaluates the model's ability to capture variations in travel patterns across different cities, given the sequence of POI check-ins as input, and without any additional fine-tuning. Through this setup, we aim

Table 5: **Benchmark results on spatiotemporal classification task**. The metric reported is Acc. **Bold** indicates the best performance for each city, while underline indicates the second-best.

LLM	Bandung	Beijing	Istanbul	Jakarta	KC	Melbourne	Moscow	NY	Palembang	PJ	SP	Shanghai	Sydney	Tangerang	Tokyo
Gemini 2 Flash	0.635	0.615	0.715	0.650	0.765	0.635	0.740	0.620	0.670	0.610	0.730	0.600	0.550	0.635	0.510
GPT-40 Mini	0.625	0.538	0.610	0.610	0.430	0.635	0.745	0.600	0.645	0.590	0.645	0.565	0.545	0.600	0.495
GPT-4.1 Mini	0.585	0.673	0.615	0.600	0.690	0.585	0.745	0.595	0.605	0.575	0.700	0.565	0.515	0.620	0.550
GPT-5 Nano	0.570	0.635	0.535	0.530	0.470	0.500	0.635	0.580	0.560	0.565	0.680	0.465	0.440	0.520	0.580

to understand how effectively LLMs can reason over spatiotemporal and behavioral cues in user trajectories. Appendix F provides details on problem formulation, prompts, and LLM parameters.

Experimental Setup This task involves classifying a property of a POI check-in trajectory. For this study, we chose to predict whether the final check-in occurs on a weekday or a weekend. Each trajectory is converted into a textual prompt incorporating spatial (city), temporal (check-in time-of-day), and categorical contexts (POI category). Adapting the prompt design from LLM-Mob (Wang et al., 2023c), we instructed the LLM to first reason before making a prediction. This approach allows us to evaluate both classification accuracy and the spatiotemporal reasoning capabilities of LLMs, in line with recent work on spatiotemporal reasoning using LLMs (Quan et al., 2025). Whereas prior approaches rely on models that encode trajectories (Nayak & Pandit, 2023), our method directly leverages the LLM's ability to process contextual information in natural language. We evaluated four closed-source LLM APIs: Gemini 2.0 Flash (Team & et al., 2024a), GPT-40 Mini, GPT-4.1 Mini, and GPT-5 Nano (OpenAI & et al., 2024b;a), and used Accuracy as our primary metric.

Results As shown in Table 5, Gemini 2 Flash achieves the highest mean accuracy of 0.643 across the 15 cities. While this performance is above random guessing, it remains far from ideal for practical spatiotemporal trajectory classification. Surprisingly, the GPT series of models, despite some being more recent than Gemini 2 Flash, generally performed worse. Notably, GPT-5 Nano obtained the lowest mean accuracy, even though it is designed for advanced reasoning tasks. Our findings align with González et al. (2008), who observed that user regularity does not differ significantly between weekdays and weekends, suggesting that mobility patterns are not strictly dictated by work schedules but may instead reflect intrinsic human activity patterns. Overall, these results indicate that current LLMs face significant limitations in capturing spatiotemporal patterns from trajectory data alone, highlighting the need for further improvements in this area.

5 CONCLUSION AND LIMITATIONS

Conclusion In this paper, we presented the Massive-STEPS dataset to address longstanding limitations in POI trajectory modeling research, particularly the reliance on older, geographically saturated, and non-reproducible check-in datasets. Massive-STEPS offers a large-scale, semantically enriched resource spanning 15 cities across diverse global regions and two time periods, supporting both longitudinal and cross-city analyses. The dataset includes rich semantic information such as venue name, address, category, and coordinates. We also provide benchmark results for supervised and zero-shot POI trajectory modeling methods, illustrating the dataset's utility across model types and tasks. By releasing Massive-STEPS and our evaluation pipeline publicly, we aim to advance open, reproducible, and globally inclusive research in human mobility and POI trajectory modeling systems.

Limitations Firstly, Massive-STEPS is derived from the Semantic Trails dataset and thus inherits its biases and potential errors, which may propagate through downstream tasks. Additionally, the dataset is sparse in several cities, which can impact model training quality and limit cross-city generalization. Secondly, Massive-STEPS focuses solely on trajectories and POI metadata, without including user demographic or social information due to privacy considerations. This restricts its applicability for personalized or socially-aware POI recommendation tasks. Thirdly, while our benchmarking covers a wide range of models and cities to emphasize replicability and geographic breadth, we did not perform extensive hyperparameter tuning, which may affect the peak performance of the models. Finally, although Massive-STEPS does not reflect present-day mobility patterns, it was designed to provide a more recent alternative to older datasets such as FSQ-NYC/TKY and GSCD (2012-2013) and to help bridge the gap toward newer, open, and extensible POI benchmarks.

REPRODUCIBILITY STATEMENT

Dataset and evaluation reproducibility is a central claim and contribution of our paper, especially given that the field has long been hindered by their absence. We ensure reproducibility by: (1) providing detailed descriptions and code for downloading and preprocessing the data to produce the final dataset, (2) specifying model configurations, training setups, and evaluation protocols throughout the paper (see Section C, Section E, Section F), and (3) releasing the Massive-STEPS dataset creation code along with all accompanying code to replicate our experiments.

REFERENCES

- Ciro Beneduce, Bruno Lepri, and Massimiliano Luca. Large language models are zero-shot next location predictors. *arXiv preprint arXiv:2405.20962*, 2024.
- Gang Cao, Shengmin Cui, and Inwhee Joe. Improving the spatial–temporal aware attention network with dynamic trajectory graph learning for next point-of-interest recommendation. *Information Processing & Management*, 60(3):103335, 2023.
- Lei Chen and Guixiang Zhu. Self-supervised contrastive learning for itinerary recommendation. *Expert Systems with Applications*, 268:126246, 2025.
- Yile Chen, Yicheng Tao, Yue Jiang, Shuai Liu, Han Yu, and Gao Cong. Enhancing large language models for mobility analytics with semantic location tokenization. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2*, KDD '25, pp. 262–273, New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400714542. doi: 10.1145/3711896.3736937. URL https://doi.org/10.1145/3711896.3736937.
- Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user movement in location-based social networks. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 1082–1090, 2011.
- Mehri Davtalab and Ali Asghar Alesheikh. A poi recommendation approach integrating social spatio-temporal information into probabilistic matrix factorization. *Knowledge and Information Systems*, 63:65–85, 2021.
- Jingtao Ding, Guanghui Yu, Yong Li, Depeng Jin, and Hui Gao. Learning from hometown and current city: Cross-city poi recommendation via interest drift and transfer learning. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.*, 3(4), September 2020. doi: 10.1145/3369822. URL https://doi.org/10.1145/3369822.
- Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng Jin. Deepmove: Predicting human mobility with attentional recurrent networks. In *Proceedings of the 2018 World Wide Web Conference*, WWW '18, pp. 1459–1468, Republic and Canton of Geneva, CHE, 2018. International World Wide Web Conferences Steering Committee. ISBN 9781450356398. doi: 10.1145/3178876.3186058. URL https://doi.org/10.1145/3178876.3186058.
- Jie Feng, Zeyu Yang, Fengli Xu, Haisu Yu, Mudan Wang, and Yong Li. Learning to simulate human mobility. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, KDD '20, pp. 3426–3433, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3412862. URL https://doi.org/10.1145/3394486.3412862.
- Jie Feng, Yuwei Du, Jie Zhao, and Yong Li. AgentMove: A large language model based agentic framework for zero-shot next location prediction. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 1322–1338, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL https://aclanthology.org/2025.naacl-long.61/.
- Shanshan Feng, Haoming Lyu, Fan Li, Zhu Sun, and Caishun Chen. Where to move next: Zero-shot generalization of llms for next poi recommendation. In 2024 IEEE Conference on Artificial Intelligence (CAI), pp. 1530–1535. IEEE, 2024a.

- Shanshan Feng, Feiyu Meng, Lisi Chen, Shuo Shang, and Yew Soon Ong. Rotan: A rotation-based temporal attention network for time-specific next poi recommendation. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 759–770, 2024b.
 - Marta C. González, César A. Hidalgo, and Albert-László Barabási. Understanding individual human mobility patterns. *Nature*, 453(7196):779–782, Jun 2008. ISSN 1476-4687. doi: 10.1038/nature06958. URL https://doi.org/10.1038/nature06958.
 - Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, and et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.
 - Sajal Halder, Kwan Hui Lim, Jeffrey Chan, and Xiuzhen Zhang. Transformer-based multi-task learning for queuing time aware next poi recommendation. In *Pacific-Asia conference on knowledge discovery and data mining*, pp. 510–523. Springer, 2021.
 - Sajal Halder, Kwan Hui Lim, Jeffrey Chan, and Xiuzhen Zhang. Capacity-aware fair poi recommendation combining transformer neural networks and resource allocation policy. *Applied Soft Computing*, 147:110720, 2023.
 - Chonghua Han, Yuan Yuan, Kaiyan Chen, Jingtao Ding, and Yong Li. Trajmoe: Spatially-aware mixture of experts for unified human mobility modeling, 2025a. URL https://arxiv.org/abs/2505.18670.
 - Chonghua Han, Yuan Yuan, Yukun Liu, Jingtao Ding, Jie Feng, and Yong Li. Unimove: A unified model for multi-city human mobility prediction, 2025b. URL https://arxiv.org/abs/2508.06986.
 - Haoyu Han, Mengdi Zhang, Min Hou, Fuzheng Zhang, Zhongyuan Wang, Enhong Chen, Hongwei Wang, Jianhui Ma, and Qi Liu. Stgcn: a spatial-temporal aware graph learning method for poi recommendation. In 2020 IEEE International Conference on Data Mining (ICDM), pp. 1052–1057. IEEE, 2020.
 - Ngai Lam Ho and Kwan Hui Lim. Poibert: A transformer-based model for the tour recommendation problem. In 2022 IEEE International Conference on Big Data (Big Data), pp. 5925–5933. IEEE, 2022.
 - Md Billal Hossain, Mohammad Shamsul Arefin, Iqbal H Sarker, Md Kowsher, Pranab Kumar Dhar, and Takeshi Koshiba. Caran: A context-aware recency-based attention network for point-of-interest recommendation. *IEEE Access*, 10:36299–36310, 2022.
 - Shaojie Jiang and Jiang Wu. Temporal-geographical attention-based transformer for point-of-interest recommendation. *Journal of Intelligent & Fuzzy Systems*, 45(6):12243–12253, 2023.
 - Shaowei Jiang, Wei He, Lizhen Cui, Yonghui Xu, and Lei Liu. Modeling long-and short-term user preferences via self-supervised learning for next poi recommendation. *ACM Transactions on Knowledge Discovery from Data*, 17(9):1–20, 2023.
 - Wang Jiawei, Renhe Jiang, Chuang Yang, Zengqing Wu, Ryosuke Shibasaki, Noboru Koshizuka, Chuan Xiao, et al. Large language models as urban residents: An llm agent framework for personal mobility generation. *Advances in Neural Information Processing Systems*, 37:124547–124574, 2024.
 - Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles*, 2023.
 - Peibo Li, Maarten de Rijke, Hao Xue, Shuang Ao, Yang Song, and Flora D. Salim. Large language models for next point-of-interest recommendation. In *Proceedings of the 47th International ACM SI-GIR Conference on Research and Development in Information Retrieval*, SIGIR '24, pp. 1463–1472, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704314. doi: 10.1145/3626772.3657840. URL https://doi.org/10.1145/3626772.3657840.

- Peibo Li, Shuang Ao, Hao Xue, Yang Song, Maarten de Rijke, Johan Barthélemy, Tomasz Bednarz, and Flora D. Salim. Refine-poi: Reinforcement fine-tuned large language models for next point-of-interest recommendation, 2025. URL https://arxiv.org/abs/2506.21599.
 - Ruijing Li, Jianzhong Guo, Chun Liu, Zheng Li, and Shaoqing Zhang. Using attributes explicitly reflecting user preference in a self-attention network for next poi recommendation. *ISPRS International Journal of Geo-Information*, 11(8):440, 2022a.
 - Yang Li, Tong Chen, Peng-Fei Zhang, Zi Huang, and Hongzhi Yin. Self-supervised graph-based point-of-interest recommendation. *arXiv preprint arXiv:2210.12506*, 2022b.
 - Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for llm compression and acceleration, 2024. URL https://arxiv.org/abs/2306.00978.
 - Yiding Liu, Tuan-Anh Nguyen Pham, Gao Cong, and Quan Yuan. An experimental evaluation of point-of-interest recommendation in location-based social networks. *Proc. VLDB Endow.*, 10 (10):1010–1021, June 2017. ISSN 2150-8097. doi: 10.14778/3115404.3115407. URL https://doi.org/10.14778/3115404.3115407.
 - Rohin Manvi, Samar Khanna, Marshall Burke, David Lobell, and Stefano Ermon. Large language models are geographically biased. *arXiv preprint arXiv:2402.02680*, 2024.
 - Pavel Merinov and Francesco Ricci. Positive-sum impact of multistakeholder recommender systems for urban tourism promotion and user utility. In *Proceedings of the 18th ACM Conference on Recommender Systems*, pp. 939–944, 2024.
 - Diego Monti, Enrico Palumbo, Giuseppe Rizzo, Raphaël Troncy, Thibault Ehrhart, and Maurizio Morisio. Semantic trails of city explorations: How do we live a city. *arXiv preprint arXiv:1812.04367*, 2018.
 - Suchismita Nayak and Debapratim Pandit. A joint and simultaneous prediction framework of weekday and weekend daily-activity travel pattern using conditional dependency networks. *Travel Behaviour and Society*, 32:100595, 2023. ISSN 2214-367X. doi: https://doi.org/10.1016/j.tbs. 2023.100595. URL https://www.sciencedirect.com/science/article/pii/S2214367X23000467.
 - OpenAI and et al. Gpt-4o system card, 2024a. URL https://arxiv.org/abs/2410.21276.
 - OpenAI and et al. Gpt-4 technical report, 2024b. URL https://arxiv.org/abs/2303.08774.
 - Yanjun Qin, Yuchen Fang, Haiyong Luo, Fang Zhao, and Chenxing Wang. Next point-of-interest recommendation with auto-correlation enhanced multi-modal transformer network. In *Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2612–2616, 2022.
 - Yifang Qin, Hongjun Wu, Wei Ju, Xiao Luo, and Ming Zhang. A diffusion model for poi recommendation. *ACM Trans. Inf. Syst.*, 42(2), November 2023. ISSN 1046-8188. doi: 10.1145/3624475. URL https://doi.org/10.1145/3624475.
 - Pengrui Quan, Brian Wang, Kang Yang, Liying Han, and Mani Srivastava. Benchmarking spatiotemporal reasoning in llms and reasoning models: Capabilities and challenges, 2025. URL https://arxiv.org/abs/2505.11618.
 - Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized markov chains for next-basket recommendation. In *Proceedings of the 19th International Conference on World Wide Web*, WWW '10, pp. 811–820, New York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781605587998. doi: 10.1145/1772690.1772773. URL https://doi.org/10.1145/1772690.1772773.

- Flora D. Salim, Bing Dong, Mohamed Ouf, Qi Wang, Ilaria Pigliautile, Xuyuan Kang, Tianzhen Hong, Wenbo Wu, Yapan Liu, Shakila Khan Rumi, Mohammad Saiedur Rahaman, Jingjing An, Hengfang Deng, Wei Shao, Jakub Dziedzic, Fisayo Caleb Sangogboye, Mikkel Baun Kjærgaard, Meng Kong, Claudia Fabiani, Anna Laura Pisello, and Da Yan. Modelling urban-scale occupant behaviour, mobility, and energy in buildings: A survey. *Building and Environment*, 183:106964, 2020. ISSN 0360-1323. doi: https://doi.org/10.1016/j.buildenv.2020.106964. URL https://www.sciencedirect.com/science/article/pii/S0360132320303231.
 - Ke Sun, Tieyun Qian, Tong Chen, Yile Liang, Quoc Viet Hung Nguyen, and Hongzhi Yin. Where to go next: Modeling long- and short-term user preferences for point-of-interest recommendation. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(01):214–221, Apr. 2020. doi: 10. 1609/aaai.v34i01.5353. URL https://ojs.aaai.org/index.php/AAAI/article/view/5353.
 - Ke Sun, Chenliang Li, and Tieyun Qian. City matters! a dual-target cross-city sequential poi recommendation model. *ACM Transactions on Information Systems*, 42(6):1–27, 2024.
 - Gemini Team and et al. Gemini: A family of highly capable multimodal models, 2024a. URL https://arxiv.org/abs/2312.11805.
 - Gemma Team and et al. Gemma 2: Improving open language models at a practical size, 2024b. URL https://arxiv.org/abs/2408.00118.
 - Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.github.io/blog/qwen2.5/.
 - Daocheng Wang, Chao Chen, Chong Di, and Minglei Shu. Exploring behavior patterns for next-poi recommendation via graph self-supervised learning. *Electronics*, 12(8):1939, 2023a.
 - Dongjing Wang, Feng Wan, Dongjin Yu, Yi Shen, Zhengzhe Xiang, and Yueshen Xu. Context-and category-aware double self-attention model for next poi recommendation. *Applied Intelligence*, 53 (15):18355–18380, 2023b.
 - Dongsheng Wang, Yuxi Huang, Shen Gao, Yifan Wang, Chengrui Huang, and Shuo Shang. Generative next poi recommendation with semantic id. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2*, KDD '25, pp. 2904–2914, New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400714542. doi: 10.1145/3711896. 3736981. URL https://doi.org/10.1145/3711896.3736981.
 - Jingyuan Wang, Jiawei Jiang, Wenjun Jiang, Chao Li, and Wayne Xin Zhao. Libcity: An open library for traffic prediction. In *Proceedings of the 29th International Conference on Advances in Geographic Information Systems*, SIGSPATIAL '21, pp. 145–148, New York, NY, USA, 2021a. Association for Computing Machinery. ISBN 9781450386647. doi: 10.1145/3474717.3483923. URL https://doi.org/10.1145/3474717.3483923.
 - Xinglei Wang, Meng Fang, Zichao Zeng, and Tao Cheng. Where would i go next? large language models as human mobility predictors. *arXiv preprint arXiv:2308.15197*, 2023c.
 - Xueying Wang, Yanheng Liu, Xu Zhou, Zhaoqi Leng, and Xican Wang. Long-and short-term preference modeling based on multi-level attention for next poi recommendation. *ISPRS International Journal of Geo-Information*, 11(6):323, 2022.
 - Yu Wang, An Liu, Junhua Fang, Jianfeng Qu, and Lei Zhao. Adq-gnn: Next poi recommendation by fusing gnn and area division with quadtree. In *Web Information Systems Engineering–WISE 2021: 22nd International Conference on Web Information Systems Engineering, WISE 2021, Melbourne, VIC, Australia, October 26–29, 2021, Proceedings, Part II 22*, pp. 177–192. Springer, 2021b.
 - Ziwei Wang, Jun Zeng, Lin Zhong, Ling Liu, Min Gao, and Junhao Wen. Dsdrec: Next poi recommendation using deep semantic extraction and diffusion model. *Information Sciences*, 678: 121004, 2024.
 - Yuhang Wu, Xu Jiao, Qingbo Hao, Yingyuan Xiao, and Wenguang Zheng. Dlan: Modeling user long-and short-term preferences based on double-layer attention network for next point-of-interest recommendation. *Journal of Intelligent & Fuzzy Systems*, 46(2):3307–3321, 2024.

- Yuxia Wu, Guoshuai Zhao, Mingdi Li, Zhuocheng Zhang, and Xueming Qian. Reason generation for point of interest recommendation via a hierarchical attention-based transformer model. *IEEE Transactions on Multimedia*, 26:5511–5522, 2023.
- Jiangnan Xia, Yu Yang, Senzhang Wang, Hongzhi Yin, Jiannong Cao, and Philip S Yu. Bayes-enhanced multi-view attention networks for robust poi recommendation. *IEEE Transactions on Knowledge and Data Engineering*, 36(7):2895–2909, 2023.
- Jiayi Xie and Zhenzhong Chen. Hierarchical transformer with spatio-temporal context aggregation for next point-of-interest recommendation. *ACM Transactions on Information Systems*, 42(2):1–30, 2023.
- Xiaohang Xu, Toyotaro Suzumura, Jiawei Yong, Masatoshi Hanai, Chuang Yang, Hiroki Kanezashi, Renhe Jiang, and Shintaro Fukushima. Revisiting mobility modeling with graph: A graph transformer model for next point-of-interest recommendation. In *Proceedings of the 31st ACM international conference on advances in geographic information systems*, pp. 1–10, 2023.
- Hao Xue and Flora D. Salim. Promptcast: A new prompt-based learning paradigm for time series forecasting. *IEEE Trans. on Knowl. and Data Eng.*, 36(11):6851–6864, November 2024. ISSN 1041-4347. doi: 10.1109/TKDE.2023.3342137. URL https://doi.org/10.1109/TKDE.2023.3342137.
- Hao Xue, Bhanu Prakash Voutharoja, and Flora D. Salim. Leveraging language foundation models for human mobility forecasting. In *Proceedings of the 30th International Conference on Advances in Geographic Information Systems*, SIGSPATIAL '22, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450395298. doi: 10.1145/3557915.3561026. URL https://doi.org/10.1145/3557915.3561026.
- Takahiro Yabe, Kota Tsubouchi, Toru Shimizu, Yoshihide Sekimoto, Kaoru Sezaki, Esteban Moro, and Alex Pentland. Yjmob100k: City-scale and longitudinal dataset of anonymized human mobility trajectories. *Scientific Data*, 11(1):397, Apr 2024. ISSN 2052-4463. doi: 10.1038/s41597-024-03237-9. URL https://doi.org/10.1038/s41597-024-03237-9.
- Xiaodong Yan, Tengwei Song, Yifeng Jiao, Jianshan He, Jiaotuan Wang, Ruopeng Li, and Wei Chu. Spatio-temporal hypergraph learning for next poi recommendation. In *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '23, pp. 403–412, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394086. doi: 10.1145/3539618.3591770. URL https://doi.org/10.1145/3539618.3591770.
- Dingqi Yang, Daqing Zhang, Vincent W Zheng, and Zhiyong Yu. Modeling user activity preference by leveraging user spatial temporal characteristics in lbsns. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 45(1):129–142, 2014.
- Dingqi Yang, Daqing Zhang, Longbiao Chen, and Bingqing Qu. Nationtelescope: Monitoring and visualizing large-scale collective behavior in lbsns. *Journal of Network and Computer Applications*, 55:170–180, 2015.
- Dingqi Yang, Daqing Zhang, and Bingqing Qu. Participatory cultural mapping based on collective behavior data in location-based social networks. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 7(3):1–23, 2016.
- Qing Yang, Shiyan Hu, Wenxiang Zhang, and Jingwei Zhang. Attention mechanism and adaptive convolution actuated fusion network for next poi recommendation. *International Journal of Intelligent Systems*, 37(10):7888–7908, 2022a.
- Song Yang, Jiamou Liu, and Kaiqi Zhao. Getnext: Trajectory flow map enhanced transformer for next poi recommendation. In *Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '22, pp. 1144–1153, New York, NY, USA, 2022b. Association for Computing Machinery. ISBN 9781450387323. doi: 10.1145/3477495.3531983. URL https://doi.org/10.1145/3477495.3531983.

- Song Yang, Jiamou Liu, and Kaiqi Zhao. Getnext: trajectory flow map enhanced transformer for next poi recommendation. In *Proceedings of the 45th International ACM SIGIR Conference on research and development in information retrieval*, pp. 1144–1153, 2022c.
 - Lih Wei Yeow, Raymond Low, Yu Xiang Tan, and Lynette Cheah. Point-of-interest (poi) data validation methods: An urban case study. *ISPRS International Journal of Geo-Information*, 10 (11):735, 2021.
 - Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thalmann. Time-aware point-of-interest recommendation. In *Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '13, pp. 363–372, New York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450320344. doi: 10.1145/2484028. 2484030. URL https://doi.org/10.1145/2484028.2484030.
 - Yuan Yuan, Yuheng Zhang, Jingtao Ding, and Yong Li. Worldmove, a global open data for human mobility. *arXiv preprint arXiv:2504.10506*, 2025.
 - Hongyu Zang, Dongcheng Han, Xin Li, Zhifeng Wan, and Mingzhong Wang. Cha: Categorical hierarchy-based attention for next poi recommendation. *ACM Transactions on Information Systems* (*TOIS*), 40(1):1–22, 2021.
 - Jinkai Zhang and Wenming Ma. Hybrid structural graph attention network for poi recommendation. *Expert Systems with Applications*, 248:123436, 2024.
 - Jixiao Zhang, Yongkang Li, Ruotong Zou, Jingyuan Zhang, Renhe Jiang, Zipei Fan, and Xuan Song. Hyper-relational knowledge graph neural network for next poi recommendation. *World Wide Web*, 27(4), July 2024a. ISSN 1386-145X. doi: 10.1007/s11280-024-01279-y. URL https://doi.org/10.1007/s11280-024-01279-y.
 - Jixiao Zhang, Yongkang Li, Ruotong Zou, Jingyuan Zhang, Renhe Jiang, Zipei Fan, and Xuan Song. Hyper-relational knowledge graph neural network for next poi recommendation. *World Wide Web*, 27(4):46, 2024b.
 - Qianru Zhang, Peng Yang, Junliang Yu, Haixin Wang, Xingwei He, Siu-Ming Yiu, and Hongzhi Yin. A survey on point-of-interest recommendation: Models, architectures, and security. *IEEE Transactions on Knowledge and Data Engineering*, 2025.
 - Pengpeng Zhao, Haifeng Zhu, Yanchi Liu, Zhixu Li, Jiajie Xu, and Victor S Sheng. Where to go next: A spatio-temporal lstm model for next poi recommendation. *arXiv preprint arXiv:1806.06671*, 2018.
 - Haiting Zhong, Wei He, Lizhen Cui, Lei Liu, Zhongmin Yan, and Kun Zhao. Joint attention networks with inherent and contextual preference-awareness for successive poi recommendation. *Data Science and Engineering*, 7(4):370–382, 2022.
 - Zhilun Zhou, Yuming Lin, Depeng Jin, and Yong Li. Large language model for participatory urban planning. *arXiv preprint arXiv:2402.17161*, 2024.
 - Jiankai Zuo and Yaying Zhang. Diff-dgmn: A diffusion-based dual graph multi-attention network for poi recommendation. *IEEE Internet of Things Journal*, 2024.

A EXISTING POI RECOMMENDATION DATASETS

To examine the trend of the usage of POI recommendation datasets, we filtered the comprehensive survey by Zhang et al. (2025) to extract studies that explicitly mention the cities used in their experiments. The resulting distribution is summarized in Table 6, which shows a strong concentration of studies focused on New York and Tokyo. Additionally, Fig. 4 visualizes the same data, highlighting the uneven distribution of city choices across studies. We also include information on the LBSN platforms used, revealing that Foursquare remains the predominant data source in the field. These findings underscore the need for broader, more inclusive datasets that support evaluation across a wider range of global cities.

Table 6: Overview of POI Recommendation Studies by City and LBSN Platform. This table is adapted from Table IV in the survey by Zhang et al. (2025) and

Study	Cities	LBSN	Dataset Reproducibility Issue
SSTPMF (Davtalab & Alesheikh, 2021) New York, Tokyo	New York, Tokyo	Foursquare, Gowalla	Gowalla city boundaries not reproducible.
ST-LSTM (Zhao et al., 2018) LSMA (Wang et al., 2022) DLAN (Wu et al., 2024)	California, Singapore New York, San Francisco, Tokyo New York, Tokyo	Brightkite, Foursquare, Gowalla Foursquare, Weeplaces Foursquare	FSQ city boundaries not reproducible. Brightkite and Gowalla not grouped into cities. Weeplaces no longer available. No issue, uses FSQ-NYC/TKY.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ţ	Cara Cont.
TLR-M (Halder et al., 2021)	New York, Tokyo	Foursquare	No issue, uses FSQ-NYC/TKY.
GETNext (Yang et al., 2022c)	New York, Tokyo, California	Foursquare, Gowalla	Only provides preprocessed NYC, missing TKY and CA.
CARAN (Hossain et al., 2022)	New York, Tokyo	Foursquare, Gowalla	Gowalla not grouped into cities.
JANICP (Zhong et al., 2022)	New York, Tokyo	Foursquare, Weeplaces	Weeplaces no longer available.
Li et al. (Li et al., 2022a)	New York, Tokyo	Foursquare	No issue, uses FSQ-NYC/TKY.
AMACF (Yang et al., 2022a)	New York, Tokyo	Foursquare, Weeplaces	Weeplaces no longer available.
CHA (Zang et al., 2021)	New York, Tokyo	Foursquare	No issue, uses FSQ-NYC/TKY.
HAT (Wu et al., 2023)	Beijing, Shanghai	Yelp, others	Used private datasets.
STAR-HiT (Xie & Chen, 2023)	New York	Foursquare, Gowalla	Gowalla not grouped into cities.
CAFPR (Halder et al., 2023)	Tokyo, California, Budapest, Melbourne	Foursquare	Uses POI themepark dataset. POI metadata (lat./lon., category) is missing.
TGAT (Jiang & Wu, 2023)	New York, Tokyo	Foursquare	No issue, uses FSQ-NYC/TKY.
MobGT (Xu et al., 2023)	New York	Foursquare, Gowalla	Used private datasets.
POIBERT (Ho & Lim, 2022)	Budapest, Delhi, Edinburgh, Glasgow, Osaka, Perth, Toronto	Flickr	Used private datasets.
AutoMTN (Qin et al., 2022)	New York, Tokyo	Foursquare	No issue, uses FSQ-NYC/TKY.
CCDSA (Wang et al., 2023b)	New York, Tokyo, San Francisco	Foursquare, Weeplaces	Weeplaces no longer available.
TDGCN (Cao et al., 2023)	Tokyo, California	Foursquare, Gowalla, Weeplaces	Weeplaces no longer available.
BayMAN (Xia et al., 2023)	New York	Foursquare, Gowalla	No issue, uses FSQ-NYC/TKY and Gowalla-CA.
ROTAN (Feng et al., 2024b)	New York, Tokyo, California	Foursquare, Gowalla	No issue, uses FSQ-NYC/TKY and Gowalla-CA.
TrajMoE (Han et al., 2025a)	Atlanta, Chicago, Seattle, Washington, New York, Los Angeles	Unspecified	Used private datasets.
UniMove (Han et al., 2025b)	Lhasa, Nanchang, Shanghai	Unspecified	Used private datasets.
STGCN (Han et al., 2020)	Boston, Chicago, London	Gowalla, others	Gowalla city boundaries not reproducible. Used private datasets.
ADQ-GNN (Wang et al., 2021b)	New York, Tokyo	Foursquare, Gowalla	Gowalla not grouped into cities.
HS-GAT (Zhang & Ma, 2024)	Boston, Chicago, London	Yelp, others	Yelp not grouped into cities.
HKGINN (Zhang et al., 2024b)	New York, Jakarta, Kuala Lumpur, Sao Paulo	Foursquare	FSQ city boundaries not reproducible.
S2GRec (Li et al., 2022b)	New York, Tokyo	Foursquare, Gowalla	Gowalla not grouped into cities.
GSBPL (Wang et al., 2023a)	New York, Tokyo	Foursquare, Gowalla	Gowalla not grouped into cities.
LSPSL (Jiang et al., 2023)	New York, Tokyo	Foursquare	No issue, uses FSQ-NYC/TKY.
SCL (Chen & Zhu, 2025)	Florence, Rome, Pisa, Edinburgh, Toronto	Flickr	Preprocessed Flickr dataset no longer available.
LLM-Move (Feng et al., 2024a)	New York, Tokyo	Foursquare	No issue, uses FSQ-NYC/TKY.
LLM4POI (Li et al., 2024)	New York, Tokyo, California	Foursquare, Gowalla	No issue, uses FSQ-NYC/TKY and Gowalla-CA.
Refine-POI (Li et al., 2025)	New York, Tokyo	Foursquare	No issue, uses FSQ-NYC/TKY.
GNPR-SID (Wang et al., 2025) QT-Mob (Chen et al., 2025)	New York, Tokyo, California New York, Singapore	Foursquare, Gowalla Foursquare, Private Telco	No issue, uses FSQ-NYC/TKY and Gowalla-CA. Only FSQ-NYC is publicly available.
District (Oir 24 of 2003)	S N N		Contract to the state of the st
DiffPOI (Qin et al., 2023)	Singapore, INEW York, Tokyo	Foursquare, Gowalla	Gowalla not grouped into cities.
DSD Rec (Wang et al., 2024)	INEW IOFK, IOKYO	Foursquare	No issue, uses FoQ-in i C/In i.
Diff-DGMN (Zuo & Zhang, 2024)	Istanbul, Jakarta, São Paulo, New York, Los Angeles	Foursquare	FSQ city boundaries not reproducible.

Table 7: **Fields available in the Massive-STEPS dataset**, including user, POI, geographic/spatial, and temporal details, along with example data for each field.

Field	Description	Example
trail_id	Numeric identifier of trajectory	2013_2866
user_id	Numeric identifier of user	90
venue_id	Numeric identifier of POI venue	185
latitude	Latitude of POI venue	-33.87301862604473
longitude	Longitude of POI venue	151.20668402700997
name	POI name	Sydney Town Hall
address	Street address of POI venue	483 George St
venue_category	POI category name	City Hall
venue_category_id	Foursquare Category ID	4bf58dd8d48988d129941735
venue_category_id_code	Numeric identifier of POI category	72
venue_city	Administrative region name	Sydney
venue_city_latitude	Latitude of administrative region	-33.86785
venue_city_longitude	Longitude of administrative region	151.20732
venue_country	Country code	AU
timestamp	Check-in timestamp	2012-04-22 08:20:00

B DATA VISUALIZATION

We present several visualizations highlighting Massive-STEPS' scale and diversity to complement our dataset description.

In Fig. 5, we show the top 10 most frequent POI categories for each city. The distribution reflects the local culture and lifestyle across different urban areas. For example, Beijing and Shanghai have a high number of Chinese restaurants, while Melbourne and Sydney show a strong presence of cafes. In Tokyo, convenience stores and ramen shops dominate. These patterns illustrate the diversity of local culture and user interests.

Fig. 6 plots the distribution of trajectory lengths (i.e., number of check-ins per trajectory). The distribution is long-tailed, with most trajectories being relatively short, similar to the original Semantic Trails dataset. This indicates that users often make only a few check-ins per outing.

Finally, we show the distribution of user activity levels, measured by the number of trajectories per user in Fig. 7. Most users exhibit cold-start behavior, contributing only a small number of trajectories. This highlights the importance of models that are robust to sparse and short user histories.

Figure 4: **Distribution of POI recommendation studies** modeled on specific cities, modified from Table IV of Zhang et al. (2025). We identified and counted studies that explicitly mentioned city names, revealing the skewness of existing research, which is saturated around New York and Tokyo. In addition, we include the distribution of studies by LBSN platform, showing that Foursquare is by far the most commonly used source of check-in data. The list of studies is shown in Table 6.

Figure 5: **Top 10 most frequent POI categories in each city**, highlighting local cultural and urban preferences.

Figure 6: **Distribution of trail lengths**, showing a long-tailed pattern with most trajectories consisting of a few check-ins.

Figure 7: **Distribution of user activity** based on the number of trajectories per user, indicating a cold-start-heavy dataset.

C POI RECOMMENDATION: TASK DETAILS

We adopt the conventional problem formulation used in prior POI recommendation studies (Zhang et al., 2025; Yang et al., 2022c; Yan et al., 2023), which defines the task as learning user preferences and routines from historical check-ins to recommend future POIs.

C.1 PROBLEM FORMULATION

Let $\mathcal{U} = \{u_1, u_2, \dots, u_M\}$ denote the set of users, $\mathcal{P} = \{p_1, p_2, \dots, p_N\}$ the set of Points of Interest (POIs), and $\mathcal{T} = \{t_1, t_2, \dots, t_K\}$ the set of timestamps, where $M, N, K \in \mathbb{N}$.

POI Definition Each POI $p \in \mathcal{P}$ is represented as a tuple:

$$p = \langle \phi, \lambda, \kappa, \alpha, \beta, \gamma \rangle,$$

where:

- ϕ and λ are the latitude and longitude,
- κ is the POI category (e.g., restaurant, park),
- α is the unique POI identifier,
- β is the textual address, and
- γ is the POI name.

Check-in Definition A check-in is a tuple $c = \langle u, p, t \rangle \in \mathcal{U} \times \mathcal{P} \times \mathcal{T}$, indicating that user u visited POI p at timestamp t.

Trajectory Definition A trajectory for user u is defined as a temporally ordered sequence of check-ins within a fixed time interval $\delta \tau = 8$ hours. Each trajectory $T_u^i(t)$ up to timestamp t is defined as:

$$T_u^i(t) = \{(p_1, t_1), (p_2, t_2), \dots, (p_k, t_k)\}\$$

such that $t_1 < t_2 < \cdots < t_k = t$ and $t_k - t_{k-1} \le \delta \tau$. Given a set of historical trajectories

$$\mathcal{T}_{u} = \{T_{u}^{1}, T_{u}^{2}, \dots, T_{u}^{L}\}$$

for user u, where L is the number of such **historical** trajectories, the goal is to recommend the POIs that u is most likely to visit next after the current **contextual** trajectory $T'_u(t)$.

POI Recommendation Task Definition Given a current contextual trajectory $T'_u(t)$ of user u up to time t, along with their historical trajectories \mathcal{T}_u , the task of next POI recommendation is to rank all candidate POIs $p_i \in \mathcal{P}$ according to the model's predicted probability that user u will visit each POI next.

Formally, the model learns a ranking function:

$$f: (T'_u(t), \mathcal{T}_u) \to {\{\hat{y}_i\}}_{i=1}^{|\mathcal{P}|}$$

where \hat{y}_i denotes the predicted likelihood that user u will visit POI p_i next. Based on these scores, a ranked list of POIs is returned as recommendations.

This formulation enables POI recommendation, where the goal is to suggest a set of likely POIs that a user may visit next, based on their historical check-ins and inferred preferences. Our evaluation metrics, Acc@k and NDCG@k, assess whether the ground-truth POI appears among the top-k ranked candidates, reflecting the quality of the recommended set. In particular, Acc@1 captures the stricter task of *immediate* next POI prediction, measuring whether the top-ranked POI matches the user's actual next visit.

C.2 Models

For thoroughness, we evaluated the following models as baselines:

- FPMC (Rendle et al., 2010): A classical baseline that combines first-order Markov chains with matrix factorization to model personalized next-location predictions.
- RNN (Wang et al., 2021a), LSTPM (Sun et al., 2020), and DeepMove (Feng et al., 2018): Recurrent neural networks designed to capture sequential dependencies, with varying mechanisms to incorporate spatio-temporal context.
- GETNext (Yang et al., 2022c) and STHGCN (Yan et al., 2023): Transformer-based graph neural networks to model social, spatial, and temporal dependencies.
- **UniMove** (Han et al., 2025b): Trajectory foundation model based on a Transformer decoder architecture with Mixture of Experts (MoE) layers.

C.3 EXPERIMENT AND IMPLEMENTATION DETAILS

For training and evaluation, we used the LibCity¹ library (Wang et al., 2021a), which provides implementations of classical baselines including FPMC (Rendle et al., 2010), RNN (Wang et al., 2021a), LSTPM (Sun et al., 2020), and DeepMove (Feng et al., 2018). The training hyperparameters are listed in Table 8 and, unless otherwise noted, follow the default configurations provided by LibCity.

For GETNext² (Yang et al., 2022c) and STHGCN³ (Yan et al., 2023), we adapted the original source code released by the respective authors. Due to variations in dataset sizes and training costs across cities, we applied different hyperparameters for some cities, as detailed in Table 9.

For UniMove⁴ (Han et al., 2025b), we modified their original source code for Massive-STEPS. For location features, we used Schema.org's 162 list of categories as a categorical feature and the administrative region as the grid area for POI category distribution. Hyperparameters are listed in Table 8 and, unless otherwise noted, follow the default values.

All modified code implementations are available as submodules in our main dataset repository. Experiments were conducted using NVIDIA L4, L40S, and H100 GPUs.

C.4 SUPPLEMENTARY RESULTS

We report the full results of our supervised POI recommendation baselines in Table 10, 11 and 12, using three evaluation metrics: Acc@1, Acc@5, and NDCG@5.

```
https://github.com/libcity/bigscity-libcity-datasets/
```

²https://github.com/songyangme/GETNext

https://github.com/alipay/Spatio-Temporal-Hypergraph-Model

⁴https://github.com/tsinghua-fib-lab/unimove

Table 8: Hyperparameters for Markov-based methods, recurrent networks, and UniMove.

Hyperparameter	FPMC	RNN	LSTPM	DeepMove	UniMove
Batch Size	20	20	20	20	4
Learning Rate	5e-4	1e-3	1e-4	1e-3	3e-4
Max Epoch	1	30	40	30	50
Location Embedding Size	64	500	500	500	{256, 128}
Hidden Embedding Size	N/A	500	500	500	512
Dropout	N/A	0.3	0.8	0.5	N/A

Table 9: Hyperparameters for Transformer-based graph neural networks.

Model	Cities	Batch Size	LR	Epochs
GETNext	Beijing, Melbourne, Moscow, Palembang, Shanghai, Sydney, Tokyo	16	1e-3	200
	Bandung, Istanbul, Kuwait City, New York, Petaling Jaya, São Paulo, Tangerang	16	1e-4	20
	Jakarta	16	5e-5	20
STHGCN	Beijing, Melbourne, Palembang, Shanghai, Sydney, Tokyo	16	1e-4	20
	Bandung, Istanbul, Jakarta, Kuwait City, Moscow, New York, Petaling Jaya, São Paulo, Tangerang	64	1e-4	20

Table 10: **Performance of supervised POI recommendation baselines across 5 cities**: Bandung, Beijing, Istanbul, Jakarta, Kuwait City. We report three metrics: Acc@1 (A@1), Acc@5 (A@5), and NDCG@5 (N@5).

Model			;	Beijing		Istanbu	l		Jakarta			Kuwait City		
	A@1	A@5	N@5 A@1	A@5	N@5 A@	1 A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5	
FPMC	0.048	0.118	0.083 0.000	0.021	0.009 0.02	6 0.074	0.050	0.029	0.085	0.058	0.021	0.089	0.054	
RNN LSTPM DeepMove	0.062 0.110 0.107	0.135 0.241 0.232	0.099 0.085 0.179 0.127 0.172 0.106	0.183 0.211 0.261	0.134 0.07 0.169 0.14 0.190 0.15	2 0.286	0.130 0.217 0.228	0.049 0.099 0.103	0.115 0.210 0.212	0.083 0.157 0.160	0.087 0.180 0.179	0.203 0.362 0.360	0.146 0.275 0.274	
GETNext STHGCN	0.179 0.219	0.306 0.375	0.247 0.433 0.302 0.453	0.527 0.640	0.486 0.14 0.552 0.24		0.210 0.318	0.155 0.197	0.257 0.334	0.209 0.270	0.175 0.225	0.322 0.394	0.251 0.314	
UniMove	0.007	0.060	0.033 0.036	0.205	0.128 0.01	5 0.061	0.038	0.004	0.036	0.020	0.023	0.120	0.073	

Table 11: **Performance of supervised POI recommendation baselines across 5 cities**: Melbourne, Moscow, New York, Palembang, Petaling Jaya. We report three metrics: Acc@1 (A@1), Acc@5 (A@5), and NDCG@5 (N@5).

Model	Model Mel		e	Moscow			New York		l	Palemban	g	Po	Petaling Jaya		
	A@1	A@5	N@5 A@1	A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5	
FPMC	0.062	0.147	0.107 0.059	0.129	0.094	0.032	0.090	0.061	0.102	0.169	0.136	0.026	0.084	0.057	
RNN LSTPM DeepMove	0.059 0.091 0.083	0.105 0.204 0.179	0.083 0.075 0.150 0.151 0.134 0.143	0.164 0.300 0.283	0.122 0.229 0.217	0.061 0.099 0.097	0.119 0.206 0.195	0.092 0.155 0.149	0.049 0.114 0.084	0.121 0.230 0.191	0.085 0.175 0.139	0.064 0.099 0.112	0.148 0.222 0.234	0.107 0.163 0.175	
GETNext STHGCN	0.100 0.168	0.250 0.318	0.179 0.175 0.247 0.223	0.335 0.382	0.260 0.308	0.134 0.146	0.263 0.259	0.202 0.207	0.158 0.246	0.313 0.427	0.239 0.341	0.139 0.174	0.254 0.301	0.200 0.241	
UniMove	0.008	0.066	0.037 0.009	0.051	0.030	0.004	0.028	0.016	0.009	0.060	0.035	0.008	0.058	0.034	

Table 12: **Performance of supervised POI recommendation baselines across 5 cities**: São Paulo, Shanghai, Sydney, Tangerang, Tokyo. We report three metrics: Acc@1 (A@1), Acc@5 (A@5), and NDCG@5 (N@5).

Model		São Paulo)	Shangha	i		Sydney	,	Tangeran	g	Tokyo	
	A@1	A@5	N@5 A@1	A@5	N@5	A@1	A@5	N@5 A@1	A@5	N@5 A@1	A@5	N@5
FPMC	0.030	0.079	0.055 0.084	0.154	0.120	0.075	0.180	0.131 0.104	0.220	0.166 0.176	0.291	0.239
RNN LSTPM DeepMove	0.097 0.158 0.160	0.191 0.319 0.310	0.147 0.055 0.243 0.099 0.240 0.085	0.120 0.195 0.168	0.090 0.149 0.128	0.080 0.141 0.129	0.164 0.265 0.240	0.125 0.087 0.206 0.154 0.188 0.145	0.179 0.309 0.285	0.135 0.133 0.237 0.225 0.219 0.201	0.254 0.394 0.362	0.197 0.315 0.288
GETNext STHGCN	0.202 0.250	0.360 0.425	0.286 0.115 0.344 0.193	0.230 0.329	0.177 0.264	0.181 0.227	0.347 0.378	0.266 0.224 0.307 0.293	0.372 0.492	0.302 0.180 0.400 0.250	0.361 0.432	0.275 0.350
UniMove	0.002	0.018	0.009 0.000	0.055	0.029	0.015	0.102	0.059 0.001	0.055	0.029 0.032	0.109	0.072

D ANALYZING URBAN FEATURES AND POI RECOMMENDATION PERFORMANCE

As discussed in Section 2.2, several hypotheses have been proposed to explain why POI recommendation models perform better in certain cities than others. These hypotheses aim to uncover how various urban features affect model performance. For example, Gowalla-CA (Cho et al., 2011; Yuan et al., 2013) often yields lower accuracy compared to FSQ-NYC and FSQ-TKY (Yang et al., 2014), suggesting that some cities may be inherently harder to model. In this analysis, we focus on supervised models only.

Prior studies (Yang et al., 2022c; Yan et al., 2023; Li et al., 2024) have suggested several features as potential explanatory variables, including:

- Number of unique check-ins,
- · Number of unique trajectories,
- Number of unique POI categories,
- Geographical area (larger areas are assumed to be harder to model), and
- POI density or spatial sparsity (i.e., unique POIs per unit area).

We also propose several additional features for consideration:

- Number of unique POIs,
- Check-in density (unique check-ins per area),
- Trajectory density (unique trajectories per area), and
- Category entropy, our proposed feature capturing category diversity.

Category entropy, based on Shannon entropy, measures how evenly POI categories are distributed in a city. A higher entropy suggests that check-ins are spread across a wide variety of categories, while a lower entropy indicates a concentration in fewer types. The formula for Shannon entropy is:

$$H = -\sum_{i=1}^{N} p_i \log(p_i) \tag{1}$$

where p_i is the proportion of venues in category i, and N is the total number of POI categories. The proportion p_i is defined as:

$$p_i = \frac{c_i}{\sum_{j=1}^N c_j} \tag{2}$$

where c_i is the count of venues in category i. In other words, p_i represents the fraction of all venues that belong to category i.

Moreover, previous studies have primarily focused on only three datasets: FSQ-NYC, FSQ-TKY, and Gowalla-CA. In contrast, Massive-STEPS provides broader coverage across 15 cities, enabling a more comprehensive and robust analysis. To examine the relationship between urban features and model performance, we averaged the three evaluation metrics across six supervised baselines for each city and computed the Spearman correlation with each candidate feature. To further support our findings, we also included the results of GETNext (Yang et al., 2022c) and STHGCN (Yan et al., 2023) on FSQ-NYC, FSQ-TKY, and Gowalla-CA, calculated their corresponding urban features, and averaged the reported metrics of each city. Fig. 8 presents the correlations between all nine features and the average performance metric.

Among all features, **category entropy** shows the strongest correlation with model performance, with a Spearman correlation of r = -0.684 (p = 0.002). This suggests that cities with more evenly distributed POI categories *tend* to yield lower prediction accuracy. Intuitively, when no single category dominates (a city has roughly equal proportions of restaurants, cafes, homes, and other

Figure 8: Spearman correlation between nine candidate urban features and the mean score of **POI recommendation models** across 15 cities, including Massive-STEPS (ours), FSQ (Yang et al., 2014), and Gowalla (Cho et al., 2011; Yuan et al., 2013).

POIs), it becomes more difficult for models to predict a user's next destination. In these cases, user behavior is more varied and less predictable. On the other hand, cities with more skewed category distributions (e.g., mostly food places or mostly residential areas) tend to have more consistent patterns of movement, making them easier for models to learn and predict. Interestingly, our finding contradicts the hypothesis proposed by LLM4POI (Li et al., 2024), which suggests that FSQ-NYC is easier to model than Gowalla-CA due to the former's vast number of POI categories, which were supposed to provide richer contextual signals for the model. Our results indicate that it is not the number of categories that matters, but rather how these categories are distributed.

E ZERO-SHOT POI RECOMMENDATION: TASK DETAILS

E.1 PROBLEM FORMULATION

The zero-shot POI recommendation task follows the same problem formulation as its supervised counterpart (see Section C.1). The key difference is that in this setting, the model parameters remain frozen and the models are pre-trained, rather than trained from randomly initialized weights.

E.2 METHODS

We evaluated three LLM-based prompting methods:

• LLM-Mob (Wang et al., 2023c): One of the earliest methods to use LLMs for next POI prediction, prompting LLMs with both historical and current (contextual) trajectories.

1243

1244

1245

1246

1247 1248

1249 1250

1251

1252

1253

1254

1256

1257

1258 1259

1260

1261

1262 1263

1264

1265

- **LLM-ZS** (Beneduce et al., 2024): A simplified version of LLM-Mob that retains the use of historical and contextual trajectories but simplifies its prompt design.
- **LLM-Move** (Feng et al., 2024a): Extends previous prompting methods by introducing a RAG-like approach, retrieving nearby POIs as candidates, and ranking them by geographic distance to the user's most recent visit.

E.3 EXPERIMENT AND IMPLEMENTATION DETAILS

Preprocessing We adopted the AgentMove⁵ library (Feng et al., 2025), which provides implementations of three LLM methods: LLM-Mob (Wang et al., 2023c), LLM-ZS (Beneduce et al., 2024), and LLM-Move (Feng et al., 2024a). The preprocessing steps used by AgentMove are as follows.

First, we selected 200 random users from the test set and sampled one random trajectory for each user. This trajectory serves as the **context stays**, representing the current trajectory to be predicted. The **historical stays** are composed of the most recent 15 trajectories from the same user, drawn from the training set. Each check-in is described by four attributes: the hour (in 12-hour format), the day of the week, the POI ID, and the POI category name.

Second, the LLMs are set to return outputs in JSON format, generating the top 5 predicted POI IDs along with an explanation of their reasoning. Following the AgentMove setup and to ensure replicability, we set the generation parameters as follows: a temperature of 0.0, a maximum output length of 1000 tokens, and an input context window capped at 2000 tokens.

Prompting Prompt templates for each method, LLM-Mob, LLM-ZS, and LLM-Move, are presented in Listing 1, 2, and 3, respectively.

```
1266
     I Your task is to predict a user's next location based on his/her activity
1267
          pattern.
1268 2 You will be provided with <history> which is a list containing this user'
          s historical stays, then <context> which provide contextual
1269
          information
     3 about where and when this user has been to recently. Stays in both <
         history> and <context> are in chronological order.
1272 4 Each stay takes on such form as (start_time, day_of_week, duration,
1273
         place_id). The detailed explanation of each element is as follows:
1274 5 start_time: the start time of the stay in 12h clock format.
    6 day_of_week: indicating the day of the week.
     7 duration: an integer indicating the duration (in minute) of each stay.
1276
         Note that this will be None in the <target_stay> introduced later.
1277
    8 place_id: an integer representing the unique place ID, which indicates
1278
          where the stay is.
1279 9
1280 10 Then you need to do next location prediction on <target_stay> which is
          the prediction target with unknown place ID denoted as <next_place_id
1281
          > and
1282 II unknown duration denoted as None, while temporal information is provided.
1283 12
1284 13 Please infer what the <next_place_id> might be (please output the 10 most
           likely places which are ranked in descending order in terms of
1285
          probability), considering the following aspects:
    14 1. the activity pattern of this user that you learned from <history>, e.g
1287
         ., repeated visits to certain places during certain times;
1288 15 2. the context stays in <context>, which provide more recent activities
          of this user;
    16 3. the temporal information (i.e., start_time and day_of_week) of target
          stay, which is important because people's activity varies during
1291
          different time (e.g., nighttime versus daytime)
1292 17 and on different days (e.g., weekday versus weekend).
1294 19 Please organize your answer in a JSON object containing following keys:
1295
```

⁵https://github.com/tsinghua-fib-lab/agentmove/

```
20 "prediction" (the ID of the five most probable places in descending order
1297
           of probability) and "reason" (a concise explanation that supports
          your prediction). Do not include line breaks in your output.
1299 21
1300 22 The data are as follows:
1301 23 <history>: {historical_stays}
    24 <context>: {context_stays}
1302 <sub>25</sub> <target_stay>: {target_time, target_day_of_week}
1303
                                Listing 1: Prompt for LLM-Mob
1304
1305
    I Your task is to predict <next_place_id> in <target_stay>, a location with
           an unknown ID, while temporal data is available.
1306
1307 <sup>2</sup>
    3 Predict <next_place_id> by considering:
1308
    4 1. The user's activity trends gleaned from <historical_stays> and the
          current activities from <context_stays>.
1310 5 2. Temporal details (start_time and day_of_week) of the target stay,
          crucial for understanding activity variations.
1311
1312
    7 Present your answer in a JSON object with:
     8 "prediction" (IDs of the five most probable places, ranked by probability
1314
          ) and "reason" (a concise justification for your prediction).
1315 9
1316 10 The data:
1317 | | <historical_stays>: {historical_stays}
    12 <context_stays>: {context_stays}
    13 <target_stay>: {target_time, target_day_of_week}
1319
                                 Listing 2: Prompt for LLM-ZS
1320
    1 <long-term check-ins> [Format: (POIID, Category)]: {historical_stays}
1322 2 <recent check-ins> [Format: (POIID, Category)]: {context_stays}
1323 3 <candidate set> [Format: (POIID, Distance, Category)]: {candidates}
1324 4 Your task is to recommend a user's next point-of-interest (POI) from <
          candidate set> based on his/her trajectory information.
1325
     5 The trajectory information is made of a sequence of the user's <long-term
1326
           check-ins> and a sequence of the user's <recent check-ins> in
1327
          chronological order.
1328 6 Now I explain the elements in the format. "POIID" refers to the unique id
           of the POI, "Distance" indicates the distance (kilometers) between
1329
          the user and the POI, and "Category" shows the semantic information
1330
          of the POI.
1331 <sub>7</sub>
1332 8 Requirements:
1333 9 1. Consider the long-term check-ins to extract users' long-term
          preferences since people tend to revisit their frequent visits.
    10 2. Consider the recent check-ins to extract users' current perferences.
    \scriptstyle\rm II 3. Consider the "Distance" since people tend to visit nearby pois.
^{1336} _{12} 4. Consider which "Category" the user would go next for long-term check-
1337
          ins indicates sequential transitions the user prefer.
1338 13
1339 14 Please organize your answer in a JSON object containing following keys:
    15 "prediction" (10 distinct POIIDs of the ten most probable places in <
          candidate set> in descending order of probability), and "reason" (a
1341
          concise explanation that supports your recommendation according to
1342
       the requirements). Do not include line breaks in your output.
1343
```

Listing 3: Prompt for LLM-Move

Models and Implementations We use the following LLMs in our experiments:

• Gemini 2.0 Flash (gemini-2.0-flash),

1344 1345

1346 1347

1348

1349

• Qwen 2.5 7B Instruct (Qwen2.5-7B-Instruct-AWQ)6,

⁶https://huggingface.co/qwen/qwen2.5-7b-instruct-awq

- Llama 3.1 8B Instruct (Meta-Llama-3.1-8B-Instruct-AWQ-INT4)⁷,
- Gemma 2 9B Instruct (gemma-2-9b-it-AWQ-INT4)8.

All open-source models are quantized using AWQ (Lin et al., 2024) and served via vLLM (Kwon et al., 2023). Inference of open-source models was conducted on NVIDIA A100 GPUs. We accessed Gemini via the official API. All modified code implementations are publicly available in our main dataset repository.

E.4 SUPPLEMENTARY RESULTS

We provide the full results of our zero-shot POI recommendation results in Table 13, 14, and 15, providing three metrics: Acc@1, Acc@5, and NDCG@5.

Table 13: **Performance of zero-shot POI recommendation baselines across 5 cities**: Bandung, Beijing, Istanbul, Jakarta, Kuwait City. We report three metrics: Acc@1 (A@1), Acc@5 (A@5), and NDCG@5 (N@5).

Method	Model	Bandung				Beijing			Istanbul			Jakarta			Kuwait City		
		A@1	A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5	
	Gemini 2 Flash	0.105	0.170	0.139	0.115	0.308	0.226	0.080	0.225	0.160	0.100	0.245	0.174	0.095	0.270	0.185	
LLM-Mob	Qwen 2.5 7B	0.060	0.155	0.111	0.058	0.385	0.218	0.035	0.240	0.148	0.105	0.245	0.179	0.080	0.220	0.155	
LLM-MOD	Llama 3.1 8B	0.010	0.100	0.055	0.000	0.000	0.000	0.020	0.110	0.065	0.055	0.150	0.104	0.030	0.100	0.066	
	Gemma 2 9B	0.070	0.175	0.126	0.115	0.288	0.206	0.075	0.200	0.146	0.105	0.240	0.178	0.080	0.210	0.150	
LLM-ZS	Gemini 2 Flash	0.095	0.195	0.147	0.058	0.385	0.246	0.090	0.235	0.166	0.110	0.250	0.188	0.080	0.245	0.167	
	Qwen 2.5 7B	0.055	0.185	0.126	0.038	0.404	0.237	0.040	0.235	0.141	0.065	0.250	0.161	0.050	0.220	0.140	
	Llama 3.1 8B	0.045	0.210	0.131	0.077	0.346	0.221	0.040	0.225	0.137	0.045	0.200	0.126	0.060	0.210	0.137	
	Gemma 2 9B	0.065	0.185	0.130	0.096	0.308	0.217	0.045	0.225	0.141	0.105	0.250	0.180	0.070	0.230	0.153	
	Gemini 2 Flash	0.225	0.350	0.289	0.096	0.346	0.218	0.205	0.385	0.289	0.295	0.405	0.350	0.220	0.380	0.295	
LLM-Move	Qwen 2.5 7B	0.100	0.155	0.128	0.192	0.346	0.280	0.175	0.270	0.226	0.115	0.225	0.169	0.160	0.285	0.227	
	Llama 3.1 8B	0.030	0.035	0.033	0.058	0.135	0.100	0.015	0.055	0.036	0.015	0.025	0.021	0.010	0.035	0.023	
	Gemma 2 9B	0.175	0.245	0.213	0.096	0.365	0.229	0.100	0.200	0.155	0.235	0.290	0.266	0.120	0.275	0.202	

Table 14: **Performance of zero-shot POI recommendation baselines across 5 cities**: Melbourne, Moscow, New York, Palembang, Petaling Jaya. We report three metrics: Acc@1 (A@1), Acc@5 (A@5), and NDCG@5 (N@5).

Method	Model	Melbourne			Moscow			New York			Palembang			Petaling Jaya		
		A@1	A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5
LLM-Mob	Gemini 2 Flash	0.060	0.150	0.108	0.130	0.245	0.187	0.095	0.175	0.136	0.135	0.275	0.208	0.090	0.220	0.160
	Qwen 2.5 7B	0.030	0.130	0.083	0.090	0.270	0.185	0.070	0.185	0.131	0.075	0.205	0.143	0.030	0.195	0.116
	Llama 3.1 8B	0.010	0.065	0.040	0.030	0.100	0.068	0.025	0.090	0.061	0.005	0.040	0.025	0.010	0.090	0.050
	Gemma 2 9B	0.055	0.150	0.108	0.100	0.240	0.176	0.070	0.175	0.124	0.095	0.240	0.171	0.055	0.185	0.122
	Gemini 2 Flash	0.065	0.160	0.115	0.125	0.300	0.217	0.080	0.170	0.129	0.130	0.260	0.196	0.110	0.210	0.164
LLM-ZS	Qwen 2.5 7B	0.040	0.155	0.100	0.080	0.260	0.176	0.050	0.180	0.116	0.050	0.215	0.135	0.045	0.175	0.111
LLM-ZS	Llama 3.1 8B	0.040	0.155	0.101	0.080	0.270	0.183	0.055	0.160	0.111	0.070	0.240	0.154	0.030	0.205	0.123
	Gemma 2 9B	0.050	0.140	0.100	0.080	0.290	0.194	0.075	0.185	0.129	0.060	0.235	0.150	0.065	0.185	0.126
LLM-Move	Gemini 2 Flash	0.225	0.325	0.275	0.220	0.400	0.316	0.235	0.415	0.325	0.260	0.385	0.329	0.210	0.335	0.273
	Qwen 2.5 7B	0.110	0.220	0.165	0.230	0.310	0.274	0.120	0.255	0.188	0.130	0.195	0.163	0.135	0.175	0.155
	Llama 3.1 8B	0.040	0.195	0.123	0.005	0.065	0.031	0.035	0.130	0.084	0.010	0.015	0.013	0.040	0.060	0.049
	Gemma 2 9B	0.115	0.275	0.199	0.110	0.245	0.185	0.115	0.245	0.183	0.210	0.270	0.240	0.175	0.235	0.208

F SPATIOTEMPORAL CLASSIFICATION AND REASONING: TASK DETAILS

F.1 PROBLEM FORMULATION

Borrowing the notation used in Section C, we formulate this task as follows. Given a current contextual trajectory $T'_u(t)$ of user u up to time t, the goal of spatiotemporal trajectory classification is to predict a property y of the trajectory. In this study, we focus on **weekday/weekend classification**, where $y \in \{\text{weekday}, \text{weekend}\}$.

⁷https://huggingface.co/hugging-quants/Meta-Llama-3.

¹⁻⁸B-Instruct-AWQ-INT4

⁸https://huggingface.co/hugging-quants/gemma-2-9b-it-AWQ-INT4

Table 15: **Performance of zero-shot POI recommendation baselines across 5 cities**: São Paulo, Shanghai, Sydney, Tangerang, Tokyo. We report three metrics: Acc@1 (A@1), Acc@5 (A@5), and NDCG@5 (N@5).

Method	Model	São Paulo			Shanghai				Sydney			Tangerang			Tokyo		
		A@1	A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5	A@1	A@5	N@5	
LLM-Mob	Gemini 2 Flash	0.130	0.305	0.223	0.055	0.160	0.111	0.060	0.160	0.112	0.155	0.285	0.225	0.140	0.320	0.238	
	Qwen 2.5 7B	0.090	0.290	0.188	0.040	0.170	0.108	0.035	0.145	0.091	0.095	0.285	0.196	0.110	0.350	0.243	
	Llama 3.1 8B	0.030	0.165	0.098	0.005	0.020	0.013	0.020	0.085	0.053	0.020	0.120	0.073	0.005	0.045	0.025	
	Gemma 2 9B	0.085	0.230	0.162	0.050	0.150	0.104	0.030	0.130	0.086	0.145	0.270	0.209	0.145	0.345	0.255	
	Gemini 2 Flash	0.150	0.315	0.235	0.065	0.160	0.113	0.060	0.155	0.111	0.145	0.310	0.234	0.160	0.380	0.278	
LLM-ZS	Qwen 2.5 7B	0.095	0.290	0.198	0.045	0.155	0.103	0.045	0.170	0.109	0.100	0.315	0.215	0.120	0.365	0.257	
LLWI-ZS	Llama 3.1 8B	0.030	0.280	0.159	0.060	0.165	0.116	0.040	0.185	0.110	0.080	0.255	0.173	0.110	0.415	0.269	
	Gemma 2 9B	0.075	0.300	0.192	0.050	0.165	0.112	0.045	0.155	0.103	0.100	0.330	0.227	0.110	0.395	0.263	
	Gemini 2 Flash	0.285	0.415	0.350	0.170	0.270	0.221	0.230	0.420	0.331	0.200	0.340	0.274	0.250	0.470	0.368	
LLM-Move	Qwen 2.5 7B	0.155	0.235	0.199	0.095	0.165	0.133	0.125	0.280	0.205	0.175	0.280	0.229	0.250	0.360	0.312	
	Llama 3.1 8B	0.045	0.045	0.045	0.020	0.040	0.030	0.055	0.220	0.141	0.000	0.005	0.003	0.030	0.060	0.046	
	Gemma 2 9B	0.195	0.300	0.252	0.105	0.150	0.128	0.125	0.370	0.254	0.125	0.250	0.193	0.130	0.305	0.225	

Formally, the LLM serves as a classification function:

$$f: T_u'(t) \to \hat{y}$$

where \hat{y} denotes the predicted class label for the trajectory. The model is evaluated based on its accuracy in correctly classifying trajectories according to this property.

F.2 EXPERIMENT AND IMPLEMENTATION DETAILS

Preprocessing We borrowed the experimental setup of AgentMove, similar to our zero-shot POI recommendation procedure in Section E.3. That is, we selected 200 random users from the test set and sampled one random trajectory for each user. This trajectory is then included in the test set. Each check-in is described by four attributes: the hour (in 12-hour format), the day of the week, the POI ID, and the POI category name.

LLMs are set to return outputs in a structured/JSON format, predicting whether the trajectory ended on a weekday or a weekend, along with an explanation of their reasoning. To ensure replicability, Gemini and GPT-4 models are set with the following generation parameters: a temperature of 0.0, a maximum output length of 1000 tokens, and an input context window capped at 2000 tokens. Due to API requirements, GPT-5 Nano uses the following generation parameters: a fixed temperature of 1.0, a maximum output length of 4096 tokens, low verbosity, and medium reasoning effort.

Prompt Prompt template for spatiotemporal weekday-weekend classification is shown in Listing 4.

```
1440
     A trajectory is a sequence of check-ins, each represented as (start_time,
1441
           poi_category). The detailed explanation of each element is as
1442
          follows:
     2 start_time: the start time of the check-in in 12h clock format.
1443
     {\scriptscriptstyle 3} poi_category: the category of the point of interest (POI) visited during
1444
          the check-in
1445
1446
    5 The trajectory is as follows: {[check-in time-of-day, POI category] for
1447
          check-in in trajectory}
1448
     7 Your task is to classify whether the last check-in occurs on a weekday or
1449
1450
     8 Consider the temporal information (i.e., start_time) of the trajectory,
1451
          which is important because people's activity varies during different
1452
          time (e.g., nighttime versus daytime).
    9 Consider the POI categories, which can provide insights into the user's
1453
          activity patterns.
1454
    10 Also consider the city context, as different cities may have different
1455
          cultural and social norms that influence activity patterns. The city
1456
          is: {city}.
1457 11
    12 Please organize your answer in a JSON object containing following keys:
```

Listing 4: Prompt for Weekday vs. Weekend Classification

Models and Implementations We use the following LLMs in our experiments:

- Gemini 2.0 Flash (gemini-2.0-flash),
- GPT-4o Mini (gpt-4o-mini),
 - GPT-4.1 Mini (gpt-4.1-mini),
 - **GPT-5 Nano** (gpt-5-nano).

We accessed Gemini and GPT models via the official API. All modified code implementations are publicly available in our main dataset repository.

G LICENSE AND DATA USAGE

Our work **does not** involve the collection of new data. Instead, we derive our resulting dataset by combining and aligning two publicly available datasets, both of which are distributed under permissive licenses. We did not scrape data from the internet or use proprietary APIs to construct this dataset.

We accessed the Semantic Trails Dataset (Monti et al., 2018) via Figshare: https://doi.org/10.6084/m9.figshare.7429076.v2. The dataset is licensed under the Creative Commons CCO 1.0 license (https://creativecommons.org/publicdomain/zero/1.0/), which allows unrestricted copying, modification, and redistribution for any purpose, including commercial use, without requiring permission.

We accessed the Foursquare Open Source Places dataset via Hugging Face: https://huggingface.co/datasets/foursquare/fsq-os-places. Foursquare Open Source Places is licensed under the Apache License, Version 2.0:

Copyright 2024 Foursquare Labs, Inc. All rights reserved.

1490 Lice 1491 exce

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.

You may obtain a copy of the License at: http://www.apache.org/licenses/

LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS

OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

 More details are available in Foursquare's documentation: https://docs.foursquare.com/data-products/docs/access-fsq-os-places.

 We will release our Massive-STEPS dataset under the same Apache Version 2.0 License, and have included Foursquare Open Source Places' license in our hosted dataset's README file.