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ABSTRACT

Understanding human mobility through Point-of-Interest (POI) trajectory model-
ing is increasingly important for applications such as urban planning, personal-
ized services, and generative agent simulation. However, progress in this field is
hindered by two key challenges: the over-reliance on older datasets from 2012-
2013 and the lack of reproducible, city-level check-in datasets that reflect di-
verse global regions. To address these gaps, we present Massive-STEPS (Mas-
sive Semantic Trajectories for Understanding POI Check-ins), a large-scale, pub-
licly available benchmark dataset built upon the Semantic Trails dataset and en-
riched with semantic POI metadata. Massive-STEPS spans 15 geographically
and culturally diverse cities and features more recent (2017-2018) and longer-
duration (24 months) check-in data than prior datasets. We benchmarked a wide
range of POI models on Massive-STEPS using both supervised and zero-shot
approaches, and evaluated their performance across multiple urban contexts. By
releasing Massive-STEPS, we aim to facilitate reproducible and equitable re-
search in human mobility and POI trajectory modeling. Our code is available at:
https://anonymous.4open.science/r/Massive-STEPS/.

1 INTRODUCTION

Importance of Human Mobility Data and Modeling Human mobility data and POI trajectory
modeling are essential for understanding how individuals interact with and move through physical
spaces. This understanding enables a wide range of applications, including urban planning (Yuan
et al., 2025), travel service recommendations (Feng et al., 2025), improved commercial advertising
strategies (Yang et al., 2022b), and Point-of-Interest (POI) recommendation (Ding et al., 2020; Li
et al., 2024; Zhang et al., 2025). Recently, human mobility data has become even more crucial
with the increasing use of large language model (LLM) agents to simulate human-like behavior
and routines (Zhou et al., 2024; Jiawei et al., 2024). However, while simulated and aggregated
human mobility data are starting to gain popularity (Feng et al., 2020; Qin et al., 2023; Stanford
et al., 2024; Jiang et al., 2025), they may not accurately reflect real-world, fine-grained individual
human behavior (Salim et al., 2020), highlighting the value of evaluating on real-world data. These
advancements are enabled by and large with Location-based Social Networks (LBSNs), which
generate vast amounts of spatio-temporal data through user check-ins (Zhang et al., 2025; Li et al.,
2024). This rich data source has allowed the development of POI recommendation systems that
leverage users’ historical visiting behaviors to suggest relevant locations. Such systems enhance user
engagement through personalization and provide commercial value to both users and businesses by
aligning recommendations with individual preferences and available services (Ding et al., 2020).

Literature Gaps Our paper addresses three critical gaps in POI trajectory modeling research and
datasets. First, as shown in Fig. 4, the field remains dominated by studies focused on just two cities,
New York and Tokyo, based on the Foursquare dataset curated by Yang et al. (2014). This dataset,
collected in 2012-2013, raises concerns about its temporal quality, as many POIs may no longer exist
and user behavior may have changed (Yeow et al., 2021). While some recent studies have expanded
to other cities (Zhang et al., 2024a; Merinov & Ricci, 2024; Feng et al., 2025), they often rely on the
Global-scale Check-in Dataset (GSCD) (Yang et al., 2015; 2016), which, despite its large coverage,
is also from 2012-2013 and contains nearly 50% erroneous entries (Monti et al., 2018).
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provide insights into the user's activity patterns. Also consider
the city context, as different cities may have different cultural
and social norms that influence activity patterns.

+
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Figure 1: Massive-STEPS Benchmark Tasks.

Second, most existing studies are difficult to reproduce, either due to the lack of clearly defined
geographic boundaries or the unavailability of the datasets themselves, hindering fair comparison
and replication. Finally, we join recent efforts (Yuan et al., 2025) in advocating for the inclusion of
low-resource and underrepresented cities. Expanding beyond well-studied urban centers is essential
for building more generalizable and universally applicable POI models. Table 1 summarizes these
limitations in terms of geographic coverage, temporal span, and reproducibility.

Massive-STEPS Dataset In this paper, we introduced the Massive Semantic Trajectories for
Understanding POI Check-ins (Massive-STEPS) Dataset, derived from the Semantic Trails dataset
(STD) (Monti et al., 2018). Massive-STEPS includes high-quality check-ins from 2012-2013 and
2017-2018, providing more modern and updated POI check-in data. This supports longitudinal
POI trajectory modeling studies and addresses the limitations of older datasets commonly used in
prior studies. The dataset covers 15 diverse cities across multiple regions, including East, West, and
Southeast Asia, North and South America, Australia, the Middle East, and Europe. Notably, we
placed a deliberate emphasis on under-explored regions by including cities such as Jakarta, Kuwait
City, and Petaling Jaya, filling a key gap in POI trajectory research that has largely focused on major
urban centers. We further enriched STD by aligning it with Foursquare’s Open Source Places dataset,
incorporating missing metadata such as POI coordinates, POI names, and addresses.

Benchmark Tasks To demonstrate the utility of this dataset, we conducted an extensive benchmark
on three tasks: (1) supervised POI recommendation, (2) zero-shot POI recommendation, and (3)
spatiotemporal classification and reasoning. Our benchmark covers a wide range of models, including
traditional approaches, deep learning-based models, and more recent LLM-based methods. The
goal of POI recommendation task is to predict a set of POIs that a user is likely to visit based on
their current check-in trajectory and historical behavior. This reflects real-world applications such as
personalized POI recommendations in location-based services. Similarly, the goal of spatiotemporal
classification and reasoning is to assess how effectively models (e.g., LLMs) leverage, interpret, and
reason about POI trajectories. In addition, the scale of our dataset allows us to examine how urban
features influence POI modeling accuracy. Building on prior hypotheses, we propose a new insight:
cities with more evenly distributed POI categories tend to be harder to model, as the absence of a
dominant POI category makes user behavior less predictable.

Contribution This paper introduces the Massive Semantic Trajectories for Understanding POI
Check-ins (Massive-STEPS) dataset, addressing gaps in existing POI trajectory modeling research.
Current POI check-in datasets are often only from 2012-2013, skewed to a few cities, and lack
semantic metadata, hindering the development of robust and globally applicable models. While
datasets like GSCD and STD offer broad geographic coverage, they either suffer from an older
timespan, contain erroneous data, or have missing information. Massive-STEPS overcomes these
issues by providing high-quality check-ins from 2012-2013 and 2017-2018, improving temporal
quality for longitudinal POI trajectory modeling studies. The dataset spans 15 diverse cities across
multiple regions, with a focus on low-resource cities overlooked in previous research. Additionally,
Massive-STEPS is enriched with metadata through alignment with Foursquare’s Open Source Places,
providing crucial details such as POI geographical coordinates, POI names, and addresses. We
also conducted an extensive benchmark on both supervised and zero-shot POI recommendation and
trajectory classification tasks, evaluating a wide range of models, including traditional methods, deep
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Table 1: Comparison of check-in datasets commonly used for POI modeling tasks. ‡GSCD
(Yang et al., 2014; 2016) and Semantic Trails (Monti et al., 2018) are global datasets not grouped
into individual cities, whereas others perform city-level grouping. †Replicable indicates whether city
boundaries are clearly defined or can be reliably reconstructed.

Dataset Scale Completeness Usability

#cities Years #months POI Attributes Replicable† Open-source

GSCD (Yang et al., 2014; 2016) Varies‡ 2012-2013 17 Coordinates, Category N/A ✓

Semantic Trails (Monti et al., 2018) Varies‡ 2012-2013, 2017-2018 24 Category N/A ✓

NYC and Tokyo (Yang et al., 2014) 2 2012-2013 11 Coordinates, Category ✓ ✓
Gowalla-CA (Yuan et al., 2013) 1 2009-2010 21 Coordinates, Category ✓ ✓
AgentMove (Feng et al., 2025) 12 2012-2013 17 Coordinates, Category ✗ ✗

Massive-STEPS 15 2012-2013, 2017-2018 24 Coordinates, Category,
Name, Address ✓ ✓

learning approaches, and recent LLM-based techniques. We further analyzed which urban features
affect POI modeling accuracy and found that cities with no dominant POI category tend to be harder
to predict. By releasing this dataset and benchmark code publicly, we facilitate open and reproducible
research, enabling future advancements in POI trajectory modeling studies.

2 RELATED WORKS

2.1 EXISTING DATASETS

A survey conducted by Zhang et al. (2025) outlines the landscape of POI trajectory modeling research,
covering a wide range of models and architectures used in prior studies. While it offers a high-level
overview of the datasets used, it lacks a dedicated discussion or evaluation of POI datasets. We
address this gap by analyzing commonly used datasets and positioning our dataset within this context.

LBSN Check-in Data Sources Building on the tabular summary provided by Zhang et al. (2025),
which offers a representative overview of the broader literature, we investigated which datasets
are most commonly used in prior studies. From their original table (Table IV), we filtered entries
pertaining specifically to POI and next POI recommendation tasks and identified (1) the most
frequently used LBSN check-in data sources and (2) the most commonly studied cities. As shown in
Fig. 4, Foursquare remains the dominant source of LBSN data in existing studies, appearing in almost
50% of the surveyed works. While several variants of Foursquare datasets have been employed, the
most widely used are the NYC and Tokyo Dataset (Yang et al., 2014) (often abbreviated as FSQ-NYC
and FSQ-TKY) and the Global-scale Check-in Dataset (GSCD) (Yang et al., 2015; 2016), curated
by the same authors. Other LBSN sources occasionally used include Gowalla (Cho et al., 2011),
Brightkite (Cho et al., 2011), and Weeplaces (Liu et al., 2017).

Saturated to Two Cities and Old Timespan Due to the widespread use of FSQ-NYC and FSQ-
TKY (Yang et al., 2014), the majority of POI trajectory studies are disproportionately focused on
these two cities, as illustrated in Fig. 4. While there is nothing inherently problematic about NYC and
Tokyo, there has been growing interest in expanding research to a broader range of cities, particularly
those that are underexplored or considered low-resource (Yuan et al., 2025), as cultural and regional
differences influence collective mobility behaviors. For instance, in some cities, residents tend to
commute to business districts in the morning, whereas in others, nightlife activities such as visiting
bars after work are more common (Yang et al., 2015). Ensuring diverse geographic coverage is
increasingly important, especially as LLMs are adopted for POI trajectory modeling tasks. LLMs are
known to exhibit geographical biases against regions with lower socioeconomic conditions (Manvi
et al., 2024). Whether LLMs can generalize across diverse urban environments is to be investigated.

In addition, because many studies rely on the FSQ-NYC and FSQ-TKY, they are often constrained to
the timespan it covers: check-in data from 2012 to 2013. However, POI data is inherently dynamic:
venues may have closed, relocated, or changed in category over time. Yeow et al. (2021) underscores
the importance of validating the temporal quality of POI datasets by recording whether and when a
venue’s information has been updated to reflect real-world changes. This is particularly critical, as

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: Statistics of the 15 Massive-STEPS subsets, including the number of users, trajectories,
POIs, check-ins, and train, validation, and test sample counts. µTrajLen denotes the mean number of
check-ins per trajectory, and µinterval denotes the mean time interval between check-ins (in hours). For
comparison, we also include statistics from existing Foursquare- and Gowalla-based datasets. †Due
to variations in dataset preprocessing across studies, we report the version used by Yan et al. (2023).

City Users Trajectories POIs Check-ins #train #val #test µTrajLen µinterval

NYC and Tokyo Check-in Dataset† (Yang et al., 2014)
New York 1,048 14,130 4,981 103,941 72,206 1,400 1,347 7.55 7.27
Tokyo 2,282 65,499 7,833 405,000 274,597 6,868 7,038 6.32 5.47

Gowalla† (Cho et al., 2011; Yuan et al., 2013)
California 3,957 45,123 9,690 238,369 154,253 3,529 2,780 5.24 8.37

Massive-STEPS
Bandung 3,377 55,333 29,026 161,284 113,058 16,018 32,208 2.91 3.17
Beijing 56 573 1,127 1,470 400 58 115 2.57 3.10
Istanbul 23,700 216,411 53,812 544,471 151,487 21,641 43,283 2.52 4.36
Jakarta 8,336 137,396 76,116 412,100 96,176 13,740 27,480 3.00 2.81
Kuwait City 9,628 91,658 17,180 232,706 64,160 9,166 18,332 2.54 5.31
Melbourne 646 7,864 7,699 22,050 5,504 787 1,573 2.80 3.27
Moscow 3,993 39,485 17,822 105,620 27,639 3,949 7,897 2.67 3.36
New York 6,929 92,041 49,218 272,368 64,428 9,204 18,409 2.96 3.16
Palembang 267 4,699 4,343 14,467 10,132 1,487 2,848 3.08 3.17
Petaling Jaya 14,308 180,410 60,158 506,430 126,287 18,041 36,082 2.81 2.96
São Paulo 5,822 89,689 38,377 256,824 62,782 8,969 17,938 2.86 3.54
Shanghai 296 3,636 4,462 10,491 2,544 364 728 2.89 3.02
Sydney 740 10,148 8,986 29,900 7,103 1,015 2,030 2.95 3.33
Tangerang 1,437 15,984 12,956 45,521 32,085 4,499 8,937 2.85 3.24
Tokyo 764 5,482 4,725 13,839 3,836 549 1,097 2.52 5.16

recommender systems should avoid suggesting POIs that no longer exist or have undergone substantial
changes (e.g., a former bookstore converted into a coworking space) and behave dynamically over
longitudinal periods (Yabe et al., 2024). Moreover, behavioral patterns captured over a decade ago
may no longer align with modern user preferences and routines. For example, the opening of a new
train station may significantly shift commuting patterns and the popularity of surrounding POIs.

Low Data Quality: Erroneous Entries More recently, researchers have begun leveraging the
broader Global-scale Check-in Dataset (GSCD) (Yang et al., 2015; 2016), which spans 415 cities
across 77 countries. Despite its wider geographic coverage, GSCD is temporally limited to the same
2012-2013 period as FSQ-NYC and FSQ-TKY, and thus suffers from similar issues of temporal
quality. More critically, Monti et al. (2018) demonstrated that GSCD suffers from significant data
quality issues, with over 14 million check-ins (about 44%) of the dataset flagged as erroneous due
to anomalous user behavior. These include (1) repeated check-ins at the same venue, (2) check-ins
occurring within implausibly short time intervals (less than one minute), and (3) transitions between
venues that would require travel speeds exceeding Mach 1, which are physically unreasonable.

To address these limitations, Monti et al. (2018) introduced the Semantic Trails Dataset (STD),
which applies systematic filtering procedures to enhance data quality. STD comprises two subsets:
a cleaned version of GSCD covering 2012-2013 (STD 2013), and a newer collection of check-ins
from 2017-2018 (STD 2018), sourced from Foursquare Swarm. STD 2018 also spans a wider range
of cities, making it valuable for capturing globally distributed user behavior, in contrast to GSCD’s
focus on densely populated urban centers. Both subsets follow the same rigorous filtering criteria,
resulting in a higher-quality check-in dataset for downstream POI trajectory modeling tasks. Given
these improvements, we adopted STD as the source for our check-in dataset.

Poor Reproducibility Another persistent challenge in POI trajectory research is the lack of repro-
ducibility in dataset preprocessing. While some recent studies utilize datasets like GSCD to cover
a wide range of cities, they often omit important details needed for replicating their data filtering
processes. For example, Feng et al. (2025) and Zuo & Zhang (2024) conducted city-level filtering,
but they did not specify how the city boundaries were defined or what distance-based thresholds were
used. Similarly, the Weeplaces dataset used by Chen & Zhu (2025) and Cao et al. (2023) is no longer
available. To further support this claim, we provide an extensive list of dataset reproducibility issues
in all the studies reviewed by Zhang et al. (2025), in Table 7. As shown, almost none of the datasets
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used in these works are fully reproducible or publicly available, except for FSQ-NYC/TKY (Yang
et al., 2014) and Gowalla-CA (Yuan et al., 2013), leading to a heavy reliance on these datasets.

2.2 UNDERSTANDING URBAN FEATURES AND POI TRAJECTORY MODELING

POI trajectory studies that evaluate models across multiple city-level datasets often include analyses
to assess how well their methods generalize across different urban contexts. It is well understood
that POI recommendation accuracy metrics (e.g., Acc@k, NDCG@k) can vary substantially between
cities and can be interpreted as a proxy for how easy or difficult a city is to model. The assumption
is that higher performance reflects more predictable or structured mobility patterns. This viewpoint
is consistent with prior work highlighting the role of cultural and urban-specific factors in shaping
mobility behaviors (Yang et al., 2015; Sun et al., 2024).

Several studies have proposed hypotheses connecting specific urban features to modeling difficulty.
Yang et al. (2022c) hypothesized that cities with fewer check-ins and higher spatial sparsity of POIs
are harder to model. Yan et al. (2023) suggested that a larger number of user trajectories improves
predictive accuracy by providing richer collaborative signals, whose architecture is designed to
leverage. Li et al. (2024) proposed that cities with a greater variety of POI categories are easier to
model due to LLMs’ contextual reasoning capabilities, whereas cities covering a broader geographic
area tend to be more difficult to model. In the zero-shot POI recommendation setting, Feng et al.
(2025) reported two key findings: (1) geospatial biases inherent in LLMs can hinder prediction quality
across cities, and (2) LLMs are influenced by city-specific mobility patterns.

Building on these insights, we used Massive-STEPS to explore how urban features affect POI
recommendations. Its diverse set of 15 cities allows for a comprehensive analysis across different
cultural and urban contexts. We analyzed the correlation between urban features and model accuracy,
and based on the results, proposed a new hypothesis that contrasts previous findings in the literature.

3 MASSIVE-STEPS DATASET

3.1 CREATION PROCESS

Massive-STEPS is derived from STD (Monti et al., 2018), incorporating check-ins from both the
2013 and 2018 subsets. We utilize two additional components from STD: (1) the cities metadata file,
which provides the latitude and longitude of administrative regions (e.g., towns, suburbs) along with
their corresponding country codes obtained from GeoNames; and (2) the POI category mapping,
which links each Foursquare Category ID to its descriptive name (e.g., ”Restaurant”). Based on
this metadata, each POI is thus associated with several attributes: Foursquare Place ID, Foursquare
Category ID, category name, latitude/longitude of the administrative region, the administrative region
name, and the country code. For anonymization purposes and model training compatibility, we apply
ordinal encoding to the Place IDs and Category IDs, assigning each a unique integer index.

Trajectory Grouping Most POI trajectory models operate on sequences of check-ins, commonly
referred to as trajectories. The model is tasked with predicting the next POIs a user is likely to visit,
given the current trajectory. STD conveniently provides pre-grouped trajectories (trails) by applying
a time interval-based grouping: for each user, check-ins that occur within a time interval of δτ = 8
hours are grouped into the same trajectory.

Matching Trajectories to Target Cities To obtain city-specific datasets, we matched trajectories
to the target cities. For each city, we obtain geographic boundaries from OpenStreetMap and retrieve
its GeoJSON file via the Overpass API. The GeoJSON file contains a polygon defining the city’s
boundary in latitude and longitude. Using this boundary, we filter check-ins by comparing the
latitude/longitude of each POI’s administrative region and retain only those that are within the city’s
polygon. This ensures that all retained trajectories are spatially grounded within the designated city.

Filtering Short Trajectories and Inactive Users To ensure data quality, we apply an additional
filtering step by removing trajectories with fewer than two check-ins and excluding users with fewer
than three trajectories. This prevents the model from learning from overly sparse or irrelevant data.
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Figure 2: World map highlighting the cities included in the Massive-STEPS dataset.

Train, Validation, and Test Splits We split trajectories into training, validation, and test sets in a
ratio of 7:1:2, following Feng et al. (2025). We ensure that all users in the test set appear at least once
in the training or validation set, following prior studies (Yang et al., 2022c; Yan et al., 2023).

3.1.1 POI ENRICHMENT VIA FOURSQUARE OS PLACES

Since the POIs in STD include their corresponding Foursquare Place IDs, we matched them directly
with entries in the Foursquare OS Places dataset using these IDs as the key. This one-to-one ID
correspondence allows for a straightforward join operation, enriching each POI with additional
metadata such as its precise latitude and longitude, name (e.g., of a restaurant or subway station),
and address. However, not all POIs in the Foursquare OS Places dataset include the full metadata,
particularly those categorized as private residences, which are excluded due to privacy restrictions.

3.2 DESCRIPTION AND ADDRESSING LITERATURE GAPS

3.2.1 PREPROCESSING

Massive-STEPS is a city-level POI check-in dataset comprising user check-in trajectories from 15
cities: Bandung, Beijing, Istanbul, Jakarta, Kuwait City, Melbourne, Moscow, New York, Palembang,
Petaling Jaya, São Paulo, Shanghai, Sydney, Tangerang, and Tokyo. It features anonymized POI
check-ins enriched with geographical metadata to support spatiotemporal and sequential modeling
tasks. City-level statistics, along with comparisons to existing datasets, are presented in Table 2.
Fig. 2 shows a world map highlighting the locations of all cities included in the dataset. Table 8
shows the available fields in the dataset and provides an example for each field.

Massive-STEPS offers a more comprehensive and diverse representation of urban mobility
compared to typical POI check-in datasets. As shown in Table 2, datasets like FSQ-NYC and
FSQ-TKY (Yang et al., 2014) contain fewer than 10,000 candidate POI locations. In contrast, cities
in Massive-STEPS cover significantly more POIs: Massive-STEPS New York has over 49,000 POIs,
while Massive-STEPS Jakarta exceeds 76,000. Massive-STEPS Istanbul, one of the largest subsets,
features a large user base of 23,700, offering a broad range of user behaviors. Although some
Massive-STEPS subsets are smaller than their FSQ counterparts (e.g., Tokyo), we attribute this to the
strict filtering procedures applied by STD to remove erroneous entries, as explained in Section 2.1.
This scale introduces additional computational challenges. For instance, models that rely on dense
POI-to-POI adjacency matrices require efficient implementations to reduce memory consumption.

Another key feature of Massive-STEPS is its temporal coverage, covering the periods 2012-2013
and 2017-2018 (24 months in total). This enables longitudinal analyses, such as evaluating how
POI models perform across different time periods (see Section 4.2). POIs are highly dynamic, with
substantial closure rates in major cities like New York, Melbourne, and Sydney (Table 9), highlighting
that the POI landscape is far from static and reinforcing the need for multi-period datasets like ours.
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Table 3: Benchmark results on POI recommendation task. The metric reported is Acc@1. Full
results, including other metrics, are available in Section C.4. Bold indicates the best performance for
each city, while underline indicates the second-best.
Model Bandung Beijing Istanbul Jakarta KC Melbourne Moscow NY Palembang PJ SP Shanghai Sydney Tangerang Tokyo

FPMC 0.048 0.000 0.026 0.029 0.021 0.062 0.059 0.032 0.102 0.026 0.030 0.084 0.075 0.104 0.176

RNN 0.062 0.085 0.077 0.049 0.087 0.059 0.075 0.061 0.049 0.064 0.097 0.055 0.080 0.087 0.133
LSTPM 0.110 0.127 0.142 0.099 0.180 0.091 0.151 0.099 0.114 0.099 0.158 0.099 0.141 0.154 0.225
DeepMove 0.107 0.106 0.150 0.103 0.179 0.083 0.143 0.097 0.084 0.112 0.160 0.085 0.129 0.145 0.201

GETNext 0.179 0.433 0.146 0.155 0.175 0.100 0.175 0.134 0.158 0.139 0.202 0.115 0.181 0.224 0.180
STHGCN 0.219 0.453 0.241 0.197 0.225 0.168 0.223 0.146 0.246 0.174 0.250 0.193 0.227 0.293 0.250

UniMove 0.007 0.036 0.015 0.004 0.023 0.008 0.009 0.004 0.009 0.008 0.002 0.000 0.015 0.001 0.032

We also observe distributional shifts in the most visited POI categories between the two periods in
Fig. 6, indicating that visitation behaviors can change substantially even within the same city.

Beyond scale, Massive-STEPS addresses the oversaturation of FSQ-NYC and FSQ-TKY in POI
trajectory modeling research. Notably, Massive-STEPS includes low-resource and previously un-
derexplored cities in human mobility studies, such as Petaling Jaya and Kuwait City, both of which
are among the cities with the highest number of check-ins from STD. This broader coverage opens
new research opportunities for studying location-based behaviors across diverse cultural and geo-
graphic contexts. Furthermore, since Massive-STEPS is based on STD, it benefits from the carefully
filtered, high-quality check-ins and a longer, more recent timespan. These characteristics make
Massive-STEPS a more relevant and reliable resource for modeling human mobility patterns.

Massive-STEPS is designed to be easily extended to other geographical regions. Since the
data processing code is open-source and fully reproducible, adding a new city only requires its
geographic boundaries from OpenStreetMap. Moreover, Massive-STEPS is scalable to higher levels
of geographic granularity, enabling the creation of provincial, state, and country-level POI check-in
datasets, which support collective mobility studies at broader geographic scales.

4 BENCHMARK TASKS

4.1 POI RECOMMENDATION

This benchmark focuses on POI recommendation, where the goal is to predict a user’s next visit based
on their previous check-ins. The input is a trajectory of visited places, and the model is expected to
suggest a set of K POIs the user might visit next. It is a supervised task, trained on all available
historical trajectories to learn personalized movement patterns. Appendix C provides details on
problem formulation, hyperparameters, experimental setups, and full evaluation results.

Experimental Setup We adopted the predefined trajectories from the original STD, where check-
ins are grouped into sequences based on fixed time intervals (see Section 3.2.1). All input features
are numerically encoded, enabling straightforward use across experiments. Models typically use
four feature types: (1) social: user ID; (2) spatial: POI ID and geographic coordinates; (3) temporal:
check-in timestamp; and (4) categorical: POI category. As not all POIs have exact geographic
coordinates (see Section 3.1.1), we used the geographic coordinates of their administrative region as
a proxy for all POIs. We evaluated four kinds of architectures: (1) Markov-based methods: FPMC
(Rendle et al., 2010), (2) classical deep learning models: RNN (Wang et al., 2021a), LSTPM (Sun
et al., 2020), and DeepMove (Feng et al., 2018), (3) Transformer-based graph neural networks:
GETNext (Yang et al., 2022c) and STHGCN, and (4) Trajectory foundation model: UniMove (Han
et al., 2025b). We employed two commonly used metrics in POI recommender systems: Acc@k,
which checks if the true POI appears in the top-k predicted results, and NDCG@k, which measures
the ranking quality of the suggested results.

Results As shown in Table 3, STHGCN achieves the highest average Acc@1 across all cities,
followed closely by GETNext, demonstrating the effectiveness of GNNs. The top model attained
a mean Acc@1 of 23.4%, comparable to previous studies on similarly sized datasets (Feng et al.,
2025). Notably, pre-training UniMove (Han et al., 2025b) from scratch struggled to surpass recurrent
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Table 4: Benchmark results on zero-shot POI recommendation task. The metric reported is
Acc@1. Full results, including other metrics, are available in Section E.4. Bold indicates the best
performance for each city, while underline indicates the second-best.
Method LLM Bandung Beijing Istanbul Jakarta KC Melbourne Moscow NY Palembang PJ SP Shanghai Sydney Tangerang Tokyo

LLM-Mob

Gemini 2 Flash 0.105 0.115 0.080 0.100 0.095 0.060 0.130 0.095 0.135 0.090 0.130 0.055 0.060 0.155 0.140
Qwen 2.5 7B 0.060 0.058 0.035 0.105 0.080 0.030 0.090 0.070 0.075 0.030 0.090 0.040 0.035 0.095 0.110
Llama 3.1 8B 0.010 0.000 0.020 0.055 0.030 0.010 0.030 0.025 0.005 0.010 0.030 0.005 0.020 0.020 0.005
Gemma 2 9B 0.070 0.115 0.075 0.105 0.080 0.055 0.100 0.070 0.095 0.055 0.085 0.050 0.030 0.145 0.145

LLM-ZS

Gemini 2 Flash 0.095 0.058 0.090 0.110 0.080 0.065 0.125 0.080 0.130 0.110 0.150 0.065 0.060 0.145 0.160
Qwen 2.5 7B 0.055 0.038 0.040 0.065 0.050 0.040 0.080 0.050 0.050 0.045 0.095 0.045 0.045 0.100 0.120
Llama 3.1 8B 0.045 0.077 0.040 0.045 0.060 0.040 0.080 0.055 0.070 0.030 0.030 0.060 0.040 0.080 0.110
Gemma 2 9B 0.065 0.096 0.045 0.105 0.070 0.050 0.080 0.075 0.060 0.065 0.075 0.050 0.045 0.100 0.110

LLM-Move

Gemini 2 Flash 0.225 0.096 0.205 0.295 0.220 0.225 0.220 0.235 0.260 0.210 0.285 0.170 0.230 0.200 0.250
Qwen 2.5 7B 0.100 0.192 0.175 0.115 0.160 0.110 0.230 0.120 0.130 0.135 0.155 0.095 0.125 0.175 0.250
Llama 3.1 8B 0.030 0.058 0.015 0.015 0.010 0.040 0.005 0.035 0.010 0.040 0.045 0.020 0.055 0.000 0.030
Gemma 2 9B 0.175 0.096 0.100 0.235 0.120 0.115 0.110 0.115 0.210 0.175 0.195 0.105 0.125 0.125 0.130

model baselines. We attribute this to the high number of cold-start trajectories (see Fig. 7), which
hinder performance as next-token prediction loss struggles with extremely short input sequences.
We also examined the impact of urban features on POI recommendation accuracy by computing
Spearman correlations between city features and model performance. As shown in Fig. 9, we found
that category entropy, based on Shannon entropy, shows a strong negative correlation with accuracy
(r = −0.684). Cities with more evenly distributed POI categories tend to be harder to predict. This
result aligns with prior findings on other datasets. Further details are provided in Appendix D.

4.2 ZERO-SHOT POI RECOMMENDATION

This benchmark focuses on zero-shot POI recommendation via LLMs, where the goal is to predict
a user’s next visit based on their previous check-ins (similar to its supervised counterpart) without
additional model fine-tuning. The input is a user trajectory transformed into a textual prompt, and the
model ranks a set of K candidate POIs to identify the next likely destination. Appendix E provides
details on problem formulation, prompts, experimental setups, and full evaluation results.

Bandung
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Moscow

New York

Palembang

Petaling Jaya
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Tangerang
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Figure 3: Acc@1 of supervised and
LLM-Move models across 15 cities.

Experimental Setup For zero-shot recommendation,
trajectories are converted into textual prompts (Xue et al.,
2022; Xue & Salim, 2024). We adapted the prompt tem-
plates from Feng et al. (2025), which implemented the
three LLM methods evaluated in this study: LLM-Mob
(Wang et al., 2023c), LLM-ZS (Beneduce et al., 2024), and
LLM-Move (Feng et al., 2024a). Since LLMs can leverage
contextual information, features do not need numerical en-
coding; we used each check-in’s timestamp, POI category
name, and POI ID. For a robust evaluation, we tested each
method on four LLMs: one closed-source API (Gemini
2.0 Flash (Team & et al., 2024a)) and three open-source
instruction-tuned models (Qwen 2.5 7B (Team, 2024),
Llama 3.1 8B (Grattafiori et al., 2024), and Gemma 2 9B
(Team & et al., 2024b)). We used the same metrics as in
the supervised setting: Acc@k and NDCG@k.

Results As shown in Table 4, LLM-Move (Feng et al.,
2024a) outperformed the other two methods due to its
prompt, which provides candidate POIs rather than rely-
ing solely on historical or contextual trajectories unlike
LLM-Mob and LLM-ZS. Across LLMs, Gemini 2.0 Flash
achieved the highest accuracy across all prompting strategies, with Qwen 2.5 7B and Gemma 2 9B as
strong open-source alternatives. Notably, as shown in Fig. 3, these zero-shot methods matched or
exceeded supervised baselines in several cities (e.g., Jakarta, Kuwait City, Moscow), demonstrating
their effectiveness without fine-tuning. Although serving LLMs requires more powerful hardware,
running inference can still be faster overall than training supervised models from scratch.
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Table 5: Zero-shot POI recommendation results using LLM-Move across two time periods.
The metric reported is Acc@1. Full results, including other metrics, are available in Section E.4.
Bold indicates the best performance for each city, while underline indicates the second-best. Results
marked as N/A indicate that no samples were available for that city in the corresponding time period.
Time Period Model Bandung Beijing Istanbul Jakarta KC Melbourne Moscow NY Palembang PJ SP Shanghai Sydney Tangerang Tokyo

2012-2013

Gemini 2 Flash 0.227 0.102 0.212 0.295 0.423 0.226 0.218 0.240 0.256 0.199 0.298 0.192 0.256 0.197 N/A
Qwen 2.5 7B 0.098 0.204 0.192 0.114 0.269 0.116 0.234 0.130 0.128 0.142 0.173 0.109 0.122 0.172 N/A
Llama 3.1 8B 0.031 0.041 0.007 0.010 0.000 0.039 0.005 0.032 0.010 0.014 0.048 0.006 0.064 0.000 N/A
Gemma 2 9B 0.180 0.102 0.116 0.228 0.308 0.097 0.112 0.130 0.215 0.199 0.202 0.109 0.122 0.126 N/A

2017-2018

Gemini 2 Flash 0.167 0.000 0.185 0.286 0.190 0.222 0.333 0.217 0.400 0.237 0.219 0.091 0.136 0.500 0.250
Qwen 2.5 7B 0.167 0.000 0.130 0.143 0.144 0.089 0.000 0.087 0.200 0.119 0.063 0.045 0.136 0.500 0.250
Llama 3.1 8B 0.000 0.333 0.037 0.143 0.011 0.044 0.000 0.043 0.000 0.102 0.031 0.068 0.023 0.000 0.030
Gemma 2 9B 0.000 0.000 0.056 0.429 0.092 0.178 0.000 0.065 0.000 0.119 0.156 0.091 0.136 0.000 0.130

Table 6: Benchmark results on spatiotemporal classification task. The metric reported is Acc.
Bold indicates the best performance for each city, while underline indicates the second-best.
LLM Bandung Beijing Istanbul Jakarta KC Melbourne Moscow NY Palembang PJ SP Shanghai Sydney Tangerang Tokyo

Gemini 2 Flash 0.635 0.615 0.715 0.650 0.765 0.635 0.740 0.620 0.670 0.610 0.730 0.600 0.550 0.635 0.510
GPT-4o Mini 0.625 0.538 0.610 0.610 0.430 0.635 0.745 0.600 0.645 0.590 0.645 0.565 0.545 0.600 0.495
GPT-4.1 Mini 0.585 0.673 0.615 0.600 0.690 0.585 0.745 0.595 0.605 0.575 0.700 0.565 0.515 0.620 0.550
GPT-5 Nano 0.570 0.635 0.535 0.530 0.470 0.500 0.635 0.580 0.560 0.565 0.680 0.465 0.440 0.520 0.580

Longitudinal Experiments and Results To examine temporal changes in mobility patterns, we
split the test sets into two periods (2012-2013 and 2017-2018) and evaluated the same four LLMs
with LLM-Move (Feng et al., 2024a), which was the strongest-performing approach in our zero-shot
experiments. As shown in Table 5, zero-shot accuracy generally declined in the 2017-2018 period,
except for Jakarta and Tangerang, indicating that user trajectories in later years tend to be more
challenging to predict. Performance trends varied across cities, highlighting temporal differences in
mobility patterns that impact downstream tasks. Across all models, Gemini 2.0 Flash consistently
achieved the highest accuracy, demonstrating robust zero-shot capabilities across cities and time.

4.3 SPATIOTEMPORAL CLASSIFICATION AND REASONING

This benchmark assesses whether LLMs can be leveraged for spatiotemporal trajectory classification
by providing them with contextual information about a user’s behavior. The task evaluates the
model’s ability to capture variations in travel patterns across different cities, given the sequence
of POI check-ins as input, and without any additional fine-tuning. Through this setup, we aim
to understand how effectively LLMs can reason over spatiotemporal and behavioral cues in user
trajectories. Appendix F provides details on problem formulation, prompts, and LLM parameters.

Experimental Setup This task involves classifying a property of a POI check-in trajectory. For
this study, we chose to predict whether the final check-in occurs on a weekday or a weekend. Each
trajectory is converted into a textual prompt incorporating spatial (city), temporal (check-in time-of-
day), and categorical contexts (POI category). Adapting the prompt design from LLM-Mob (Wang
et al., 2023c), we instructed the LLM to first reason before making a prediction. This approach allows
us to evaluate both classification accuracy and the spatiotemporal reasoning capabilities of LLMs, in
line with recent work on spatiotemporal reasoning using LLMs (Quan et al., 2025). Whereas prior
approaches rely on models that encode trajectories (Nayak & Pandit, 2023), our method directly
leverages the LLM’s ability to process contextual information in natural language. We evaluated four
closed-source LLM APIs: Gemini 2.0 Flash (Team & et al., 2024a), GPT-4o Mini, GPT-4.1 Mini,
and GPT-5 Nano (OpenAI & et al., 2024b;a), and used Accuracy as our primary metric.

Results As shown in Table 6, Gemini 2 Flash achieves the highest mean accuracy of 0.643 across
the 15 cities. While this performance is above random guessing, it remains far from ideal for practical
spatiotemporal trajectory classification. Surprisingly, the GPT series of models, despite some being
more recent than Gemini 2 Flash, generally performed worse. Notably, GPT-5 Nano obtained the
lowest mean accuracy, even though it is designed for advanced reasoning tasks. Our findings align
with González et al. (2008), who observed that user regularity does not differ significantly between
weekdays and weekends, suggesting that mobility patterns are not strictly dictated by work schedules
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but may instead reflect intrinsic human activity patterns. Overall, these results indicate that current
LLMs face significant limitations in capturing spatiotemporal patterns from trajectory data alone,
highlighting the need for further improvements in this area.

5 CONCLUSION AND LIMITATIONS

Conclusion In this paper, we presented the Massive-STEPS dataset to address longstanding limita-
tions in POI trajectory modeling research, particularly the reliance on older, geographically saturated,
and non-reproducible check-in datasets. Massive-STEPS offers a large-scale, semantically enriched
resource spanning 15 cities across diverse global regions and two time periods, supporting both
longitudinal and cross-city analyses. The dataset includes rich semantic information such as venue
name, address, category, and coordinates. We also provide benchmark results for supervised and
zero-shot POI trajectory modeling methods, illustrating the dataset’s utility across model types and
tasks. By releasing Massive-STEPS and our evaluation pipeline publicly, we aim to advance open,
reproducible, and globally inclusive research in human mobility and POI trajectory modeling systems.

Limitations Firstly, Massive-STEPS is derived from the Semantic Trails dataset and thus inherits its
biases and potential errors, which may propagate through downstream tasks. Additionally, the dataset
is sparse in several cities, which can impact model training quality and limit cross-city generalization.
Secondly, Massive-STEPS focuses solely on trajectories and POI metadata, without including user
demographic or social information due to privacy considerations. This restricts its applicability for
personalized or socially-aware POI recommendation tasks. Thirdly, while our benchmarking covers
a wide range of models and cities to emphasize replicability and geographic breadth, we did not
perform extensive hyperparameter tuning, which may affect the peak performance of the models.
Finally, although Massive-STEPS does not reflect present-day mobility patterns, it was designed to
provide a more recent alternative to older datasets such as FSQ-NYC/TKY and GSCD (2012-2013)
and to help bridge the gap toward newer, open, and extensible POI benchmarks.

REPRODUCIBILITY STATEMENT

Dataset and evaluation reproducibility is a central claim and contribution of our paper, especially
given that the field has long been hindered by their absence. We ensure reproducibility by: (1)
providing detailed descriptions and code for downloading and preprocessing the data to produce the
final dataset, (2) specifying model configurations, training setups, and evaluation protocols throughout
the paper (see Section C, Section E, Section F), and (3) releasing the Massive-STEPS dataset creation
code along with all accompanying code to replicate our experiments.
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A EXISTING POI RECOMMENDATION DATASETS

To examine the trend of the usage of POI recommendation datasets, we filtered the comprehensive
survey by Zhang et al. (2025) to extract studies that explicitly mention the cities used in their
experiments. The resulting distribution is summarized in Table 7, which shows a strong concentration
of studies focused on New York and Tokyo. Additionally, Fig. 4 visualizes the same data, highlighting
the uneven distribution of city choices across studies. We also include information on the LBSN
platforms used, revealing that Foursquare remains the predominant data source in the field. These
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Figure 4: Distribution of POI recommendation studies modeled on specific cities, modified from
Table IV of Zhang et al. (2025). We identified and counted studies that explicitly mentioned city
names, revealing the skewness of existing research, which is saturated around New York and Tokyo.
In addition, we include the distribution of studies by LBSN platform, showing that Foursquare is by
far the most commonly used source of check-in data. The list of studies is shown in Table 7.
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findings underscore the need for broader, more inclusive datasets that support evaluation across a
wider range of global cities.

B DATA VISUALIZATION

We present several visualizations highlighting Massive-STEPS’ scale and diversity to complement
our dataset description.

In Fig. 5, we show the top 10 most frequent POI categories for each city. The distribution reflects the
local culture and lifestyle across different urban areas. For example, Beijing and Shanghai have a
high number of Chinese restaurants, while Melbourne and Sydney show a strong presence of cafes.
In Tokyo, convenience stores and ramen shops dominate. These patterns illustrate the diversity of
local culture and user interests. Fig. 6 illustrates the temporal shift in the distribution of the top 10
most visited POI categories across each city, comparing the percentage of visits to each category
between the 2012-2013 and 2017-2018 periods. Table 9 shows the number of POIs ever opened
according to Foursquare OS Places, the number of POIs confirmed closed by 2025, and the number
of POIs that closed between 2014 and 2016, corresponding to the temporal gap in our dataset.

Fig. 7 plots the distribution of trajectory lengths (i.e., number of check-ins per trajectory). The
distribution is long-tailed, with most trajectories being relatively short, similar to the original Semantic
Trails dataset. This indicates that users often make only a few check-ins per outing.

Finally, we show the distribution of user activity levels, measured by the number of trajectories per
user in Fig. 8. Most users exhibit cold-start behavior, contributing only a small number of trajectories.
This highlights the importance of models that are robust to sparse and short user histories.

C POI RECOMMENDATION: TASK DETAILS

We adopt the conventional problem formulation used in prior POI recommendation studies (Zhang
et al., 2025; Yang et al., 2022c; Yan et al., 2023), which defines the task as learning user preferences
and routines from historical check-ins to recommend future POIs.

C.1 PROBLEM FORMULATION

Let U = {u1, u2, . . . , uM} denote the set of users, P = {p1, p2, . . . , pN} the set of Points of Interest
(POIs), and T = {t1, t2, . . . , tK} the set of timestamps, where M,N,K ∈ N.

POI Definition Each POI p ∈ P is represented as a tuple:

p = ⟨ϕ, λ, κ, α, β, γ⟩,
where:

• ϕ and λ are the latitude and longitude,
• κ is the POI category (e.g., restaurant, park),
• α is the unique POI identifier,
• β is the textual address, and
• γ is the POI name.

Check-in Definition A check-in is a tuple c = ⟨u, p, t⟩ ∈ U ×P ×T , indicating that user u visited
POI p at timestamp t.

Trajectory Definition A trajectory for user u is defined as a temporally ordered sequence of
check-ins within a fixed time interval δτ = 8 hours. Each trajectory T i

u(t) up to timestamp t is
defined as:

T i
u(t) = {(p1, t1), (p2, t2), . . . , (pk, tk)}

such that t1 < t2 < · · · < tk = t and tk − tk−1 ≤ δτ . Given a set of historical trajectories

Tu = {T 1
u , T

2
u , . . . , T

L
u }
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Table 8: Fields available in the Massive-STEPS dataset, including user, POI, geographic/spatial,
and temporal details, along with example data for each field.

Field Description Example

trail_id Numeric identifier of trajectory 2013_2866
user_id Numeric identifier of user 90
venue_id Numeric identifier of POI venue 185
latitude Latitude of POI venue -33.87301862604473
longitude Longitude of POI venue 151.20668402700997
name POI name Sydney Town Hall
address Street address of POI venue 483 George St
venue_category POI category name City Hall
venue_category_id Foursquare Category ID 4bf58dd8d48988d129941735
venue_category_id_code Numeric identifier of POI category 72
venue_city Administrative region name Sydney
venue_city_latitude Latitude of administrative region -33.86785
venue_city_longitude Longitude of administrative region 151.20732
venue_country Country code AU
timestamp Check-in timestamp 2012-04-22 08:20:00
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Figure 5: Top 10 most frequent POI categories in each city, highlighting local cultural and urban
preferences.
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Figure 6: Top 10 most visited POI categories in each city across two time periods, illustrating
temporal shifts in user visitation patterns.

Table 9: Overview of POI dynamics: total POIs ever opened (according to Foursquare OS Places),
POIs confirmed closed by 2025, and POIs closed during 2014-2016, corresponding to the temporal
gap in our dataset.
City POIs Ever Opened Total POIs Confirmed Closed (up to 2025) Closed within 2014-2016

New York 49,218 13,009 (26.43%) 3,118 (6.34%)
Melbourne 7,699 1,850 (24.03%) 209 (2.71%)
Sydney 8,986 1,759 (19.57%) 253 (2.82%)
Moscow 17,822 3,021 (16.95%) 868 (4.87%)
São Paulo 38,377 4,990 (13.00%) 1,257 (3.28%)
Shanghai 4,462 661 (14.81%) 81 (1.82%)
Tokyo 4,725 421 (8.91%) 0 (0.00%)
Petaling Jaya 60,158 4,186 (6.96%) 1,533 (2.55%)
Istanbul 53,812 2,833 (5.26%) 481 (0.89%)
Beijing 1,127 56 (4.97%) 10 (0.89%)
Jakarta 76,116 3,527 (4.63%) 483 (0.63%)
Bandung 29,026 1,053 (3.63%) 182 (0.63%)
Palembang 4,343 143 (3.29%) 23 (0.53%)
Tangerang 12,956 383 (2.96%) 50 (0.39%)
Kuwait City 17,180 161 (0.94%) 22 (0.13%)
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Figure 7: Distribution of trail lengths, showing a long-tailed pattern with most trajectories consisting
of a few check-ins.
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Figure 8: Distribution of user activity based on the number of trajectories per user, indicating a
cold-start-heavy dataset.
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for user u, where L is the number of such historical trajectories, the goal is to recommend the POIs
that u is most likely to visit next after the current contextual trajectory T ′

u(t).

POI Recommendation Task Definition Given a current contextual trajectory T ′
u(t) of user u up to

time t, along with their historical trajectories Tu, the task of next POI recommendation is to rank all
candidate POIs pi ∈ P according to the model’s predicted probability that user u will visit each POI
next.

Formally, the model learns a ranking function:

f : (T ′
u(t), Tu) → {ŷi}|P|

i=1

where ŷi denotes the predicted likelihood that user u will visit POI pi next. Based on these scores, a
ranked list of POIs is returned as recommendations.

This formulation enables POI recommendation, where the goal is to suggest a set of likely POIs that
a user may visit next, based on their historical check-ins and inferred preferences. Our evaluation
metrics, Acc@k and NDCG@k, assess whether the ground-truth POI appears among the top-k ranked
candidates, reflecting the quality of the recommended set. In particular, Acc@1 captures the stricter
task of immediate next POI prediction, measuring whether the top-ranked POI matches the user’s
actual next visit.

C.2 MODELS

For thoroughness, we evaluated the following models as baselines:

• FPMC (Rendle et al., 2010): A classical baseline that combines first-order Markov chains
with matrix factorization to model personalized next-location predictions.

• RNN (Wang et al., 2021a), LSTPM (Sun et al., 2020), and DeepMove (Feng et al., 2018):
Recurrent neural networks designed to capture sequential dependencies, with varying
mechanisms to incorporate spatio-temporal context.

• GETNext (Yang et al., 2022c) and STHGCN (Yan et al., 2023): Transformer-based graph
neural networks to model social, spatial, and temporal dependencies.

• UniMove (Han et al., 2025b): Trajectory foundation model based on a Transformer decoder
architecture with Mixture of Experts (MoE) layers.

C.3 EXPERIMENT AND IMPLEMENTATION DETAILS

For training and evaluation, we used the LibCity1 library (Wang et al., 2021a), which provides
implementations of classical baselines including FPMC (Rendle et al., 2010), RNN (Wang et al.,
2021a), LSTPM (Sun et al., 2020), and DeepMove (Feng et al., 2018). The training hyperparameters
are listed in Table 10 and, unless otherwise noted, follow the default configurations provided by
LibCity.

For GETNext2 (Yang et al., 2022c) and STHGCN3 (Yan et al., 2023), we adapted the original source
code released by the respective authors. Due to variations in dataset sizes and training costs across
cities, we applied different hyperparameters for some cities, as detailed in Table 11.

For UniMove4 (Han et al., 2025b), we modified their original source code for Massive-STEPS.
For location features, we used Schema.org’s 162 list of categories as a categorical feature and the
administrative region as the grid area for POI category distribution. Hyperparameters are listed in
Table 10 and, unless otherwise noted, follow the default values.

All modified code implementations are available as submodules in our main dataset repository.
Experiments were conducted using NVIDIA L4, L40S, and H100 GPUs.

1https://github.com/libcity/bigscity-libcity-datasets/
2https://github.com/songyangme/GETNext
3https://github.com/alipay/Spatio-Temporal-Hypergraph-Model
4https://github.com/tsinghua-fib-lab/unimove
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Table 10: Hyperparameters for Markov-based methods, recurrent networks, and UniMove.
Hyperparameter FPMC RNN LSTPM DeepMove UniMove

Batch Size 20 20 20 20 4
Learning Rate 5e-4 1e-3 1e-4 1e-3 3e-4
Max Epoch 1 30 40 30 50
Location Embedding Size 64 500 500 500 {256, 128}
Hidden Embedding Size N/A 500 500 500 512
Dropout N/A 0.3 0.8 0.5 N/A

Table 11: Hyperparameters for Transformer-based graph neural networks.
Model Cities Batch Size LR Epochs

GETNext
Beijing, Melbourne, Moscow, Palembang, Shanghai, Sydney, Tokyo 16 1e-3 200
Bandung, Istanbul, Kuwait City, New York, Petaling Jaya, São Paulo, Tangerang 16 1e-4 20
Jakarta 16 5e-5 20

STHGCN Beijing, Melbourne, Palembang, Shanghai, Sydney, Tokyo 16 1e-4 20
Bandung, Istanbul, Jakarta, Kuwait City, Moscow, New York, Petaling Jaya, São Paulo, Tangerang 64 1e-4 20

C.4 SUPPLEMENTARY RESULTS

We report the full results of our supervised POI recommendation baselines in Table 12, 13 and 14,
using three evaluation metrics: Acc@1, Acc@5, and NDCG@5.

Table 12: Performance of supervised POI recommendation baselines across 5 cities: Bandung,
Beijing, Istanbul, Jakarta, Kuwait City. We report three metrics: Acc@1 (A@1), Acc@5 (A@5), and
NDCG@5 (N@5).

Model Bandung Beijing Istanbul Jakarta Kuwait City

A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5

FPMC 0.048 0.118 0.083 0.000 0.021 0.009 0.026 0.074 0.050 0.029 0.085 0.058 0.021 0.089 0.054

RNN 0.062 0.135 0.099 0.085 0.183 0.134 0.077 0.178 0.130 0.049 0.115 0.083 0.087 0.203 0.146
LSTPM 0.110 0.241 0.179 0.127 0.211 0.169 0.142 0.286 0.217 0.099 0.210 0.157 0.180 0.362 0.275
DeepMove 0.107 0.232 0.172 0.106 0.261 0.190 0.150 0.298 0.228 0.103 0.212 0.160 0.179 0.360 0.274

GETNext 0.179 0.306 0.247 0.433 0.527 0.486 0.146 0.268 0.210 0.155 0.257 0.209 0.175 0.322 0.251
STHGCN 0.219 0.375 0.302 0.453 0.640 0.552 0.241 0.385 0.318 0.197 0.334 0.270 0.225 0.394 0.314

UniMove 0.007 0.060 0.033 0.036 0.205 0.128 0.015 0.061 0.038 0.004 0.036 0.020 0.023 0.120 0.073

D ANALYZING URBAN FEATURES AND POI RECOMMENDATION
PERFORMANCE

As discussed in Section 2.2, several hypotheses have been proposed to explain why POI recom-
mendation models perform better in certain cities than others. These hypotheses aim to uncover
how various urban features affect model performance. For example, Gowalla-CA (Cho et al., 2011;
Yuan et al., 2013) often yields lower accuracy compared to FSQ-NYC and FSQ-TKY (Yang et al.,
2014), suggesting that some cities may be inherently harder to model. In this analysis, we focus on
supervised models only.

Prior studies (Yang et al., 2022c; Yan et al., 2023; Li et al., 2024) have suggested several features as
potential explanatory variables, including:

• Number of unique check-ins,

• Number of unique trajectories,

• Number of unique POI categories,

• Geographical area (larger areas are assumed to be harder to model), and

• POI density or spatial sparsity (i.e., unique POIs per unit area).
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Table 13: Performance of supervised POI recommendation baselines across 5 cities: Melbourne,
Moscow, New York, Palembang, Petaling Jaya. We report three metrics: Acc@1 (A@1), Acc@5
(A@5), and NDCG@5 (N@5).

Model Melbourne Moscow New York Palembang Petaling Jaya

A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5

FPMC 0.062 0.147 0.107 0.059 0.129 0.094 0.032 0.090 0.061 0.102 0.169 0.136 0.026 0.084 0.057

RNN 0.059 0.105 0.083 0.075 0.164 0.122 0.061 0.119 0.092 0.049 0.121 0.085 0.064 0.148 0.107
LSTPM 0.091 0.204 0.150 0.151 0.300 0.229 0.099 0.206 0.155 0.114 0.230 0.175 0.099 0.222 0.163
DeepMove 0.083 0.179 0.134 0.143 0.283 0.217 0.097 0.195 0.149 0.084 0.191 0.139 0.112 0.234 0.175

GETNext 0.100 0.250 0.179 0.175 0.335 0.260 0.134 0.263 0.202 0.158 0.313 0.239 0.139 0.254 0.200
STHGCN 0.168 0.318 0.247 0.223 0.382 0.308 0.146 0.259 0.207 0.246 0.427 0.341 0.174 0.301 0.241

UniMove 0.008 0.066 0.037 0.009 0.051 0.030 0.004 0.028 0.016 0.009 0.060 0.035 0.008 0.058 0.034

Table 14: Performance of supervised POI recommendation baselines across 5 cities: São Paulo,
Shanghai, Sydney, Tangerang, Tokyo. We report three metrics: Acc@1 (A@1), Acc@5 (A@5), and
NDCG@5 (N@5).

Model São Paulo Shanghai Sydney Tangerang Tokyo

A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5

FPMC 0.030 0.079 0.055 0.084 0.154 0.120 0.075 0.180 0.131 0.104 0.220 0.166 0.176 0.291 0.239

RNN 0.097 0.191 0.147 0.055 0.120 0.090 0.080 0.164 0.125 0.087 0.179 0.135 0.133 0.254 0.197
LSTPM 0.158 0.319 0.243 0.099 0.195 0.149 0.141 0.265 0.206 0.154 0.309 0.237 0.225 0.394 0.315
DeepMove 0.160 0.310 0.240 0.085 0.168 0.128 0.129 0.240 0.188 0.145 0.285 0.219 0.201 0.362 0.288

GETNext 0.202 0.360 0.286 0.115 0.230 0.177 0.181 0.347 0.266 0.224 0.372 0.302 0.180 0.361 0.275
STHGCN 0.250 0.425 0.344 0.193 0.329 0.264 0.227 0.378 0.307 0.293 0.492 0.400 0.250 0.432 0.350

UniMove 0.002 0.018 0.009 0.000 0.055 0.029 0.015 0.102 0.059 0.001 0.055 0.029 0.032 0.109 0.072

We also propose several additional features for consideration:

• Number of unique POIs,
• Check-in density (unique check-ins per area),
• Trajectory density (unique trajectories per area), and
• Category entropy, our proposed feature capturing category diversity.

Category entropy, based on Shannon entropy, measures how evenly POI categories are distributed
in a city. A higher entropy suggests that check-ins are spread across a wide variety of categories,
while a lower entropy indicates a concentration in fewer types. The formula for Shannon entropy is:

H = −
N∑
i=1

pi log(pi) (1)

where pi is the proportion of venues in category i, and N is the total number of POI categories. The
proportion pi is defined as:

pi =
ci∑N
j=1 cj

(2)

where ci is the count of venues in category i. In other words, pi represents the fraction of all venues
that belong to category i.

Moreover, previous studies have primarily focused on only three datasets: FSQ-NYC, FSQ-TKY,
and Gowalla-CA. In contrast, Massive-STEPS provides broader coverage across 15 cities, enabling a
more comprehensive and robust analysis. To examine the relationship between urban features and
model performance, we averaged the three evaluation metrics across six supervised baselines for
each city and computed the Spearman correlation with each candidate feature. To further support
our findings, we also included the results of GETNext (Yang et al., 2022c) and STHGCN (Yan et al.,
2023) on FSQ-NYC, FSQ-TKY, and Gowalla-CA, calculated their corresponding urban features, and
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Figure 9: Spearman correlation between nine candidate urban features and the mean score of
POI recommendation models across 15 cities, including Massive-STEPS (ours), FSQ (Yang et al.,
2014), and Gowalla (Cho et al., 2011; Yuan et al., 2013).

averaged the reported metrics of each city. Fig. 9 presents the correlations between all nine features
and the average performance metric.

Among all features, category entropy shows the strongest correlation with model performance,
with a Spearman correlation of r = −0.684 (p = 0.002). This suggests that cities with more
evenly distributed POI categories tend to yield lower prediction accuracy. Intuitively, when no single
category dominates (a city has roughly equal proportions of restaurants, cafes, homes, and other
POIs), it becomes more difficult for models to predict a user’s next destination. In these cases, user
behavior is more varied and less predictable. On the other hand, cities with more skewed category
distributions (e.g., mostly food places or mostly residential areas) tend to have more consistent
patterns of movement, making them easier for models to learn and predict. Interestingly, our finding
contradicts the hypothesis proposed by LLM4POI (Li et al., 2024), which suggests that FSQ-NYC is
easier to model than Gowalla-CA due to the former’s vast number of POI categories, which were
supposed to provide richer contextual signals for the model. Our results indicate that it is not the
number of categories that matters, but rather how these categories are distributed.

E ZERO-SHOT POI RECOMMENDATION: TASK DETAILS

E.1 PROBLEM FORMULATION

The zero-shot POI recommendation task follows the same problem formulation as its supervised
counterpart (see Section C.1). The key difference is that in this setting, the model parameters remain
frozen and the models are pre-trained, rather than trained from randomly initialized weights.
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E.2 METHODS

We evaluated three LLM-based prompting methods:

• LLM-Mob (Wang et al., 2023c): One of the earliest methods to use LLMs for next POI
prediction, prompting LLMs with both historical and current (contextual) trajectories.

• LLM-ZS (Beneduce et al., 2024): A simplified version of LLM-Mob that retains the use of
historical and contextual trajectories but simplifies its prompt design.

• LLM-Move (Feng et al., 2024a): Extends previous prompting methods by introducing a
RAG-like approach, retrieving nearby POIs as candidates, and ranking them by geographic
distance to the user’s most recent visit.

E.3 EXPERIMENT AND IMPLEMENTATION DETAILS

Preprocessing We adopted the AgentMove5 library (Feng et al., 2025), which provides implemen-
tations of three LLM methods: LLM-Mob (Wang et al., 2023c), LLM-ZS (Beneduce et al., 2024),
and LLM-Move (Feng et al., 2024a). The preprocessing steps used by AgentMove are as follows.

First, we selected 200 random users from the test set and sampled one random trajectory for each
user. This trajectory serves as the context stays, representing the current trajectory to be predicted.
The historical stays are composed of the most recent 15 trajectories from the same user, drawn from
the training set. Each check-in is described by four attributes: the hour (in 12-hour format), the day
of the week, the POI ID, and the POI category name.

Second, the LLMs are set to return outputs in JSON format, generating the top 5 predicted POI
IDs along with an explanation of their reasoning. Following the AgentMove setup and to ensure
replicability, we set the generation parameters as follows: a temperature of 0.0, a maximum output
length of 1000 tokens, and an input context window capped at 2000 tokens.

Prompting Prompt templates for each method, LLM-Mob, LLM-ZS, and LLM-Move, are presented
in Listing 1, 2, and 3, respectively.

1 Your task is to predict a user’s next location based on his/her activity
pattern.

2 You will be provided with <history> which is a list containing this user’
s historical stays, then <context> which provide contextual
information

3 about where and when this user has been to recently. Stays in both <
history> and <context> are in chronological order.

4 Each stay takes on such form as (start_time, day_of_week, duration,
place_id). The detailed explanation of each element is as follows:

5 start_time: the start time of the stay in 12h clock format.
6 day_of_week: indicating the day of the week.
7 duration: an integer indicating the duration (in minute) of each stay.

Note that this will be None in the <target_stay> introduced later.
8 place_id: an integer representing the unique place ID, which indicates

where the stay is.
9

10 Then you need to do next location prediction on <target_stay> which is
the prediction target with unknown place ID denoted as <next_place_id
> and

11 unknown duration denoted as None, while temporal information is provided.
12

13 Please infer what the <next_place_id> might be (please output the 10 most
likely places which are ranked in descending order in terms of

probability), considering the following aspects:
14 1. the activity pattern of this user that you learned from <history>, e.g

., repeated visits to certain places during certain times;
15 2. the context stays in <context>, which provide more recent activities

of this user;

5https://github.com/tsinghua-fib-lab/agentmove/
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16 3. the temporal information (i.e., start_time and day_of_week) of target
stay, which is important because people’s activity varies during
different time (e.g., nighttime versus daytime)

17 and on different days (e.g., weekday versus weekend).
18

19 Please organize your answer in a JSON object containing following keys:
20 "prediction" (the ID of the five most probable places in descending order

of probability) and "reason" (a concise explanation that supports
your prediction). Do not include line breaks in your output.

21

22 The data are as follows:
23 <history>: {historical_stays}
24 <context>: {context_stays}
25 <target_stay>: {target_time, target_day_of_week}

Listing 1: Prompt for LLM-Mob

1 Your task is to predict <next_place_id> in <target_stay>, a location with
an unknown ID, while temporal data is available.

2

3 Predict <next_place_id> by considering:
4 1. The user’s activity trends gleaned from <historical_stays> and the

current activities from <context_stays>.
5 2. Temporal details (start_time and day_of_week) of the target stay,

crucial for understanding activity variations.
6

7 Present your answer in a JSON object with:
8 "prediction" (IDs of the five most probable places, ranked by probability

) and "reason" (a concise justification for your prediction).
9

10 The data:
11 <historical_stays>: {historical_stays}
12 <context_stays>: {context_stays}
13 <target_stay>: {target_time, target_day_of_week}

Listing 2: Prompt for LLM-ZS

1 <long-term check-ins> [Format: (POIID, Category)]: {historical_stays}
2 <recent check-ins> [Format: (POIID, Category)]: {context_stays}
3 <candidate set> [Format: (POIID, Distance, Category)]: {candidates}
4 Your task is to recommend a user’s next point-of-interest (POI) from <

candidate set> based on his/her trajectory information.
5 The trajectory information is made of a sequence of the user’s <long-term

check-ins> and a sequence of the user’s <recent check-ins> in
chronological order.

6 Now I explain the elements in the format. "POIID" refers to the unique id
of the POI, "Distance" indicates the distance (kilometers) between

the user and the POI, and "Category" shows the semantic information
of the POI.

7

8 Requirements:
9 1. Consider the long-term check-ins to extract users’ long-term

preferences since people tend to revisit their frequent visits.
10 2. Consider the recent check-ins to extract users’ current perferences.
11 3. Consider the "Distance" since people tend to visit nearby pois.
12 4. Consider which "Category" the user would go next for long-term check-

ins indicates sequential transitions the user prefer.
13

14 Please organize your answer in a JSON object containing following keys:
15 "prediction" (10 distinct POIIDs of the ten most probable places in <

candidate set> in descending order of probability), and "reason" (a
concise explanation that supports your recommendation according to
the requirements). Do not include line breaks in your output.

Listing 3: Prompt for LLM-Move
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Models and Implementations We use the following LLMs in our experiments:

• Gemini 2.0 Flash (gemini-2.0-flash),

• Qwen 2.5 7B Instruct (Qwen2.5-7B-Instruct-AWQ)6,

• Llama 3.1 8B Instruct (Meta-Llama-3.1-8B-Instruct-AWQ-INT4)7,

• Gemma 2 9B Instruct (gemma-2-9b-it-AWQ-INT4)8.

All open-source models are quantized using AWQ (Lin et al., 2024) and served via vLLM (Kwon
et al., 2023). Inference of open-source models was conducted on NVIDIA A100 GPUs. We accessed
Gemini via the official API. All modified code implementations are publicly available in our main
dataset repository.

E.4 SUPPLEMENTARY RESULTS

We provide the full results of our zero-shot POI recommendation results in Table 15, 16, and 17,
providing three metrics: Acc@1, Acc@5, and NDCG@5. Additionally, Table 18, 19, and 20 present
zero-shot performance across two time periods (2012-2013 and 2017-2018) using LLM-Move.

Table 15: Performance of zero-shot POI recommendation baselines across 5 cities: Bandung,
Beijing, Istanbul, Jakarta, Kuwait City. We report three metrics: Acc@1 (A@1), Acc@5 (A@5), and
NDCG@5 (N@5).

Method Model Bandung Beijing Istanbul Jakarta Kuwait City

A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5

LLM-Mob

Gemini 2 Flash 0.105 0.170 0.139 0.115 0.308 0.226 0.080 0.225 0.160 0.100 0.245 0.174 0.095 0.270 0.185
Qwen 2.5 7B 0.060 0.155 0.111 0.058 0.385 0.218 0.035 0.240 0.148 0.105 0.245 0.179 0.080 0.220 0.155
Llama 3.1 8B 0.010 0.100 0.055 0.000 0.000 0.000 0.020 0.110 0.065 0.055 0.150 0.104 0.030 0.100 0.066
Gemma 2 9B 0.070 0.175 0.126 0.115 0.288 0.206 0.075 0.200 0.146 0.105 0.240 0.178 0.080 0.210 0.150

LLM-ZS

Gemini 2 Flash 0.095 0.195 0.147 0.058 0.385 0.246 0.090 0.235 0.166 0.110 0.250 0.188 0.080 0.245 0.167
Qwen 2.5 7B 0.055 0.185 0.126 0.038 0.404 0.237 0.040 0.235 0.141 0.065 0.250 0.161 0.050 0.220 0.140
Llama 3.1 8B 0.045 0.210 0.131 0.077 0.346 0.221 0.040 0.225 0.137 0.045 0.200 0.126 0.060 0.210 0.137
Gemma 2 9B 0.065 0.185 0.130 0.096 0.308 0.217 0.045 0.225 0.141 0.105 0.250 0.180 0.070 0.230 0.153

LLM-Move

Gemini 2 Flash 0.225 0.350 0.289 0.096 0.346 0.218 0.205 0.385 0.289 0.295 0.405 0.350 0.220 0.380 0.295
Qwen 2.5 7B 0.100 0.155 0.128 0.192 0.346 0.280 0.175 0.270 0.226 0.115 0.225 0.169 0.160 0.285 0.227
Llama 3.1 8B 0.030 0.035 0.033 0.058 0.135 0.100 0.015 0.055 0.036 0.015 0.025 0.021 0.010 0.035 0.023
Gemma 2 9B 0.175 0.245 0.213 0.096 0.365 0.229 0.100 0.200 0.155 0.235 0.290 0.266 0.120 0.275 0.202

Table 16: Performance of zero-shot POI recommendation baselines across 5 cities: Melbourne,
Moscow, New York, Palembang, Petaling Jaya. We report three metrics: Acc@1 (A@1), Acc@5
(A@5), and NDCG@5 (N@5).

Method Model Melbourne Moscow New York Palembang Petaling Jaya

A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5

LLM-Mob

Gemini 2 Flash 0.060 0.150 0.108 0.130 0.245 0.187 0.095 0.175 0.136 0.135 0.275 0.208 0.090 0.220 0.160
Qwen 2.5 7B 0.030 0.130 0.083 0.090 0.270 0.185 0.070 0.185 0.131 0.075 0.205 0.143 0.030 0.195 0.116
Llama 3.1 8B 0.010 0.065 0.040 0.030 0.100 0.068 0.025 0.090 0.061 0.005 0.040 0.025 0.010 0.090 0.050
Gemma 2 9B 0.055 0.150 0.108 0.100 0.240 0.176 0.070 0.175 0.124 0.095 0.240 0.171 0.055 0.185 0.122

LLM-ZS

Gemini 2 Flash 0.065 0.160 0.115 0.125 0.300 0.217 0.080 0.170 0.129 0.130 0.260 0.196 0.110 0.210 0.164
Qwen 2.5 7B 0.040 0.155 0.100 0.080 0.260 0.176 0.050 0.180 0.116 0.050 0.215 0.135 0.045 0.175 0.111
Llama 3.1 8B 0.040 0.155 0.101 0.080 0.270 0.183 0.055 0.160 0.111 0.070 0.240 0.154 0.030 0.205 0.123
Gemma 2 9B 0.050 0.140 0.100 0.080 0.290 0.194 0.075 0.185 0.129 0.060 0.235 0.150 0.065 0.185 0.126

LLM-Move

Gemini 2 Flash 0.225 0.325 0.275 0.220 0.400 0.316 0.235 0.415 0.325 0.260 0.385 0.329 0.210 0.335 0.273
Qwen 2.5 7B 0.110 0.220 0.165 0.230 0.310 0.274 0.120 0.255 0.188 0.130 0.195 0.163 0.135 0.175 0.155
Llama 3.1 8B 0.040 0.195 0.123 0.005 0.065 0.031 0.035 0.130 0.084 0.010 0.015 0.013 0.040 0.060 0.049
Gemma 2 9B 0.115 0.275 0.199 0.110 0.245 0.185 0.115 0.245 0.183 0.210 0.270 0.240 0.175 0.235 0.208

6https://huggingface.co/qwen/qwen2.5-7b-instruct-awq
7https://huggingface.co/hugging-quants/Meta-Llama-3.

1-8B-Instruct-AWQ-INT4
8https://huggingface.co/hugging-quants/gemma-2-9b-it-AWQ-INT4
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Table 17: Performance of zero-shot POI recommendation baselines across 5 cities: São Paulo,
Shanghai, Sydney, Tangerang, Tokyo. We report three metrics: Acc@1 (A@1), Acc@5 (A@5), and
NDCG@5 (N@5).

Method Model São Paulo Shanghai Sydney Tangerang Tokyo

A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5

LLM-Mob

Gemini 2 Flash 0.130 0.305 0.223 0.055 0.160 0.111 0.060 0.160 0.112 0.155 0.285 0.225 0.140 0.320 0.238
Qwen 2.5 7B 0.090 0.290 0.188 0.040 0.170 0.108 0.035 0.145 0.091 0.095 0.285 0.196 0.110 0.350 0.243
Llama 3.1 8B 0.030 0.165 0.098 0.005 0.020 0.013 0.020 0.085 0.053 0.020 0.120 0.073 0.005 0.045 0.025
Gemma 2 9B 0.085 0.230 0.162 0.050 0.150 0.104 0.030 0.130 0.086 0.145 0.270 0.209 0.145 0.345 0.255

LLM-ZS

Gemini 2 Flash 0.150 0.315 0.235 0.065 0.160 0.113 0.060 0.155 0.111 0.145 0.310 0.234 0.160 0.380 0.278
Qwen 2.5 7B 0.095 0.290 0.198 0.045 0.155 0.103 0.045 0.170 0.109 0.100 0.315 0.215 0.120 0.365 0.257
Llama 3.1 8B 0.030 0.280 0.159 0.060 0.165 0.116 0.040 0.185 0.110 0.080 0.255 0.173 0.110 0.415 0.269
Gemma 2 9B 0.075 0.300 0.192 0.050 0.165 0.112 0.045 0.155 0.103 0.100 0.330 0.227 0.110 0.395 0.263

LLM-Move

Gemini 2 Flash 0.285 0.415 0.350 0.170 0.270 0.221 0.230 0.420 0.331 0.200 0.340 0.274 0.250 0.470 0.368
Qwen 2.5 7B 0.155 0.235 0.199 0.095 0.165 0.133 0.125 0.280 0.205 0.175 0.280 0.229 0.250 0.360 0.312
Llama 3.1 8B 0.045 0.045 0.045 0.020 0.040 0.030 0.055 0.220 0.141 0.000 0.005 0.003 0.030 0.060 0.046
Gemma 2 9B 0.195 0.300 0.252 0.105 0.150 0.128 0.125 0.370 0.254 0.125 0.250 0.193 0.130 0.305 0.225

Table 18: Performance of zero-shot POI recommendation using LLM-Move across two time
periods and 5 cities: Bandung, Beijing, Istanbul, Jakarta, and Kuwait City. We report three metrics:
Acc@1 (A@1), Acc@5 (A@5), and NDCG@5 (N@5).

Time Period Model Bandung Beijing Istanbul Jakarta Kuwait City

A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5

2012-2013

Gemini 2 Flash 0.227 0.351 0.290 0.102 0.367 0.232 0.212 0.384 0.290 0.295 0.409 0.352 0.423 0.500 0.453
Qwen 2.5 7B 0.098 0.155 0.126 0.204 0.367 0.298 0.192 0.295 0.247 0.114 0.223 0.167 0.269 0.423 0.357
Llama 3.1 8B 0.031 0.036 0.034 0.041 0.122 0.086 0.007 0.027 0.017 0.010 0.021 0.016 0.000 0.000 0.000
Gemma 2 9B 0.180 0.247 0.217 0.102 0.388 0.244 0.116 0.199 0.159 0.228 0.285 0.260 0.308 0.385 0.342

2017-2018

Gemini 2 Flash 0.167 0.333 0.272 0.000 0.000 0.000 0.185 0.389 0.284 0.286 0.286 0.286 0.190 0.362 0.271
Qwen 2.5 7B 0.167 0.167 0.167 0.000 0.000 0.000 0.130 0.204 0.168 0.143 0.286 0.233 0.144 0.264 0.208
Llama 3.1 8B 0.000 0.000 0.000 0.333 0.333 0.333 0.037 0.130 0.088 0.143 0.143 0.143 0.011 0.040 0.026
Gemma 2 9B 0.000 0.167 0.083 0.000 0.000 0.000 0.056 0.204 0.142 0.429 0.429 0.429 0.092 0.259 0.181

Table 19: Performance of zero-shot POI recommendation using LLM-Move across two time
periods and 5 cities: Melbourne, Moscow, New York, Palembang, Petaling Jaya. We report three
metrics: Acc@1 (A@1), Acc@5 (A@5), and NDCG@5 (N@5).

Time Period Model Melbourne Moscow New York Palembang Petaling Jaya

A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5

2012-2013

Gemini 2 Flash 0.226 0.329 0.279 0.218 0.401 0.316 0.240 0.403 0.320 0.256 0.385 0.327 0.199 0.348 0.274
Qwen 2.5 7B 0.116 0.232 0.175 0.234 0.310 0.275 0.130 0.240 0.190 0.128 0.195 0.162 0.142 0.184 0.164
Llama 3.1 8B 0.039 0.200 0.125 0.005 0.066 0.032 0.032 0.117 0.074 0.010 0.015 0.013 0.014 0.043 0.028
Gemma 2 9B 0.097 0.271 0.189 0.112 0.249 0.188 0.130 0.260 0.198 0.215 0.272 0.244 0.199 0.262 0.234

2017-2018

Gemini 2 Flash 0.222 0.311 0.261 0.333 0.333 0.333 0.217 0.457 0.342 0.400 0.400 0.400 0.237 0.305 0.273
Qwen 2.5 7B 0.089 0.178 0.132 0.000 0.333 0.167 0.087 0.304 0.183 0.200 0.200 0.200 0.119 0.153 0.134
Llama 3.1 8B 0.044 0.178 0.116 0.000 0.000 0.000 0.043 0.174 0.116 0.000 0.000 0.000 0.102 0.102 0.102
Gemma 2 9B 0.178 0.289 0.232 0.000 0.000 0.000 0.065 0.196 0.133 0.000 0.200 0.086 0.119 0.169 0.144

Table 20: Performance of zero-shot POI recommendation using LLM-Move across two time
periods and 5 cities: São Paulo, Shanghai, Sydney, Tangerang, Tokyo. We report three metrics:
Acc@1 (A@1), Acc@5 (A@5), and NDCG@5 (N@5).

Time Period Model São Paulo Shanghai Sydney Tangerang Tokyo

A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5 A@1 A@5 N@5

2012-2013

Gemini 2 Flash 0.298 0.440 0.369 0.192 0.288 0.242 0.256 0.462 0.367 0.197 0.338 0.272 N/A N/A N/A
Qwen 2.5 7B 0.173 0.250 0.215 0.109 0.186 0.151 0.122 0.288 0.209 0.172 0.278 0.226 N/A N/A N/A
Llama 3.1 8B 0.048 0.048 0.048 0.006 0.026 0.016 0.064 0.224 0.148 0.000 0.005 0.003 N/A N/A N/A
Gemma 2 9B 0.202 0.315 0.264 0.109 0.160 0.136 0.122 0.378 0.257 0.126 0.253 0.195 N/A N/A N/A

2017-2018

Gemini 2 Flash 0.219 0.281 0.251 0.091 0.205 0.147 0.136 0.273 0.204 0.500 0.500 0.500 0.250 0.470 0.368
Qwen 2.5 7B 0.063 0.156 0.115 0.045 0.091 0.070 0.136 0.250 0.192 0.500 0.500 0.500 0.250 0.360 0.312
Llama 3.1 8B 0.031 0.031 0.031 0.068 0.091 0.077 0.023 0.205 0.117 0.000 0.000 0.000 0.030 0.060 0.046
Gemma 2 9B 0.156 0.219 0.189 0.091 0.114 0.101 0.136 0.341 0.246 0.000 0.000 0.000 0.130 0.305 0.225
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F SPATIOTEMPORAL CLASSIFICATION AND REASONING: TASK DETAILS

F.1 PROBLEM FORMULATION

Borrowing the notation used in Section C, we formulate this task as follows. Given a current
contextual trajectory T ′

u(t) of user u up to time t, the goal of spatiotemporal trajectory classification
is to predict a property y of the trajectory. In this study, we focus on weekday/weekend classification,
where y ∈ {weekday,weekend}.

Formally, the LLM serves as a classification function:

f : T ′
u(t) → ŷ

where ŷ denotes the predicted class label for the trajectory. The model is evaluated based on its
accuracy in correctly classifying trajectories according to this property.

F.2 EXPERIMENT AND IMPLEMENTATION DETAILS

Preprocessing We borrowed the experimental setup of AgentMove, similar to our zero-shot POI
recommendation procedure in Section E.3. That is, we selected 200 random users from the test set
and sampled one random trajectory for each user. This trajectory is then included in the test set. Each
check-in is described by four attributes: the hour (in 12-hour format), the day of the week, the POI
ID, and the POI category name.

LLMs are set to return outputs in a structured/JSON format, predicting whether the trajectory ended
on a weekday or a weekend, along with an explanation of their reasoning. To ensure replicability,
Gemini and GPT-4 models are set with the following generation parameters: a temperature of 0.0, a
maximum output length of 1000 tokens, and an input context window capped at 2000 tokens. Due to
API requirements, GPT-5 Nano uses the following generation parameters: a fixed temperature of 1.0,
a maximum output length of 4096 tokens, low verbosity, and medium reasoning effort.

Prompt Prompt template for spatiotemporal weekday-weekend classification is shown in Listing 4.
1 A trajectory is a sequence of check-ins, each represented as (start_time,

poi_category). The detailed explanation of each element is as
follows:

2 start_time: the start time of the check-in in 12h clock format.
3 poi_category: the category of the point of interest (POI) visited during

the check-in
4

5 The trajectory is as follows: {[check-in time-of-day, POI category] for
check-in in trajectory}

6

7 Your task is to classify whether the last check-in occurs on a weekday or
a weekend.

8 Consider the temporal information (i.e., start_time) of the trajectory,
which is important because people’s activity varies during different
time (e.g., nighttime versus daytime).

9 Consider the POI categories, which can provide insights into the user’s
activity patterns.

10 Also consider the city context, as different cities may have different
cultural and social norms that influence activity patterns. The city
is: {city}.

11

12 Please organize your answer in a JSON object containing following keys:
13 "prediction" ("weekday" or "weekend") and "reason" (a concise explanation

that supports your prediction).
14 Do not include line breaks in your output.

Listing 4: Prompt for Weekday vs. Weekend Classification

Models and Implementations We use the following LLMs in our experiments:

• Gemini 2.0 Flash (gemini-2.0-flash),

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

• GPT-4o Mini (gpt-4o-mini),
• GPT-4.1 Mini (gpt-4.1-mini),
• GPT-5 Nano (gpt-5-nano).

We accessed Gemini and GPT models via the official API. All modified code implementations are
publicly available in our main dataset repository.

G LICENSE AND DATA USAGE

Our work does not involve the collection of new data. Instead, we derive our resulting dataset
by combining and aligning two publicly available datasets, both of which are distributed under
permissive licenses. We did not scrape data from the internet or use proprietary APIs to construct this
dataset.

We accessed the Semantic Trails Dataset (Monti et al., 2018) via Figshare: https://doi.
org/10.6084/m9.figshare.7429076.v2. The dataset is licensed under the Creative Com-
mons CC0 1.0 license (https://creativecommons.org/publicdomain/zero/1.0/),
which allows unrestricted copying, modification, and redistribution for any purpose, including
commercial use, without requiring permission.

We accessed the Foursquare Open Source Places dataset via Hugging Face: https://
huggingface.co/datasets/foursquare/fsq-os-places. Foursquare Open Source
Places is licensed under the Apache License, Version 2.0:

Copyright 2024 Foursquare Labs, Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the ”License”); you may not use this file
except in compliance with the License.
You may obtain a copy of the License at: http://www.apache.org/licenses/
LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the
License.

More details are available in Foursquare’s documentation: https://docs.foursquare.com/
data-products/docs/access-fsq-os-places.

We will release our Massive-STEPS dataset under the same Apache Version 2.0 License, and have
included Foursquare Open Source Places’ license in our hosted dataset’s README file.

H USAGE OF LLMS

While our experiments, particularly the zero-shot tasks, extensively studied LLM-based methods, we
clarify that LLMs were not used in the preparation of this manuscript, except for minor grammatical
corrections. All scientific content, analyses, and interpretations were developed solely by the authors.
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