
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNDERSTANDING COMPLEXITY IN VIDEOQA VIA
VISUAL PROGRAM GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a data-driven approach to analyzing query complexity in Video Ques-
tion Answering (VideoQA). Previous efforts in benchmark design have largely
relied on human expertise to construct challenging samples. In this work, we
experimentally demonstrate that humans struggle to accurately estimate which
questions are hard to answer for machine learning models. Our alternative, auto-
mated approach takes advantage of recent advances in code generation for visual
question answering. In particular, we use the complexity of generated code as a
proxy for the question complexity and demonstrate that it indeed shows a much
stronger correlation with the models’ performance, compared to human estimates.
We then present a novel algorithm for estimating question complexity from code.
It identifies fine-grained primitives that correlate with the hardest questions. These
human-interpretable results lead to a number of discoveries about the key sources
of complexity for VideoQA models. Finally, we extend our approach to gener-
ate complex questions for a given set of videos. This allows us to automatically
construct a new benchmark, which is 1.9 times harder for VideoQA methods than
existing manually designed datasets.

What does the dog do after letting go of the bone?Query: Where is this?Query:

Human Estimate: Hard!

CodePlexity Estimate: Easy

SeVILA SeViLA ZS ViperGPT InternVideo Violet

Human Estimate: Easy!

CodePlexity Estimate: Hard

SeVILA SeViLA ZS ViperGPT InternVideo Violet

middle_frame = video.get_frame(video.num_frames // 2)
middle_caption = middle_frame.caption()
location = middle_frame.classify_location()
answer = answer_question(question, middle_caption, location)

for frame in video:
 if frame.simple_qa("is the dog letting go of the bone?"):
 let_go_started = True
 elif let_go_started:
 frame_after_started = frame
 break
description = frame_after_started.caption()

Figure 1: Humans struggle to judge which questions present higher challenges for machine learning
models. In our study, the question on the left is universally perceived as being easier than the one on
the right, which is inversely correlated with the models’ performance. We show that the complexity
of the corresponding visual program can serve as a much more reliable predictor.

1 INTRODUCTION

Humans can effortlessly reason about activities, whether that reasoning requires understanding space
and time, cause and effect, or fine-grained details and high-level context (Decety & Grèzes, 1999;
Decety et al., 1997; Wurm & Caramazza, 2022; Aflalo et al., 2020). This versatility allows us to
function effectively in dynamic environments, yet it simultaneously complicates our ability to assess
what is hard for machines. Consider the two video-question pairs shown in Figure 1 (top). In our
study, human subjects overwhelmingly perceive the question on the right as the more complex to
answer, but evaluating a variety of state-of-the-art VideoQA models (Yu et al., 2023a; Wang et al.,
2022a; Surı́s et al., 2023; Fu et al., 2021) shows that the question on the left presents a significantly
greater challenge for them.

While an expert in the field might think that they would do a better job at this task, the history
of VideoQA benchmarks has proven otherwise. Several studies have shown that, despite the best
efforts of their authors, most datasets are dominated by questions that can be mastered even by

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

naive, single-frame baselines (Buch et al., 2022; Huang et al., 2018; Liu et al., 2021). Although
many attempts have been made to address this limitation, they predominantly adopt a top-down
approach. In particular, these works start from an expert hypothesis of what is hard and validate this
assumption by evaluating models on samples that specifically target the identified skill (Xiao et al.,
2021; Mangalam et al., 2023). While this has led to some progress, top performance can still often
be achieved by methods that rely almost exclusively on static image cues (Yu et al., 2023a).

In this work, we propose a bottom-up approach instead that discovers human-interpretable insights
about the sources of complexity for existing VideoQA models from the data. To this end, we capi-
talize on a recent large language model (LLM)-based code generation paradigm (Surı́s et al., 2023;
Gupta & Kembhavi, 2023; Subramanian et al., 2023), which produces modular executable pro-
grams to answer natural language queries. While this approach has shown promise for zero-shot
VideoQA (Surı́s et al., 2023), we are not interested in its task performance per se. Instead, we
propose to use its rich and highly structured intermediate representations—programs, as shown in
Figure 1 (bottom)—to capture the elusive complexity of the original questions. It is important to
note that the videos themselves also contribute to the complexity of the VideoQA samples. How-
ever, we demonstrate that our approach allows us to construct an efficient complexity metric with
high predictive power from the questions alone.

To this end, we begin by collecting the visual programs generated by Surı́s et al. (2023) in their recent
approach on the validation set of the challenging NextQA benchmark (Xiao et al., 2021), together
with predictions of a large collection of diverse VideoQA algorithms. We then calculate several
standard structural complexity metrics (McCabe, 1976) for these programs and additionally collect
human judgments about the question complexity for a subset of the dataset. Intriguingly, our analysis
demonstrates that, despite the programs being imperfect, even the simplest code complexity metrics
correlate better with machine learning models’ performance on NextQA than human estimates (see
Figure 3).

We then propose CodePlexity – a novel algorithm for estimating question complexity from code that
takes into account the content of the program, in addition to its structure (Section 3.2). In partic-
ular, it correlates individual subroutines with model performances, effectively mining for human-
interpretable patterns that summarize the error modes of each model. In addition to aggregating
the subroutines mined from multiple models into a single, robust quantitative metric, our approach
allows one to study them individually. In Section 3.3, we propose an algorithm to identify patterns
in the code that universally correlate with challenging questions, leading to a number of important
discoveries. For example, we find that reasoning about the order of events and about fine-grained
object details is difficult for all state-of-the-art models tested.

Finally, equipped with this powerful analysis tool, we design an algorithm for automatically gen-
erating challenging questions for any given collection of videos in Section 3.4. In particular, our
approach takes as input a compact description of a video and uses an LLM like ChatGPT (OpenAI,
2023a) to generate question candidates first. We then generate visual programs for each question
and use our code-based complexity metric to select the hardest subset. We evaluate several zero-shot
VideoQA methods on the resulting benchmark and observe a 1.9× gap in performance compared to
existing datasets like NextQA (Xiao et al., 2021), confirming the effectiveness of our approach.

To summarize, our contributions are as follows:

1. We demonstrate that generated code complexity can serve as a robust metric of question
complexity in VideoQA and propose a novel approach for automatically quantifying it.

2. We present CodePlexity, a novel approach that identifies the key sources of complexity for
existing VideoQA models. For example, we discover that most models fail when the order
of the frames has to be taken into account.

3. Using CodePlexity, we automatically construct CodePlex-QA– a novel benchmark that is
1.9 times harder for VideoQA methods than existing, manually designed datasets.

2 RELATED WORK

We review the relevant literature in video question-answering models, frame selection and code
generation for QA, and measures of code complexity.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Large single-stage models. A number of recent works propose to train end-to-end architectures for
video-language understanding. Zellers et al. (2021) propose Merlot, a large video-language dataset
obtained through ASR captions to train a model with contrastive frame-caption matching, masked
language modeling, and re-ordering of scrambled video frames. VIOLET (Fu et al., 2021) is an
end-to-end joint video and text architecture that uses the dVAE (Van Den Oord et al., 2017) from
DALL-E (Ramesh et al., 2021) to generate tokens for masked video-text pre-training and is tested
on video question-answering and text-to-video retrieval. A number of works train masked space-
time autoencoders (TimesFormer (Bertasius et al., 2021), VideoMAE (Feichtenhofer et al., 2022))
on video sequences, testing on tasks like action recognition. mPLUG-2 (Xu et al., 2023) proposes
to unify image- and video-language tasks in a single architecture with task-specific modules pre-
trained with masked language modeling, vision-language contrastive learning, and task instruction
representation.

Frame selection models. Other work leverages single-image vision-language models for video
understanding, on the hypothesis that only a subset of video frames (often just a single frame) are
relevant to answer a given query. Atemporal Probe (ATP) (Buch et al., 2022) proposes a frame selec-
tor to measure the extent to which single-frame image-centric baselines can address Video Question
Answering. Later, SeViLA (Yu et al., 2023a) builds on this paradigm by fine-tuning BLIP2 twice:
first to localize relevant keyframes, and then for the question answering module, which answers the
question based on the selected frames, question, and candidate answers.

Code generation models. A number of recent works tackle the frame selection and question an-
swering problem through code generation, leveraging the success of recent text-to-code models
such as Codex (Chen et al., 2021). VisProg (Gupta & Kembhavi, 2023) decomposes natural lan-
guage queries into compositional programs, using a variety of zero-shot pretrained models to solve
visual question answering problems. ViperGPT (Surı́s et al., 2023) prompts code generation models
with an API that incorporates a variety of vision modules, generating Python code that is executed
to answer natural language queries without access to source images or video frames. The approach
does not require further training and has demonstrated state-of-the-art results across various com-
plex visual tasks. CodeVQA (Subramanian et al., 2023) is a concurrent work to ViperGPT with
a smaller API, specialized to single-frame QA. Recursive Visual Programming or RVP Ge et al.
(2023) employs a recursive code generation strategy, which systematically breaks down complex
problems into manageable subproblems. This allows it to handle intricate question structures with
greater flexibility. Precursors to these models (Andreas et al., 2016; Johnson et al., 2017b; Kim
et al., 2018; Hu et al., 2017; Yi et al., 2018) would implement code generation modules using neural
networks which were trained either with supervision or via reinforcement learning.

Complexity estimation. Prior work has proposed ways to estimate complexity for other settings
and modalities. For instance, in NLP, sentence or paragraph length has been used as a proxy for
the complexity of a text (Platanios et al., 2019; Spitkovsky et al., 2010; Tay et al., 2019), where
a sample with more words is presumed to correlate with harder training data. Related works have
explored variations of this metric such as number of conjunctions (Kocmi & Bojar, 2017) (and/or),
number of phrases (Tsvetkov et al., 2016a), or depth of the dependency tree (Tsvetkov et al., 2016b).
In computer vision, prior work by Wei et al. (2016) has approximated image complexity with the
number of objects present in an image, while others have directly collected human annotations for
image complexity (Tudor Ionescu et al., 2016; Soviany et al., 2020). Finally, a seminal paper by
Graves (2016) suggested that, in reasoning tasks, the complexity of said task can be estimated by
the number of reasoning steps required to solve it, and introduced a method to estimate said number.
A follow-up work by Eyzaguirre & Soto (2020) refined and advanced the initial method, and used it
to quantify the complexity of VQA (Visual Question Answering) queries.

Problem complexity from code. Measuring complexity through code has a rich history; Kol-
mogorov defines complexity based on the succinctness of the program that can represent said object
(Kolmogorov, 1963; Solomonoff, 2009). However, its incomputability limits its practical application
(Zvonkin & Levin, 1970). Software engineering rely on tangible metrics like cyclomatic complexity
that measure the number of independent paths in a program (McCabe, 1976), a computable yet less
philosophically rich approach.

Related to our focus on Video Question Answering, synthetic datasets have become crucial in com-
puter vision, particularly for analysis on question answering tasks. These datasets often include
symbolic programs that abstract the task of low-level perception into modular operations, effec-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

def execute_command(video, possible_answers, question):
 video_segment = VideoSegment(video)
 student_playing = False
 frame_of_interest = None
 for frame in enumerate(video_segment.frame_iterator()):
 if frame.detect_object("student") and \
 frame.simple_qa("Is the student playing the piano?") == "yes":
 student_playing = True
 elif student_playing and frame.detect_object("teacher"):
 frame_of_interest = frame
 break
 description = frame_of_interest.caption()
 info = {
 "Description of frame while student playing piano": description
 }
 answer = video_segment.answer_question(info, question, possible_answers)
 return answer, info

Code Generation

FunctionDef

Assign

Assign

Assign

For

Assign

Assign

Assign

Return

video_segment

VideoSegment() video

student_playing

False

frame_of_interest

None

frame

enumerate()

If

video_segment.frame_iterator()

BoolOp

Assign

ElseIf

And

frame.detect_object()

Compare

"student"

frame.simple_qa()

Eq

"yes"

"Is the student playing the piano?"

student_playing

True

BoolOp

Assign

Break

And

student_playing

frame.detect_object() "teacher"

frame_of_interest

frame

description

frame_of_interest.caption()

info

Dict

"Description of frame while student playing piano"

description

answer

video_segment.answer_question()

info

question

possible_answers

Tuple answer

info

AST Generation

Expr enumerate() video_segment.frame_iterator()

1

1

1

0

Subtree encoding

Query: What was the teacher
doing while he was playing the
piano for the first time?

Complexity Estimation

CodePlexity 0.85

Figure 2: Estimating question complexity via code. Our approach to estimating question com-
plexity involves converting the question into code, decomposing the pseudo-code into abstract syn-
tax subtrees (Si), before finally correlating subtree presence with model performance.

tively separating the perceptual components from the higher-level reasoning (Johnson et al., 2017a;
Grunde-McLaughlin et al., 2021; Yu et al., 2023b; Wu et al., 2021). These programs can then be
grouped into families that necessitate similar skills, thank to which it becomes possible to correlate
model performance with program structure, providing insights into the model’s reasoning capabil-
ities. Contrasting this, our work pioneers the use of code generation models to estimate question
complexity, without needing expensive annotations and generalizing to more question types. Our
novel approach offers a direct, computable measure of question complexity, bridging the gap be-
tween theoretical definitions of complexity, and practical applications in machine learning.

3 METHODOLOGY

3.1 PRELIMINARIES

We study the problem of estimating the complexity of questions in VideoQA. We are given a dataset
consisting of collections of videos, questions, and answers D = {V,Q,A}, along with a set of K
models already trained on the task M = {m0, ...,mK}. Our goal then is to design a function C
that allows us to categorize questions qi ∈ Q into groups based on their complexity with respect
to M. Crucially, we are interested in a general metric consistent across all models mj ∈ M.
Concretely, for any two questions q1, q2 ∈ Q, together with corresponding videos v1, v2 ∈ V, if
C(q1) > C(q2), we expect model performance P (m, q, v) to vary accordingly: P (mj , q1, v1) <
P (mj , q2, v2) ∀mj ∈ M, indicating that models perform worse on more complex questions.

However, directly estimating complexity C from natural language question q is a challenging prob-
lem even for humans, as we demonstrate in a Section 4.2. Instead, our key idea, inspired by the
notion of Kolmogorov Complexity (KC) (Kolmogorov, 1963), is to utilize the rich and highly-
structured intermediate representations - programs, to capture the elusive complexity of the orig-
inal natural language queries. Concretely, we capitalize on the recent code generation-based meth-
ods (Surı́s et al., 2023; Gupta & Kembhavi, 2023; Subramanian et al., 2023) that operate in a 2-stage
fashion: first, given a question q a program generator π from a Large Language Model (LLM) is
used to translate it into an executable program z = π(q). An off-the-shelf execution engine like
Python can then be used to produce an answer â = ϕ(v, z). Running such an approach on a dataset
D results in a set of programs P(D) = {z1, z2, ..., zN}.

Next, in Section 3.2 we propose several techniques for code analysis of increasing intricacy and show
how they can be used to build a function for question complexity estimation via code generation
C(q) ∝ C(z). Then, in Section 3.3, we demonstrate how analysis of the generated code can help
gain insights into the failure modes of VideoQA models. Finally, in Section 3.4 we discuss how
such algorithms can be used to automatically construct challenging VideoQA benchmarks.

3.2 CODEPLEXITY: ESTIMATING QUESTION COMPLEXITY FROM CODE

As a first step we review existing software engineering metrics that map code into complexity scores
C(z) → R. In particular, we focus on Lines of Code (LoC) and Cyclomatic Complexity (McCabe,
1976). The former simply correlates the number of lines in a program with its complexity C(z) ∝
|z|, whereas the latter quantifies the number of linearly-independent paths through the source code
and is denoted as C(z) = CC(z). To minimize the impact of spurious factors, we pre-process the
code by removing all the comments and empty lines first, and make sure to use the same set of basic
primitives in all experiments. Both metrics are indicative of the code’s structural complexity, with
higher values suggesting more intricate control flow. However, they do not take the contents of the
code into consideration, which, as we shown in Section 4.2, limits their predictive power.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To address this drawback, we propose a new method, CodePlexity, illustrated in Figure 2. CodePlex-
ity involves analyzing the components of the generated code that affect question complexity, con-
sidering both its structure and semantic content. More specifically, we develop a compiler to parse
each question’s code into its basic syntactic elements, creating a Abstract Syntax Tree or AST (Hoe
et al., 1986) T = compile(z) with nodes N and edges E. In this model, nodes represent variables,
functions, and control structures, while the edges capture the logical and hierarchical relationships
between them. The AST framework abstracts the code away from its literal syntax, allowing us to
focus on the underlying logic and structure. By generating ASTs for the entire dataset, we obtain
a comprehensive set T (D) = {compile(z) | z ∈ P(D)}, thus laying the groundwork for a deeper
analysis of code complexity factors.

Next, we mine T for common subroutines (recurring logical patterns or functions) that occur in the
code. In ASTs subroutines manifest as subtrees, which we denote as S = (N ′, E′), where N ′ ⊆ N ,
E′ ⊆ E and ∀(u, v) ∈ E′, u ∈ N ′ ∧ v ∈ N ′. Importantly, not all subtrees constitute valid Python
code, since they might fail to comply with Python’s syntax rules. To systematically identify valid
subtrees, we define a function G(T) that yields an unordered set of all valid subtrees of T , denoted as
G(T) = {S1, S2, . . . , Sn}. Considering the entire dataset, the collection of all valid subtrees across
the dataset can be represented as S(D) =

⋃
T∈T (D) G(T).

Then, to avoid duplicates, we merge subtrees that always co-occur when one is a descendant of the
other. Specifically, Smerged(D) is defined as the subset of S(D) that excludes S2 if there exists
a subtree S1 such that S1 and S2 always co-occur and S2 is contained in S1 (see Section 7.1 for
formal definition). The presence of a specific subroutine within a program’s AST can be verified via
a subgraph isomorphism check:

ISO(T, S) ≡ S ∈ G(T). (1)

To aggregate the identified subtrees into a quantitative metric of complexity, we assign each subtree
in Smerged(D) an index and encode each question qi in the dataset using one-hot encoding xi ∈
R|Smerged(D)|, where a 1 in index k of xi signifies the presence of subtree Sk in question’s AST Ti.

xik =

{
1 if ISO(Ti, Sk)

0 otherwise
(2)

This representation transforms the complex structure of code into a fixed-size vector, enabling
straightforward application of machine learning models. We then employ a logistic regression model
trained on these one-hot encodings to predict the success of models mj ∈ M. Note that the training
set effectively treats each (xi, y

(j)
i) pair as a distinct instance, where y

(j)
i is the binary outcome for

question i with respect to model mj (1 for success, 0 for failure). This approach is justified by our
objective to identify subtrees that universally challenge the models, implying a structural complexity
in the code that transcends specific models. We then obtain the final complexity function via:

CodePlexity(z) = −ŷi = −σ(wxi + b). (3)

Next, we discuss how our subtree analysis approach allows to obtain deeper insights into the sources
of complexity for existing VideoQA models.

3.3 SUBTREE ANALYSIS

Unlike black-box metrics, in addition to a numerical score, our approach also outputs an inter-
pretable set of subtrees that correlate with challenging questions. We now demonstrate how to
identify subroutines that have a high impact on model performance. More specifically, we are in-
terested in subtrees that are linked to a decrease in model mj’s performance with a high degree of
statistical significance (set at 0.99). To test this, we establish a null hypothesis (H0) stating that the
proportion of successes is the same with and without the subtree present:

H0 : P (mj , q1|S ∈ S(D)) = P (mj , q1|S /∈ S(D)). (4)

Conversely, our alternative hypothesis posits that the proportion of successes without the subtree is
greater, implying that its presence hurts performance:

HA : P (mj , q1|S ∈ S(D)) < P (mj , q1|S /∈ S(D)). (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We conduct a one-sided test to evaluate these hypotheses and define a subset of subtrees, denoted
as S∗

mj
(D), for which their presence is statistically correlated with a decrease in the performance of

the model mj :
S∗
mj

(D) = {S ∈ S(D) | p(S,mj) < 0.01} , (6)

where p(S,mj) denotes the corresponding p-value. Finally, to identify the subroutines that are
associated with performance decrease for multiple models, we consider the intersection of the sets:

S∗ =
⋂

mj∈M
S∗
mj

(D). (7)

Identifying the specific subtrees that cause a decrease in models’ performance allows us to obtain
deeper insights into where and how they may falter. In Section 4.3, we perform this analysis for
several state-of-the-art approaches and suggest potential areas for improvement in model design.

3.4 LEARNING TO ASK HARD QUESTIONS

We now build on our code-based question complexity metric described in Section 3.2, and propose a
method for automatically generating challenging question-answer pairs for any given set of videos.
Concretely, our approach takes as input a set of videos V paired with natural language summaries
C. We then follow prior work by Mangalam et al. (2023) and prompt a large language model
(LLM) to generate question and answer candidates based on each summary individually q̃, ã =
LLM(c, prompt). The exact prompts are listed in Section 7.4 of the appendix.

Importantly, our approach is agnostic to the nature of C, which can either be annotated manually, or
generated automatically. In this work, we take the latter approach and capitalize on existing datasets
with scene graph annotations (Luo et al., 2021; 2022; Zhou et al., 2019; Ji et al., 2020) paired with an
image captioning model to generate natural language summaries of the video such that a language
model can understand them (Menon & Vondrick, 2022; Wang et al., 2022b; Zeng et al., 2023). We
detail this algorithm in Section 8 of the appendix.

Following our approach from Section 3.2, we then convert each generated question q̃ into code,
and use our trained CodePlexity model (Equation 3) to estimate its complexity. A set of candidate
questions Q̃∗ can be selected by setting a threshold δ for minimum complexity:

Q̃∗ = {q̃ ∈ Q̃|C(q̃) ≥ δ}. (8)

Finally, we manually filter the candidate dataset D̃∗ = {V, Q̃∗, Ã∗} to remove the question/answer
pairs that cannot be accurately answered from the corresponding videos due to inaccuracies in the
generated summaries or LLM hallucination. We emphasize that this final manual filtering is only
needed to ensure the perfect quality of the final dataset D∗. In practice, we only had to remove
12% of the questions, demonstrating that the fully automatic pipeline is capable of producing useful
datasets by itself.

4 EVALUATING QUESTION COMPLEXITY ESTIMATION

In this section, we compare different approaches to estimating question complexity in VideoQA. To
this end, we first define a thorough evaluation protocol and detail our experimental setup in Sec-
tion 4.1. We then evaluate how the code-based metrics proposed in this work compare to human
subjects and several simple baselines in predicting the performance of a wide variety of contempo-
rary approaches on the popular NextQA benchmark in Section 4.2. We conclude by performing a
detailed analysis of the subroutines that show the strongest correlations with challenging questions
in Section 4.3.

4.1 EXPERIMENTAL SETUP

Evaluation protocol. Our goal is to compare the predictive power of several approaches for esti-
mating question complexity in VideoQA with respect to a variety of machine learning models M on
a dataset D. Importantly, some of the metrics we study require training data in the form of questions
paired with outcomes of a model mj ∈ M on them (qi, y

(j)
i). Thus we split the whole pool of

models M into the training Mtr and held-out validation Mval sets and report results on the latter.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To quantitatively compare the effectiveness of different approaches, some of which map a question
to a numerical value corresponding to its complexity, whereas others directly return an ordering
of the questions, we propose a unifying metric, Performance Extremity Gap (PEG). In particular,
we first use numerical complexity estimates to sort questions accordingly. We then measure the
disparity in model mj’s performance P between the easiest and the hardest α% of the questions via:

PEG(mj , α) =
1

Nα

∑
q∈Qhardest,α

P (mj , q, vq)−
1

Nα

∑
q∈Qeasiest,α

P (mj , q, vq) (9)

Finally, inspired by the mAP metric (Everingham et al., 2010), we average the PEG values over
α ∈ (0, 0.5] to obtain the final mPEG score.

Dataset. It is crucial that the dataset used to perform our analysis features as many diverse chal-
lenges as possible. We choose the NExT-QA (Xiao et al., 2021) benchmark for its size, variety of
human-annotated questions, and its focus on spatio-temporal reasoning in videos over mere visual-
fact retrieval (Zhong et al., 2022). In addition, its popularity provides a large pool of models with
pre-trained, public checkpoints for our study. That said, our method is dataset-agnostic and can be
applied to any other VideoQA benchmark in the future. We perform the evaluation on the validation
set of NExT-QA, further splitting the questions into 80% used to train the metrics and the other 20%
held out for computing mPEG.

Models. We include seven representative methods, chosen for their coverage of existing archi-
tectural philosophies, pre-training strategies, and state-of-the-art performance. In particular, we
use VIOLET (Fu et al., 2021) and InternVideo (Wang et al., 2022a), which are pre-trained with
contrastive visual-language objectives and fine-tuned for VideoQA. We also evaluate SeViLA (Yu
et al., 2023a), which is based on the BLIP-2 (Li et al., 2023) large-scale visual-language model;
we assess both its zero-shot variant (SeViLA-ZS) and a fine-tuned version (SeViLA). Addition-
ally, we evaluate HGA (Jiang & Han, 2020), a GNN-based model that reasons with heteroge-
neous graph alignment, representing earlier approaches prior to the prevalence of video large lan-
guage models (videoLLMs). Furthermore, we include the ViperGPT (Surı́s et al., 2023) code-
generation-based approach, as well the simple but effective ATP baseline (Buch et al., 2022)Fi-
nally, we evaluate the current state-of-the-art model, Tarsier (Wang et al., 2024). The models are
split into training and validation sets as follows: Mtr = {VIOLET,SeViLA,ViperGPT,ATP},
Mval = {HGA,SeViLA-ZS, InternVideo,Tarsier}.

Baselines. In addition to the code-based metrics introduced in Section 3.2, we evaluate several
baselines that attempt to directly estimate question complexity from the natural language query
itself. In particular, as a learning-free baseline, we follow Tsvetkov et al. (2016b) and correlate the
complexity of a question with the maximum depth of its parsed dependency tree. To more fairly
compare to our learnable, code-based metric we fine-tune BERT (Devlin et al., 2018) to predict
the probability of model success given the question using exactly the same training data. We also
prompt GPT-4 (OpenAI, 2023b) to estimate the complexity of a question on a Likert scale (Likert,
1932) (details and prompts are provided in Section 7.3 of the appendix).

Finally, we conduct a human study on a subset of 150 questions. To this end, we recruited 30 human
subjects via the Prolific platform (Palan & Schitter, 2018). The subjects were asked to sort three
questions at a time according to their perceived relative complexity. Consistency was validated by
asking to compare the same questions multiple times throughout one session and the subjects who
demonstrated low consistency were excluded from the study. The final sequence order of the entire
subset was calculated via pairwise ELO scores (Elo, 1967). More details and an example of the
annotation interface are provided in the appendix (Section 7.2).

4.2 RESULTS

We begin by visualizing the correlation of human estimates of question complexity with the perfor-
mance of all 6 models used in our study on the 150 manually annotated questions from NExT-QA in
Figure 3 (left). We observe that, while a downward trend clearly exists, with the questions labeled
as the hardest by humans resulting in lower success rate for models compared to the easiest ones,
the correlation is very weak. Notably, the questions that are ranked as being average in complexity
are in fact the hardest for the models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 2 4 6 8
Human Annotator Score

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

Success Rate vs Human Annotator Score
Average
Tarsier
SeViLA
SeViLA ZS
ViperGPT
InternVideo
ATP
VIOLET
HGA

1 2 3 4 5 6 7 8
Dependency Parse Tree Max. Depth

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

Success Rate vs Dependency Parse Tree Max. Depth
Average
Tarsier
SeViLA
SeViLA ZS
ViperGPT
InternVideo
ATP
VIOLET
HGA

1 2 3 4 5 6 7
Cyclomatic Complexity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

Success Rate vs Cyclomatic Complexity
Average
Tarsier
SeViLA
SeViLA ZS
ViperGPT
InternVideo
ATP
VIOLET
HGA

Figure 3: Correlation of various approaches for estimating question complexity with VideoQA mod-
els’ success rate on these questions. We observe that humans struggle to accurately predict what’s
hard for machine learning models and that code can serve as a more reliable source of prediction
than natural language questions.

Train Models Val. Models

SeViLA ViperGPT ATP VIOLET HGA SeViLA ZS InternVideo Tarsier

Dependency Tree Depth 12.9 7.9 11.1 15.9 7.4 13.5 17.7 10.1
GPT-4 (OpenAI, 2023b) 9.6 8.9 11.6 5.8 7.8 14.6 13.9 10.8
BERT (Devlin et al., 2018) 12.5 6.0 18.3 17.3 7.7 14.3 21.1 10.8

Lines of Code 16.4 15.3 14.2 12.0 9.9 16.2 17.5 14.4
Cyclomatic Complexity 18.2 14.2 18.7 15.9 8.9 17.2 24.2 16.7
CodePlexity (Ours) 26.7 21.3 21.0 15.8 14.1 25.6 26.6 24.9

Table 1: Comparison of question complexity metrics using mPEG on the validation set of NExT-
QA. BERT and CodePlexity are trained on the first four models. Text-based metrics (above) perform
worse than the code-based ones (below), and our approach demonstrates the highest correlation with
the models’ performance.

We then evaluate two baselines on the same set of questions, one based on the natural language
queries (dependency tree depth shown in Figure 3, center) and one based on the generated code
(cyclomatic complexity, Figure 3, right). Both show a much stronger correlation with the models’
performance, with cyclomatic complexity being the most consistent. These results demonstrate that
human intuition about sources of complexity in VideoQA does not reflect the main challenges for
machine learning models, and that generated code can be a more reliable source for estimating
complexity than natural language.

Next, we report a more systematic comparison of different text- and code-based metrics using mPEG
on the validation set of NExT-QA in Table 1. Comparing the three language-based metrics in the
upper part of the table on the held-out models, we find them to perform relatively similarly. Notably,
the BERT-based model which is trained on the questions and prediction outcomes of the four models,
performs better than the learning-free baselines for InternVideo, but fails to generalize to SeViLA.
This demonstrates that the space of the natural language is not structured enough to fit a robust
complexity estimation model.

In contrast, code-based metrics, shown in the lower part of Table 1 demonstrate better predictive
ability overall, with even the simplest Lines of Code baseline outperforming the text-based metrics
in most scenarios. Cyclomatic Complexity shows top results among all non-learning-based metrics,
and our proposed approach, CodePlexity, achieves significant improvements over it by learning
to identify code primitives which correlate with challenging questions. This brings us to the final
aspect of our analysis: understanding these structural elements of the code that contribute to question
complexity.

4.3 SUBTREE ANALYSIS

We follow the approach proposed in Section 3.3 and identify the subtrees which are statistically
correlated with a decrease in the performance S∗

mj
for three models out of out training set Mtr:

SeViLA, ViperGPT, and VIOLET. In Figure 4 (right) we visualize the intersections between these
three individual sets S∗ (Equation 7) as a Venn diagram. A perceptible common trend is apparent:
different architectures have their own weaknesses, but the commonalities are surprisingly frequent.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

QUERY: What did the
man sitting on top do
after he came off the
person on the ground?

Figure 4: Detailed analysis of subtrees that correlate with challenging questions among several mod-
els. We find that, although each model has its own error-modes, 8 subroutines are shared among all
3 of them (right). One of the patterns we find then analysing the shared code structures is reasoning
about the order of events (left).

We manually inspect the eight subroutines that are shared among all three sets and identify that they
represent two clear patterns (the actual subtrees are listed in the appendix, Section 9.2).

The first group of primitives, manifesting in such structures as those containing For loops with
complex control flow in them, captures reasoning about not just the content of the frame, but also
its placement in a sequence of events. We provide an example of a corresponding subtree together
with a question that requires this reasoning pattern in Figure 4 (left). The second group contains
primitives that represent detailed analysis of specific elements (objects, relationships) within a scene.
The examples include questions that require identifying the precise placement of an object within a
frame.

Finally, we note that models with uniformly low performance may not identify some certain sub-
routines as distinctly more challenging than average. Focusing on subroutines that challenge only
the state-of-the-art model, we find that those involving long-term activities, as opposed to atomic
actions, are particularly difficult for SeViLA, but not for others.

In summary, we discovered that VideoQA methods struggle with fine-grained temporal reasoning
and lack spatio-temporal, object-centric representations. This is in accord with prior studies (Buch
et al., 2022; Huang et al., 2018; Liu et al., 2021) that demonstrated that naive, single-frame base-
lines can achieve top performance on mainstream VideoQA benchmarks, which were used to de-
velop these methods. Next, we show how our approach can be used to automatically generate a
new benchmark that challenges existing approaches and encourages the development of a novel
generation of video-language representations.

5 DATASET GENERATION

We apply our method for automatically generating challenging questions described in Section 3.4
to create a new VideoQA benchmark, CodePlex-QA. We begin by detailing the source datasets and
key implementation details in Section 5.1. We then compare the performance of these methods on
the popular NExT-QA (Xiao et al., 2021) to that on CodePlex-QA in Section 5.2 to validate the
effectiveness of our approach. Our dataset will be released.

5.1 EXPERIMENTAL SETUP

Source datasets. To encourage diversity we generate questions using 3 different datasets, all of
which provide scene-graphs annotations: MOMA (Luo et al., 2021; 2022); ActivityNet (Caba Heil-
bron et al., 2015), which we combine with ActivityNet-Entities (Zhou et al., 2019) and ActivityNet-
Captions (Krishna et al., 2017), and the ActionGenome (Ji et al., 2020) annotations for Cha-
rades (Sigurdsson et al., 2016). This results in pool of 4191 videos that are passed to our algorithm.

Implementation details. We use GPT-4 (OpenAI, 2023b) to generate question and answer candi-
dates following prior work by Mangalam et al. (2023) and leverage a state-of-the-art image caption-
ing model, LLaVA 1.5 (Liu et al., 2023a;b), to list visual attributes of the main actors and objects in
the videos. Following Xiao et al. (2021) we generate 5 answer candidates for each question (1 cor-
rect answer and 4 distractors), and use accuracy as the evaluation metric. We set the δ in Equation 8

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Dataset Tarsier SeViLA ZS ViperGPT InternVideo VIOLET Random

NExT-QA 70.9% 64.2% 60.0% 50.9% 37.7% 20.0%
ATP-Hard 59.8% 54.9% 51.8% 24.6% 25.4% 20.0%
CodeplexQA 52.5% 43.7% 45.8% 29.9% 27.6% 20.0%

Table 2: Difference in prediction accuracy between the manually annotated NExT-QA and our au-
tomatically generated CodePlex-QA for a representative set of zero-shot VideoQA models. Our
benchmark is empirically 1.9 times harder, validating the effectiveness of our complexity estimation
approach.

QUERY: What action does the barber
perform most frequently?

QUERY: What was the person's reaction
to tripping on the stairs?

QUERY: What does the man do after
painting the sofa?

A) Washing hair

B) Applying shampoo

C) Combing hair

D) Drying hair

E) Massaging face

A) Leaves the sofa to dry

B) Starts painting another sofa

C) Places one unpainted seat cushion back on the sofa

D) Cleans up his painting supplies

E) Places one painted seat cushion back on the sofa

A) They cried and stopped walking

B) They laughed and kept walking

C) They got angry and threw the book

D) They ignored it and kept walking

E) They picked up the book and ran upstairs

Figure 5: Example questions in CodePlex-QA generated with our approach. It features many chal-
lenges that are under-represented in existing, manually-designed benchmarks and motivates the de-
velopment of novel approaches with enhanced spatio-temporal modeling capabilities.

to select the top 10% of the data according to the estimated complexity (calibrated on NExT-QA).
Further details are provided in Section 8 of the appendix.

5.2 RESULTS

To construct CodePlex-QA, we run the generation pipeline described in Section 3.4, obtaining 20791
candidate questions (several question candidates are generated for each video). Then we calculate
each question’s complexity score using CodePlexity to only retain questions that meet or exceed the
minimum complexity threshold as in Equation 8. The resulting datasets consists of 2261 questions.
The final manual filtering to ensure the answerability of the generated questions removes only 12%
of the candidates, leaving us 1981 samples, all of which are used for evaluation.

We then evaluate all the zero-shot baselines from our pool of methods on CodePlex-QA and report
their accuracy in Table 2. We additionally report the performance of these models on the popular
NExT-QA benchmark for reference. Note that the performance of the random choice baseline is
the same for the two benchmarks, so the numbers are directly comparable. Firstly, we observe that
that the average success rate of models on our generated questions is significantly lower than on
NExT-QA. Specifically, CodePlex-QA is 1.9 times harder than the manually annotated NExT-QA
(dataset complexity estimated by taking the average performance of the 5 methods and subtracting
random chance). The ranking is consistent across benchmarks, but it is notable that the gap between
InternVideo and VIOLET is smaller on CodePlex-QA, indicating limitations in InternVideo’s video
understanding despite more visual-language data.

Finally, we visualize a representative sample of generated questions in Figure 5. We observe that
CodePlex-QA features a variety of challenging scenarios that require fine-grained temporal reason-
ing (e.g., comparing the frequency of different actions), as well as reasoning about objects in videos
(e.g., tracking seat cushions). More examples are shown in the supplementary video.

6 CONCLUSION

We have demonstrated that generated code complexity is a reliable measure of question complexity
for VideoQA, proposing a novel metric that outperforms existing metrics on this task. In addition,
our approach allows us to identify individual subroutines that correlate with challenging questions
for a wide range of models, yielding new insights into the key challenges of VideoQA. Finally, we
have shown how our metric can be used to automatically generate a novel benchmark – CodePlex-
QA, which is 1.9 times harder for existing models than the popular, manually labeled NExT-QA
dataset. As new methods and benchmarks are developed to address the challenges identified in our
work, our approach can be re-applied, thereby ensuring continued progress in the field.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

T Aflalo, CY Zhang, ER Rosario, N Pouratian, GA Orban, and RA Andersen. A shared neural sub-
strate for action verbs and observed actions in human posterior parietal cortex. Science advances,
6(43), 2020. 1

Sandhini Agarwal, Gretchen Krueger, Jack Clark, Alec Radford, Jong Wook Kim, and Miles
Brundage. Evaluating CLIP: towards characterization of broader capabilities and downstream
implications. arXiv preprint arXiv:2108.02818, 2021. 28

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
CVPR, 2016. 3

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In ICML, 2021. 3

Shyamal Buch, Cristóbal Eyzaguirre, Adrien Gaidon, Jiajun Wu, Li Fei-Fei, and Juan Carlos
Niebles. Revisiting the” video” in video-language understanding. In CVPR, 2022. 2, 3, 7,
9

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for
bound constrained optimization. SIAM Journal on scientific computing, 16(5):1190–1208, 1995.
18

Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet: A
large-scale video benchmark for human activity understanding. In CVPR, 2015. 9, 18, 19, 20, 25,
28

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021. 3, 18

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2023. 17

Jean Decety and Julie Grèzes. Neural mechanisms subserving the perception of human actions.
Trends in cognitive sciences, 3(5):172–178, 1999. 1

Jean Decety, Julie Grezes, Nicolas Costes, Daniela Perani, Marc Jeannerod, Emmanuel Procyk,
Franco Grassi, and Ferruccio Fazio. Brain activity during observation of actions. influence of
action content and subject’s strategy. Brain: a journal of neurology, 120(10):1763–1777, 1997. 1

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
7, 8

Arpad E Elo. The proposed uscf rating system, its development, theory, and applications. Chess
Life, 22(8):242–247, 1967. 7, 17

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88:
303–338, 2010. 7

Cristobal Eyzaguirre and Alvaro Soto. Differentiable adaptive computation time for visual reason-
ing. In CVPR, 2020. 3

Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as spatiotemporal
learners. NeurIPS, 2022. 3

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. GPTScore: Evaluate as you desire.
arXiv preprint arXiv:2302.04166, 2023. 17

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tsu-Jui Fu, Linjie Li, Zhe Gan, Kevin Lin, William Yang Wang, Lijuan Wang, and Zicheng Liu.
VIOLET: End-to-end video-language transformers with masked visual-token modeling. arXiv
preprint arXiv:2111.12681, 2021. 1, 3, 7

Jiaxin Ge, Sanjay Subramanian, Baifeng Shi, Roei Herzig, and Trevor Darrell. Recursive visual
programming. arXiv preprint arXiv:2312.02249, 2023. 3, 26

Alex Graves. Adaptive computation time for recurrent neural networks. In NIPS, 2016. 3

Madeleine Grunde-McLaughlin, Ranjay Krishna, and Maneesh Agrawala. AgQA: A benchmark for
compositional spatio-temporal reasoning. In CVPR, 2021. 4

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In CVPR, 2023. 2, 3, 4

Alfred V Hoe, Ravi Sethi, and Jeffrey D Ullman. Compilers—principles, techniques, and tools.
Pearson Addison Wesley Longman, 1986. 5

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to
reason: End-to-end module networks for visual question answering. In ICCV, 2017. 3

De-An Huang, Vignesh Ramanathan, Dhruv Mahajan, Lorenzo Torresani, Manohar Paluri, Li Fei-
Fei, and Juan Carlos Niebles. What makes a video a video: Analyzing temporal information in
video understanding models and datasets. In CVPR, 2018. 2, 9

Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles. Action genome: Actions as com-
positions of spatio-temporal scene graphs. In CVPR, 2020. 6, 9, 18, 19, 20, 25, 28

Pin Jiang and Yahong Han. Reasoning with heterogeneous graph alignment for video question
answering. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
11109–11116, 2020. 7

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. CLEVR: A diagnostic dataset for compositional language and elementary visual
reasoning. In CVPR, 2017a. 4

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Inferring and executing programs for visual reasoning.
In ICCV, 2017b. 3

Seung Wook Kim, Makarand Tapaswi, and Sanja Fidler. Visual reasoning by progressive module
networks. In ICLR, 2018. 3

Tom Kocmi and Ondřej Bojar. Curriculum learning and minibatch bucketing in neural machine
translation. In RANLP, 2017. 3

Andrei N Kolmogorov. On tables of random numbers. Sankhyā: The Indian Journal of Statistics,
Series A, pp. 369–376, 1963. 3, 4

Oliver Kramer and Oliver Kramer. Scikit-learn. Machine learning for evolution strategies, pp.
45–53, 2016. 18

Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-captioning
events in videos. In ICCV, 2017. 9, 20

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023. 7

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22195–22206, 2024. 27

Rensis Likert. A technique for the measurement of attitudes. Archives of psychology, 1932. 7, 17

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In NeurIPS Workshop on Instruction Tuning and Instruction Following, 2023a. 9, 19

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023b. 9, 19

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/. 27

Xin Liu, Silvia L Pintea, Fatemeh Karimi Nejadasl, Olaf Booij, and Jan C Van Gemert. No frame
left behind: Full video action recognition. In CVPR, 2021. 2, 9

Zelun Luo, Wanze Xie, Siddharth Kapoor, Yiyun Liang, Michael Cooper, Juan Carlos Niebles,
Ehsan Adeli, and Fei-Fei Li. MOMA: Multi-object multi-actor activity parsing. NeurIPS, 2021.
6, 9, 18, 25, 28

Zelun Luo, Zane Durante, Linden Li, Wanze Xie, Ruochen Liu, Emily Jin, Zhuoyi Huang, Lun Yu
Li, Jiajun Wu, Juan Carlos Niebles, et al. MOMA-LRG: Language-refined graphs for multi-object
multi-actor activity parsing. NeurIPS, 2022. 6, 9, 18, 25, 28

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. NeurIPS, 2023. 17

Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. EgoSchema: A diagnostic bench-
mark for very long-form video language understanding. In NeurIPS, 2023. 2, 6, 9, 24

Thomas J McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2(4):
308–320, 1976. 2, 3, 4

Sachit Menon and Carl Vondrick. Visual classification via description from large language models.
In ICLR, 2022. 6

OpenAI. Chatgpt. https://www.openai.com, 2023a. 2

OpenAI. Gpt-4 technical report, 2023b. 7, 8, 9, 17

Stefan Palan and Christian Schitter. Prolific. ac—a subject pool for online experiments. Journal of
Behavioral and Experimental Finance, 17:22–27, 2018. 7, 16

Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabás Poczós, and Tom
Mitchell. Competence-based curriculum learning for neural machine translation. In ACL, 2019.
3

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021. 28

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. NeurIPS,
2023. 17

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021. 3

Xindi Shang, Donglin Di, Junbin Xiao, Yu Cao, Xun Yang, and Tat-Seng Chua. Annotating objects
and relations in user-generated videos. In Proceedings of the 2019 on International Conference
on Multimedia Retrieval, pp. 279–287. ACM, 2019. 22

Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta.
Hollywood in homes: Crowdsourcing data collection for activity understanding. In ECCV, 2016.
9, 20

13

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://www.openai.com

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ray J Solomonoff. Algorithmic probability: Theory and applications. Information theory and
statistical learning, pp. 1–23, 2009. 3

Petru Soviany, Claudiu Ardei, Radu Tudor Ionescu, and Marius Leordeanu. Image difficulty cur-
riculum for generative adversarial networks (CuGAN). In WACV, 2020. 3

Valentin I Spitkovsky, Hiyan Alshawi, and Dan Jurafsky. From baby steps to leapfrog: How “less is
more” in unsupervised dependency parsing. In ACL, 2010. 3

Sanjay Subramanian, Medhini Narasimhan, Kushal Khangaonkar, Kevin Yang, Arsha Nagrani,
Cordelia Schmid, Andy Zeng, Trevor Darrell, and Dan Klein. Modular visual question answering
via code generation. In ACL, 2023. 2, 3, 4

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. ViperGPT: Visual inference via python execution
for reasoning. In ICCV, 2023. 1, 2, 3, 4, 7, 18

Yi Tay, Shuohang Wang, Anh Tuan Luu, Jie Fu, Minh C Phan, Xingdi Yuan, Jinfeng Rao, Siu Che-
ung Hui, and Aston Zhang. Simple and effective curriculum pointer-generator networks for read-
ing comprehension over long narratives. In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 4922–4931, 2019. 3

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016. 22

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Brian MacWhinney, and Chris Dyer. Learning the
curriculum with bayesian optimization for task-specific word representation learning. In ACL,
2016a. 3

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Brian MacWhinney, and Chris Dyer. Learning the
curriculum with bayesian optimization for task-specific word representation learning. In ACL,
2016b. 3, 7

Radu Tudor Ionescu, Bogdan Alexe, Marius Leordeanu, Marius Popescu, Dim P Papadopoulos, and
Vittorio Ferrari. How hard can it be? estimating the difficulty of visual search in an image. In
CVPR, 2016. 3

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. NeurIPS, 2017.
3

Jiawei Wang, Liping Yuan, Yuchen Zhang, and Haomiao Sun. Tarsier: Recipes for training and
evaluating large video description models. arXiv preprint arXiv:2407.00634, 2024. 7

Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
Xu, Yi Liu, Zun Wang, et al. InternVideo: General video foundation models via generative and
discriminative learning. arXiv preprint arXiv:2212.03191, 2022a. 1, 7

Zhenhailong Wang, Manling Li, Ruochen Xu, Luowei Zhou, Jie Lei, Xudong Lin, Shuohang Wang,
Ziyi Yang, Chenguang Zhu, Derek Hoiem, et al. Language models with image descriptors are
strong few-shot video-language learners. NeurIPS, 2022b. 6

Yunchao Wei, Xiaodan Liang, Yunpeng Chen, Xiaohui Shen, Ming-Ming Cheng, Jiashi Feng, Yao
Zhao, and Shuicheng Yan. Stc: A simple to complex framework for weakly-supervised semantic
segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(11):2314–
2320, 2016. 3, 22

Bo Wu, Shoubin Yu, Zhenfang Chen, Joshua B Tenenbaum, and Chuang Gan. STAR: A benchmark
for situated reasoning in real-world videos. In NeurIPS, 2021. 4

Moritz F Wurm and Alfonso Caramazza. Two ‘what’ pathways for action and object recognition.
Trends in cognitive sciences, 26(2):103–116, 2022. 1

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-QA: Next phase of question-
answering to explaining temporal actions. In CVPR, 2021. 2, 7, 9

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Haiyang Xu, Qinghao Ye, Ming Yan, Yaya Shi, Jiabo Ye, Yuanhong Xu, Chenliang Li, Bin Bi,
Qi Qian, Wei Wang, et al. mPLUG-2: A modularized multi-modal foundation model across text,
image and video. arXiv preprint arXiv:2302.00402, 2023. 3

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-
symbolic vqa: Disentangling reasoning from vision and language understanding. NeurIPS, 2018.
3

Shoubin Yu, Jaemin Cho, Prateek Yadav, and Mohit Bansal. Self-chained image-language model
for video localization and question answering. In NeurIPS, 2023a. 1, 2, 3, 7

Zhou Yu, Lixiang Zheng, Zhou Zhao, Fei Wu, Jianping Fan, Kui Ren, and Jun Yu. ANetQA:
A large-scale benchmark for fine-grained compositional reasoning over untrimmed videos. In
CVPR, 2023b. 4

Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu, Jae Sung Park, Jize Cao, Ali Farhadi, and
Yejin Choi. Merlot: Multimodal neural script knowledge models. NeurIPS, 2021. 3

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker,
Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, et al. Socratic models: Com-
posing zero-shot multimodal reasoning with language. In ICLR, 2023. 6

Yaoyao Zhong, Wei Ji, Junbin Xiao, Yicong Li, Weihong Deng, and Tat-Seng Chua. Video question
answering: Datasets, algorithms and challenges. In EMNLP, 2022. 7

Luowei Zhou, Yannis Kalantidis, Xinlei Chen, Jason J. Corso, and Marcus Rohrbach. Grounded
video description. In CVPR, 2019. 6, 9, 20

Alexander K Zvonkin and Leonid A Levin. The complexity of finite objects and the development
of the concepts of information and randomness by means of the theory of algorithms. Russian
Mathematical Surveys, 25(6):83, 1970. 3

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

This appendix includes further details, results and discussions that were not included in the main
paper due to space limitations:

1. Section 7 provides additional technical details for our baselines and complexity estima-
tion methods.

2. Section 8 compliments Section 5 in the main paper providing extra technical specifics
regarding the dataset generation pipeline.

3. Section 9 reports additional results and analysis to those in Sections 4.2 and 4.3 in main
paper.

4. Section 11 includes a discussion of broader impact and limitations of our work.

We also include a separate video with qualitative examples of the analyzed questions and samples
from our new dataset as part of the supplementary materials (see 1394.mp4, Codec H.264). Fi-
nally, we re-iterate that we plan to release code, models, and other materials as part of the final
supplement.

7 ADDITIONAL TECHNICAL DETAILS

7.1 MERGING DUPLICATE SUBTREES

To avoid duplicated subtrees and reduce redundancy, we merge subtrees that always co-occur when
one is a descendant of the other. Specifically, a subtree S1 is said to always co-occur with another
subtree S2 if every occurrence of S2 in the dataset D is also an occurrence of S1. In such cases,
since S2 is always contained within S1, we can merge S2 into S1 without losing any unique patterns.

Merging these subtrees does not risk missing important patterns because any syntactic or semantic
information captured by S2 is inherently included in S1. This is due to the fact that S1 encompasses
all occurrences of S2, ensuring that the features associated with S2 are preserved within S1. By elim-
inating redundant subtrees, we streamline the dataset, which can improve computational efficiency
without compromising data integrity.

The merged set of subtrees Smerged(D) is defined as:

Smerged(D) =S(D) \ {S2 ∈ S(D) | ∃S1 ∈ S(D) :

(∀T ∈ D, ISO(T, S2) → ISO(T, S1)) ∧ (S2 ⊆ S1)}
(10)

Here, ISO(T, S) indicates that subtree S is isomorphic to a subtree within program T , and S2 ⊆ S1

denotes that S2 is contained within S1.

By applying this merging strategy, we ensure that all significant patterns are retained. The one-
hot encodings of S1 and S2 are identical across all programs where they appear, so merging them
does not alter the representation of the data. This approach maintains the richness of the syntactic
structures while optimizing the dataset for analysis.

7.2 HUMAN ANNOTATION INTERFACE AND PROCESSING

For our human baseline we conduct an annotation effort on a subset of 150 questions from the
validation set of the NExT-QA dataset. To this end, we recruited 65 human subjects via the Prolific
platform (Palan & Schitter, 2018), using the provided filters to select for annotators that are proficient
in English.

The annotators were shown 50 sets of 3 questions (one set at a time), where they were asked to sort
the questions according to their perceived complexity by indicating which questions were the easiest
and hardest. An example set and the annotation interface is shown in Figure 6. Consistency was
validated by repeating pairs of questions multiple times (the third question can vary). We check that
relative orders remain consistent and don’t consider subjects who demonstrated low consistency.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We further filter out annotations that were done in too little time, and annotators who finished the
complete study in less than a minimum reasonable time. The annotations from the remaining 30
subjects were used to calculate the total ordering of the questions.

Move backward Move forward

Video Question Complexity Estimation Home Statistics Help
Finished
0/50

Current_id
2

Currently
logged in
as
deleteme

A. How many people can be seen dancing on the stage? (a) one. (b) six.
(c) three. (d) nine. (e) two.
B. How does the lady react to the man moving his hand to her waist? (a)
put on the girl s nose. (b) laugh. (c) dance. (d) plays the instrument. (e)
waves her hand.
C. Why does the man bend down while cutting? (a) dribbling ball. (b)
play with elmo. (c) chop leaves. (d) keep the rod fixed at one place. (e)
play game.

Which question is the *hardest* to
answer about a video?

 A B C

Which question is the *easiest* to
answer about a video?

 A B C

Copyright © 2022 Blablablab

Fork on GitHub | Cite Us

Figure 6: We ask human annotators to provide the relative ordering of three provided questions
according to the estimated complexity of answering the question about an unseen video.

We compute the final order of the questions using Elo scores (Elo, 1967). Originally developed to
rank chess players, the Elo system models the outcome probability of unseen comparison between
a pair of entities (eg. chess players or, in our case, questions) as a function of their score ratings
si. In a comparison each entity’s comparative performance is assumed to be Normally distributed
around their score with fixed variance β2. The probability of a favorable outcome for entity i when
compared to an opponent entity j is given by the probability that the performance of i surpasses the
performance of j:

Φ

(
si − sj√

2β

)
, (11)

where Φ represents the cumulative distribution of a zero-mean, unit-variance Gaussian. The scores
are updated after every comparison according to the Elo update rule.

7.3 GPT QUESTION COMPLEXITY SCORING

In order to automatically estimate the complexity of a question directly from it’s text without biasing
the method towards any specific definition of complexity we refer to the Natural Language Process-
ing literature which has shown that assessments made by Large Language Models correlate with
human judgement (Madaan et al., 2023; Fu et al., 2023; Chiang et al., 2023; Rafailov et al., 2023).
To this end, we leverage GPT-4 (OpenAI, 2023b) to generate a complexity score on a Likert scale
(Likert, 1932) (ranging from one to five). We set the temperature to zero (for replicable results) and
generate a single token with the score. We prompt the model as follows:

Prompt

[SYSTEM] You are an assistant that -for the provided question and its corresponding answer
options- estimates the complexity of answering said question about an unknown video. Return
your answer as score from 1 to 5 (1 being the easiest and 5 being the hardest).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

[USER] I’ll provide a question and its candidate answers. Estimate the complexity of answer-
ing the question about a (unseen) video. Output should ONLY be the integer score (1-5) that
you assign to the question (ie. no JSON, no text, no markdown, no nothing).

query A: answers[0], B: answers[1], C: answers[2], D: answers[3], E: answers[4]

7.4 CODEGEN DETAILS

We use the same API as in the original ViperGPT paper (Surı́s et al., 2023). For NExT-QA analysis
we use the programs and predictions from (Surı́s et al., 2023), which were generated by Codex
(Chen et al., 2021), a Code Completion LLM. Since Codex is no longer avaialble, for the CodePlex-
QA code generations we instead use a text variant of GPT-3.5 with support for 16k context window
(necessary because of the long API Specification). We prompt this model with both the API and
a System message to make sure the output is usable as code. Additionally, we process the output
to extract the code and format it such that it can be executed and analyzed. We include the prompt
used:

Prompt

[SYSTEM]Only use the functions you have been provided with.”
[SYSTEM]Only complete the code. Don’t include markdown syntax (eg. ticks).
[USER]<API Spec.>
query
[answers[0], answers[1], answers[2], answers[3], answers[4]]
def execute command(video, possible answers, question):
Reason every step

7.5 LOGISTIC REGRESSION PARAMETERS

We use the SciKit-Learn (Kramer & Kramer, 2016) implementation of Logistic Regression model.
We train until convergence and choose parameters based on the reported mean accuracy over 5 folds.
The resulting model uses L2 regularization with weight c = 1.0 and is trained with the L-BFGS
solver (Byrd et al., 1995).

7.6 CYCLOMATIC COMPLEXITY CALCULATION

We compute of Cyclomatic Complexity via an open source implementation1.

8 ADDITIONAL QUESTION GENERATION DETAILS

As noted in Section 5 of the main paper, we leverage existing video datasets with scene-graph
annotations MOMA (Luo et al., 2021; 2022), ActivityNet (Caba Heilbron et al., 2015), and Action
Genome (Ji et al., 2020). As necessary step we need to translate the annotations into a textual format
such that a generative language model could use it. We begin by identifying the main activity and
its sub-activities, including the start and end times of each. This temporal framework serves as a
scaffold for the detailed enumeration of the actors and objects involved. Actors and objects are
cataloged not just by their presence, but also in relation to specific sub-activities. When a high level
textual description is not available we leverage captioning models to generate visual descriptors of
the actors in the video. More details in Section 8.1.

The resulting dataset has an average of 2.40 questions per video. The duration of each video ranges
from approximately 3 seconds to 10 minutes with an average video duration of about 1.5 minutes.
This diverse range of video lengths is desirable as it is conducent to generating a wide variety of
questions.

The following sections describe the methods and prompts we used to translate the graphs into tex-
tual scripts for each specific dataset: MOMA (Luo et al., 2021; 2022) in Section 8.2, ActivityNet

1https://radon.readthedocs.org

18

https://radon.readthedocs.org

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(Caba Heilbron et al., 2015) in Section 8.3, and Action Genome (Ji et al., 2020) in Section 8.4.
Finally, Section 8.5 describes how the generated scripts are used to generate new questions.

8.1 VISUAL DESCRIPTORS EXTRACTION

A limitation of using Scene Graphs is that they tipically don’t include visual descriptions of the
nodes they relate. This is in juxtaposition with the way humans typically refer to actors and objects.
To this end we describe the main actors in the video using a Captioning model. In particular, we use
Llava1.5 (Liu et al., 2023a;b) to describe a single instance of the actor in the video. We leverage
the included bounding box annotations for the actors in each annotated interaction. We choose the
bounding box with the largest area (in pixels) in the first subactivity the actor appears in. We then
crop the relevant area and zero-pad the borders to make the final image square, as this is the format
that Llava1.5 was trained with. The resulting cropped image is passed into the captioning model
along with a prompt modified from Llava.

Prompt

”A chat between a curious human and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the human’s questions.
[USER]<image>
Look at the picture and tell me only about the person’s looks that don’t change. Like what
they’re wearing, their hair color and style. Don’t talk about where they are OR what they’re
doing. (Tag is <actor classname>).
[ASSISTANT]

Importantly, we also pass in the textual identifier for the actor, indicated in the prompt as
<actor classname>.

8.2 MOMA

A significant limitation specific to MOMA is the inconsistency in annotated identifiers for object or
actor throughout the entire video. Consequently, we exclude videos in the dataset for which objects
or actors cannot be reliably identified. Our implementation of the filtering process eliminates any
videos from the dataset where the identities of actors are not consistently recognizable based on their
class name identifier. In practice, we define a Python function to detect ’collisions’ - instances
where the same identifier is used for different class names within a subactivity, or across different
subastivities without a consistent mapping.

As noted in Section 5 of the main paper, we need to translate the contents of the scene-graph-in-time
annotated in MOMA into a textual format such that a generative language model could use it. We
now describe the method we used to translate the graphs into textual scripts.

We begin by identifying the main activity and its sub-activities, including the start and end times
of each. This temporal framework serves as a scaffold for the detailed enumeration of the actors
and objects involved. Actors and objects are cataloged not just by their presence, but also in rela-
tion to specific sub-activities. We identify their class names and descriptive attributes along with
arrival their departure times within each sub-activity and store these for later. We also track state
changes and action, both transitive and intransitive, that occur during the sub-activities, along with
the identifiers that map to the actors and objects involved.

The final script is structured in a hierarchical format, starting with the main activity title and its
timeframe, followed by detailed sections for each sub-activity. These sections enumerate the actors
present, and a chronological account of events, actions, and state changes. We also generate a
descriptive caption for each actor involved following Section 8.1 and include it in the prompt. An
example of an activity and its first sub-activity is shown:

Activity: ”Dining” (0-597)
All actors:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• ROLE: customer. Visual description: The person in the picture is a woman with
long, dark hair. She is wearing a white shirt and a black tie.

• ROLE: waiter. Visual description: The waiter in the picture is a young man wearing
a white shirt and a black tie.

Sub activity (0-10): The waiter is talking to the customer or helping them into their seat

• Actors present: customer, waiter
• Happened during sub-activity:

– (attribute) waiter standing
– (transitive action) waiter talking to customer
– (intransitive action) waiter bending

8.3 ACTIVITYNET

Although the original ActivityNet (Caba Heilbron et al., 2015) dataset didn’t include scene-graphs,
follow up work ActivityNet-Entities (Zhou et al., 2019) provides additional annotations for ob-
jects, attributes, relationships and actions. Further, we also use the per-subactivity captions in the
ActivityNet-Captions (Krishna et al., 2017) dataset.

As was the case with MOMA, we translate the contents of the scene-graph-in-time annotated into
a textual format such that it can be parsed by a generative language model. We once again divide
a video into a main activity and its component subactivities, and take note of their start and end
times. Actors present in a particular subactivity are listed within the subactivity description, along
with their provided visual descriptions when available in ActivityNet-Entities (Zhou et al., 2019).
Finally, we filter relationships such that we only keep those that involve actors and list those for each
actor. An example of an activity and a sub-activity is shown below:

Activity: ”doing archery” (time: 11-177)

Sub activity (15-39): He loads an arrow in the bow.
All actors descriptions from subactivity:

• Visual description (time: 31): attributeclass: person - age&sex: man - hairstyle:
straight - hairlength: short - haircolor: [’black’] - accessory: [’glove’] - skincolor:
white - upperclothestype: t-shirt - upperclothescolor: [’white’]- lowerclothestype:
shorts - lowerclothescolor: [’black’] - status: [’standing’, ’shooting’] - location: out-
doors

• Relations for actor in subactivity:
– person pulling bow
– person holding arrow

8.4 ACTION GENOME

We leverage the scene-graph annotations in ActionGenome (Ji et al., 2020) for the Charades video
dataset (Sigurdsson et al., 2016) and use the annotated activity along with its duration and high
level description. When available we also include the location and other descriptions. We then list
the annotated actions (along with their respective start and end times). Finally, we iterate over the
annotated-per-frame object-actor relationships and track when their state changes. We provide the
timestamp at which the state-change occurred and the change itself to the generation model. As was
the case with ActivityNet, we don’t need to generate visual attributes as the high level description
often provides them. An example script is shown below:

Activity (duration: 30.62): ”A person sits at a desk in the living room. The person laughs as
they pick up a bag of groceries from under the desk.”

Location: ”Bedroom”

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Other descriptions:

• A person is sitting at adesk they pick up a bag and then they get up
• The person is sitting at the computer desk and bends over to pick up the garbage,

which he sits on his lap, and then gets up carrying the garbage.

Actions:

• Taking a bag from somewhere (9.00, 16.40)
• Sitting at a table (0.00, 29.30)
• Someone is standing up from somewhere (25.00, 30.80)
• Holding a bag (12.70, 32.00)
• Someone is laughing (0.00, 30.80)
• Sitting in a chair (0.00, 32.00)

Relation Changes (wrt. actor):

• bag goes from ”’holding’” to ”’touching’ at 18.0”
• bag goes from ”’touching’” to ”’holding’ at 20.0”
• bag goes from ”’holding’” to ”’touching’ at 26.0”
• bag goes from ”’touching’” to ”’holding’ at 27.0”
• chair goes from ”’sitting on’” to ”None at 28.0”
• chair goes from ”None” to ”’not contacting’ at 28.0”

8.5 QUESTION GENERATION FROM SCRIPTS

Each textual script generated above is combined with a prompt requesting that the language model
output interesting questions about the video, without specifying that they should be hard, or how
interesting should be interpreted. The complete prompt is used to condition a Large Language Model
to generate the requested questions and answer candidates in a JSON format. The chosen language
model is GPT-4. We set the sampling temperature to zero and decode greedily (for replicability).
We include the exact prompt used here:

Prompt

[SYSTEM]You generate interesting questions to ask about the video for which the description
is provided. Pretend you don’t get the exact description (ie. no exact times or player ids) but
you did watch the video, so you have a notion of what happens, and when.
[SYSTEM]Return a list of Multiple Choice questions formated as a json with q, ans, dist1,
dist2, dist3, dist4 keys. ‘distN‘ are 4 distractors..
[USER]What are interesting questions to ask about this video? (description provided)
Return a numbered list of Multiple Choice questions formated as a json with q, ans, dist1,
dist2, dist3, dist4 keys. ‘distN‘ are 4 distractors
Try to use visual descriptions of the actors instead of their role sometimes (eg. the person with
the red shirt instead of the waiter).

NEVER say subactivities. Eg. don’t say ”first subactivity”, instead say ”while the waiters
served the drinks”.

Video description:

—
<DESC>

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

—

Remember, **NEVER** say subactivities. Eg. don’t say ”first subactivity”, instead
say ”while the waiters served the drinks”.

When generating questions for videos from the MOMA dataset we also include an additional in-
struction to make sure the model doesn’t refer to actors as unclassified when the annotations are
missing descriptions:

Also avoid saying ”unclassified ...” to refer to actors. If you weren’t provided with a role use
visual descriptions instead.

9 ADDITIONAL RESULTS AND ANALYSIS

9.1 RELATION TO VIDEO COMPLEXITY

Our approach to estimating the complexity of VideoQA tasks is grounded in insights from classical
complexity theory, specifically the Chain Rule for Kolmogorov Complexity. According to this rule,
the complexity of a composite entity, such as a (video, question) pair, can be expressed as the sum
of the complexity of one component (e.g., the question) and the conditional complexity of the other
component (e.g., the video conditioned on the question), plus a logarithmic term:

K(x, y) = K(x) +K(y|x) +O(log(K(x, y))) (12)

In cases where there is minimal shared information between the video and the question, the complex-
ity of the pair can be approximated as the sum of their individual complexities, up to this logarithmic
term:

K(x, y) ≈ K(x) +K(y) +O(log(K(x, y))) (13)

In this work, we focus on estimating the complexity of the question, which parallels the structure
suggested by the Chain Rule for Kolmogorov Complexity. If we treat the video as x and the question
as y, then the complexity of the (video, question) pair can be thought of in a similar way, where the
complexity of the question K(y) is a key component of the overall task complexity. While we do
not directly compute Kolmogorov complexities, this analogy provides a theoretical motivation for
focusing only on the question complexity. Estimating the complexity of the question is valuable
because it can later be combined with robust methods for assessing the complexity of the video to
achieve a more comprehensive measure of the total task complexity in future work.

The difference between the predicted complexity of the question and the actual model performance
on a given question can be used as a proxy for estimating the video’s complexity. Prior work by Wei
et al. (2016) has approximated image complexity by the number of objects present in an image. We
extend this approach to video complexity, utilizing the VidOR dataset (Shang et al., 2019), which
provides annotations of entities and their relations in videos. Conveniently, VidOR and NextQA
share the same video source, YFCC100M (Thomee et al., 2016), allowing us to align entity counts
with our models’ performance on NextQA.

Figure 7 compares the difference in the average number of entities (subjects and objects) in videos
where models perform poorly on low complexity tasks (easier questions) versus where they perform
well on high complexity tasks (harder questions). The trend indicates that, for easier questions (low
complexity), videos with more subjects/objects tend to result in poorer model performance, while for
harder questions (high complexity), models perform better when fewer subjects/objects are present
in the video.

This pattern supports the idea that the complexity of a VideoQA task is additive. Simple questions
become more challenging when accompanied by complex videos, and difficult questions can be
made easier in the presence of simpler videos. This additive relationship between video complex-
ity and question complexity reinforces the importance of estimating both components. While our

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

SeV
iLA

SeV
iLA

 ZS

Vipe
rG

PT

Int
ern

Vide
o

ATP

VIO
LE

T
0.2

0.1

0.0

0.1

0.2

0.3

D
iff

er
en

ce
 in

 N
um

be
r o

f S
ub

je
ct

s/
O

bj
ec

ts

Correctly Answered Hard Questions
Incorrectly Answered Easy Questions

Figure 7: Comparison of the average number of entities (subjects and objects) in videos where
models perform poorly on low complexity tasks (easier questions) versus where they perform well
on high complexity tasks (harder questions). More entities make easy questions harder, while fewer
entities make hard questions easier.

current approach focuses on question complexity, combining it with accurate video complexity es-
timations can yield a more precise measure of the overall task complexity. We leave the exploration
of more accurate methods for video complexity estimation to future work.

9.2 SUBTREES VISUALIZATION

In this section, we present visualizations of subtrees which correlate with question that are challeng-
ing to answer for all 3 models analyzed in the main paper (see Sections 3.3 and 4.3). A majority
of the nodes present in the ASTs encode non-essential information such as variable names, while
we care about the actual structure and the operations being executed on the frames. For this reason,
we ignore variable names and values when comparing two subtrees to one another. Similarly, we
develop a tool to visualize the general structure of subtrees that performs a related node-trimming
step. Finally, the visualizations of ASTs in the paper (eg. Figure 4 of the main paper) include an
additional simplification step in which nodes are merged to aid in understanding and interpretability.

All the 8 subtrees that are shared by the 3 models in the main paper are shown in Figure 16. There
are two principal patterns that can bee seen from analyzing them. The first group includes primitives
that allow for temporal reasoning (Figures 8 to 13). The other common pattern group includes
questions that require more detailed analysis of specific elements (objects, relationships) within a
scene (Figures 14 and 15).

First, we consider the primitives necessary for temporal reasoning, i.e. for questions that necessitate
taking into account a specific frame’s placement in a sequence of events. The subtrees shown in
Figures 8 and 9 both contain the control flow necessary for identifying an event that happens after
a particular condition has been met. Figure 8 in particular illustrates a common pattern for finding
the frame after something has happened, with a For Loop that identifies the relevant part of the
video, followed by an addition to look after. Similarly, Figure 9 is common in programs that have to
identify a second condition that happens after a first one. For this reason the control-flow is slightly
more complex, and includes a second conditional that is only checked for after the first condition
has been satisfied.

Figures 10 to 13, while also temporal, are less obviously so. The presence of the primitives shown
in Figure 10 correlates with code that includes a loop over frames in the video. This pattern is com-
monly used to setup for iterating over the video until a relevant frame is found. Upon identification,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Module

Assign Const.

For

If

False

enumerate()

If

video_segment.frame_iterator()

condition

Assign Const.

Break

True

condition

Assign Var.

Assign Var.

Add 1

FloorDiv
video_segment.num_frames

2

Figure 8:

Module

Assign Const.

For

None

enumerate()

If

video_segment.frame_iterator()

condition

Assign Const.

ElseIf

True

condition

Assign Const.

Break

Figure 9:

Module

Assign Const.

Assign Const.

False

None

Figure 10:

Expr FloorDiv

video_segment.num_frames

2

Figure 11:

If

condition

Assign Const.

Break

Figure 12:

Expr enumerate() video_segment.frame_iterator()

Figure 13:

Expr And

frame.detect_object()

frame.detect_object()

Eq frame.simple_qa()

Figure 14:

Expr frame.detect_object()

Figure 15:
Figure 16: Subtrees identified as hard.

the first boolean variable switches to True and the other one is used to store the frame. Intuitively,
this pattern is useful for answering questions about a specific moment of a video. The primitives in
Figure 11 show code that selects a frame from the middle of the video. In practice, programs include
this code as a fail-safe when searching for a specific frame, falling back to selecting the middle frame
in case no satisfying frame is found (eg. Fig. 8). Figure 12 shows a break statement that will halt an
iteration over the video when a frame that meets the required criteria is seen. Intuitively, this pattern
allows for the identification of the first event in the video that meets some criteria, as the break in
the loop avoids overwriting the variable with frames that come in the future. And Figure 13 shows
an iterator over the video, which is the main primitive necessary to consider frames in order. This
primitive is often used in conjunction with others shown, eg. with the break statement in Fig. 12 to
find the first frame that meets the condition.

The other common pattern group involves questions that require a more granular consideration of
specific elements (objects, relationships) within a scene. For example, the subtree shown in Fig-
ure 15 is included in questions that require focusing on a single specific object or actor in a frame
of the video. Relatedly, programs that include the subtree in Figure 14 require identifying at least
two objects or actors and then relating them (by calling simple qa(), an image question answering
module).

9.3 ADDITIONAL ANALYSIS RESULTS: TEMPORAL SUPPORT

The interpretable nature of subtrees allows us to manually identify a subset of subtrees we know
correspond to subroutines that store frames. We leverage Equation 1 to count the appearance of said
subtrees in each program’s ASTs to find the temporal support of each question. As previous works
have proposed (Mangalam et al., 2023), we validate that a significant source of question complexity
in Video Question Answering is owed to the number of frames needed to answer the question (Figure
17).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Counting questions Single-frame Multi-frame
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

Su
cc

es
s R

at
e

Success Rate per Model by Number of Frames in Temporal Support

Models
SeViLA
SeViLA ZS
ViperGPT
InternVideo
ATP
VIOLET

Figure 17: Temporal support (i.e. number of frames a question needs) according to the generated
program. All models tested perform significantly worse on questions that require more frames.
Counting questions are listed separately, as they potentially require every frame to be checked.

#Questions # Videos

Action Genome (Ji et al., 2020) 1572 1154
ActivityNet (Caba Heilbron et al., 2015) 749 594
MOMA (Luo et al., 2021; 2022) 133 93

Table 3: Composition of CodePlex-QA in terms of number of questions and videos from each source
dataset.

9.4 DATASET STATISTICS: CODEPLEX-QA

The outcome of the data generation process is summarized in Table 3, which presents a breakdown
of CodePlex-QA. For each source dataset, the table shows the number of questions and videos that
pass the described CodePlexity filter. Importantly, a majority of the questions are associated with a
unique video.

10 ABLATIONS

10.1 VALIDATING QUESTION SELECTION ALGORITHM

We now validate our approach for selecting hard questions based on our complexity estimation using
the NExT-QA validation set. In particular, we follow the same approach (and with the same thresh-
old and parameters) as when constructing CodePlex-QA, and select the most challenging questions
from this set. We then evaluate the same models from Section 5.2 on this subset, which we call
NExT-QA∗, and compare to both the original NExT-QA dataset, and CodePlex-QA. This allows to
separate the effects of question generation and question filtering when constructing CodePlex-QA
as NExT-QA and NExT-QA∗ share exactly the same base set of questions.

Figure 18 indeed validates that our approach is successful in identifying a subset of NExT-QA that
is more challenging for all models evaluated compared to the original dataset. However, our final
dataset generation pipeline results in an even more challenging benchmark by first constructing a
more diverse pool of videos and questions for the filtering approach to select from.

10.2 IMPACT OF CODE GENERATION CORRECTNESS ON COMPLEXITY METRICS

To investigate the relationship between code generation correctness and the alignment of complexity
metrics to problem structure, we conduct an ablation study comparing cases where the generated
code produces correct answers with those where it does not. Note that ”incorrect answers” do not
necessarily imply that the code itself is invalid; rather, it may fail to produce the expected output.

The results are summarized in Table 4, which presents the correlation between the complexity met-
rics and the mPEG metric for various models. From Table 4, it is evident that the correlation between

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

NExT-QA NExT-QA* CodePlex-QA
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Su
cc

es
s R

at
e

Success Rate per Model in Easy vs. Hard Subsets

Models
SeViLA ZS
InternVideo
VIOLET
Random

Figure 18: Filtering NExT-QA using our approach indeed results in a more challenging subset for
all the evaluated models. However, our full dataset construction pipeline results in an even more
challenging benchmark by first generating a more diverse pool of samples to select from.

Train Models Validation Models

SeViLA ViperGPT ATP VIOLET HGA SeViLA ZS InternVideo Tarsier

Lines of Code
Correct 0.1373 — 0.1747 0.1455 0.0712 0.1654 0.2022 0.1475
Incorrect 0.1245 — 0.0540 0.0656 0.0735 0.0756 0.0831 0.0696

Cyclomatic Complexity
Correct 0.1702 — 0.2128 0.1930 0.0649 0.1739 0.2825 0.1634
Incorrect 0.1351 — 0.1118 0.0881 0.0664 0.0973 0.1388 0.1071

CodePlexity
Correct 0.2608 — 0.3128 0.3178 0.0867 0.2095 0.2877 0.1950
Incorrect 0.2810 — 0.2041 0.2542 0.1087 0.1839 0.1700 0.1857

Table 4: Correlation of complexity metrics with mPEG for cases where the generated code produces
correct and incorrect answers.

the mPEG metric and the various complexity metrics is consistently higher for cases where the gen-
erated code produces correct answers.

These results suggest that correct code generation often aligns better with problem complexity, as
reflected in higher correlations with the mPEG metric. By contrast, incorrect code, while potentially
valid in syntax or structure, often fails to capture the underlying complexity of the problem, thereby
diluting the relationship between the metrics.

10.3 IMPACT OF CODE GENERATION MODEL CHOICE

This section evaluates the influence of the code generation model on the performance of our com-
plexity estimation framework. Specifically, we compare ViperGPT, the primary model used in our
analysis, with Recursive Visual Programming (RVP) Ge et al. (2023), a newer model designed for
visual programming tasks. Unlike traditional approaches, RVP employs a recursive code generation
strategy, which systematically breaks down complex problems into manageable subproblems. This
allows it to handle intricate question structures with greater flexibility.

Figure 19 illustrates the relationship between the estimated complexity of questions and the per-
formance of Visual Programming models. For both ViperGPT and RVP, we observe a significant
negative correlation between the complexity metric and the model’s success rate. This trend high-
lights that as the estimated complexity of a question increases, the likelihood of the model correctly
addressing it decreases. This correlation underscores the utility of the complexity metric as a pre-
dictive tool for identifying challenging questions.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7
Cyclomatic Complexity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

Success Rate vs Cyclomatic Complexity
Average
Tarsier
SeViLA
SeViLA ZS
ViperGPT
InternVideo
ATP
VIOLET
HGA

ViperGPT

1 2 3 4 5 6 7 8
Cyclomatic Complexity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

Success Rate vs Cyclomatic Complexity
Average
Tarsier
SeViLA
SeViLA ZS
ViperGPT
InternVideo
ATP
VIOLET
HGA

RVP

Figure 19: Comparison of code-based complexity metrics when using different code generation
models. Lines in both cases show significant negative correlation of complexity metric with model
performance for both variants.

8 9 10 11 12 13 14 15 16
Lines of Code

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

Success Rate vs Lines of Code
Average
VideoChat2
Tarsier
LlavaNext
SeViLA ZS
InternVideo

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Cyclomatic Complexity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

Success Rate vs Cyclomatic Complexity
Average
VideoChat2
Tarsier
LlavaNext
SeViLA ZS
InternVideo

Figure 20: Correlation of VideoQA models’ success rate on MVBench for various approaches for
estimating question complexity. As was the case for NExT-QA, we observe that code complexity
correlated strongly with question complexity.

10.4 IMPACT OF ANALYSIS DATASET CHOICE

To assess the generality and robustness of our findings, we replicated our analysis using a different
dataset, MVBench (Li et al., 2024), which offers a diverse set of videos and questions compared to
NExT-QA. Specifically, we repeat the same experimental setup as that in Section 4.1, first generating
programs for the questions in MVBench, and then rerunning our pipeline to extract code based
metrics and train our CodePlexity metric. Furthermore, we additionally consider two new models in
our analysis: VideoChat2 (Li et al., 2024) and Llava-NExT (Liu et al., 2024) as these represent the
state of the art on the MVBench dataset.

We first visualize the correlation between code-based complexity metrics and the performance of
various VideoQA models on MVBench in Figure 20. Consistent with our observations on NExT-
QA, we found that code-based complexity metrics exhibit a strong negative correlation with model
performance on MVBench. Specifically, both Lines of Code and Cyclomatic Complexity continued
to demonstrate a consistent and strong correlation, indicating that questions requiring more intricate
code are more challenging for all the models evaluated.

We further conducted a systematic evaluation of different code-based metrics using the mPEG met-
ric on the validation set of MVBench, summarized in Table 5. Our proposed CodePlexity metric
significantly outperformed the naive code complexity measures, such as Lines of Code and Cyclo-
matic Complexity. CodePlexity achieved higher predictive accuracy in estimating question difficulty
across all evaluated models on MVBench. Note that CodePlexity generalizes to the held-out models
in our analysis (VideoChat2 (Li et al., 2024) and Llava-NExT (Liu et al., 2024)).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Train Models Val. Models

InternVideo SeViLA ZS Tarsier VideoChat2 LLaVA-NeXT

Lines of Code 0.0441 0.0951 0.1254 0.1027 0.0919
Cyclomatic Complexity 0.1299 0.0964 0.0614 0.0521 0.0447
CodePlexity (Ours) 0.4134 0.3303 0.4444 0.2991 0.2743

Table 5: Comparison of question complexity metrics using mPEG on the validation set of MVBench.
CodePlexity is trained on the first three models. Our approach demonstrates the highest correlation
with the models’ performance.

These consistent results across two distinct datasets suggest that code-based complexity metrics,
and CodePlexity in particular, are effective tools for assessing question difficulty in VideoQA tasks
regardless of the dataset’s characteristics.

11 BROADER IMPACTS AND LIMITATIONS

In our study, we utilize four distinct pre-trained models, each with its inherent biases, to identify
challenging questions within an existing dataset. Although they have different pre-training schemes,
these models likely encode similar implicit biases, owning to their training on internet scale data
collections. In particular, three of our selected models, along with our visual descriptors extractor,
rely on CLIP (Radford et al., 2021) as a visual encoder, meaning they likely replicate the same biases
including those identified in previous studies (Agarwal et al., 2021).

Furthermore, the dataset we base the majority of our analysis on, NExT-QA, is not fully represen-
tative of real-world diversity and complexity. This limitation in addition to the biases present in
the chosen models can lead to skewed or incomplete analysis. Furthermore, our analysis’ focus on
interplay between the constituent syntactic elements in code may overlooks critical sources of com-
plexity not apparent in the code structure. These include, for example, differences related to gender
and ethnicity, which are not explicitly manifested in the code.

Similarly, our own proposed dataset, CodePlex-QA, builds upon the existing datasets MOMA (Luo
et al., 2021; 2022), ActivityNet (Caba Heilbron et al., 2015), and Action Genome (Ji et al., 2020),
and therefore includes the same biases. We urge researchers and practitioners to refer to the relevant
dataset cards. Finally, our selection methodology for filtering videos and questions may inadver-
tently introduce new biases, or amplify existing ones.

28

	Introduction
	Related Work
	Methodology
	Preliminaries
	CodePlexity: Estimating Question Complexity from Code
	Subtree Analysis
	Learning to Ask Hard Questions

	Evaluating Question Complexity Estimation
	Experimental Setup
	Results
	Subtree Analysis

	Dataset Generation
	Experimental Setup
	Results

	Conclusion
	Additional Technical Details
	Merging Duplicate Subtrees
	Human Annotation Interface and Processing
	GPT question complexity scoring
	CodeGen details
	Logistic Regression Parameters
	Cyclomatic Complexity Calculation

	Additional Question Generation Details
	Visual Descriptors extraction
	MOMA
	ActivityNet
	Action Genome
	Question Generation from Scripts

	Additional Results and Analysis
	Relation to Video Complexity
	Subtrees Visualization
	Additional Analysis Results: Temporal Support
	Dataset Statistics: CodePlex-QA

	Ablations
	Validating Question Selection Algorithm
	Impact of Code Generation Correctness on Complexity Metrics
	Impact of Code Generation Model Choice
	Impact of Analysis Dataset Choice

	Broader Impacts and Limitations

