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ABSTRACT

We propose a data-driven approach to analyzing query complexity in Video Ques-
tion Answering (VideoQA). Previous efforts in benchmark design have largely
relied on human expertise to construct challenging samples. In this work, we
experimentally demonstrate that humans struggle to accurately estimate which
questions are hard to answer for machine learning models. Our alternative, auto-
mated approach takes advantage of recent advances in code generation for visual
question answering. In particular, we use the complexity of generated code as a
proxy for the question complexity and demonstrate that it indeed shows a much
stronger correlation with the models’ performance, compared to human estimates.
We then present a novel algorithm for estimating question complexity from code.
It identifies fine-grained primitives that correlate with the hardest questions. These
human-interpretable results lead to a number of discoveries about the key sources
of complexity for VideoQA models. Finally, we extend our approach to gener-
ate complex questions for a given set of videos. This allows us to automatically
construct a new benchmark, which is 1.9 times harder for VideoQA methods than
existing manually designed datasets.
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Figure 1: Humans struggle to judge which questions present higher challenges for machine learning
models. In our study, the question on the left is universally perceived as being easier than the one on
the right, which is inversely correlated with the models’ performance. We show that the complexity
of the corresponding visual program can serve as a much more reliable predictor.

1 INTRODUCTION

Humans can effortlessly reason about activities, whether that reasoning requires understanding space
and time, cause and effect, or fine-grained deta1ls and high-level context ( ,

; , , ). This versatility allows us to
function effect1vely in dynamic environments, yet it s1multaneously complicates our ability to assess
what is hard for machines. Consider the two video-question pairs shown in Figure 1 (top). In our
study, human subjects overwhelmingly perceive the question on the right as the more complex to
answer, but evaluating a variety of state-of-the-art VideoQA models ( ,

; , ) shows that the question on the left presents a 51gn1ﬁcantly
greater challenge for them.

While an expert in the field might think that they would do a better job at this task, the history
of VideoQA benchmarks has proven otherwise. Several studies have shown that, despite the best
efforts of their authors, most datasets are dominated by questions that can be mastered even by
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naive, single-frame baselines ( ; ; , ). Although
many attempts have been made to address this hmltatlon they predomlnantly adopt a top-down
approach. In particular, these works start from an expert hypothesis of what is hard and validate this
assumption by evaluating models on samples that specifically target the identified skill ( ,

, ). While this has led to some progress, top performance can still often
be achleved by methods that rely almost exclusively on static image cues ( , ).

In this work, we propose a bottom-up approach instead that discovers human-interpretable insights
about the sources of complexity for existing VideoQA models from the data. To this end, we capi-
talize on a recent large language model (LLM)-based code generation paradigm (

, ), which produces modular executable pro—
grams to answer natural language queries. While this approach has shown promise for zero-shot
VideoQA ( , ), we are not interested in its task performance per se. Instead, we
propose to use its rich and highly structured intermediate representations—programs, as shown in
Figure 1 (bottom)—to capture the elusive complexity of the original questions. It is important to
note that the videos themselves also contribute to the complexity of the VideoQA samples. How-
ever, we demonstrate that our approach allows us to construct an efficient complexity metric with
high predictive power from the questions alone.

To this end, we begin by collecting the visual programs generated by ( ) in their recent
approach on the validation set of the challenging NextQA benchmark ( , ), together
with predictions of a large collection of diverse VideoQA algorithms. We then calculate several
standard structural complexity metrics ( , ) for these programs and additionally collect
human judgments about the question complexity for a subset of the dataset. Intriguingly, our analysis
demonstrates that, despite the programs being imperfect, even the simplest code complexity metrics
correlate better with machine learning models’ performance on NextQA than human estimates (see
Figure 3).

We then propose CodePlexity — a novel algorithm for estimating question complexity from code that
takes into account the content of the program, in addition to its structure (Section 3.2). In partic-
ular, it correlates individual subroutines with model performances, effectively mining for human-
interpretable patterns that summarize the error modes of each model. In addition to aggregating
the subroutines mined from multiple models into a single, robust quantitative metric, our approach
allows one to study them individually. In Section 3.3, we propose an algorithm to identify patterns
in the code that universally correlate with challenging questions, leading to a number of important
discoveries. For example, we find that reasoning about the order of events and about fine-grained
object details is difficult for all state-of-the-art models tested.

Finally, equipped with this powerful analysis tool, we design an algorithm for automatically gen-
erating challenging questions for any given collection of videos in Section 3.4. In particular, our
approach takes as input a compact description of a video and uses an LLM like ChatGPT ( ,
) to generate question candidates first. We then generate visual programs for each question
and use our code-based complexity metric to select the hardest subset. We evaluate several zero-shot
VideoQA methods on the resulting benchmark and observe a 1.9 gap in performance compared to
existing datasets like NextQA ( , ), confirming the effectiveness of our approach.

To summarize, our contributions are as follows:

1. We demonstrate that generated code complexity can serve as a robust metric of question
complexity in VideoQA and propose a novel approach for automatically quantifying it.

2. We present CodePlexity, a novel approach that identifies the key sources of complexity for
existing VideoQA models. For example, we discover that most models fail when the order
of the frames has to be taken into account.

3. Using CodePlexity, we automatically construct CodePlex-QA— a novel benchmark that is
1.9 times harder for VideoQA methods than existing, manually designed datasets.

2 RELATED WORK

We review the relevant literature in video question-answering models, frame selection and code
generation for QA, and measures of code complexity.



Under review as a conference paper at ICLR 2025

Large single-stage models. A number of recent works propose to train end-to-end architectures for
video-language understanding. ( ) propose Merlot, a large video-language dataset
obtained through ASR captions to train a model with contrastive frame-caption matching, masked
language modeling, and re-ordering of scrambled video frames. VIOLET ( , ) is an
end-to-end joint video and text architecture that uses the dVAE ( s ) from
DALL-E ( , ) to generate tokens for masked video-text pre-training and is tested
on video question-answering and text-to-video retrieval. A number of works train masked space-
time autoencoders (TimesFormer ( s ), VideoMAE ( s )
on video sequences, testing on tasks like action recognition. mPLUG-2 ( , ) proposes
to unify image- and video-language tasks in a single architecture with task-specific modules pre-
trained with masked language modeling, vision-language contrastive learning, and task instruction
representation.

Frame selection models. Other work leverages single-image vision-language models for video
understanding, on the hypothesis that only a subset of video frames (often just a single frame) are
relevant to answer a given query. Atemporal Probe (ATP) ( , ) proposes a frame selec-
tor to measure the extent to which single-frame image-centric baselines can address Video Question
Answering. Later, SeViLA ( , ) builds on this paradigm by fine-tuning BLIP2 twice:
first to localize relevant keyframes, and then for the question answering module, which answers the
question based on the selected frames, question, and candidate answers.

Code generation models. A number of recent works tackle the frame selection and question an-
swering problem through code generation, leveraging the success of recent text-to-code models

such as Codex ( , ). VisProg ( s ) decomposes natural lan-
guage queries into compositional programs, using a variety of zero-shot pretrained models to solve
visual question answering problems. ViperGPT ( , ) prompts code generation models

with an API that incorporates a variety of vision modules, generating Python code that is executed
to answer natural language queries without access to source images or video frames. The approach
does not require further training and has demonstrated state-of-the-art results across various com-
plex visual tasks. CodeVQA ( s ) is a concurrent work to ViperGPT with
a smaller API, specialized to single-frame QA. Recursive Visual Programming or RVP
( ) employs a recursive code generation strategy, which systematically breaks down complex
problems into manageable subproblems. This allows it to handle intricate question structures w1th
greater ﬁex1b1hty Precursors to these models (

; , ) would 1mplement code generatron modules using neural
networks whrch were tramed either with supervision or via reinforcement learning.

Complexity estimation. Prior work has proposed ways to estimate complexity for other settings
and modalities. For instance, in NLP, sentence or paragraph length has been used as a proxy for
the complexity of a text ( , , ), where
a sample with more words is presumed to correlate with harder trarmng data Related works have
explored variations of this metric such as number of conjunctions ( , ) (and/or),
number of phrases ( s ), or depth of the dependency tree ( s ).
In computer vision, prior work by ( ) has approximated image complexity with the
number of objects present in an image, while others have directly collected human annotations for
image complexity ( , ). Finally, a seminal paper by

( ) suggested that, in reasomng tasks the complexity of said task can be estimated by
the number of reasoning steps required to solve it, and introduced a method to estimate said number.
A follow-up work by ( ) refined and advanced the initial method, and used it
to quantify the complexity of VQA (Visual Question Answering) queries.

Problem complexity from code. Measuring complexity through code has a rich history; Kol-
mogorov defines complexity based on the succinctness of the program that can represent said object

( , ; , ). However, its incomputability limits its practical application
( , ). Software engineering rely on tangible metrics like cyclomatic complexity
that measure the number of independent paths in a program ( , ), a computable yet less

philosophically rich approach.

Related to our focus on Video Question Answering, synthetic datasets have become crucial in com-
puter vision, particularly for analysis on question answering tasks. These datasets often include
symbolic programs that abstract the task of low-level perception into modular operations, effec-



Under review as a conference paper at ICLR 2025

= o
°Q® 2

1
O===m |(
1

o=a
OQ:

Query: What was the teacher
doing while he was playing the
piano for the first time?

Code Generation AST Generation Subtree encoding Complexity Estimation

Figure 2: Estimating question complexity via code. Our approach to estimating question com-
plexity involves converting the question into code, decomposing the pseudo-code into abstract syn-
tax subtrees (.5;), before finally correlating subtree presence with model performance.

tively separating the perceptual components from the higher-level reasoning ( ,

, ). These programs can then be
grouped into families that necessnate s1m11ar sk1lls thank to which it becomes possible to correlate
model performance with program structure, providing insights into the model’s reasoning capabil-
ities. Contrasting this, our work pioneers the use of code generation models to estimate question
complexity, without needing expensive annotations and generalizing to more question types. Our
novel approach offers a direct, computable measure of question complexity, bridging the gap be-
tween theoretical definitions of complexity, and practical applications in machine learning.

3 METHODOLOGY

3.1 PRELIMINARIES

We study the problem of estimating the complexity of questions in VideoQA. We are given a dataset
consisting of collections of videos, questions, and answers D = {V,Q, A}, along with a set of K
models already trained on the task M = {my,...,mx }. Our goal then is to design a function C
that allows us to categorize questions g; € Q into groups based on their complexity with respect
to M. Crucially, we are interested in a general metric consistent across all models m; € M.
Concretely, for any two questions g1, g2 € Q, together with corresponding videos v1,vy € V, if
C(q1) > C(g2), we expect model performance P(m,q,v) to vary accordingly: P(m;,q1,v1) <
P(mj, g2,v2) VYm; € M, indicating that models perform worse on more complex questions.

However, directly estimating complexity C from natural language question g is a challenging prob-
lem even for humans, as we demonstrate in a Section 4.2. Instead, our key idea, inspired by the
notion of Kolmogorov Complexity (KC) ( , ), is to utilize the rich and highly-
structured intermediate representations - programs, to capture the elusive complexity of the orig-
inal natural language querles Concretely, we capltahze on the recent code generation-based meth-
ods ( s , s ) that operate in a 2- stage
fashion: first, given a questlon q a program generator 7 from a Large Language Model (LLM) is
used to translate it into an executable program z = 7(g). An off-the-shelf execution engine like
Python can then be used to produce an answer ¢ = ¢(v, z). Running such an approach on a dataset
D results in a set of programs P(D) = {z1, 22, ..., 2N }.

Next, in Section 3.2 we propose several techniques for code analysis of increasing intricacy and show
how they can be used to build a function for question complexity estimation via code generation
C(q) x C(z). Then, in Section 3.3, we demonstrate how analysis of the generated code can help
gain insights into the failure modes of VideoQA models. Finally, in Section 3.4 we discuss how
such algorithms can be used to automatically construct challenging VideoQA benchmarks.

3.2 CODEPLEXITY: ESTIMATING QUESTION COMPLEXITY FROM CODE

As a first step we review existing software engineering metrics that map code into complexity scores
C(z) — R. In particular, we focus on Lines of Code (LoC) and Cyclomatic Complexity ( ,

). The former simply correlates the number of lines in a program with its complexity C(z) o
, whereas the latter quantifies the number of linearly-independent paths through the source code
and is denoted as C(z) = C'C(z). To minimize the impact of spurious factors, we pre-process the
code by removing all the comments and empty lines first, and make sure to use the same set of basic
primitives in all experiments. Both metrics are indicative of the code’s structural complexity, with
higher values suggesting more intricate control flow. However, they do not take the contents of the
code into consideration, which, as we shown in Section 4.2, limits their predictive power.
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To address this drawback, we propose a new method, CodePlexity, illustrated in Figure 2. CodePlex-
ity involves analyzing the components of the generated code that affect question complexity, con-
sidering both its structure and semantic content. More specifically, we develop a compiler to parse
each question’s code into its basic syntactic elements, creating a Abstract Syntax Tree or AST (

, ) T = compile(z) with nodes N and edges E. In this model, nodes represent variables,
functions, and control structures, while the edges capture the logical and hierarchical relationships
between them. The AST framework abstracts the code away from its literal syntax, allowing us to
focus on the underlying logic and structure. By generating ASTs for the entire dataset, we obtain
a comprehensive set 7 (D) = {compile(z) | z € P(D)}, thus laying the groundwork for a deeper
analysis of code complexity factors.

Next, we mine 7 for common subroutines (recurring logical patterns or functions) that occur in the
code. In ASTs subroutines manifest as subtrees, which we denote as S = (N', E’), where N’ C N,
E' C FandV(u,v) € E', w € N’ Av € N'. Importantly, not all subtrees constitute valid Python
code, since they might fail to comply with Python’s syntax rules. To systematically identify valid
subtrees, we define a function G(T) that yields an unordered set of all valid subtrees of T", denoted as
G(T) ={S51,52,...,S5,}. Considering the entire dataset, the collection of all valid subtrees across
the dataset can be represented as S(D) = Urer(p) 9(T).

Then, to avoid duplicates, we merge subtrees that always co-occur when one is a descendant of the
other. Specifically, Syergeqa(D) is defined as the subset of S(D) that excludes S, if there exists
a subtree S such that S7 and S; always co-occur and S, is contained in S; (see Section 7.1 for
formal definition). The presence of a specific subroutine within a program’s AST can be verified via
a subgraph isomorphism check:

ISO(T, S) = S € G(T). (1)

To aggregate the identified subtrees into a quantitative metric of complexity, we assign each subtree
in Spergea(D) an index and encode each question g; in the dataset using one-hot encoding x; €

RISmersed(P)l where a 1 in index k of z; signifies the presence of subtree Sy, in question’s AST T;.

2)

1 if ISO(T;, Sk)
Tik = .
ik 0 otherwise

This representation transforms the complex structure of code into a fixed-size vector, enabling
straightforward application of machine learning models. We then employ a logistic regression model
trained on these one-hot encodings to predict the success of models m; € M. Note that the training
set effectively treats each (x;, y§J )) pair as a distinct instance, where ygj ) is the binary outcome for
question 7 with respect to model m; (1 for success, O for failure). This approach is justified by our
objective to identify subtrees that universally challenge the models, implying a structural complexity
in the code that transcends specific models. We then obtain the final complexity function via:

CodePlexity(z) = —¢; = —o(wx; + b). 3)

Next, we discuss how our subtree analysis approach allows to obtain deeper insights into the sources
of complexity for existing VideoQA models.

3.3 SUBTREE ANALYSIS

Unlike black-box metrics, in addition to a numerical score, our approach also outputs an inter-
pretable set of subtrees that correlate with challenging questions. We now demonstrate how to
identify subroutines that have a high impact on model performance. More specifically, we are in-
terested in subtrees that are linked to a decrease in model m;’s performance with a high degree of
statistical significance (set at 0.99). To test this, we establish a null hypothesis (H0) stating that the
proportion of successes is the same with and without the subtree present:

HO: P(mj,q1|S € S(D)) = P(m;,q1|S ¢ S(D)). @)

Conversely, our alternative hypothesis posits that the proportion of successes without the subtree is
greater, implying that its presence hurts performance:

HA: P(mj, q1|S € S(D)) < P(m;,a1S ¢ S(D)). 5)
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We conduct a one-sided test to evaluate these hypotheses and define a subset of subtrees, denoted
as Sf%j (D), for which their presence is statistically correlated with a decrease in the performance of

the model m;:
S, (D) = {3 € S(D) | p(5,m;) < 0.01}, ©6)

where p(S,m;) denotes the corresponding p-value. Finally, to identify the subroutines that are
associated with performance decrease for multiple models, we consider the intersection of the sets:

= () Sn,l (7)

mjeM

Identifying the specific subtrees that cause a decrease in models’ performance allows us to obtain
deeper insights into where and how they may falter. In Section 4.3, we perform this analysis for
several state-of-the-art approaches and suggest potential areas for improvement in model design.

3.4 LEARNING TO ASK HARD QUESTIONS

We now build on our code-based question complexity metric described in Section 3.2, and propose a
method for automatically generating challenging question-answer pairs for any given set of videos.
Concretely, our approach takes as input a set of videos V paired with natural language summaries
C. We then follow prior work by ( ) and prompt a large language model
(LLM) to generate question and answer candidates based on each summary individually ¢,a =
LLM (¢, prompt). The exact prompts are listed in Section 7.4 of the appendix.

Importantly, our approach is agnostic to the nature of C, which can either be annotated manually, or
generated automatically. In this work, we take the latter approach and capitalize on existing datasets

with scene graph annotations ( , ; ; s ) paired with an
image captioning model to generate natural 1anguage summaries of the video such that a language
model can understand them ( ; s ; s ). We

detail this algorithm in Section 8 of the appendlx

Following our approach from Section 3.2, we then convert each generated question ¢ into code,
and use our trained CodePlexity model (Equation 3) to estimate its complexity. A set of candidate
questions Q* can be selected by setting a threshold d for minimum complexity:

*={geQlc(q) = 5} (8)

Finally, we manually filter the candidate dataset D* = {V,Q*, A*} to remove the question/answer
pairs that cannot be accurately answered from the corresponding videos due to inaccuracies in the
generated summaries or LLM hallucination. We emphasize that this final manual filtering is only
needed to ensure the perfect quality of the final dataset D*. In practice, we only had to remove
12% of the questions, demonstrating that the fully automatic pipeline is capable of producing useful
datasets by itself.

4 EVALUATING QUESTION COMPLEXITY ESTIMATION

In this section, we compare different approaches to estimating question complexity in VideoQA. To
this end, we first define a thorough evaluation protocol and detail our experimental setup in Sec-
tion 4.1. We then evaluate how the code-based metrics proposed in this work compare to human
subjects and several simple baselines in predicting the performance of a wide variety of contempo-
rary approaches on the popular NextQA benchmark in Section 4.2. We conclude by performing a
detailed analysis of the subroutines that show the strongest correlations with challenging questions
in Section 4.3.

4.1 EXPERIMENTAL SETUP

Evaluation protocol. Our goal is to compare the predictive power of several approaches for esti-
mating question complexity in VideoQA with respect to a variety of machine learning models M on
a dataset D. Importantly, some of the metrics we study require training data in the form of questions
paired with outcomes of a model m; € M on them (g;, yl(] )). Thus we split the whole pool of
models M into the training M, and held-out validation M,,,; sets and report results on the latter.
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To quantitatively compare the effectiveness of different approaches, some of which map a question
to a numerical value corresponding to its complexity, whereas others directly return an ordering
of the questions, we propose a unifying metric, Performance Extremity Gap (PEG). In particular,
we first use numerical complexity estimates to sort questions accordingly. We then measure the
disparity in model m;’s performance P between the easiest and the hardest a% of the questions via:

1 1
PEG(m;,a) = N Z P(mj,q,vq) — A Z P(mj,q,vq) )
* qe Qhardesl, @ “ q€ Qeasiest, o
Finally, inspired by the mAP metric ( , ), we average the PEG values over

« € (0,0.5] to obtain the final mPEG score.

Dataset. It is crucial that the dataset used to perform our analysis features as many diverse chal-

lenges as possible. We choose the NEXT-QA ( , ) benchmark for its size, variety of
human-annotated questions, and its focus on spatio-temporal reasoning in videos over mere visual-
fact retrieval ( , ). In addition, its popularity provides a large pool of models with

pre-trained, public checkpoints for our study. That said, our method is dataset-agnostic and can be
applied to any other VideoQA benchmark in the future. We perform the evaluation on the validation
set of NExT-QA, further splitting the questions into 80% used to train the metrics and the other 20%
held out for computing mPEG.

Models. We include seven representative methods, chosen for their coverage of existing archi-
tectural philosophies, pre-training strategies, and state-of-the-art performance. In particular, we
use VIOLET ( , ) and InternVideo ( , ), which are pre-trained with
contrastive visual-language objectives and fine-tuned for VideoQA. We also evaluate SeViLA (

s ), which is based on the BLIP-2 ( s ) large-scale visual-language model;
we assess both its zero-shot variant (SeViLA-ZS) and a fine-tuned version (SeViLA). Addition-
ally, we evaluate HGA ( s ), a GNN-based model that reasons with heteroge-
neous graph alignment, representing earlier approaches prior to the prevalence of video large lan-
guage models (videoLLMs). Furthermore, we include the ViperGPT ( , ) code-
generation-based approach, as well the simple but effective ATP baseline ( , )Fi-
nally, we evaluate the current state-of-the-art model, Tarsier ( R ). The models are
split into training and validation sets as follows: My, = {VIOLET, SeViLA, ViperGPT, ATP},
M a = {HGA, SeVIiLA-ZS, InternVideo, Tarsier}.

Baselines. In addition to the code-based metrics introduced in Section 3.2, we evaluate several
baselines that attempt to directly estimate question complexity from the natural language query
itself. In particular, as a learning-free baseline, we follow ( ) and correlate the
complexity of a question with the maximum depth of its parsed dependency tree. To more fairly
compare to our learnable, code-based metric we fine-tune BERT ( s ) to predict
the probability of model success given the question using exactly the same training data. We also
prompt GPT-4 ( , ) to estimate the complexity of a question on a Likert scale ( ,
) (details and prompts are provided in Section 7.3 of the appendix).

Finally, we conduct a human study on a subset of 150 questions. To this end, we recruited 30 human
subjects via the Prolific platform ( , ). The subjects were asked to sort three
questions at a time according to their perceived relative complexity. Consistency was validated by
asking to compare the same questions multiple times throughout one session and the subjects who
demonstrated low consistency were excluded from the study. The final sequence order of the entire
subset was calculated via pairwise ELO scores (Elo, ). More details and an example of the
annotation interface are provided in the appendix (Section 7.2).

4.2 RESULTS

We begin by visualizing the correlation of human estimates of question complexity with the perfor-
mance of all 6 models used in our study on the 150 manually annotated questions from NExT-QA in
Figure 3 (left). We observe that, while a downward trend clearly exists, with the questions labeled
as the hardest by humans resulting in lower success rate for models compared to the easiest ones,
the correlation is very weak. Notably, the questions that are ranked as being average in complexity
are in fact the hardest for the models.
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Figure 3: Correlation of various approaches for estimating question complexity with VideoQA mod-
els’ success rate on these questions. We observe that humans struggle to accurately predict what’s
hard for machine learning models and that code can serve as a more reliable source of prediction
than natural language questions.

Train Models Val. Models
SeViLA ViperGPT ATP VIOLET HGA SeViLA ZS InternVideo Tarsier
Dependency Tree Depth 12.9 7.9 1.1 159 7.4 13.5 17.7 10.1
GPT-4 ( , ) 9.6 8.9 11.6 5.8 7.8 14.6 13.9 10.8
BERT ( , ) 7.7 143 21.1 10.8
Lines of Code 16.4 153 142 12.0 9.9 16.2 17.5 14.4
Cyclomatic Complexity 18.2 14.2 18.7 159 8.9 17.2 242 16.7
CodePlexity (Ours) 14.1 25.6 26.6 24.9

Table 1: Comparison of question complexity metrics using mPEG on the validation set of NExT-
QA. BERT and CodePlexity are trained on the first four models. Text-based metrics (above) perform
worse than the code-based ones (below), and our approach demonstrates the highest correlation with
the models’ performance.

We then evaluate two baselines on the same set of questions, one based on the natural language
queries (dependency tree depth shown in Figure 3, center) and one based on the generated code
(cyclomatic complexity, Figure 3, right). Both show a much stronger correlation with the models’
performance, with cyclomatic complexity being the most consistent. These results demonstrate that
human intuition about sources of complexity in VideoQA does not reflect the main challenges for
machine learning models, and that generated code can be a more reliable source for estimating
complexity than natural language.

Next, we report a more systematic comparison of different text- and code-based metrics using mPEG
on the validation set of NExT-QA in Table 1. Comparing the three language-based metrics in the
upper part of the table on the held-out models, we find them to perform relatively similarly. Notably,
the BERT-based model which is trained on the questions and prediction outcomes of the four models,
performs better than the learning-free baselines for InternVideo, but fails to generalize to SeViLA.
This demonstrates that the space of the natural language is not structured enough to fit a robust
complexity estimation model.

In contrast, code-based metrics, shown in the lower part of Table 1 demonstrate better predictive
ability overall, with even the simplest Lines of Code baseline outperforming the text-based metrics
in most scenarios. Cyclomatic Complexity shows top results among all non-learning-based metrics,
and our proposed approach, CodePlexity, achieves significant improvements over it by learning
to identify code primitives which correlate with challenging questions. This brings us to the final
aspect of our analysis: understanding these structural elements of the code that contribute to question
complexity.

4.3 SUBTREE ANALYSIS

We follow the approach proposed in Section 3.3 and identify the subtrees which are statistically
correlated with a decrease in the performance Sy, = for three models out of out training set M,.:
SeViLA, ViperGPT, and VIOLET. In Figure 4 (right) we visualize the intersections between these
three individual sets S* (Equation 7) as a Venn diagram. A perceptible common trend is apparent:
different architectures have their own weaknesses, but the commonalities are surprisingly frequent.
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Figure 4: Detailed analysis of subtrees that correlate with challenging questions among several mod-
els. We find that, although each model has its own error-modes, 8 subroutines are shared among all
3 of them (right). One of the patterns we find then analysing the shared code structures is reasoning
about the order of events (left).

We manually inspect the eight subroutines that are shared among all three sets and identify that they
represent two clear patterns (the actual subtrees are listed in the appendix, Section 9.2).

The first group of primitives, manifesting in such structures as those containing For loops with
complex control flow in them, captures reasoning about not just the content of the frame, but also
its placement in a sequence of events. We provide an example of a corresponding subtree together
with a question that requires this reasoning pattern in Figure 4 (left). The second group contains
primitives that represent detailed analysis of specific elements (objects, relationships) within a scene.
The examples include questions that require identifying the precise placement of an object within a
frame.

Finally, we note that models with uniformly low performance may not identify some certain sub-
routines as distinctly more challenging than average. Focusing on subroutines that challenge only
the state-of-the-art model, we find that those involving long-term activities, as opposed to atomic
actions, are particularly difficult for SeViLA, but not for others.

In summary, we discovered that VideoQA methods struggle with fine-grained temporal reasoning
and lack spatlo -temporal, object-centric representations. This is in accord with prior studies (

, ; , ) that demonstrated that naive, single-frame base-
lines can achleve top performance on mainstream VideoQA benchmarks, which were used to de-
velop these methods. Next, we show how our approach can be used to automatically generate a
new benchmark that challenges existing approaches and encourages the development of a novel
generation of video-language representations.

5 DATASET GENERATION

We apply our method for automatically generating challenging questions described in Section 3.4
to create a new VideoQA benchmark, CodePlex-QA. We begin by detailing the source datasets and
key implementation details in Section 5.1. We then compare the performance of these methods on
the popular NExT-QA ( , ) to that on CodePlex-QA in Section 5.2 to validate the
effectiveness of our approach. Our dataset will be released.

5.1 EXPERIMENTAL SETUP

Source datasets. To encourage diversity we generate questions using 3 different datasets, all of
which provide scene-graphs annotations: MOMA ( , ; ); ActivityNet (

s ), which we combine with ActivityNet-Entities ( R ) and ActivityNet-
Captions ( R ), and the ActionGenome ( s ) annotations for Cha-
rades ( , ). This results in pool of 4191 videos that are passed to our algorithm.

Implementation details. We use GPT-4 ( , ) to generate question and answer candi-
dates following prior work by ( ) and leverage a state-of-the-art image caption-
ing model, LLaVA 1.5 ( s ;b), to list visual attributes of the main actors and objects in
the videos. Following ( ) we generate 5 answer candidates for each question (1 cor-
rect answer and 4 distractors), and use accuracy as the evaluation metric. We set the ¢ in Equation 8
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Dataset Tarsier SeVILA ZS ViperGPT InternVideo VIOLET Random

NExXxT-QA  709%  64.2% 60.0% 50.9% 37.7%  20.0%
ATP-Hard  59.8%  54.9% 51.8% 24.6% 254%  20.0%
CodeplexQA 52.5%  43.7% 45.8% 29.9% 27.6%  20.0%

Table 2: Difference in prediction accuracy between the manually annotated NEXT-QA and our au-
tomatically generated CodePlex-QA for a representative set of zero-shot VideoQA models. Our
benchmark is empirically 1.9 times harder, validating the effectiveness of our complexity estimation
approach.

84 QUERY: What was the person's reaction
to tripping on the stairs?

QUERY: What does the man do after
| painting the sofa?

QUERY: What action does the barber
perform most frequently?

A) Washing hair A) Leaves the sofa to dry A) They cried and stopped walking

8) Applying shampoo 8) Starts painting another sofa B) They laughed and kept walking

©) Places one unpainted seat cushion back on the sofa ©) They got angry and threw the book

D) Cle

E) Places one painted seat cushion back on the sofa E) They picked up the book and ran upstairs

Figure 5: Example questions in CodePlex-QA generated with our approach. It features many chal-
lenges that are under-represented in existing, manually-designed benchmarks and motivates the de-
velopment of novel approaches with enhanced spatio-temporal modeling capabilities.

to select the top 10% of the data according to the estimated complexity (calibrated on NExT-QA).
Further details are provided in Section 8 of the appendix.

5.2 RESULTS

To construct CodePlex-QA, we run the generation pipeline described in Section 3.4, obtaining 20791
candidate questions (several question candidates are generated for each video). Then we calculate
each question’s complexity score using CodePlexity to only retain questions that meet or exceed the
minimum complexity threshold as in Equation 8. The resulting datasets consists of 2261 questions.
The final manual filtering to ensure the answerability of the generated questions removes only 12%
of the candidates, leaving us 1981 samples, all of which are used for evaluation.

We then evaluate all the zero-shot baselines from our pool of methods on CodePlex-QA and report
their accuracy in Table 2. We additionally report the performance of these models on the popular
NExT-QA benchmark for reference. Note that the performance of the random choice baseline is
the same for the two benchmarks, so the numbers are directly comparable. Firstly, we observe that
that the average success rate of models on our generated questions is significantly lower than on
NExXT-QA. Specifically, CodePlex-QA is 1.9 times harder than the manually annotated NExT-QA
(dataset complexity estimated by taking the average performance of the 5 methods and subtracting
random chance). The ranking is consistent across benchmarks, but it is notable that the gap between
InternVideo and VIOLET is smaller on CodePlex-QA, indicating limitations in InternVideo’s video
understanding despite more visual-language data.

Finally, we visualize a representative sample of generated questions in Figure 5. We observe that
CodePlex-QA features a variety of challenging scenarios that require fine-grained temporal reason-
ing (e.g., comparing the frequency of different actions), as well as reasoning about objects in videos
(e.g., tracking seat cushions). More examples are shown in the supplementary video.

6 CONCLUSION

We have demonstrated that generated code complexity is a reliable measure of question complexity
for VideoQA, proposing a novel metric that outperforms existing metrics on this task. In addition,
our approach allows us to identify individual subroutines that correlate with challenging questions
for a wide range of models, yielding new insights into the key challenges of VideoQA. Finally, we
have shown how our metric can be used to automatically generate a novel benchmark — CodePlex-
QA, which is 1.9 times harder for existing models than the popular, manually labeled NExT-QA
dataset. As new methods and benchmarks are developed to address the challenges identified in our
work, our approach can be re-applied, thereby ensuring continued progress in the field.

10
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APPENDIX

This appendix includes further details, results and discussions that were not included in the main
paper due to space limitations:

1. Section 7 provides additional technical details for our baselines and complexity estima-
tion methods.

2. Section 8 compliments Section 5 in the main paper providing extra technical specifics
regarding the dataset generation pipeline.

3. Section 9 reports additional results and analysis to those in Sections 4.2 and 4.3 in main
paper.
4. Section 11 includes a discussion of broader impact and limitations of our work.

We also include a separate video with qualitative examples of the analyzed questions and samples
from our new dataset as part of the supplementary materials (see 1394 .mp4, Codec H.264). Fi-
nally, we re-iterate that we plan to release code, models, and other materials as part of the final
supplement.

7 ADDITIONAL TECHNICAL DETAILS

7.1 MERGING DUPLICATE SUBTREES

To avoid duplicated subtrees and reduce redundancy, we merge subtrees that always co-occur when
one is a descendant of the other. Specifically, a subtree .Sy is said to always co-occur with another
subtree S5 if every occurrence of S, in the dataset D is also an occurrence of S7. In such cases,
since Sy is always contained within 57, we can merge S> into .S; without losing any unique patterns.

Merging these subtrees does not risk missing important patterns because any syntactic or semantic
information captured by Ss is inherently included in .S;. This is due to the fact that .S; encompasses
all occurrences of S5, ensuring that the features associated with Sy are preserved within S;. By elim-
inating redundant subtrees, we streamline the dataset, which can improve computational efficiency
without compromising data integrity.

The merged set of subtrees Sperged (D) is defined as:

Smerged(P) =S8(D) \ {S2 € S(D) | 351 € S(D) : (10)

(VT c D, ISO(T, 52) — ISO(T, 51)) A\ (52 - Sl)}
Here, ISO(T, S) indicates that subtree S is isomorphic to a subtree within program T, and S C S}
denotes that S is contained within Sj.

By applying this merging strategy, we ensure that all significant patterns are retained. The one-
hot encodings of S7 and Ss are identical across all programs where they appear, so merging them
does not alter the representation of the data. This approach maintains the richness of the syntactic
structures while optimizing the dataset for analysis.

7.2 HUMAN ANNOTATION INTERFACE AND PROCESSING

For our human baseline we conduct an annotation effort on a subset of 150 questions from the
validation set of the NExT-QA dataset. To this end, we recruited 65 human subjects via the Prolific
platform ( , ), using the provided filters to select for annotators that are proficient
in English.

The annotators were shown 50 sets of 3 questions (one set at a time), where they were asked to sort
the questions according to their perceived complexity by indicating which questions were the easiest
and hardest. An example set and the annotation interface is shown in Figure 6. Consistency was
validated by repeating pairs of questions multiple times (the third question can vary). We check that
relative orders remain consistent and don’t consider subjects who demonstrated low consistency.
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We further filter out annotations that were done in too little time, and annotators who finished the
complete study in less than a minimum reasonable time. The annotations from the remaining 30
subjects were used to calculate the total ordering of the questions.

A. How many people can be seen dancing on the stage? (a) one. (b) six.
(c) three. (d) nine. (e) two.

B. How does the lady react to the man moving his hand to her waist? (a)
put on the girl s nose. (b) laugh. (c) dance. (d) plays the instrument. (e)
waves her hand.

C. Why does the man bend down while cutting? (a) dribbling ball. (b)
play with elmo. (c) chop leaves. (d) keep the rod fixed at one place. (e)
play game.

Which question is the *hardest* to Which question is the *easiest* to
answer about a video? answer about a video?

Move backward ‘ Move forward ‘

Figure 6: We ask human annotators to provide the relative ordering of three provided questions
according to the estimated complexity of answering the question about an unseen video.

We compute the final order of the questions using Elo scores (Elo, ). Originally developed to
rank chess players, the Elo system models the outcome probability of unseen comparison between
a pair of entities (eg. chess players or, in our case, questions) as a function of their score ratings
s;. In a comparison each entity’s comparative performance is assumed to be Normally distributed
around their score with fixed variance 32. The probability of a favorable outcome for entity i when
compared to an opponent entity j is given by the probability that the performance of ¢ surpasses the

performance of j:
S; — S
P ’J) , (11)
(5

where ® represents the cumulative distribution of a zero-mean, unit-variance Gaussian. The scores
are updated after every comparison according to the Elo update rule.

7.3 GPT QUESTION COMPLEXITY SCORING

In order to automatically estimate the complexity of a question directly from it’s text without biasing
the method towards any specific definition of complexity we refer to the Natural Language Process-
ing literature which has shown that assessments made by Large Language Models correlate with

human judgement ( ; ).
To this end, we leverage GPT-4 ( , ) to generate a complex1ty score on a leert scale
( s ) (ranging from one to five). We set the temperature to zero (for replicable results) and

generate a single token with the score. We prompt the model as follows:

Prompt

[SYSTEM] You are an assistant that -for the provided question and its corresponding answer
options- estimates the complexity of answering said question about an unknown video. Return
your answer as score from 1 to 5 (1 being the easiest and 5 being the hardest).
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[USER] I'll provide a question and its candidate answers. Estimate the complexity of answer-
ing the question about a (unseen) video. Output should ONLY be the integer score (1-5) that
you assign to the question (ie. no JSON, no text, no markdown, no nothing).

query A: answers|0], B: answers(1], C: answers|2], D: answers[3], E: answers[4]

7.4 CODEGEN DETAILS

We use the same API as in the original ViperGPT paper ( , ). For NExT-QA analysis
we use the programs and predictions from ( , ), which were generated by Codex
( s ), a Code Completion LLM. Since Codex is no longer avaialble, for the CodePlex-

QA code generations we instead use a text variant of GPT-3.5 with support for 16k context window
(necessary because of the long API Specification). We prompt this model with both the API and
a System message to make sure the output is usable as code. Additionally, we process the output
to extract the code and format it such that it can be executed and analyzed. We include the prompt
used:

Prompt

[SYSTEM]Only use the functions you have been provided with.”
[SYSTEM]Only complete the code. Don’t include markdown syntax (eg. ticks).
[USER]<API Spec.>

# query

# [answers|0], answers[l], answers[2], answers[3], answers[4]]

def execute_command(video, possible_answers, question):

# Reason every step

7.5 LOGISTIC REGRESSION PARAMETERS

We use the SciKit-Learn ( , ) implementation of Logistic Regression model.
We train until convergence and choose parameters based on the reported mean accuracy over 5 folds.
The resulting model uses L2 regularization with weight ¢ = 1.0 and is trained with the L-BFGS
solver ( , ).

7.6 CYCLOMATIC COMPLEXITY CALCULATION

We compute of Cyclomatic Complexity via an open source implementation'.

8 ADDITIONAL QUESTION GENERATION DETAILS

As noted in Section 5 of the main paper, we leverage existing video datasets with scene-graph
annotations MOMA ( s ; ), ActivityNet ( , ), and Action
Genome ( , ). As necessary step we need to translate the annotations into a textual format
such that a generative language model could use it. We begin by identifying the main activity and
its sub-activities, including the start and end times of each. This temporal framework serves as a
scaffold for the detailed enumeration of the actors and objects involved. Actors and objects are
cataloged not just by their presence, but also in relation to specific sub-activities. When a high level
textual description is not available we leverage captioning models to generate visual descriptors of
the actors in the video. More details in Section 8.1.

The resulting dataset has an average of 2.40 questions per video. The duration of each video ranges
from approximately 3 seconds to 10 minutes with an average video duration of about 1.5 minutes.
This diverse range of video lengths is desirable as it is conducent to generating a wide variety of
questions.

The following sections describe the methods and prompts we used to translate the graphs into tex-
tual scripts for each specific dataset: MOMA ( , ; ) in Section 8.2, ActivityNet

1https ://radon.readthedocs.org
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( s ) in Section 8.3, and Action Genome ( s ) in Section 8.4.
Finally, Section 8.5 describes how the generated scripts are used to generate new questions.

8.1 VISUAL DESCRIPTORS EXTRACTION

A limitation of using Scene Graphs is that they tipically don’t include visual descriptions of the
nodes they relate. This is in juxtaposition with the way humans typically refer to actors and objects.
To this end we describe the main actors in the video using a Captioning model. In particular, we use
Llaval.5 ( , ;b) to describe a single instance of the actor in the video. We leverage
the included bounding box annotations for the actors in each annotated interaction. We choose the
bounding box with the largest area (in pixels) in the first subactivity the actor appears in. We then
crop the relevant area and zero-pad the borders to make the final image square, as this is the format
that Llaval.5 was trained with. The resulting cropped image is passed into the captioning model
along with a prompt modified from Llava.

Prompt

”A chat between a curious human and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the human’s questions.

[USER]<image>

Look at the picture and tell me only about the person’s looks that don’t change. Like what
they’re wearing, their hair color and style. Don’t talk about where they are OR what they’re
doing. (Tag is <actor_classname>).

[ASSISTANT]

Importantly, we also pass in the textual identifier for the actor, indicated in the prompt as
<actor_classname>>.

8.2 MOMA

A significant limitation specific to MOMA is the inconsistency in annotated identifiers for object or
actor throughout the entire video. Consequently, we exclude videos in the dataset for which objects
or actors cannot be reliably identified. Our implementation of the filtering process eliminates any
videos from the dataset where the identities of actors are not consistently recognizable based on their
class_name identifier. In practice, we define a Python function to detect ’collisions’ - instances
where the same identifier is used for different class names within a subactivity, or across different
subastivities without a consistent mapping.

As noted in Section 5 of the main paper, we need to translate the contents of the scene-graph-in-time
annotated in MOMA into a textual format such that a generative language model could use it. We
now describe the method we used to translate the graphs into textual scripts.

We begin by identifying the main activity and its sub-activities, including the start and end times
of each. This temporal framework serves as a scaffold for the detailed enumeration of the actors
and objects involved. Actors and objects are cataloged not just by their presence, but also in rela-
tion to specific sub-activities. We identify their class names and descriptive attributes along with
arrival their departure times within each sub-activity and store these for later. We also track state
changes and action, both transitive and intransitive, that occur during the sub-activities, along with
the identifiers that map to the actors and objects involved.

The final script is structured in a hierarchical format, starting with the main activity title and its
timeframe, followed by detailed sections for each sub-activity. These sections enumerate the actors
present, and a chronological account of events, actions, and state changes. We also generate a
descriptive caption for each actor involved following Section 8.1 and include it in the prompt. An
example of an activity and its first sub-activity is shown:

# Activity: "Dining” (0-597)
All actors:
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* ROLE: customer. Visual description: The person in the picture is a woman with
long, dark hair. She is wearing a white shirt and a black tie.

* ROLE: waiter. Visual description: The waiter in the picture is a young man wearing
a white shirt and a black tie.

## Sub activity (0-10): The waiter is talking to the customer or helping them into their seat

e Actors present: customer, waiter

¢ Happened during sub-activity:
— (attribute) waiter standing
— (transitive action) waiter talking to customer
— (intransitive action) waiter bending

8.3 ACTIVITYNET

Although the original ActivityNet ( , ) dataset didn’t include scene-graphs,
follow up work ActivityNet-Entities ( , ) provides additional annotations for ob-
jects, attributes, relationships and actions. Further, we also use the per-subactivity captions in the
ActivityNet-Captions ( , ) dataset.

As was the case with MOMA, we translate the contents of the scene-graph-in-time annotated into
a textual format such that it can be parsed by a generative language model. We once again divide
a video into a main activity and its component subactivities, and take note of their start and end
times. Actors present in a particular subactivity are listed within the subactivity description, along
with their provided visual descriptions when available in ActivityNet-Entities ( ).
Finally, we filter relationships such that we only keep those that involve actors and list those for each
actor. An example of an activity and a sub-activity is shown below:

# Activity: ”doing archery” (time: 11-177)

## Sub activity (15-39): He loads an arrow in the bow.
All actors descriptions from subactivity:

* Visual description (time: 31): attributeclass: person - age&sex: man - hairstyle:
straight - hairlength: short - haircolor: [’black’] - accessory: [’glove’] - skincolor:
white - upperclothestype: t-shirt - upperclothescolor: [’white’]- lowerclothestype:
shorts - lowerclothescolor: [’black’] - status: [’standing’, ’shooting’] - location: out-
doors

* Relations for actor in subactivity:

— person pulling bow
— person holding arrow

8.4 ACTION GENOME

We leverage the scene-graph annotations in ActionGenome ( , ) for the Charades video
dataset ( , ) and use the annotated activity along with its duration and high
level description. When available we also include the location and other descriptions. We then list
the annotated actions (along with their respective start and end times). Finally, we iterate over the
annotated-per-frame object-actor relationships and track when their state changes. We provide the
timestamp at which the state-change occurred and the change itself to the generation model. As was
the case with ActivityNet, we don’t need to generate visual attributes as the high level description
often provides them. An example script is shown below:

# Activity (duration: 30.62): A person sits at a desk in the living room. The person laughs as
they pick up a bag of groceries from under the desk.”

Location: ”Bedroom”
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Other descriptions:

* A person is sitting at adesk they pick up a bag and then they get up

* The person is sitting at the computer desk and bends over to pick up the garbage,
which he sits on his lap, and then gets up carrying the garbage.

Actions:

 Taking a bag from somewhere (9.00, 16.40)

Sitting at a table (0.00, 29.30)

* Someone is standing up from somewhere (25.00, 30.80)
Holding a bag (12.70, 32.00)

* Someone is laughing (0.00, 30.80)

* Sitting in a chair (0.00, 32.00)

Relation Changes (wrt. actor):

* bag goes from *’holding’” to *’touching’ at 18.0”
* bag goes from "’touching’”’ to ”’holding’ at 20.0”
* bag goes from ’holding’” to *’touching’ at 26.0”
* bag goes from ’touching’” to "’holding’ at 27.0”

999

e chair goes from “’sitting_on’” to ”None at 28.0”

999

* chair goes from “None” to *’not_contacting’ at 28.0”

8.5 QUESTION GENERATION FROM SCRIPTS

Each textual script generated above is combined with a prompt requesting that the language model
output interesting questions about the video, without specifying that they should be hard, or how
interesting should be interpreted. The complete prompt is used to condition a Large Language Model
to generate the requested questions and answer candidates in a JSON format. The chosen language
model is GPT-4. We set the sampling temperature to zero and decode greedily (for replicability).
We include the exact prompt used here:

Prompt

[SYSTEM]You generate interesting questions to ask about the video for which the description
is provided. Pretend you don’t get the exact description (ie. no exact times or player ids) but
you did watch the video, so you have a notion of what happens, and when.

[SYSTEM]Return a list of Multiple Choice questions formated as a json with q, ans, distl,
dist2, dist3, dist4 keys. ‘distN* are 4 distractors..

[USER]What are interesting questions to ask about this video? (description provided)

Return a numbered list of Multiple Choice questions formated as a json with q, ans, distl,
dist2, dist3, dist4 keys. ‘distN* are 4 distractors

Try to use visual descriptions of the actors instead of their role sometimes (eg. the person with
the red shirt instead of the waiter).

**NEVER** say subactivities. Eg. don’t say “first subactivity”, instead say while the waiters
served the drinks”.

Video description:

<DESC>
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Remember, **NEVER** say subactivities. Eg. don’t say “first subactivity”, instead
say “while the waiters served the drinks”.

When generating questions for videos from the MOMA dataset we also include an additional in-
struction to make sure the model doesn’t refer to actors as unclassified when the annotations are
missing descriptions:

Also avoid saying “unclassified ...” to refer to actors. If you weren’t provided with a role use
visual descriptions instead.

9 ADDITIONAL RESULTS AND ANALYSIS

9.1 RELATION TO VIDEO COMPLEXITY

Our approach to estimating the complexity of VideoQA tasks is grounded in insights from classical
complexity theory, specifically the Chain Rule for Kolmogorov Complexity. According to this rule,
the complexity of a composite entity, such as a (video, question) pair, can be expressed as the sum
of the complexity of one component (e.g., the question) and the conditional complexity of the other
component (e.g., the video conditioned on the question), plus a logarithmic term:

K(x,y) = K(x) + K(y|lz) + O(log(K (z,y))) (12)

In cases where there is minimal shared information between the video and the question, the complex-
ity of the pair can be approximated as the sum of their individual complexities, up to this logarithmic
term:

K(z,y) ~ K(x) + K(y) + O(log(K(z,y))) (13)

In this work, we focus on estimating the complexity of the question, which parallels the structure
suggested by the Chain Rule for Kolmogorov Complexity. If we treat the video as x and the question
as y, then the complexity of the (video, question) pair can be thought of in a similar way, where the
complexity of the question K (y) is a key component of the overall task complexity. While we do
not directly compute Kolmogorov complexities, this analogy provides a theoretical motivation for
focusing only on the question complexity. Estimating the complexity of the question is valuable
because it can later be combined with robust methods for assessing the complexity of the video to
achieve a more comprehensive measure of the total task complexity in future work.

The difference between the predicted complexity of the question and the actual model performance
on a given question can be used as a proxy for estimating the video’s complexity. Prior work by

( ) has approximated image complexity by the number of objects present in an image. We
extend this approach to video complexity, utilizing the VidOR dataset ( , ), which
provides annotations of entities and their relations in videos. Conveniently, VidOR and NextQA
share the same video source, YFCC100M ( , ), allowing us to align entity counts
with our models’ performance on NextQA.

Figure 7 compares the difference in the average number of entities (subjects and objects) in videos
where models perform poorly on low complexity tasks (easier questions) versus where they perform
well on high complexity tasks (harder questions). The trend indicates that, for easier questions (low
complexity), videos with more subjects/objects tend to result in poorer model performance, while for
harder questions (high complexity), models perform better when fewer subjects/objects are present
in the video.

This pattern supports the idea that the complexity of a VideoQA task is additive. Simple questions
become more challenging when accompanied by complex videos, and difficult questions can be
made easier in the presence of simpler videos. This additive relationship between video complex-
ity and question complexity reinforces the importance of estimating both components. While our
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Figure 7: Comparison of the average number of entities (subjects and objects) in videos where
models perform poorly on low complexity tasks (easier questions) versus where they perform well
on high complexity tasks (harder questions). More entities make easy questions harder, while fewer
entities make hard questions easier.

current approach focuses on question complexity, combining it with accurate video complexity es-
timations can yield a more precise measure of the overall task complexity. We leave the exploration
of more accurate methods for video complexity estimation to future work.

9.2 SUBTREES VISUALIZATION

In this section, we present visualizations of subtrees which correlate with question that are challeng-
ing to answer for all 3 models analyzed in the main paper (see Sections 3.3 and 4.3). A majority
of the nodes present in the ASTs encode non-essential information such as variable names, while
we care about the actual structure and the operations being executed on the frames. For this reason,
we ignore variable names and values when comparing two subtrees to one another. Similarly, we
develop a tool to visualize the general structure of subtrees that performs a related node-trimming
step. Finally, the visualizations of ASTs in the paper (eg. Figure 4 of the main paper) include an
additional simplification step in which nodes are merged to aid in understanding and interpretability.

All the 8 subtrees that are shared by the 3 models in the main paper are shown in Figure 16. There
are two principal patterns that can bee seen from analyzing them. The first group includes primitives
that allow for temporal reasoning (Figures 8 to 13). The other common pattern group includes
questions that require more detailed analysis of specific elements (objects, relationships) within a
scene (Figures 14 and 15).

First, we consider the primitives necessary for temporal reasoning, i.e. for questions that necessitate
taking into account a specific frame’s placement in a sequence of events. The subtrees shown in
Figures 8 and 9 both contain the control flow necessary for identifying an event that happens after
a particular condition has been met. Figure 8 in particular illustrates a common pattern for finding
the frame after something has happened, with a For Loop that identifies the relevant part of the
video, followed by an addition to look after. Similarly, Figure 9 is common in programs that have to
identify a second condition that happens after a first one. For this reason the control-flow is slightly
more complex, and includes a second conditional that is only checked for after the first condition
has been satisfied.

Figures 10 to 13, while also temporal, are less obviously so. The presence of the primitives shown
in Figure 10 correlates with code that includes a loop over frames in the video. This pattern is com-
monly used to setup for iterating over the video until a relevant frame is found. Upon identification,
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Figure 16: Subtrees identified as hard.

the first boolean variable switches to True and the other one is used to store the frame. Intuitively,
this pattern is useful for answering questions about a specific moment of a video. The primitives in
Figure 11 show code that selects a frame from the middle of the video. In practice, programs include
this code as a fail-safe when searching for a specific frame, falling back to selecting the middle frame
in case no satisfying frame is found (eg. Fig. 8). Figure 12 shows a break statement that will halt an
iteration over the video when a frame that meets the required criteria is seen. Intuitively, this pattern
allows for the identification of the first event in the video that meets some criteria, as the break in
the loop avoids overwriting the variable with frames that come in the future. And Figure 13 shows
an iterator over the video, which is the main primitive necessary to consider frames in order. This
primitive is often used in conjunction with others shown, eg. with the break statement in Fig. 12 to
find the first frame that meets the condition.

The other common pattern group involves questions that require a more granular consideration of
specific elements (objects, relationships) within a scene. For example, the subtree shown in Fig-
ure 15 is included in questions that require focusing on a single specific object or actor in a frame
of the video. Relatedly, programs that include the subtree in Figure 14 require identifying at least
two objects or actors and then relating them (by calling simple_qga(), an image question answering
module).

9.3 ADDITIONAL ANALYSIS RESULTS: TEMPORAL SUPPORT

The interpretable nature of subtrees allows us to manually identify a subset of subtrees we know
correspond to subroutines that store frames. We leverage Equation 1 to count the appearance of said
subtrees in each program’s ASTs to find the temporal support of each question. As previous works
have proposed (Mangalam et al., 2023), we validate that a significant source of question complexity
in Video Question Answering is owed to the number of frames needed to answer the question (Figure
17).
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Figure 17: Temporal support (i.e. number of frames a question needs) according to the generated
program. All models tested perform significantly worse on questions that require more frames.
Counting questions are listed separately, as they potentially require every frame to be checked.

| #Questions # Videos

Action Genome (Ji et al., 2020) 1572 1154
ActivityNet (Caba Heilbron et al., 2015) 749 594
MOMA (Luo et al., 2021; 2022) 133 93

Table 3: Composition of CodePlex-QA in terms of number of questions and videos from each source
dataset.

9.4 DATASET STATISTICS: CODEPLEX-QA

The outcome of the data generation process is summarized in Table 3, which presents a breakdown
of CodePlex-QA. For each source dataset, the table shows the number of questions and videos that
pass the described CodePlexity filter. Importantly, a majority of the questions are associated with a
unique video.

10 ABLATIONS

10.1 VALIDATING QUESTION SELECTION ALGORITHM

‘We now validate our approach for selecting hard questions based on our complexity estimation using
the NExT-QA validation set. In particular, we follow the same approach (and with the same thresh-
old and parameters) as when constructing CodePlex-QA, and select the most challenging questions
from this set. We then evaluate the same models from Section 5.2 on this subset, which we call
NEXT-QA*, and compare to both the original NEXT-QA dataset, and CodePlex-QA. This allows to
separate the effects of question generation and question filtering when constructing CodePlex-QA
as NExT-QA and NExT-QA* share exactly the same base set of questions.

Figure 18 indeed validates that our approach is successful in identifying a subset of NExT-QA that
is more challenging for all models evaluated compared to the original dataset. However, our final
dataset generation pipeline results in an even more challenging benchmark by first constructing a
more diverse pool of videos and questions for the filtering approach to select from.

10.2 IMPACT OF CODE GENERATION CORRECTNESS ON COMPLEXITY METRICS

To investigate the relationship between code generation correctness and the alignment of complexity
metrics to problem structure, we conduct an ablation study comparing cases where the generated
code produces correct answers with those where it does not. Note that “incorrect answers” do not
necessarily imply that the code itself is invalid; rather, it may fail to produce the expected output.

The results are summarized in Table 4, which presents the correlation between the complexity met-
rics and the mPEG metric for various models. From Table 4, it is evident that the correlation between

25



Under review as a conference paper at ICLR 2025

Success Rate per Model in Easy vs. Hard Subsets
0.6

0.5

0.4 Models
mmm SeVilA ZS
wsm InternVideo

0.3 == VIOLET
= Random

0.2

) I I I

0.0

NEXT-QA NEXT-QA* CodePlex-QA

Average Success Rate

Figure 18: Filtering NEXT-QA using our approach indeed results in a more challenging subset for
all the evaluated models. However, our full dataset construction pipeline results in an even more
challenging benchmark by first generating a more diverse pool of samples to select from.

Train Models Validation Models

SeViLA ViperGPT ATP VIOLET HGA SeViLAZS InternVideo Tarsier
Lines of Code
Correct 0.1373 — 0.1747 0.1455 0.0712  0.1654 0.2022  0.1475
Incorrect 0.1245 — 0.0540 0.0656 0.0735  0.0756 0.0831  0.0696
Cyclomatic Complexity
Correct 0.1702 — 0.2128 0.1930 0.0649  0.1739 0.2825  0.1634
Incorrect 0.1351 — 0.1118 0.0881 0.0664  0.0973 0.1388  0.1071
CodePlexity
Correct 0.2608 — 0.3128 0.3178 0.0867  0.2095 0.2877  0.1950
Incorrect 0.2810 — 0.2041 0.2542 0.1087  0.1839 0.1700  0.1857

Table 4: Correlation of complexity metrics with mPEG for cases where the generated code produces
correct and incorrect answers.

the mPEG metric and the various complexity metrics is consistently higher for cases where the gen-
erated code produces correct answers.

These results suggest that correct code generation often aligns better with problem complexity, as
reflected in higher correlations with the mPEG metric. By contrast, incorrect code, while potentially
valid in syntax or structure, often fails to capture the underlying complexity of the problem, thereby
diluting the relationship between the metrics.

10.3 IMPACT OF CODE GENERATION MODEL CHOICE

This section evaluates the influence of the code generation model on the performance of our com-
plexity estimation framework. Specifically, we compare ViperGPT, the primary model used in our
analysis, with Recursive Visual Programming (RVP) Ge et al. (2023), a newer model designed for
visual programming tasks. Unlike traditional approaches, RVP employs a recursive code generation
strategy, which systematically breaks down complex problems into manageable subproblems. This
allows it to handle intricate question structures with greater flexibility.

Figure 19 illustrates the relationship between the estimated complexity of questions and the per-
formance of Visual Programming models. For both ViperGPT and RVP, we observe a significant
negative correlation between the complexity metric and the model’s success rate. This trend high-
lights that as the estimated complexity of a question increases, the likelihood of the model correctly
addressing it decreases. This correlation underscores the utility of the complexity metric as a pre-
dictive tool for identifying challenging questions.

26



Under review as a conference paper at ICLR 2025

10 Success Rate vs Cyclomatic Complexity . Success Rate vs Cyclomatic Complexity
1.
-o- Average - Average
Tarsier Tarsier
0.9 SeviLA 0.9 SeViLA
SeViLA 7S SeViLA 7S
0.8 ViperGPT 0.8 ViperGPT

InternVideo
ATP

VIOLET
HGA

InternVideo
ATP

VIOLET
HGA

Success Rate
IS)

o
Success Rate
)

o

0.4 0.4
0.3 0.3
0.2 0.2
1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
Cyclomatic Complexity Cyclomatic Complexity
ViperGPT RVP

Figure 19: Comparison of code-based complexity metrics when using different code generation
models. Lines in both cases show significant negative correlation of complexity metric with model
performance for both variants.
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Figure 20: Correlation of VideoQA models’ success rate on MVBench for various approaches for
estimating question complexity. As was the case for NExT-QA, we observe that code complexity
correlated strongly with question complexity.

10.4 IMPACT OF ANALYSIS DATASET CHOICE

To assess the generality and robustness of our findings, we replicated our analysis using a different
dataset, MVBench ( s ), which offers a diverse set of videos and questions compared to
NExT-QA. Specifically, we repeat the same experimental setup as that in Section 4.1, first generating
programs for the questions in MVBench, and then rerunning our pipeline to extract code based
metrics and train our CodePlexity metric. Furthermore, we additionally consider two new models in
our analysis: VideoChat?2 ( , ) and Llava-NEXT ( , ) as these represent the
state of the art on the MVBench dataset.

We first visualize the correlation between code-based complexity metrics and the performance of
various VideoQA models on MVBench in Figure 20. Consistent with our observations on NExT-
QA, we found that code-based complexity metrics exhibit a strong negative correlation with model
performance on MVBench. Specifically, both Lines of Code and Cyclomatic Complexity continued
to demonstrate a consistent and strong correlation, indicating that questions requiring more intricate
code are more challenging for all the models evaluated.

We further conducted a systematic evaluation of different code-based metrics using the mPEG met-
ric on the validation set of MVBench, summarized in Table 5. Our proposed CodePlexity metric
significantly outperformed the naive code complexity measures, such as Lines of Code and Cyclo-
matic Complexity. CodePlexity achieved higher predictive accuracy in estimating question difficulty
across all evaluated models on MVBench. Note that CodePlexity generalizes to the held-out models
in our analysis (VideoChat?2 ( s ) and Llava-NEXT ( s ).
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Train Models Val. Models
InternVideo SeViLA ZS Tarsier VideoChat2 LLaVA-NeXT
Lines of Code 0.0441 0.0951 0.1254 0.1027 0.0919
Cyclomatic Complexity 0.1299 0.0964 0.0614 0.0521 0.0447
CodePlexity (Ours) 0.2991 0.2743

Table 5: Comparison of question complexity metrics using mPEG on the validation set of MVBench.
CodePlexity is trained on the first three models. Our approach demonstrates the highest correlation
with the models’ performance.

These consistent results across two distinct datasets suggest that code-based complexity metrics,
and CodePlexity in particular, are effective tools for assessing question difficulty in VideoQA tasks
regardless of the dataset’s characteristics.

11 BROADER IMPACTS AND LIMITATIONS

In our study, we utilize four distinct pre-trained models, each with its inherent biases, to identify
challenging questions within an existing dataset. Although they have different pre-training schemes,
these models likely encode similar implicit biases, owning to their training on internet scale data
collections. In particular, three of our selected models, along with our visual descriptors extractor,
rely on CLIP ( , ) as a visual encoder, meaning they likely replicate the same biases
including those identified in previous studies ( ,

Furthermore, the dataset we base the majority of our analysis on, NExT-QA, is not fully represen-
tative of real-world diversity and complexity. This limitation in addition to the biases present in
the chosen models can lead to skewed or incomplete analysis. Furthermore, our analysis’ focus on
interplay between the constituent syntactic elements in code may overlooks critical sources of com-
plexity not apparent in the code structure. These include, for example, differences related to gender
and ethnicity, which are not explicitly manifested in the code.

Similarly, our own proposed dataset, CodePlex-QA, builds upon the existing datasets MOMA (

; ), ActivityNet ( , ), and Action Genome ( , ),
and therefore includes the same biases. We urge researchers and practitioners to refer to the relevant
dataset cards. Finally, our selection methodology for filtering videos and questions may inadver-
tently introduce new biases, or amplify existing ones.
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