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Abstract

Federated zeroth-order optimization (FedZO) algorithm enjoys the advantages of
both zeroth-order optimization and federated learning, and has shown exceptional
performance on black-box attack and softmax regression tasks. However, there is
little generalization analysis for FedZO, and its analysis on computing convergence
rate is slower than the corresponding first-order optimization setting. This paper
aims to establish systematic theoretical assessments of FedZO by developing the
analysis technique of on-average model stability. We establish the first gener-
alization error bound of FedZO under the Lipschitz continuity and smoothness
conditions. Then, refined generalization and optimization bounds are provided
by replacing bounded gradient with heavy-tailed gradient noise and utilizing the
second-order Taylor expansion for gradient approximation. With the help of a
new error decomposition strategy, our theoretical analysis is also extended to the
asynchronous case. For FedZO, our fine-grained analysis fills the theoretical gap
on the generalization guarantees and polishes the convergence characterization of
the computing algorithm.

1 Introduction

Federated learning collaborates multiple local clients to train a global model without sharing local
raw data, which often enjoys great ability in protecting data privacy [1]. The core training steps
of federated learning include local clients receiving the global model from the central server, the
local models being updated by the global information and local data, and the updated local models
being uploaded to renew the global model. Based on this building-block process, rich federated
learning algorithms have been formulated to match different motivations, where their properties on
privacy protection [2, 3, 4, 5] and convergence rate [6, 7, 8] are investigated. In general, the existing
algorithms of federated learning depend heavily on the gradient information of loss function, see
e.g., [1, 6, 7, 8]. Indeed, there are some learning scenarios where the gradient or Hessian information
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is either unobtainable or too expensive to obtain, such as reinforcement learning [9, 10, 11], meta
learning [12], black-box adversarial attacks [13, 14] and hyperparameter tuning [15]. To alleviate the
dependence on the gradient or Hessian information, a federated zeroth-order optimization (FedZO)
algorithm is proposed in [16] by integrating zeroth-order optimization into federated learning. In
theory, the analysis of optimization convergence of FedZO has been established in [16], which shows
the linear speedup in terms of the numbers of local iterations and clients participating in the update
for the global iteration. However, there is little generalization analysis for federated zeroth-order
optimization.

The goal of generalization analysis is to evaluate the capability of the empirical risk to approach
the theoretical optimal risk on a given dataset. To characterize the generalization performance
theoretically, there are four popular analysis techniques including uniform convergence approaches
[17, 18, 19, 20], operator approximation techniques [21, 22], information-theoretic tools [23, 24, 25,
26, 27], and algorithmic stability analysis [28, 29, 30, 31]. Usually, stability-based generalization
assessment enjoys some benefits over other tools. Firstly, in contrast to uniform convergence
approaches, the theoretical guarantees derived from algorithmic stability analysis are independent
of the capacity measurement of hypothesis function space [32]. Secondly, algorithmic stability
analysis is available in a wide range of applications rather than only some models enjoying operator
representation [33, 34]. Finally, data distribution does not affect the results of algorithmic stability
analysis, whereas information-theoretic tools are typically sensitive to data distribution [25, 35]. To
the best of our knowledge, there is only one work on the stability-based generalization analysis for
the zeroth-order optimization, i.e., zeroth-order stochastic search (ZoSS) method [36]. Following
this line, it is natural to further investigate the generalization guarantees of the FedZO algorithm.
However, due to the essential difference between FedZO and ZoSS, the previous analysis technique
in [36] can not be used for federated learning directly. In this paper, we develop the fine-grained
error decomposition and estimations to overcome the challenge induced by the federated algorithmic
formulation.

As a general assumption for loss function, Lipschitz continuity has been employed in many stability-
based generalization assessments, see e.g., [36, 37, 38, 39, 40]. However, the index of Lipschitz
continuity is likely too large or even infinite for some learning problems, which makes the previous
results invalid [32]. With the help of the on-average model stability tool, [32] established the fine-
grained generalization analysis of stochastic gradient descent (SGD) by removing the Lipschitz
continuity and the convexity of each loss function, and relaxing the smoothness to Holder continuity.
Moreover, [38] additionally considered the bounded variance of the stochastic gradient to get the
generalization bounds of non-convex SGD with high probability. Inspired by [32] and [38], this paper
considers the heavy-tailed gradient noise (Assumption 2) as a refined version of bounded variance
of gradient and adopts the second-order Taylor expansion for gradient approximation to remove
bounded gradient condition. Conclusively, we fill the theoretical gap in the generalization analysis of
the FedZO algorithm [16] and its asynchronous version. The main contributions of this paper are
outlined as follows.

• Generalization bounds of FedZO. We provide the first generalization bound of general
FedZO after building the relationships between generalization error and ℓ1 on-average
model stability. To alleviate the restriction of bounded gradient, we further get a refined
generalization bound and an optimal optimization bound under the condition of heavy-tailed
gradient noise and the second-order Taylor expansion of gradient approximation.

• Learning guarantees of asynchronous FedZO. For asynchronous FedZO, we design a new
error decomposition strategy to bridge the relationships between each local model parameter
and the global model parameter in each iteration. Then, the generalization and optimization
bounds are derived for the asynchronous case. In particular, our fine-grained error bounds
are tight even compared with the previous results for SGD implemented by the first-order
optimization [32, 37, 38] and zeroth-order optimization [36].

2 Preliminaries

This section introduces some notations and definitions preparing for our theoretical analysis. Besides,
we also give some detailed explanations for every symbol in Appendix A.
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Considering a zeroth-order optimization algorithm for federated learning, we rely on N clients to
independently train a global model. In each iteration, a subset of M clients is randomly selected
to use their local data to obtain the corresponding gradient information. Then, this information is
transmitted to the central server to update the global model parameter. For any i ∈ [N ], let zi be a
random variable obeying data distribution Di associated with the i-th client. Denote S := {Si}Ni=1
as the total dataset, where Si := {zi1, ..., zin} is the i-th local dataset and each sample zij is drawn
independently from the distribution Di, i ∈ [N ].

Federated learning aims to optimize model parameters with the collaboration among all local clients,
i.e., minimizing the following population risk

F (w) :=
1

N

N∑
i=1

Fi(wi) =
1

N

N∑
i=1

Ezi∼Di
[fi(wi; zi)] , (1)

where w,wi ∈ W ∈ Rd denotes the training parameters for the global model and the i-th local model
in a d-dimensional hypothesis space respectively, F (w) and Fi(wi) indicate the population risks for
the global model and the local model of the i-th client respectively, fi denotes the loss function of the
i-th local client, and Ezi∼Di

[·] denotes the conditional expectation with respect to (w.r.t.) the sample
zi. Generally, the unattainability of the local population risk Fi(wi) forces us to train the model by
minimizing the following empirical approximation of population risk F (w)

FS(w) :=
1

N

N∑
i=1

FSi
(wi) =

1

nN

N∑
i=1

n∑
j=1

fi(wi; zij), (2)

where FS(w) and FSi
(wi) indicate the empirical risks for the global model and the local model of

the i-th client respectively. Note that, for the update of the global model, the contribution of each
client is treated equally. This paper considers the learning scenarios where the gradients (or Hessian
information) of local loss functions are either unobtainable or too expensive to obtain [16]. Naturally,
the first-order gradient estimation ∇̃fi, defined as, for any t, b2 ∈ N,m ∈ [b1], b1 ∈ [n]([n] :=
{1, ..., n}),

∇̃fi

(
wt

i ; z
t
i,m,

{
vti,l
}b2
l=1

, µ
)
=

1

b2

b2∑
l=1

vti,l
µ

(
fi
(
wt

i + µvti,l; z
t
i,m

)
− fi

(
wt

i ; z
t
i,m

))
,

is chosen to update the model parameters of federated learning, where wt
i is the local model parameter

of the i-th client at the t-th iteration,
{
zti,m

}b1
m=1

and
{
vti,l

}b2

l=1
are two sets of independent and

identically distributed (i.i.d.) random samples and i.i.d. random direction vectors (satisfying the
d-dimensional uniform distribution), and µ represents the distance between two model parameters
(wt

i + µvti,l and wt
i) used to estimate gradient in the l-th direction. In our analysis, the following

second-order Taylor expansion is employed to approximate ∇̃fi,

∇̃fi
(
wt

i ; z
t
ij

)
=

1

b2

b2∑
l=1

(
⟨∇fi(w

t
i ; z

t
i,j), v

t
i,l⟩vti,l +

(µ
2
(vti,l)

⊤∇2
wi
fi(wi; z

t
ij)|wi=wt∗

i,l
vti,l

)
vti,l

)
.

Note that, the number b2 of random direction vectors is set to be greater than the hypothesis space
dimension d in this paper, such as the requirement of [13](b2 = 2d).

The update process of FedZO is formulated as follows,

wt+1 = wt − ηt
b1M

∑
i∈Mt

b1∑
m=1

∇̃fi

(
wt

i ; z
t
i,m,

{
vti,l
}b2
l=1

, µ
)
, wt

i = wt, (3)

where ηt and Mt ∈ [N ](|Mt| = M) denote the step size and the collection of selected client indices
in the t-th iteration, respectively. In particular, we also consider the asynchronous FedZO algorithm.

Let
w∗ ∈ arg min

w∈W
F (w) and w(S) ∈ arg min

w∈W
FS(w), (4)

where F (w), FS(w) are defined in (1) and (2). Denote A(S) = wT as the output of the global
model after T iterations with any federated learning algorithm A (including Algorithm 1, i.e.,
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synchronous FedZO). Typically, the excess risk of A(S) is measured by E[F (A(S))− F (w∗)] and
can be decomposed as

E[F (A(S))− F (w∗)] ≤ E[F (A(S))− FS(A(S))] + E[FS(A(S))− FS(w(S))], (5)

where E [·] denotes the expectation w.r.t. all randomness. The first part of (5) (called generalization
error) measures the expected gap between population risk and empirical risk, while the second
part of (5) (called optimization error) measures the divergence between the trained model and the
theoretically optimal model. In this paper, we simultaneously bound the generalization error and
optimization error of FedZO.

Remark 1. The update strategy (3) is associated with a minibatch of i.i.d. samples. Due to the
interaction among samples, it is hard to establish the stability-based generalization analysis of the
minibatch case directly. Fortunately, an equivalent formula can tackle this difficulty by means of the
properties of binomial distribution (see Appendix B.3).

Remark 2. Compared with synchronous FedZO ([16] in Algorithm 1), there are several essential
differences for its asynchronous one described in Section 4. Firstly, we assume that all clients
participate throughout the entire update process of the global model parameters. Secondly, once
some client finishes gradient computation, this gradient will be transmitted to update the global
model immediately without waiting for other clients. Then, the updated parameters of the global
model will be back to the corresponding client, not the other ones. As a result, the local model of
some client may be inconsistent with other clients within the same iteration.

Algorithm 1 Synchronous FedZO
Require: w1: initial global model; η1: initial learning rate; b1, b2: minibatch sizes for samples and

direction vectors respectively; µ: positive step size in the definition of the derivative; M : number
of clients selected to update the global model in each iteration
for all t = 1, ..., T − 1 do

Randomly select a clients set Mt, let ηt = η1/t
for all i ∈ Mt in parallel do

Let wt
i = wt

Generate
{
zti,m

}b1
m=1

and
{
vti,l

}b2

l=1
from Di and d-dimensional uniform distribution

Compute
∑b1

m=1 ∇̃fi and upload it to global model
end for
Update wt to wt+1 by Eq. (3)

end for
Ensure: Final global model wT

Inspired by Definition 4 in [32], we introduce a new definition of ℓ1 on-average model stability for
federated learning.

Definition 1. The federated learning algorithm A is ℓ1 on-average model ϵ-stable if

E

 1

nN

N∑
i=1

n∑
j=1

∥∥∥A(S(ji))−A(S)
∥∥∥
 ≤ ϵ, (6)

where ∥ · ∥ is the Euclidean distance ∥ · ∥2, S = {Si}Ni=1, S(ji) =
{
S1, ..., Si−1, S

(j)
i , Si+1, ..., SN

}
,

Si = {zi1, ..., zin}, S
(j)
i =

{
zi1, ..., zi(j−1), z

′
ij , zi(j+1), ..., zin

}
(z′ij is drawn from Di,∀i ∈

[N ], j ∈ [n]).

In Definition 1, we assume that only one sample of one client is perturbed, not other clients. Particu-
larly, as N = 1, the current definition is consistent with the standard on-average model stability in
[32, 38]. Compared with several other stability tools, the advantages of on-average model stability
are listed as follows. First, on-average model stability is a weaker stability tool than uniform (model)
stability. Second, on-average model stability measures the stability of model parameters w instead of
function values f(w) like on-average stability, which can improve our analysis.
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Definition 2. [41] For some θ, a, b > 0 and all x > 0, if a random variable X satisfying

P (|X| ≥ x) ≤ a exp(−bx
1
θ ),

we call it sub-Weibull random variable (denoted as X ∼ subW (θ)), where θ is a tail parameter.

Sub-Weibull distribution is a heavier-tailed (longer-tailed) distribution than the sub-Gaussian
(
θ = 1

2

)
and sub-Exponential (θ = 1) distribution, which matches some real applications [42] and has been
used for learning theory analysis recently [43, 44]. This paper utilizes some sub-Weibull properties,
derived from the moment generating function (MGF), to relax the bounded gradient assumption used
in [36, 37, 38, 39, 40].

3 Evaluating the Generalization of FedZO via Stability

This section establishes the relationships between the generalization error of FedZO and the on-
average model stability in Theorem 1. Detailed proofs are provided in Appendix B.2.

This paper makes the following assumptions for the loss function fi of i-th local client (i ∈ [N ]).
Assumption 1. (a) (L-Lipschitz continuity). For any wi, w̄i ∈ W, i ∈ [N ] and some L > 0, fi
satisfies ∇fi(wi; zi) ≤ L, that is

|fi(wi; zi)− fi(w̄i; zi)| ≤ L ∥wi − w̄i∥ , ∀zi ∼ Di.

(b) (β-Smoothness). For any wi, w̄i ∈ W, i ∈ [N ] and some β > 0, fi satisfies

∥∇fi(wi; zi)−∇fi(w̄i, zi)∥ ≤ β ∥wi − w̄i∥ , ∀zi ∼ Di.

The requirement of Lipschitz continuity and smoothness is general in statistical learning theory,
see e.g., [37, 38, 39, 40]. Usually, it appears to be justifiable when the hypothesis function space
is uniformly bounded. However, the Lipschitz constant L may be infinite for some learning tasks
with unbounded hypothesis function space [32]. In this paper, two attempts are proposed to remove
the Lipschitz assumption. Firstly, we focus on the zeroth-order optimization problem, where the
gradient information is unavailable. We approximate the first-order gradient using a second-order
Taylor expansion to avoid the dependence on the Lipschitz constant (see the proofs of Theorems
2, 3 and 5). Secondly, we use a weaker gradient-related assumption, i.e., the heavy-tailed gradient
noise assumption, to replace the Lipschitz assumption in our generalization analysis (see the proof of
Theorem 1 (b)).
Assumption 2. (Heavy-tailed gradient noise). Let the tail parameter θ > 1

2 , the number of iterations
t > 0 and the client index i ∈ [N ]. For any wt

i ∈ W, zti ∈ Si, Si ∈ Dn
i , we assume that the gradient

noise ∇fi(w
t
i ; z

t
i) − ∇FSi(w

t
i) is a sub-Weibull random vector, i.e., ∇fi(w

t
i ; z

t
i) − ∇FSi(w

t
i) ∼

subW (θ).

From Theorem 2.1 in [41], we deduce that the MGF of ∥∇fi(w
t
i ; z

t
i)−∇FSi

(wt
i)∥

1
θ can be bounded

at some point, i.e., E

[
exp

(
∥∇fi(w

t
i ;z

t
i )−∇FSi

(wt
i)∥

K

) 1
θ

]
≤ 2 for some K > 0. Moreover, a random

variable X is defined as K-sub-Weibull(θ) if E
[
exp (|X|/K)

1/θ
]
≤ 2 [45]. Therefore, the gradient

noise in Assumption 2 can be also denoted as ∇fi(w
t
i ; z

t
i) − ∇FSi(w

t
i) ∼ subW (θ,K). In this

paper, a lemma (Lemma 2 in Appendix B.1) related to the bounded p-th norm of the sub-Weibull
variable is used to build a novel relationship (Theorem 1 (b)) between ℓ1 on-average model stability
and generalization error.

Assumption 3. (PL condition). For any w ∈ W, S ∈
⋃N

i=1 Dn
i and some α > 0, the empirical risk

FS(w) satisfies

E
[
∥∇FS(w)∥2

]
≥ 2αE [(FS(w)− FS(w(S)))] .

Assumption 3 elucidates that the quadratic gradient of the empirical risk enjoys a linearly decreasing
lower bound [46]. Without the setting of convexity, the gradient of empirical risk ∥∇FS(w)∥ = 0 is
just a sufficient condition for a local optimal model instead of the guarantee to find a global optimal
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parameter. This assumption implies that all local optimal parameters are global optimal parameters,
that is, ∥∇FS(w)∥ = 0 implies that E[FS(w)] = E[F (w(S))] = E[F (w∗)] holds in expectation.
For this reason, we can study the optimization error with the form FS(w)− FS(w(S)) rather than
|∇FS(w)| [44] under the non-convex condition.

Now we state two quantitative relationships between generalization error and ℓ1 on-average model
stability.
Theorem 1. Let S, S(ji) be given in Definition 1 and A be a federated learning algorithm.

(a) Let Assumption 1 (a) hold and A be ℓ1 on-average model ϵ-stable. Then, for some L > 0,

|E[F (A(S))− FS(A(S))]| ≤ L

nN

N∑
i=1

n∑
j=1

E
[∥∥∥A(S(ji))−A(S)

∥∥∥] ≤ Lϵ.

(b) Let Assumption 2 hold and A be ℓ1 on-average model ϵ-stable. Then, for some θ > 1
2 ,K > 0,

|E[F (A(S))− FS(A(S))]| ≤ (4θ)θK

nN

N∑
i=1

n∑
j=1

E
[∥∥∥A(S(ji))−A(S)

∥∥∥]+ 2E[FS(A(S))]

≤(4θ)θKϵ+ 2E[FS(A(S))].

Theorem 1 provides the generalization bounds of the FedZO algorithm by the ℓ1 on-average model
stability. Essentially, Theorem 1 (a) is consistent with Theorem 2 (a) in [32] and Theorem 1 (b) states
a refined upper bound independent of the Lipschitz constant L. Explicitly, in Theorem 1 (b), the
tail parameter θ in the first term is typically bounded [41] and the second term E [FS(A(S))] has no
significant negative impact on the upper bound [32].

In the sequel, we derive the generalization bounds by integrating Theorem 1 and estimations of ℓ1
on-average model stability. Meanwhile, some optimization bounds for FedZO are also provided.
Table 1 and Table 2 report the comparisons of our results with the related theoretical analysis for
ZoSS [36], AD-SGD [47], AD-PSGD [48], EF-ZO-SGD, FED-ZO-SGD [49], FedZO [16] and SGD
[37, 38, 39, 40, 50] without the convexity requirement of loss function.

3.1 Generalization Analysis of General FedZO

This subsection considers the FedZO under the general setting.
Theorem 2. Let {wt} and {w̄t} be produced by FedZO (3) on S and S(ji) respectively, where

ηt = η1t
−1, η1 ≤ (2a1)

−1 with a1 =
(
1 +

√
d/b2

)
β. After T iterations, we get the global

parameters A(S) = wT and A(S(ji)) = w̄T respectively. Under Assumption 1, there holds

1

nN

N∑
i=1

n∑
j=1

E
[∥∥wT − w̄T

∥∥] ≤ (e (T − 1))
a1η1 a2η1 log (e (T − 1)) ,

where a2 = 2(nN)−1L+ µβ + 2(nN)−1L
√
d/b2.

Theorem 2 states a ℓ1 on-average model stability bound with order O
((

(nN)−1L+ µ
)
T

1
2 log T

)
under mild conditions of parameter selection. When µ = O

(
(nN)−1

)
, the upper bound is equal to

O
(
(nN)−1LT

1
2 log T

)
, which is comparable with the existing stability bounds for ZoSS [36] and

SGD [37, 39, 40, 51, 52] under similar choices of step sizes.

The following corollary is derived by integrating Theorem 1 (a) and Theorem 2.
Corollary 1. Under the same conditions of Theorem 2, for FedZO (3), there holds

|E[F (wT )− FS(w
T )]| ≤ O

(
L
(
(nN)−1L+ µ

)
T

1
2 log T

)
.

When µ = O
(
(nN)−1

)
, it provides the generalization bound O

(
(nN)−1L2T

1
2 log T

)
for the

general FedZO algorithm. When βc/ (βc+ 1) ≥ 1
2 for some positive constant c, Corrollary 1
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Table 1: Comparisons of stability-based generalization bounds under the non-convex condition
(Thm.-Theorem; Cor.-Corollary; c-a positive constant; v2-the upper bound of the variance of gradient;
λ-a parameter characterizing the properties of decentralized topology; δ-high probability; ∗-high
probability bound; B.-bounded loss function; Uni.-uniform stability; ℓ1-ℓ1 on-average model stability;
√

-has such a property; ×-hasn’t such a property; Γd
b2

=
(√

(3d− 1)/b2 + 1
)

; â(N,T, t0) =(
1 +

√
log T/(nN)

)√
log T + t0).

Algorithm
Result Generalization bound Tool

Assumptions

L θ v2 B.
SGD (ηt ≤ c/t)
[37] (Thm. 3.12) O

(
L

2
βc+1 T

βc
βc+1

n

)
Uni.

√
× ×

√

SGD (ηt ≤ c
(t+2) log(t+2) )

[38] (Thm. 3)
∗O

(√
L
(√

E[v2]+log T
)

nδ

)
l1

√
×

√ √

SGD (ηt ≤ c/t)
[39] (Thm. 3.5) O

(
L

2
βc+1 T

βc
βc+1

n

)
Uni.

√
× ×

√

SGD (ηt ≤ 2t+1
2α(t+1)2 )

[40] (Thm. 15)
O
(

T
β

β+α

n

)
Uni.

√
× ×

√

ZoSS (ηt ≤ c/
(
tΓd

b2

)
)

[36] (Thm. 5) O
(

L
2

βc+1 T
βc

βc+1

n

)
Uni.

√
× ×

√

ZoSS (ηt ≤ c/t)
[36] (Cor. 6) O

(
L2T
n

)
Uni.

√
× ×

√

ZoSS (ηt ≤ c/(tΓd
b2
))

[36] (Thm. 8) O
(

L2Tβc

n min
{
c+ β−1, c log(eT )

})
Uni.

√
× × ×

ZoSS (ηt ≤ c/(TΓd
b2
))

[36] (Thm. 7) O
(

L2

n

)
Uni.

√
× × ×

AD-SGD (ηt = η1)
[47] (Cor. 2) O

(
nη1−λ
n(1−λ)L

2
(
1 + βη1

M

)T)
Uni.

√
× × ×

AD-SGD (ηt =
M

β(t+1) )

[47] (Cor. 2)
O
(

nM−λ
n(1−λ)L

2T
)

Uni.
√

× × ×

FedZO (ηt ≤ η1/t)
Ours (Cor. 1) O

((
L
nN + µ

)
LT

1
2 log T

)
ℓ1

√
× × ×

FedZO (ηt ≤ η1

t )
Ours (Cor. 2) O

((√
log T
nN + 1

)
(4θ)θµT

1
4 log T

)
ℓ1 ×

√
× ×

FedZO (ηt ≤ η1

t )
Ours (Cor. 3) O

(
â(N,T, t0)(4θ)

θµT
1
2

√
log T

)
ℓ1 ×

√
× ×

aligns with the previous generalization bounds of SGD algorithms for pointwise learning (Theorem
3.12 in [37]) and pairwise learning (Theorem 3.5 in [39] and Theorem 15 in [40]). [36] provided
the first generalization error analysis for the minibatch ZoSS algorithm with both unbounded and
bounded non-convex loss functions. Specifically, they presented the generalization bound n−1(2 +
C)L2(eT )βc min

{
c+ β−1, c log(eT )

}
(C is a positive constant) with the decreasing step size

ηt ≤ c/
(
tΓd

b2

)
, where Γd

b2
=
(√

(3d− 1)/b2 + 1
)

. Under the constant step sizes ηt ≤ log(1 +

βc)/
(
TβΓd

b2

)
and ηt ≤ c/

(
TΓd

b2

)
, they also showed the generalization bound n−1(2 + C)cL2 and

(nβ)−1L2(2 + C)
(
eβc − 1

)
. When βc ≥ 1

2 , our generalization bound can match their first result.
Indeed, we also can get similar bounds as [36] for the special setting of constant step size. Detail
comparisons are also provided in Table 1.

3.2 Learning Guarantees of FedZO with Heavy tails

Inspired by [43, 44], we further investigate the learning guarantees of FedZO with the smooth,
heavy-tailed loss function and PL condition.
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Table 2: Comparisons of optimization bounds under the non-convex condition (Thm.-Theorem;
Cor.-Corollary; D-ZO-PD (Distributed ZO Primal-Dual); r, Cλ-some constants; λ-a parameter
characterizing the properties of decentralized topology; σ-the upper bound of the square of gradient;
B.-bounded loss function;

√
-has such a property; ×-hasn’t such a property).

Algorithm
Result Optimization bound Step size

Assumptions

L θ β B. σ

AD-SGD
[47] (Thm. 8) O

((
r + Cλ

λt0
+ t0

M

)
(log T )−1

)
ηt = O

(
M
t+1

) √
×

√
× ×

AD-PSGD
[48](Cor. 2) O

(
T− 1

2

)
ηt = O

(
n

b1(
√
T+1)

)
× ×

√
×

√

EF-ZO-SGD
[49](Thm. 1) O

(
T− 1

2 d
1
2 + T−1d

)
ηt = O

(√
1
dT

) √
×

√
× ×

FED-EF
-ZO-SGD

[49](Thm. 2)
O
(
T− 1

2 d
1
2 + T− 3

2 d
3
2

)
ηt = O

(√
1
dT

) √
×

√
× ×

FedZO
[16] (Cor. 2) O

(
(MT )−

1
2 + dµ2

)
ηt ≤

√
Mb1b2
dT × ×

√
×

√

FedZO
Ours (Thm. 4) O

(
T−2 + µ2

)
ηt ≤ η1

t ×
√ √

× ×
FedZO

Ours (Thm. 6) O
(
T−2 + µ2

)
ηt ≤ η1

t ×
√ √

× ×

Theorem 3. Let {wt} and {w̄t} be produced by FedZO (3) on S and S(ji) respectively, where
ηt = η1t

−1, η1 ≤ 1−d/b2
4a3

with a3 = (1 + d/b2)β, and 0 ≥ 1−d/b2
2 αη1 − 1. After T iterations, we

get the global parameters A(S) = wT and A(S(ji)) = w̄T respectively. Under Assumptions 1 (b), 2
and 3, there holds

1

nN

N∑
i=1

n∑
j=1

E
[∥∥wT − w̄T

∥∥] ≤ (e (T − 1))
a1η1 a4(T − 1)η1 log (e (T − 1)) ,

where a4(T − 1) = 2(nN)−1
√
τ(T − 1) + µβ + 2(nN)−1

√
τ(T − 1)

√
d/b2 and τ(T − 1) =

O
(
µ2 log T

)
.

Theorem 3 states the stability bound O
((

(nN)−1
√
log T + 1

)
(nN)−1T

1
4 log T

)
if taking µ =

O
(
(nN)−1

)
and a1(1−d/b2)

4a3
≤ 1

4 . Compared with Theorem 2, the current result removes the
dependence on the Lipschitz parameter L while the dependence on µ is improved from the partial
dependence L/(nN)+µ to the full dependence (

√
log T/(nN)+ 1)µ. The reason is that, motivated

by [36], we decompose the gradient approximation into two parts, i.e., the difference between the
unknown gradient and its expected estimator, the divergence between the expected and its empirical
version. With the help of second-order Taylor expansion, the first part is bounded by Lemmas 4 and 5
in Appendix B.1. Meanwhile, the second part is bounded by the PL condition. The detailed proof is
provided by Equation (8) in Appendix B.4.

Combining Theorem 1 (b) with Theorem 3, we derive the following generalization bound for the
heavy-tailed FedZO.
Corollary 2. Under the same conditions of Theorem 3, for FedZO (3), there holds

|E[F (wT )− FS(w
T )]| ≤ O

((
(nN)−1

√
log T + 1

)
(4θ)θµT a1η1 log T + E[FS(w

T )]
)
.

When µ = O
(
(nN)−1

)
, a1(1−d/b2)

4a3
≤ 1

4 and E
[
FS(w

T )
]

= O
(
(nN)−1

)
, Corollary

2 shows the generalization bound O
((

(nN)−1
√
log T + 1

)
(4θ)θ(nN)−1T

1
4 log T

)
. With

bounded variance of gradient and bounded loss function, [38] stated the generalization bound
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O
(
(nδ)−

1
2L

1
2

( (
E
[
v2
]) 1

4 +
√
log T

))
for SGD with high probability. Here, we further developed

the analysis technique associated with the bounded variance of gradient to the federated learning
setting by the fine-grained error analysis (see the proof of Theorem 1 (b)).

Theorem 4. Let {wt} be produced by FedZO (3) on S, where ηt = η1t
−1, η1 ≤ 1−d/b2

4a3
with

a3 = (1 + d/b2)β and 0 ≥ 1−d/b2
2 αη1 − 1. Under Assumptions 1 (b), 2 and 3, there hold

E[FS(w
T )− FS(w(S))] ≤ O

(
T−2 + µ2

)
and

|E[F (wT )− F (w∗)]|

≤O
(
T−2 + µ2 +

(
(nN)−1

√
log T + 1

)
(4θ)θµT a1η1 log T + E[FS(w

T )]
)
,

where w(S), w∗ are defined in (4).

The PL condition can guarantee the identification of global minimizers. Therefore, we regard
E
[
FS(w

T )− FS(w
∗)
]
, instead of

∥∥∇FS(w
T )
∥∥, as the measure of optimization error in this paper.

[40] provided the optimal optimization bound O
(
1/(Tα2)

)
with uniform stability tool for gradient-

dominated pairwise SGD. [16] characterized the convergence rate O
(
(MT )−

1
2 + dµ2

)
of the

FedZO algorithm with partial device participation. As shown in Table 2, Theorem 4 guarantees the
optimal decay rate O

(
T−1

)
on the optimization error as µ = O(T− 1

2 ) without the dependence of
the dimension of hypothesis function space d and the random direction number b2. Note that, our
optimization bounds rely on the quality of the initial model like many previous work (e.g. [16]).

4 Learning Guarantees of Asynchronous FedZO

Following the line of Section 3.2, we further study theoretical foundations for the asynchronous case
of the FedZO algorithm. Considering the asynchrony among the local model parameters of different
clients in the same iteration, we modify Equation (3) as follows

wt+1 = wt − ηt
b1N

N∑
i=1

b1∑
m=1

∇̃fi

(
wti

i ; z
ti
i,m,

{
vtii,l

}b2

l=1
, µ

)
, (7)

where t− ti ∈ [t0] denotes the delay of the i-th client in the t-th iteration, and t0 = max
t∈[T ]

{
max
i∈[N ]

ti −

min
i∈[N ]

ti

}
denotes the maximum delay for all clients in the whole update process of the global model.

Note that, if ti = t for some i, the parameter wti
i will be updated to wt+1 at the end of the t-th

iteration. We state the differences between Equations (3) and (7) in Remark 2.

Theorem 5. Given S and S(ji) in Definition 1, let {wt} and {w̄t} be produced by asynchronous
FedZO (7) on S and S(ji) respectively, where ηt = η1t

−1, η1 ≤ 1−d/b2
4a3

with a3 = (1 + d/b2)β

and 0 ≥ 1−d/b2
2 αη1 − 1. After T iterations, we get the global parameters A(S) = wT and

A(S(ji)) = w̄T respectively. Under Assumptions 1 (b), 2 and 3, there holds

1

nN

N∑
i=1

n∑
j=1

E
[∥∥wT − w̄T

∥∥] ≤ (e (T − 1))
2βη1

(
a5(T − 1)η1 log(e(T − 1)) + 4a6(T − 1)η21

)
,

where a5(T − 1) = µβ + 4(nN)−1
√
τ̂(T − 1)

√
d/b2, a6(T − 1) = µβ2

(
(b1N)−1

(
1 + b1−1

n

)
+

2t0
)
+ β

(
2 + 2

√
d/b2

) (
(b1N)−1

(
1 + b1−1

n

)
+ 2t0

)√
τ̂(T − 1) and τ̂(T − 1) = O

(
µ2 log T

)
.

Asynchrony can cause discrepancies among the local models of various clients wti , i = 1, ..., N
and the global model wt in the t-th iteration. Therefore, the primary challenge of asynchronous
learning theory is to establish the relationship between

∥∥wti
i − w̄ti

i

∥∥ and ∥wt−w̄t∥. To overcome this
bottleneck, we design a new decomposition

∥∥wti
i − w̄ti

i

∥∥ ≤
∥∥wti

i − wt −
(
w̄ti

i − w̄t
)∥∥+∥wt − w̄t∥

9



and then use second-order Taylor expansion to give an upper bound of the first term on the right-hand
side of the inequality. When µ = O

(
(nN)−1

)
and β(1−d/b2)

2a3
≤ 1

2 , Theorem 5 provide a stability

bound O
(((

1 + (nN)−1
√
log T

)
log T +

√
log Tt0

)
(nN)−1T

1
2

)
.

Corollary 3. Under the same conditions of Theorem 5, for asynchronous FedZO (7), there holds

|E[F (wT )− FS(w
T )]|

≤O
(((

1 + (nN)−1
√
log T

)
log T +

√
log Tt0

)
(4θ)θµT 2βη1 + E[FS(w

T )]
)
.

Combining Theorem 1 (b) with Theorem 5, when µ = E[FS(w
T )] =

O
(
(nN)−1

)
, β(1−d/b2)

2a3
≤ 1

2 , Corollary 3 yields the generalization bound

O
( ((

1 + (nN)−1
√
log T

)
log T +

√
log Tt0

)
(4θ)θ(nN)−1T

1
2

)
which appears to be the

first generalization bound developed for asynchronous federated learning algorithms. It should be
noted that, due to the more complex communication structure, using the condition t0 = 0 (the
synchronous case) can not recover the generalization bound in Corollary 2.

Theorem 6. Let {wt} be produced by FedZO (7) on S, where ηt = η1t
−1, η1 ≤ 1−d/b2

4a3
with

a3 = (1 + d/b2)β and 0 ≥ 1−d/b2
2 αη1 − 1. Under Assumptions 1 (b), 2 and 3, there hold

E[FS(w
T )− FS(w(S))] ≤ O

(
T−2 + µ2

)
and

|E[F (wT )− F (w∗)]|

≤O
(
T−2 + µ2 +

((
1 + (nN)−1

√
log T

)
log T +

√
log Tt0

)
(4θ)θµT 2βη1 + E[FS(w

T )]
)
,

where w(S), w∗ are defined in (4).

Theorem 6 also develops the first optimal optimization bound O
(
T−2 + µ2

)
for the asynchronous

FedZO. Based on Equation (5), the excess risk bound O
(
T−2 +

( (
1 + (nN)−1

√
log T

)
log T + t0

√
log T

)
(4θ)θ(nN)−1T

1
2

)
can be directly derived by integrating Corollary 3 and this optimization

bound when µ = E[FS(w
T )] = O

(
(nN)−1

)
.

5 Conclusion

This paper fills the gap of theoretical guarantees for both synchronous and asynchronous FedZO algo-
rithms. We develop the first generalization bound for general FedZO after bridging the quantitative
relationships between generalization error and ℓ1 on-average model stability. Moreover, fine-grained
learning theory analysis is established by means of the heavy-tailed condition and the second-order
Taylor expansion, where the derived error bounds are satisfactory even compared with the previous
results for traditional SGD [37, 32, 38] and recent ZoSS [36].
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