
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEYOND THE RAINBOW: HIGH PERFORMANCE DEEP
REINFORCEMENT LEARNING ON A DESKTOP PC

Anonymous authors
Paper under double-blind review

ABSTRACT

Rainbow Deep Q-Network (DQN) demonstrated combining multiple independent
enhancements could significantly boost a reinforcement learning (RL) agent’s per-
formance. In this paper, we present “Beyond The Rainbow” (BTR), a novel al-
gorithm that integrates six improvements from across the RL literature to Rain-
bow DQN, establishing a new state-of-the-art for RL using a desktop PC, with a
human-normalized interquartile mean (IQM) of 7.6 on Atari-60. Beyond Atari, we
demonstrate BTR’s capability to handle complex 3D games, successfully training
agents to play Super Mario Galaxy, Mario Kart, and Mortal Kombat with mini-
mal algorithmic changes. Designing BTR with computational efficiency in mind,
agents can be trained using a high-end desktop PC on 200 million Atari frames
within 12 hours. Additionally, we conduct detailed ablation studies of each com-
ponent, analyzing the performance and impact using numerous measures.

0 25 50 75 100 125 150 175 200
Number of Frames (in millions)

0.0

2.5

5.0

7.5

10.0

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Beyond The Rainbow (BTR)
Rainbow
DQN (Nature)

Figure 1: Interquartile mean human-normalized performance for BTR against other RL algorithms
on the Atari-60 benchmark. The results for DQN and Rainbow DQN are those reported in RLiable
(Agarwal et al., 2021). Shaded areas show 95% confidence intervals bootstrapped over tasks, with
BTR using 1 seed. For box plots and performance profiles, see Appendix B.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has achieved numerous successes in complex sequential
decision-making tasks, most rapidly since Mnih et al. (2015) proposed Deep Q-Learning (DQN).
With this success, RL has become increasingly popular among smaller research labs, the hobbyist
community, and even the general public. However, recent state-of-the-art approaches (Schrittwieser
et al., 2020; Badia et al., 2020a; Hessel et al., 2021; Kapturowski et al., 2022) are increasingly out of
reach for those with more limited compute resources, either in terms of the required hardware or the
walltime necessary to train a single agent. This is a unique issue in RL compared to natural language

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

processing or image recognition which have foundation models that can be efficiently fine-tuned for
a new task or problem (Lv et al., 2023). Meanwhile, RL agents must be trained afresh for each
environment. Therefore, the development of powerful RL algorithms that can be trained quickly on
inexpensive hardware is crucial for smaller research labs and the hobbyist community.

These concerns are not new. Ceron & Castro (2021) highlighted that Rainbow DQN (Hessel et al.,
2018) required 34,200 GPU hours (equivalent to 1435 days) of training, making the research impos-
sible for anyone except a few research labs, with more recent algorithms exacerbating this problem.
Recurrent network architectures (Horgan et al., 2018), high update to sample ratio (D’Oro et al.,
2022), and the use of world-models and search-based techniques (Schrittwieser et al., 2020) all in-
crease the computational resources necessary to train agents, many using distributed approaches
requiring multiple CPUs and GPUs (or TPUs), or requiring numerous days and weeks to train a
single agent. These features have dramatically decreased RL’s accessibility.

For this purpose, we develop “Beyond the Rainbow” (BTR), taking the same principle as Rain-
bow DQN Hessel et al. (2018), selecting 6 previously independently evaluated improvements and
combining them into a singular algorithm (Section 3). These components were chosen for their
performance qualities or to reduce the computational requirements for training an agent. As a re-
sult, BTR sets a new state-of-the-art score for Atari-60 (Bellemare et al., 2013) (excluding recurrent
approaches) with an Interquartile Mean (IQM) of 7.61 using a single desktop machine in less than
12 hours, and outperforms Rainbow DQN on Procgen (Cobbe et al., 2020) in less than a fifth of the
walltime (Section 4.1). Further, we demonstrate BTR’s potential by training agents to solve three
modern 3D games for the first time, Mario Kart Wii, Super Mario Galaxy and Mortal Combat, that
each contain complex mechanics and graphics (Section 4.2). To verify the effectiveness and effect
of the six improvements to BTR, in Section 5.1, we conduct a thorough ablation of each component,
plotting their impact on the Atari-5 environments and in Section 5.2, we utilise seven different mea-
sures to analyse the component’s impact on the agent’s policy and network weights. This allows us
to more precisely understand how the components impact BTR beyond performance or walltime.

In summary, we make the following contributions to state-of-the-art RL.

• High Performance (Section 4.1) - BTR outperforms the state-of-the-art for non-
recurrent RL on the Atari-60 benchmark, with an IQM of 7.6 (compared to Rain-
bow DQN’s 1.9), outperforming humans on 52/60 games. Furthermore, BTR out-
performs Rainbow DQN with Impala on the Procgen benchmark despite using a
smaller model and 80% less walltime.

• Modern Environments (Section 4.2) - Testing beyond Atari, we demonstrate BTR
can train agents for 3 modern games: Super Mario Galaxy (final stage), Mario Kart
Wii (Rainbow Road), and Mortal Combat (Endurance mode). These environments
contain 3D graphics and complex physics and have never been solved using RL.

• Computationally Accessible (Figure 5) - Using a high-end desktop PC, BTR
trains Atari agents for 200 million frames in under 12 hours, significantly faster than
Rainbow DQN’s 35 hours. This increases RL research’s accessibility for smaller
research labs and hobbists without the need for GPU clusters or excessive walltime.

• Component Impact Analysis (Section 5) - We conduct thorough ablations inves-
tigating BTR without each component in terms of performance and other measures.
We discover that BTR widens action gaps (reducing the effects of approximation
errors), is robust to observation noise, and reduces neuron dormancy and weight
matrix norm (shown to improve plasticity throughout training).

2 BACKGROUND

Before describing BTR’s extensions, we outline standard RL mathematics, how DQN is imple-
mented, and Rainbow DQN’s extensions.

1All reported IQM scores use the best single evaluation for each environment throughout training as is
standard, rather than the agent’s score at 200 million, hence the discrepancy between the overall score and
Figure 1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 RL PROBLEM FORMULATION

We adopt the standard formulation of RL (Sutton & Barto, 2018), described as a Markov Decision
Process (MDP) defined by the tuple (S,A,P,R), where S is the set of states, A is the set of actions,
P : S ×A →∆(S) is the stochastic transition function, and R : S ×A →R is the reward function.
The agent’s objective is to learn a policy π : S → ∆(A) that maximizes the expected sum of
discounted rewards Eπ[

∑∞
t=0 γ

tr(st, at)], where γ ∈ [0, 1) is the discount rate.

2.2 DEEP Q-LEARNING (DQN)

One popular method for solving MDPs is Q-Learning (Watkins & Dayan, 1992) where an agent
learns to predict the expected sum of discounted future rewards for a given state-action pair. To
allow agents to generalize over states and thus be applied to problems with larger state spaces, Mnih
et al. (2013) successfully combined Q-Learning with neural networks. To do this, training minimizes
the error between the predictions from a parameterized network Qθ and a target defined by

rt + γmax
a∈A

Qθ′ (st+1, a) , (1)

where Qθ′ is an earlier version of the network referred to as the target network, which is periodically
updated from the online network Qθ. The data used to perform updates is gathered by sampling
from an Experience Replay Buffer (Lin, 1992), which stores states, actions, rewards, and next states
experienced by the agent while interacting with the environment.

2.3 RAINBOW DQN AND IMPROVEMENTS TO DQN

In collecting 6 different improvements to DQN, Rainbow DQN (Hessel et al., 2018) proved cumula-
tively that these improvements could achieve a greater performance than any individually. We briefly
explain the individual improvements, ordered by performance impact, most of which are preserved
within BTR (see Table 1), for more detail, we refer readers to the extension’s respective papers:

1. Prioritized Experience Replay - To select training examples, DQN sampled uniformly
from an Experience Replay Buffer, assuming that all examples are equally important to
train with. Schaul et al. (2015) proposed sampling training examples proportionally to
their last seen absolute temporal difference error, encouraging more training on samples
for which the network most inaccurately predicts their future rewards.

2. N-Step - Q-learning utilizes bootstrapping to minimize the difference between the pre-
dicted value and the resultant reward plus the maximum value of the next state (Eq. 1).
N-step (Sutton et al., 1998) reduces the reliance on this bootstrapped next value by consid-
ering the next n rewards and observation in n timesteps (Rainbow DQN used n = 3).

3. Distributional RL - Due to the stochastic nature of RL environments and agent’s policies,
Bellemare et al. (2017) proposed learning the return distribution rather than scalar expecta-
tion; this was done through modelling the return distributions using probability masses and
the Kullbeck-Leibler divergence loss function.

4. Noisy Networks - Agents can often insufficiently explore their environment resulting
in sub-optimal policies. Fortunato et al. (2017) added parametric noise to the network
weights, causing the model’s outputs to be randomly perturbed, increasing exploration dur-
ing training, particularly for states where the agent has less confidence.

5. Dueling DQN - The agent’s Q-value can be rewritten as the sum of state-value and ad-
vantage (Q(s, a) = V (s) + A(s, a)). Looking to improve action generalisation, Wang
et al. (2016) split the hidden layers into two separate streams for the value and advantage,
recombining them with Q(s, a) = V (s) + (A(s, a)− 1

|A|
∑

a′ A(s, a′)).

6. Double DQN - In selecting the next observation’s maximum Q-value (Eq. 1), this can
frequently overestimate the target’s Q-value, negatively affecting the agent’s performance.
To reduce this overestimation, Van Hasselt et al. (2016) propose utilising the online network
rather than the target network to select the next action when forming targets, defined as:

rt + γQθ′ (st+1, argmax
a∈A

Qθ(st+1, a)) . (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 BEYOND THE RAINBOW - EXTENSIONS AND IMPROVEMENTS

Building on Rainbow DQN (Hessel et al., 2018), BTR includes 6 more improvements undiscovered
in 2018.2 Additionally, as hyperparameters are critical to agent performance, Section 3.2 discusses
key hyperparameters and our choices. In the appendices, we include a table of hyperparameters,
a figure of the network architecture and the agent’s loss function (Appendices C.2, D and D.2).
Finally, the source code using Gymnasium (Towers et al., 2024) is included within the supplementary
material to help future work build upon or utilise BTR.

Table 1: A comparison of components between Rainbow DQN (Hessel et al., 2018) and BTR.

Added To Rainbow DQN Same As Rainbow DQN Removed From Rainbow DQN
Impala (Scale=2) N-Step TD Learning Double (N/A with Munchausen)

Adaptive Maxpooling (6x6) Prioritized Experience Replay C51 (Upgraded to IQN)
Spectral Normalisation Dueling

Implicit Quantile Networks Noisy Networks
Munchausen

Vectorized Environments

3.1 EXTENSIONS

Impala Architecture + Adaptive Maxpooling - Espeholt et al. (2018) proposed a convolutional
residual neural network architecture based on He et al. (2016) featuring three residual blocks3, sub-
stantially increasing performance over DQN’s three-layer convolutional network. Following Cobbe
et al. (2020), we scale the width of the convolutional layers by 2 to enhance its capabilities. We
include an additional 6x6 adaptive max pooling layer after the convolutional layers (Schmidt &
Schmied, 2021) found to speed up learning and support different input resolutions. Our adaptive
maxpooling is identical to that of a standard 2D maxpooling layer, but can be used with any input
resolution as it automatically adjusts the stride and kernel size to fit the specified output size (6x6).

Spectral Normalisation (SN) - To help stabilize the training of discriminators in Generative Adver-
sarial Networks (GANs), Miyato et al. (2018) proposed Spectral Normalisation to help control the
Lipschitz constant of convolutional layers. SN works to normalize the weight matrices of each layer
in the network by their largest singular value, ensuring that the transformation applied by the weights
does not distort the input data excessively, which can lead to instability during training. Bjorck et al.
(2021) and Gogianu et al. (2021) found that SN could improve performance in RL, especially for
larger networks and Schmidt & Schmied (2021) found SN reduced the number of updates required
before initial progress is made.

Implicit Quantile Networks (IQN) - Dabney et al. (2018) improved upon Bellemare et al. (2017),
used in Rainbow DQN, learning the return distribution over the probability space rather than prob-
ability distribution over return values. This removes the limit on the range of Q-values that can be
expressed, and enables learning the expected return at every probability.

Munchausen RL - Boostrapping is a core aspect of RL; used to calculate target values (Eq. 1) with
most algorithms using the reward, rt, and the optimal Q-value of the next state, Q∗. However, since
in practice the optimal policy is not known, the current policy π is used. Munchausen RL (Vieillard
et al., 2020) looks to leverage an additional estimate in the bootstrapping process by adding the
scaled-log policy to the loss function (Eq. 3 where α ∈ [0, 1] is a scaling factor, σ is the softmax
function, and τ is the softmax temperature). This assumes a stochastic policy, therefore DQN is
converted to Soft-DQN with with πθ′ = σ(Qθ′

τ). As Munchausen does not use argmax over the
next state, Double DQN is obsolete. Munchausen RL’s update rule is

Qθ(st, at) = rt +ατ lnπθ′(at|st) + γ
∑
a′∈A

πθ′(a′|st+1)(Qθ′(st+1, a
′)− τ ln(πθ′(a′|st+1)) . (3)

2After the completion of our work, we additionally found Layer Normalization applied after the stem of
each residual block and between dense layers to be beneficial (see Appendix I for a discussion)

3The network architecture is referred to as Impala due to the accompanying training algorithm IMPALA
proposed in Espeholt et al. (2018)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Vectorization - RL agents typically take multiple steps in a single environment, followed by a
gradient update with a small batch size (Rainbow DQN took 4 environment steps, followed by a
batch of 32). However, taking multiple steps in parallel and performing updates on larger batches
can significantly reduce walltime. We follow Schmidt & Schmied (2021), taking 1 step in 64 parallel
environments with one gradient update with batch size 256 (Schmidt & Schmied (2021) took two
gradient updates rather than the one we take). This results in a replay ratio (ratio of gradient updates
to environment steps) of 1

64 . Higher replay ratios have been shown to improve performance (D’Oro
et al., 2022), however we opt to keep this value low to reduce walltime.

3.2 HYPERPARAMETERS

Hyperparameters have repeatedly shown to have a very large impact on performance in RL (Ceron
et al., 2024), thus we perform a small amount of tuning to improve performance. Firstly, how
frequently the target network is updated is closely intertwined with batch size and replay ratio.
We found that updating the target network every 500 gradient steps4 performed best. Given our
high batch size, we additionally performed minor hyperparameter tests using different learning rates
finding that a slightly higher learning rate of 1× 10−4 performed best, compared to 6.25× 10−5 in
Rainbow DQN. In Appendix C.2, we clarify the meaning of the terms frames, steps and transitions.

For many years, RL algorithms have used a discount rate of 0.99, however, when reaching high
performance, lower discount rates alter the optimal policy, causing even optimally performing agents
to not collect the maximum cumulative rewards. To prevent this, we follow MuZero Reanalyse
(Schrittwieser et al., 2021) using γ = 0.997. For our Prioritized Experience Replay, we use the lower
value of α = 0.2, the parameter used to determine sample priority, recommended by Toromanoff
et al. (2019) when using IQN. Lastly, many previous experiments used only noisy networks or ϵ-
greedy exploration, however, we opt to use both until 100M frames, then set ϵ to zero, effectively
disabling it. We elaborate on this decision in Appendix G.

4 EVALUATION

To assess BTR, we test it on two standard RL benchmarks, Atari (Bellemare et al., 2013) and Proc-
gen (Cobbe et al., 2020) in Section 4.1. Secondly, we train BTR agents for three modern games
(Super Mario Galaxy, Mario Kart Wii, and Mortal Combat) with complex 3D graphics and physics
in Section 4.2, never shown to be trainable with RL previously.

4.1 ATARI AND PROCGEN PERFORMANCE

We evaluate BTR on the Atari-60 benchmark following (Machado et al., 2018) and without life
information (see Appendix J for the impact), evaluating every million frames on 100 episodes. Fig-
ure 1 plots BTR against Rainbow DQN and DQN, achieving an IQM of 7.6 compared to Rainbow
DQN’s 2.7 and DQN’s 0.9. In comparison to human expert performance, BTR equals or exceeds
them in 52 of 60. Importantly, we find that BTR appears to continue increasing performance beyond
200 million frames, indicating that higher performance is still possible with more time and data.
Results tables and graphs can be found in Appendices A and B, respectively.

0 25 50 75 100 125 150 175 200
Number of Frames (Millions)

0.0

0.2

0.4

0.6

M
in

-M
ax

 N
or

m
al

ize
d

IQ
M

Beyond The Rainbow (8 Hours)
Rainbow DQN + Impala x4 (41 Hours)

Figure 2: BTR compared to Rainbow DQN + Impala (width x4) (Cobbe et al., 2020) after 200M
frames on the Procgen benchmark. Shaded areas show 95% CIs, with results averaged over 2 seeds.

4This equates to 32,000 environment steps (128,000 frames), compared to Rainbow DQN’s 8,000 steps.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To further confirm BTR’s performance, we benchmark on Procgen (Cobbe et al., 2020), a proce-
durally generated set of environments aiming to prevent overfitting to specific tasks, a prevalent
problem in RL (Justesen et al., 2018; Juliani et al., 2019). The results are shown in Figure 2 with
individual games in Appendix B. BTR is able to exceed Rainbow DQN + Impala’s performance, de-
spite using significantly fewer convolutional filters (which Cobbe et al. (2020) found to significantly
improve performance) and using 8 hours of walltime compared to 41. These results demonstrate
BTR’s general learning capability across a wide range of standard RL benchmarks.

4.2 APPLYING BTR TO MODERN GAMES

To demonstrate BTR’s capabilities beyond standard RL benchmarks, we utilised Dolphin (Dolphin-
Emulator, 2024), a Nintendo Wii emulator, to train agents for a range of modern 3D games: Super
Mario Galaxy, Mario Kart Wii and Mortal Combat. Using a desktop PC, we were able to train the
agent to complete some of the most difficult tasks within each game. Namely, the final level in
Super Mario Galaxy, Rainbow Road (a notoriously difficult track in Mario Kart Wii) and defeating
all opponents in Mortal Kombat Endurance mode (for details about the environments and setup, see
Appendix K). For this, BTR required minimal adjustments: first, to input image resolution, 140x114
(from Atari’s 84x84) due to the game’s higher resolution and aspect ratio, and second, to reduce the
number of vectorized environments to 4 as a result of the games’ memory and CPU requirements.

Figure 3: BTR being used to play Super Mario Galaxy (final level), Mario Kart Wii (Rainbow Road)
and Mortal Kombat: Armageddon (Endurance Mode) respectively.

For all the games, BTR was able to solve the game level, including consistently finishing in first
place in Mario Kart. We provide videos of our agent playing all three Wii games, in addition to the
games in the Atari-5 benchmark 5.

5https://www.youtube.com/playlist?list=PL4geUsKi0NN-sjbuZP_
fU28AmAPQunLoI

6

https://www.youtube.com/playlist?list=PL4geUsKi0NN-sjbuZP_fU28AmAPQunLoI
https://www.youtube.com/playlist?list=PL4geUsKi0NN-sjbuZP_fU28AmAPQunLoI

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 ANALYSIS

Given BTR’s performance demonstrated in Section 4, in this Section, we ablate each component
to evaluate their performance impact (Section 5.1). Using the ablated agents, we then measure
numerous attributes during and after training to assess each component’s impact (Section 5.2).

5.1 ABLATIONS STUDIES

BTR amalgamates independently evaluated components into a single algorithm. To understand and
verify each’s contribution, Figure 4 plot BTR’s performance without each component on the Atari-5
benchmark.6

0 50 100 150 200
0

2

4

6

8

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e

Atari-5 IQM

0 50 100 150 200
0

2

4

6 BattleZone

0 50 100 150 200

0

5

10

DoubleDunk

0 50 100 150 200
Number of Frames (millions)

0

2

4

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e

NameThisGame

0 50 100 150 200
Number of Frames (millions)

0

20

40

60

Phoenix

0 50 100 150 200
Number of Frames (millions)

0

1

2

3

Qbert

Beyond The Rainbow (BTR)
no Impala

no IQN
no Maxpool

no Munchausen
no Spectral

Rainbow + Vectorization
Rainbow + Impala (and Vectorization)

Figure 4: Individual game performance of BTR on Atari-5 with individual components removed
averaged over 3 seeds. Shaded areas show 95% confidence intervals. Note the Atari-5 IQM does not
use the regression procedure from Aitchison et al. (2023) due to adverse results (see Appendix L).

We find that Impala had the largest effect on performance, with the other components generally caus-
ing a less significant effect on final performance. However, when BTR’s performance is compared
before 200 million frames, we find Munchausen and Spectral Normalisation provide significant per-
formance improvements (+24% and +25% at 40M frames, and +13% and +35% at 120M frames).
We compare the performance of components at different stages of training in Appendix E.

For vectorization and maxpooling, while their inclusion reduces performance, we find their sec-
ondary effects crucial to keep BTR computationally accessible. Omitting vectorization increases
walltime by 328% (Figure 5) by processing environment steps in parallel and taking fewer gradient
steps (781,000 compared to Rainbow DQN’s 12.5 million).7 We find maxpooling makes the agent
more robust to noise as discussed in Section 5.2, and decreases the model’s parameters by 77%.

5.2 WHAT ARE THE EFFECTS OF BTR’S COMPONENTS?

To help interpret the results in Section 5.1, we measure seven different attributes of the agent either
during or after training: action gaps and action swaps, linked to causing approximation errors (Belle-
mare et al., 2016); policy churn, which can cause excessive off-policyness (Schaul et al., 2022) and
score with additional noise indicating robustness. For analyses of model weights, see Appendix F.

6Due to computational resources required to evaluate each component on 60 environments, Aitchison et al.
(2023) proposes a subset of 5 games that closely correlate with the performance across all 60.

7Another consequence of removing vectorization is using smaller batches, which Obando Ceron et al. (2024)
finds improves exploration, possibly explaining our results found in Qbert.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 2 4 8 16 32
Training Hours on a Single Desktop PC (Atari 200M)

BTR w/o Vectorization
Rainbow

FERainbow
BTR w/o Maxpooling

BTR
BTR w/o Spectral

BTR w/o Munchausen
BTR w/o IQN

BTR w/o IMPALA

48 +328%
35 +215%

17 +49%
12 +7%
11 +0%
11 -0%
10 -8%
10 -8%

6 -50%

Figure 5: Walltime of BTR on a desktop PC with components removed, compared with Hessel et al.
(2018) and Schmidt & Schmied (2021). For hardware details, see Appendix H.

For why Impala contributes to performance so strongly, we find that without BTR’s other compo-
nents, Impala exhibits a notable drawback, learning a highly noisy and unstable policy. Table 2,
demonstrates that without IQN and Munchausen the agent experiences very low action gaps (ab-
solute Q-value difference between the highest two valued actions), causing the agent to swap its
argmax action almost every other step. This is likely to result in approximation errors altering the
policy and causing a high degree of off-policyness in the replay buffer. This is particularly detri-
mental in games requiring fine-grained control, such as Phoenix where the agent needs to narrowly
dodge many projectiles, reflected in BTR’s performance without these components.

Furthermore, we find that maxpooling is useful in dealing with noisy environments. To test this,
we evaluate the performance of BTR’s ablations when taking different quantities of ϵ-actions, and
find these two components prevent performance from dropping substantially 2. Lastly, we find
Munchausen and IQN to have a significant impact on Policy Churn (Schaul et al., 2022), with Mun-
chausen reducing it by 6.4% and IQN increasing it by 3.3%. As a result, when these components
are used together, they appear to reach a level of policy churn which does not harm learning and
potentially provides some exploratory benefits.

Table 2: Comparison of policy churn, action gaps, actions swaps and evaluation performance with
different quantities of ϵ-actions and color jitter (both only applied for evaluation). All measurements
use the final agent, trained on 200 million frames, for Atari Phoenix, averaged over 3 seeds. Action
Gap is the average absolute Q-value difference between the highest two valued actions. % Actions
Swap is the percentage of times the agent’s argmax action has changed from the last timestep.
Policy churn is the percentage of states which the agent’s argmax action has changed on after a
single gradient step. Color jitter applies a random 10% change to the brightness, saturation and hue
of each frame. For associated error with these values, please see Appendix F.

Category BTR w/o Munchausen w/o IQN w/o SN w/o Impala w/o Maxpool

Action Gap 0.281 0.056 0.175 0.298 0.313 0.280
% Action Swaps 33.4% 45.8% 42.2% 39.7% 28.6% 39.2%

Policy Churn 3.8% 10.2% 0.5% 2.9% 4.2% 3.9%
Score ColorJitter 206k 80k 93k 178k 5k 172k
Score ϵ = 0.03 98k 47k 57k 79k 5k 94k
Score ϵ = 0.01 208k 79k 110k 181k 5k 167k

Score ϵ = 0 397k 279k 199k 356k 5k 489k

6 RELATED WORK

The most similar work to BTR, developing a computationally-limited non-distributed RL algorithm,
is “Fast and Efficient Rainbow” (Schmidt & Schmied, 2021). They optimised Rainbow DQN to
maximise performance for 10 million frames through parallelizing the environments and dropping
C51 along with hyperparameter optimisations. This differs from our goals of producing an algorithm
that scales across training regimes (up to 200 million frames) and domains (Atari, Procgen, Super
Mario Galaxy, Mario Kart and Mortal Combat), resulting in different design decisions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

For less computation-limited approaches, Ape-X (Horgan et al., 2018) was the first to explore highly
distributed training, allowing agents to be trained on a billion frames in 120 hours through using
100 CPUs. Following this, Kapturowski et al. (2018) proposed R2D2 using a recurrent neural net-
work, increasing sample efficiency but slowing down gradient updates by 38%. Agent57 (Badia
et al., 2020a) was the first RL agent to achieve superhuman performance across 57 Atari games,
though required 90 billion frames. MEME (Kapturowski et al., 2022), Agent57’s successor, focused
on achieving superhuman performance within the standard 200 million frames limit, achieved by
used a significantly higher replay ratio and larger network architecture. Most recently, Dreamer-v3
(Hafner et al., 2023) used a 200 million parameter model requiring over a week of training, achiev-
ing similar results as MEME. We detail some of the key differences between BTR, MEME and
Dreamer-v3 in Table 3. While these approaches perform equally to or better than BTR, all are in-
accessible to smaller research labs or hobbyists due to their required computational resources and
walltime. Therefore, while these algorithms have important research value demonstrating the possi-
ble performance of RL agents, performative algorithms with a lower cost of entry, like BTR, are a
necessary component for RL to become widely applicable and accessible.

Table 3: Comparison of performance, walltime, observations and complexity of different algorithms.

Category BTR MEME Dreamer-v3

A100 GPU Days 0.9 Not Reported 7.7
Recurrent? No (4 stacked frames) Yes Yes

Learns from? Single Transitions Trajectories (length 160) Trajectories (length 64)
World Model No No Yes
Parameters 2.9M Not Reported (≈>20M) 200M

Observation Shape 84x84 210x160 64x64
Gradient Steps 781K 3.75M 1.5M
Atari-60 IQM 7.6 9.6 9.6

7 CONCLUSION AND FUTURE WORK

We have demonstrated that, once again, independent improvements from across Deep Reinforce-
ment Learning can be combined into a single algorithm capable of pushing the state-of-the-art far
beyond what any single improvement is capable of. Importantly, we find that this can be accom-
plished on desktop PCs, increasing the accessibility of RL for smaller research labs and hobbyists.

We acknowledge that there are many more promising improvements we were not able to include in
BTR, leaving room for more future work in a few years to create even stronger integrated agents.
For example, BTR does not add an explicitly exploration component, resulting in it struggling in
hard-exploration tasks such as Montezuma’s Revenge; therefore, mechanisms used in Never Give
Up (Badia et al., 2020b) or other components may prove useful. Section 5.1 found that the neural
network’s core architecture, Impala, had the largest impact on performance, an area we believe
is generally underappreciated in RL. Previous work (Kapturowski et al., 2018) has incorporated
recurrent models enhancing performance, though we are uncertain how this can be incorporated into
BTR without affecting its computational accessibility.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

8 ETHICS AND REPRODUCIBILITY STATEMENTS

Our work does not involve human subjects or methodologies with direct ethical concerns such as
discrimination, bias, or privacy violations. Additionally, we have no conflicts of interest, spon-
sorship issues, or violations of legal or research integrity were present during the development of
this research. However, we acknowledge that by improving the accessibility and performance of
Reinforcement Learning (RL), our contributions may inadvertently provide more powerful tools to
malicious actors, thus, we urge the research community to remain vigilant regarding these issues.

To ensure reproducibility, we provide a detailed background of the work we build upon and clearly
explain all changes made to the base algorithm. Furthermore, Appendix C.2 provides all relevant
environmental and algorithmic hyperparameters needed to reproduce our work. Additionally, we
provide clarity about often misunderstood terms (Appendix C.3), a detailed architecture diagram
(Appendix D) and the exact hardware we tested our algorithms on (Appendix H). Most importantly,
we provide BTR’s code within the supplementary material. Lastly, we provide many details regard-
ing the Wii games tested BTR on, including the minor changes from BTR, how the environment was
setup and the reward functions used.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304–29320, 2021.

Matthew Aitchison, Penny Sweetser, and Marcus Hutter. Atari-5: Distilling the arcade learning
environment down to five games. In International Conference on Machine Learning, pp. 421–
438. PMLR, 2023.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International conference on machine learning, pp. 507–517. PMLR, 2020a.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never
give up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020b.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR,
2023.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Marc G Bellemare, Georg Ostrovski, Arthur Guez, Philip Thomas, and Rémi Munos. Increasing the
action gap: New operators for reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 30, 2016.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449–458. PMLR, 2017.

Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement learn-
ing. arXiv preprint arXiv:2106.01151, 2021.

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insight-
ful and inclusive deep reinforcement learning research. In International Conference on Machine
Learning, pp. 1373–1383. PMLR, 2021.

Johan Samir Obando Ceron, João Guilherme Madeira Araújo, Aaron Courville, and Pablo Samuel
Castro. On the consistency of hyper-parameter selection in value-based deep reinforcement learn-
ing. In Reinforcement Learning Conference, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Alex Clark. Pillow (pil fork) documentation, 2015. URL https://buildmedia.
readthedocs.org/media/pdf/pillow/latest/pillow.pdf.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048–
2056. PMLR, 2020.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018.

Dolphin-Emulator. Dolphin emulator. https://github.com/dolphin-emu/dolphin,
2024. Accessed: 2024-09-30.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning. arXiv preprint
arXiv:2407.04811, 2024.

Florin Gogianu, Tudor Berariu, Mihaela C Rosca, Claudia Clopath, Lucian Busoniu, and Razvan
Pascanu. Spectral normalisation for deep reinforcement learning: an optimisation perspective. In
International Conference on Machine Learning, pp. 3734–3744. PMLR, 2021.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models, 2023. URL https://arxiv. org/abs/2301.04104, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane
Weber, David Silver, and Hado Van Hasselt. Muesli: Combining improvements in policy opti-
mization. In International conference on machine learning, pp. 4214–4226. PMLR, 2021.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Shengyi Huang, Jiayi Weng, Rujikorn Charakorn, Min Lin, Zhongwen Xu, and Santiago Ontañón.
Cleanba: A reproducible and efficient distributed reinforcement learning platform. In The Twelfth
International Conference on Learning Representations, 2023.

Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter Henry,
Adam Crespi, Julian Togelius, and Danny Lange. Obstacle tower: A generalization challenge in
vision, control, and planning. arXiv preprint arXiv:1902.01378, 2019.

11

https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://github.com/dolphin-emu/dolphin

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian Togelius, and
Sebastian Risi. Illuminating generalization in deep reinforcement learning through procedural
level generation. arXiv preprint arXiv:1806.10729, 2018.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent ex-
perience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Steven Kapturowski, Vı́ctor Campos, Ray Jiang, Nemanja Rakićević, Hado van Hasselt, Charles
Blundell, and Adrià Puigdomènech Badia. Human-level atari 200x faster. arXiv preprint
arXiv:2209.07550, 2022.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. arXiv preprint arXiv:2010.14498, 2020.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8:293–321, 1992.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens,
and Will Dabney. Disentangling the causes of plasticity loss in neural networks. arXiv preprint
arXiv:2402.18762, 2024.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Johan Obando Ceron, Marc Bellemare, and Pablo Samuel Castro. Small batch deep reinforcement
learning. Advances in Neural Information Processing Systems, 36, 2024.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Tom Schaul, André Barreto, John Quan, and Georg Ostrovski. The phenomenon of policy churn.
Advances in Neural Information Processing Systems, 35:2537–2549, 2022.

Dominik Schmidt and Thomas Schmied. Fast and data-efficient training of rainbow: an experimental
study on atari. arXiv preprint arXiv:2111.10247, 2021.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. Advances in Neural Information Processing Systems, 34:27580–27591, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.
32145–32168. PMLR, 2023.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume 135. MIT
press Cambridge, 1998.

Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. Is deep reinforcement learning really
superhuman on atari? leveling the playing field. arXiv preprint arXiv:1908.04683, 2019.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement learning. Advances
in Neural Information Processing Systems, 33:4235–4246, 2020.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003. PMLR, 2016.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A FULL RESULTS TABLES

Table A1: Maximum scores obtained during training (averaged over 100 episodes and all performed
using random seeds) after 200M Frames on the Atari-60 benchmark. Fast & Efficient Rainbow DQN
and Munchausen-IQN refer to Schmidt & Schmied (2021) and (Vieillard et al., 2020) respectively.
FE-Rainbow uses Life Information (See Appendix J), only 10M frames, and has missing games so
metrics are based on existing games.

Game Random Human DQN (Nature) Rainbow M-IQN FE-Rainbow BTR

AirRaid 400 1000 7523 12472 19111 53543
Alien 227 7127 2354 3610 4249 12508 19149

Amidar 5 1719 1268 2390 1653 2071 17807
Assault 222 742 1526 3490 6014 10709 19384
Asterix 210 8503 2803 16547 42615 346758 593650

Asteroids 719 47388 846 1494 1666 12345 169272
Atlantis 12850 29028 843372 791393 866810 812825 899104

BankHeist 14 753 560 1070 1305 1411 1598
BattleZone 2360 37187 18425 40316 50501 112652 168340
BeamRider 363 16926 5203 6084 12322 26398 138102

Berzerk 123 2630 467 832 719 3388 6703
Bowling 23 160 30 43 23 40 47
Boxing 0 12 79 98 99 99 100

Breakout 1 30 92 109 241 537 676
Carnival 380 4000 5111 4523 5588 6031

Centipede 2090 12017 2378 6595 4425 8368 76242
ChopperCommand 811 7387 2722 13029 551 4208 980233

CrazyClimber 10780 35829 103549 146262 146419 140712 140723
DemonAttack 152 1971 5437 17411 63143 131657 135447
DoubleDunk -18 -16 -5 22 21 -1 23

ElevatorAction 0 3000 408 79372 89237 82669
Enduro 0 860 642 2165 2247 2266 2352

FishingDerby -91 -38 -1 42 54 42 56
Freeway 0 29 26 33 33 34 33
Frostbite 65 4334 482 8309 9419 5282 19331
Gopher 257 2412 5440 9987 23310 25606 99739
Gravitar 173 3351 209 1249 1105 2107 5284

Hero 1027 30826 15766 46290 25555 15377 21559
IceHockey -11 0 -6 0 11 6 38
Jamesbond 29 302 671 995 1526 29828

JourneyEscape -18000 -1000 -3300 -1096 -806 5166
Kangaroo 52 3035 10744 13005 10704 11498 13849

Krull 1598 2665 6029 4368 10309 10324 11123
KungFuMaster 258 22736 22397 27066 25588 27444 54330

MontezumaRevenge 0 4753 0 500 0 0 0
MsPacman 307 6951 3431 3989 5630 5981 11493

NameThisGame 2292 8049 7549 8900 12440 19819 28360
Phoenix 761 7242 4993 8800 5315 60954 350722
Pitfall -229 6463 -45 -27 -32 -1 0
Pong -20 14 16 20 19 21 20

Pooyan 500 1000 3452 4344 13096 24279
PrivateEye 24 69571 1113 21353 100 253 100

Qbert 163 13455 9801 18332 13159 25712 39484
Riverraid 1338 17118 9725 20675 16143 24585

RoadRunner 11 7845 38430 55104 60370 81831 590236
Robotank 2 11 59 67 71 70 83
Seaquest 68 42054 2416 9590 23885 63724 409991
Skiing -17098 -4336 -16281 -29268 -10404 -22076 -9131
Solaris 1236 12326 1478 1686 1835 2877 8198

SpaceInvaders 148 1668 1797 4455 10810 28098 53863
StarGunner 664 10250 48498 57255 64875 310403 574106

Tennis -23 -8 -3 0 0 15 23
TimePilot 3568 5229 3704 11959 14600 31333 110981

Tutankham 11 167 103 244 205 167 314
UpNDown 533 11693 8797 37936 197043 397875

Venture 0 1187 13 1537 978 437 0
VideoPinball 0 17667 38720 460245 508012 269619 589065
WizardOfWor 563 4756 1473 7952 11352 15518 50828
YarsRevenge 3092 54576 23963 46456 106929 98908 177430

Zaxxon 32 9173 4471 14983 14286 18832 47096

IQM (↑) 0.000 1.000 0.771 1.852 2.181 ≈ 2.769 7.572
Median (↑) 0.000 1.000 0.731 1.506 1.559 ≈ 1.906 4.695
Mean (↑) 0.000 1.000 2.261 4.152 5.260 ≈ 7.700 19.775

Optimality Gap (↓) 0.000 1.000 0.407 0.200 0.224 ≈ 0.180 0.097
Best - - 0 3 3 2 52

>Human - - 22 43 34 38 52

Surround 7 -10 10
Defender 2875 18689 169929 461380

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table A2: Maximum scores obtained during training (averaged over 100 episodes and all per-
formed 3 random seeds) after 200M Frames on the Atari-5 Environment, compared against other
non-recurrent non-distributed algorithms. FE-Rainbow refers to Fast and Efficient Rainbow DQN
(Schmidt & Schmied, 2021), and M-IQN refers to Munchausen-IQN (Vieillard et al., 2020). Metrics
do not use the recommended regression procedure, as explained in Appendix L.

Game Random Human Rainbow DQN Rainbow DQN M-IQN FE-Rainbow BTR
(Dopamine) (Full)

BattleZone 2360 37188 40895 62010 52517 112652 151877
DoubleDunk -19 -16 22 0 22 -1 23

NameThisGame 2292 8049 9229 13136 12761 19819 28710
Phoenix 761 7243 8605 108529 5327 60955 367284
QBert 164 13455 18503 33818 14739 25712 45034

IQM 0.000 1.000 1.265 3.583 1.452 4.070 7.627
Median 0.000 1.000 1.21 2.532 1.44 3.167 4.589
Mean 0.000 1.000 3.714 5.817 3.745 4.684 16.561

Table A3: Comparison in terms of performance and walltime against PQN (Gallici et al., 2024).
PQN only reports results at 400M frames, and includes life information which has a large effect on
performance (see Appendix J). To provide a fairer comparison, we report our results also using life
information, but still only use 200M frames. Below are Atari-5 IQM and per-game Scores, with
BTR averaged over 3 seeds. For individual games, Human-Normalized scores are reported, with the
raw score in brackets.

Game BTR (with life info, 200M frames) PQN (with life info, 400M frames)

Inter-Quartile Mean 14.02 3.86

BattleZone 13.53 (473,580) 1.51 (54,791)
DoubleDunk -14 (23.0) 6.03 (-0.92)

NameThisGame 4.59 (28,710) 3.18 (20,603)
Phoenix 89.95 (583,788) 38.79 (252,173)
QBert 14.54 (193,428) 2.37 (31,716)

Walltime (A100) 22 Hours 2 Hours
Backend (PyTorch (non-compiled) + gymnasium async) (JAX + envpool)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B FULL RESULTS GRAPHS

0

20k

40k
AirRaid

0

10k

20k

Alien

0

10k

20k
Amidar

0

10k

20k

Assault

0

500k

Asterix

0

100k

200k

Asteroids

0

500k

Atlantis

0

1k

BankHeist

0

100k

200k
BattleZone

0

100k

BeamRider

0

5k

10k
Berzerk

0

20

40

Bowling

0

50

100
Boxing

0

500

Breakout

0

2k

5k

Carnival

0

50k

Centipede

0

500k

1.0M

ChopperCommand

0

100k

CrazyClimber

0

100k

DemonAttack

-20

0

20

DoubleDunk

0

50k

ElevatorAction

0

1k

2k

Enduro

-100

0

FishingDerby

0

20

Freeway

0

10k

20k

Frostbite

0

50k

100k

Gopher

0

2k

5k

Gravitar

0

20k

40k

Hero

0

25

IceHockey

0

20k

Jamesbond

-10k

0

10k
JourneyEscape

0

10k

Kangaroo

0

5k

10k

Krull

0

25k

50k

KungFuMaster

0

200

400

MontezumaRevenge

0

10k

MsPacman

0

20k

NameThisGame

0

200k

400k

Phoenix

-50

0
Pitfall

-20

0

20
Pong

0

20k

Pooyan

0

10k

20k
PrivateEye

0

20k

40k
Qbert

0

10k

20k

Riverraid

0

500k

RoadRunner

0

50

Robotank

0

200k

400k

Seaquest

-30k

-20k

-10k
Skiing

0

5k

10k
Solaris

0

25k

50k

SpaceInvaders

0

250k

500k

StarGunner

-20

0

20

Tennis

0

100k

TimePilot

0

200

Tutankham

0

200k

400k
UpNDown

0

1k

Venture

0

500k

VideoPinball

BeyondTheRainbow (BTR) Rainbow IQN DQN

0

50k

WizardOfWor

0

100k

YarsRevenge

0

20k

40k

Zaxxon

Figure B1: Performance of BTR on each individual game in all 60 Atari games. Results only use
a single seed, so may be inaccurate. Shaded areas show 1 standard deviation of scores within that
evaluation of 100 episodes.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8
Human Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Score Distributions: ALE

0.0 0.5 1.0 2.0 4.0 8.0
Human Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

Score Distributions with Non Linear Scaling

DQN (Nature) DQN (Adam) C51 REM IQN Rainbow M-IQN DreamerV2 BTR

Figure B3: Final performance of BTR on Atari-60 (as used in RLiable (Agarwal et al., 2021)),
against other popular algorithms. Plot displays performance profiles, with 95% confidence intervals
with task bootstrapping. Please note however that BTR only uses a single seed, and thus these results
should be used with care.

2.5 5.0 7.5
DQN (Nature)
DQN (Adam)

C51
REM
IQN

Rainbow
M-IQN

DreamerV2
BTR

Median

4 8 12 16

IQM

8 16 24

Mean

0.15 0.30 0.45

Optimality Gap

Human Normalized Score

Figure B2: Box plot performance on Atari-60 of BTR against other algorithms reported by RLiable
(Agarwal et al., 2021). BTR uses 1 seed, hence large error bars.

C HYPERPARAMETERS

C.1 ENVIRONMENT DETAILS

Table C4: Environment Details for Atari Experiments.

Hyperparameter Value

Grey-Scaling True
Observation down-sampling 84x84

Frames Stacked 4
Reward Clipping [-1, 1]

Terminal on loss of life False
Life Information False

Max frames per episode 108K
Sticky Actions True

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Number of Frames (in millions)

0

2

4

6

8

10

12
IQ

M
 H

um
an

 N
or

m
al

ize
d

Sc
or

e Beyond The Rainbow (BTR)
Rainbow DQN
DQN
PPO

Figure B4: Figure shows BTR against PPO. PPO uses the Cleanba (Huang et al., 2023) implemen-
tation, and the plot also only uses the 53 game Atari games Cleanba provides. Shaded areas show
95% confidence intervals with bootstrapping over tasks, however BTR only uses 1 seed, hence the
large error size.

0 100 200
0

25

bigfish

0 100 200
0

10

bossfight

0 100 200
0

10
caveflyer

0 100 200
0

10
chaser

0 100 200
0

10

climber

0 100 200
0

10
coinrun

0 100 200
0

20
dodgeball

0 100 200
0

20

fruitbot

0 100 200

0.0
2.5

heist

0 100 200
0

10
jumper

0 100 200
0

10
leaper

0 100 200
0

10
maze

0 100 200
0

10

miner

0 100 200
0

10
ninja

0 100 200
0

20

plunder

BeyondTheRainbow Rainbow DQN + Impala x4 Final Performance (41 Hours)
0 100 200

0

25

starpilot

Figure B5: Performance of BTR on each individual game in the Procgen benchmark. Shaded areas
show one standard deviation of the performed evaluations. The red dotted line shows the perfor-
mance of Rainbow DQN + Impala with 4x scaled Impala blocks (Cobbe et al., 2020), after 200M
frames.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table C5: Environment Details for Procgen Experiments.

Hyperparameter Value

Grey-Scaling True
Observation Size 64x64
Frames Stacked 4
Reward Clipping False

Max frames per episode 108K
Distribution Mode Hard

Number of Unique Levels (Train & Test) Unlimited

C.2 ALGORITHM HYPERPARAMETERS

C.3 CLARITY OF THE TERMS FRAMES, STEPS AND TRANSITIONS

Throughout the Arcade Learning Environment’s history (ALE) (Bellemare et al., 2013; Machado
et al., 2018), there have been many ambiguities around the terms: frames, steps and transitions,
which are sometimes used interchangeably. Frames refer to the number of individual frames the
agent plays, including those within repeated actions (also called frame skipping). This is notably
different from the number of steps the agent takes, which does not include these skipped frames.
When using the standard Atari wrapper, training for 200M frames is equivalent to training for 50M
steps. Lastly, transitions refer to the standard tuple (st, at, rt, st+1), where the timestep t refers to
a steps, not frames. We encourage researchers to make this clear when publishing work, including
when mentioning values of different hyperparameters.

D BEYOND THE RAINBOW ARCHITECTURE & LOSS FUNCTION

D.1 ARCHITECTURE

Figure D6 shows the the neural network architecture of the BTR algorithm. The architecture is
highly similar to the Impala architecture (Espeholt et al., 2018), with notable exceptions:

• Spectral Normalization Within each Impala CNN blocks, each residual layer (containing two
Conv 3x3 + ReLu) has spectral normalization applied, as discussed in Section 3.1.

• Maxpooling Following the CNN blocks, a 6x6 adaptive maxpooling layer is added.

• IQN In order to use IQN, it is required to draw Tau samples which are multiplied by the output
of the CNN layers, as shown by the section ‘IQN Samples’ in figure D6.

• Dueling Dueling (as included in the original Rainbow DQN) splits the fully connected layers into
value and advantage streams, where the advantage stream output has a mean of 0, and is
then added to the value stream.

• Noisy Networks As included in Rainbow DQN, Noisy Networks replace the linear layers with
noisy layers.

Lastly, the sizes of many of the layers given in Figure D6 are dependant upon the Impala width scale,
of which we use the value 2. For example, the Impala CNN blocks have [16×width, 32×width,
32×width] channels respectively. The output size of the convolutional layers (including the max-
pooling layer) is 6×6×32×width, as a 6x6 maxpooling layer is used. Lastly, the cos embedding
layer after generating IQN samples requires the same size as the output of the convolutional layers,
hence the size is selected accordingly. Another benefit of the 6x6 maxpooling layer is following the
product of the convolutional layers and IQN samples, the number of parameters is fixed, regardless
of the input size. Figure D7 shows the numbers of parameters the ablated versions of BTR have.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table C6: Table showing the hyperparameters used in the BTR algorithm.

Hyperparameter Value

Learning Rate 1e-4
Discount Rate 0.997

N-Step 3

IQN Taus 8
IQN Number Cos’ 64

Huber Loss κ 1.0
Gradient Clipping Max Norm 10

Parallel Environments 64
Gradient Step Every 64 Environment Steps (1 Vectorized Environment Step)

Replace Target Network Frequency (C) 500 Gradient Steps (32K Environment Steps)
Batch Size 256

Total Replay Ratio 1
64

Impala Width Scale 2
Spectral Normalization All Convolutional Residual Layers

Adaptive Maxpooling Size 6x6
Linear Size (Per Dueling Layer) 512

Noisy Networks σ 0.5
Activation Function ReLu

ϵ-greedy start 1.0
ϵ-greedy decay 2M Frames
ϵ-greedy end 0.01

ϵ-greedy disabled 100M Frames

Replay Buffer Size 1,048,576 Transitions (220)
Minimum Replay Size for Sampling 200K Transitions

PER Alpha 0.2

Optimizer Adam
Adam Epsilon Parameter 1.95e-5 (equal to 0.005

batchsize)
Adam β1 0.9
Adam β2 0.999

Munchausen Temperature τ 0.03
Munchausen Scaling Term α 0.9

Munchausen Clipping Value (l0) -1.0

Evaluation Epsilon 0.01 until 125M frames, then 0
Evaluation Episodes 100

Evaluation Every 1M Environment Frames (250K Environment Steps)

0 2 4 6 8
Total Parameters (Millions)

no Maxpooling
BTR

no IQN
no IMPALA

8.8M
 +203%2.9M +0%

2.8M -3%
1.9M -34%

Figure D7: Total number of parameters in BTR with different components removed. Those not in-
cluded in the graph (Munchausen and Spectral Normalisation) used the same number of parameters
as BTR.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(0-255), 4x84x84,
Greyscale

/ 255

Impala CNN Block
(32 Channels)

Impala CNN Block
(64 Channels)

Impala CNN Block
(64 Channels)

Adaptive Maxpooling
6x6

Generate 8 Random
Taus [0, 1]

Cosine(Taus * pi)

Linear Layer
6x6x64

(IQN Cos Embedding)

ReLu

Hadamard Product

Relu Relu

Noisy Linear
(1)

Noisy Linear
(Num Actions)

Value
Stream

Advantage
Stream

+

Q-Values

Conv 3x3, Stride 1

MaxPool, Stride 2

ReLu

Conv 3x3, Stride 1

ReLu

Conv 3x3, Stride 1

+

Spectral
Normalization

Spectral
Normalization

layer - layer.mean

IQN
Samples

NoisyLinear (512)

ReLu

Conv 3x3, Stride 1

ReLu

Conv 3x3, Stride 1

+

Spectral
Normalization

Spectral
Normalization

NoisyLinear(512)

Figure D6: Architectural diagram of the BTR algorithm’s neural network. The model contains a
total of 2.91 million parameters, 2.52 million of which are within linear layers.

D.2 LOSS FUNCTION

The resulting loss function for the BTR algorithm remains the same as that defined in the appendix of
the Munchausen paper, which gave a loss function for Munchausen-IQN. As the other components
in BTR do not affect the loss, the resulting temporal-difference loss function is the same. For self-
containment, we include this loss function below:

TDBTR = rt + α[τ lnπ(at|st)]0l0 + γ
∑
a∈A

π(a|st+1)(zσ′ (st+1, a)− τ lnπ(a|st+1))− zσ(st, at)

(D1)
with π(·|s) = sm(q̃(s,·)τ) (that is, the policy is softmax with q˜, the quantity with respect to which
the original policy of IQN is greedy). It is also worth noting here that due to the character conflict of
both Munchausen and IQN using τ (Munchausen as a temperature parameter, and IQN for drawing
samples), we replace IQN’s τ with σ. l0, τ and α are hyperparameters set by Munchausen. We use
the same values in BTR, also shown in our hyperparameter table in Appendix C.2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E BTR WITH FEWER TRAINING FRAMES

Some of BTR’s improvements provide a relatively small improvement after 200M frames, however
we want to point out their importance using fewer samples. Table E7 shows that many improvements
provide large benefits earlier in training.

Table E7: A comparison of BTR’s ablations when using less than 200M frames on the Atari-5
benchmark. Percentages are given relative to BTR’s score.

Algorithm 40M Frames 80M Frames 120M Frames

BTR w/o Maxpooling 5.399 (+90%) 6.895 (+4%) 7.443 (+2%)
BTR 2.837 (± 0%) 6.613 (±0%) 7.297 (±0%)

BTR w/o IQN 4.030 (+42%) 3.888 (-41%) 6.644 (-9%)
BTR w/o Spectral Normalisation 2.145 (-24%) 5.752 (-13%) 6.351 (-13%)

BTR w/o Munchausen 2.114 (-25%) 3.341 (-49%) 4.755 (-35%)
BTR w/o Impala 0.535 (-81%) 1.183 (-82%) 1.372 (-81%)

F ANALYSIS OF BTR’S EXTENSIONS

In recent years, several measures have been devised to understand the impact of extensions on a
model’s behaviour, one of the most popular of which is dormant neurons (Kumar et al., 2020; Sokar
et al., 2023). Figure F9 plots their prevalence for each of the ablations. We observe three key changes
from the ablations; within the CNN layers, the Nature CNN (as used in Rainbow DQN) has a higher
number of dormant/low activation neurons, indicating that the Impala network is significantly better
for reducing dormant neurons. As for the fully connected layers, dormant neurons were very high
across the board, with IQN lowering the number of dormant neurons.

0 50 100 150 200
5

10

15

20

Ba
ttl

eZ
on

e

WeightNorm

0 50 100 150 200

102

SRank

0 50 100 150 200

10

15

20

DormantNeurons (%)

0 50 100 150 200

10

20

30

Na
m

eT
hi

sG
am

e

0 50 100 150 200

102

0 50 100 150 200
10

15

20

25

0 50 100 150 200

10

20

30

Qb
er

t

0 50 100 150 200
101

102

BeyondTheRainbow (BTR)
no IQN

no Munchausen
no Impala

no SN
no Maxpool

0 50 100 150 200
5

10

15

20

Figure F8: Plot showing L2 norm of network weights, SRank δ = 0.01 (Kumar et al., 2020) and
% of dormant neurons (dormant defined as < 0.1 (Sokar et al., 2023), for details see Appendix F).
Results are based on a single seed so should be used with caution.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.1

0.2 BTR

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.1

0.2 no IQN

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.1

0.2 no Munchausen

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.1

0.2 no Impala

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.1

0.2 no Maxpool

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.1

0.2 no SpecNorm

(a) Convolutional Layers.

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.2

0.4
BTR

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.2

0.4
no IQN

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.2

0.4
no Munchausen

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.2

0.4
no Impala

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.2

0.4
no Maxpool

[0.
0,

0.1
)

[0.
1,

0.2
)

[0.
2,

0.3
)

[0.
3,

0.4
)

[0.
4,

0.5
)

[0.
5,

0.6
)

[0.
6,

0.7
)

[0.
7,

0.8
)

[0.
8,

0.9
)

[0.
9,

1.0
)

[1.
0,

1.1
)

[1.
1,

1.2
)

1.2
+

0.0

0.2

0.4
no SpecNorm

(b) Fully Connected Layers.

Figure F9: Histogram showing the percentage of average neuron activations for both convolutional
and fully connected layers on Atari BattleZone, NameThisGame and Qbert, with subplots for each
performed ablation. The first bar in each plot before the red dotted line represent neurons which
Sokar et al. (2023) defined as dormant. These results are based on a single seed, so should be
considered with caution.

G BTR WITH AND WITHOUT EPSILON GREEDY

One of the first observations we made early in the testing process was that the inclusion of using
ϵ-greedy in addition to NoisyNetworks benefited some environments but not others. Specifically,
performance was reduced on BattleZone and Phoenix, both games where the agent reached very
high levels of performance with extremely precise control. However, DoubleDunk performed sig-
nificantly worse, only reaching a score of 0, rather than the score of 23 the final BTR algorithm
achieved. Similar findings were also found in the full version of Rainbow DQN which used only
NoisyNetworks, which achieved a best score of -0.3 (Dopamine’s “compact” Rainbow DQN how-
ever which did not use NoisyNetworks achieved 22). From this, we conclude that NoisyNetworks

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table F8: Repeat of the main paper’s Table 2 for reference against the table of 95% confidence in-
tervals below. Comparison of policy churn, action gaps, actions swaps and evaluation performance
with different quantities of ϵ-actions and color jitter (both only applied for evaluation). All mea-
surements use the final agent, trained on 200 million frames, for Atari Phoenix, averaged over 3
seeds. Action Gap is the average absolute Q-value difference between the highest two valued ac-
tions. % Actions Swap is the percentage of times the agent’s argmax action has changed from the
last timestep. Policy churn is the percentage of states which the agent’s argmax action has changed
on after a single gradient step. Color jitter applies a random 10% change to the brightness, saturation
and hue of each frame. For associated error with these values, please see Appendix F.

Category BTR w/o Munchausen w/o IQN w/o SN w/o Impala w/o Maxpool

Action Gap 0.281 0.056 0.175 0.298 0.313 0.280
% Action Swaps 33.4% 45.8% 42.2% 39.7% 28.6% 39.2%

Policy Churn 3.8% 10.2% 0.5% 2.9% 4.2% 3.9%
Score ColorJitter 206k 80k 93k 178k 5k 172k
Score ϵ = 0.03 98k 47k 57k 79k 5k 94k
Score ϵ = 0.01 208k 79k 110k 181k 5k 167k

Score ϵ = 0 397k 279k 199k 356k 5k 489k

Table F9: 95% confidence intervals for the main paper Table 2. A repeat of that table is shown above
in Table F8.

Category BTR w/o Munchausen w/o IQN w/o SN w/o Impala w/o Maxpool

Action Gap [0.28, 0.29] [0.05, 0.06] [0.15, 0.2] [0.27, 0.33] [0.08, 0.54] [0.21, 0.35]
% Action Swaps [32.6, 34.2] [42.2, 49.4] [38.4, 45.9] [34.9, 44.5] [26.0, 31.2] [38.1, 40.4]

Policy Churn [2.4, 5.2] [8.3, 12.1] [0.4, 0.6] [2.0, 3.9] [3.3, 5.2] [2.6, 5.1]
Score ColorJitter [188k, 224k] [64k, 94k] [44k, 141k] [163k, 193k] [4k, 5k] [113k, 230k]
Score ϵ = 0.03 [94k, 101k] [40k, 54k] [30k, 83k] [59k, 99k] [4k, 5k] [66k, 120k]
Score ϵ = 0.01 [192k, 223k] [69k, 89k] [82k, 137k] [156k, 205k] [4k, 5k] [110k, 224k]

Score ϵ = 0 [341k, 452k] [190k, 367k] [177k, 220k] [342k, 369k] [4k, 5k] [474k, 503k]

alone failed to sufficiently explore the environment, whereas ϵ-greedy did not. From these results,
we eventually decided to use both methods, but disable ϵ-greedy halfway through training to reap
the best of both techniques.

H EXPERIMENT COMPUTE RESOURCES

H.1 OUR COMPUTE RESOURCES

For running our experiments, we used a mixture of desktop computers and internal clusters. The
desktop PCs used an GPU Nvidia RTX4090, CPU intel i9-14900k and 64GB of DDR5 6000mhz
RAM. When using internal clusters, we used a mixture of GPUs, including Nvidia A100s, Nvidia
Volta V100 and Nvidia Quadro RTX 8000. As for CPUs, we used 2 x 2.4 GHz Intel(R) Xeon(R)
Gold 6336Y, 48 Cores. Lastly, we saved the models used to produce our analysis, totalling around
300gb across all of our ablations on the Atari-5 benchmark, saving a model every 1 million frames.

As most of our experiments were performed on desktop PC, in the main body of our paper we refer-
ence these speeds. We found that desktop PCs actually outperformed internal clusters, likely due to
desktop CPUs being more suited to performing environment steps, outlined in the next subsection.

When testing ideas originally (those mentioned in Appendix I), we only tested them using a single
run of the games BattleZone, NameThisGame and Phoenix unless otherwise stated. Whilst this
method of evaluation is not statistically significant, for preliminary purposes with computational
restrictions, we deemed this the best option.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

H.2 BTR WITH DIFFERENT HARDWARE

In this work, we look to make high-performance RL more accessible to those with less compute
resources, especially those only with access to desktop computers. Most of our experiments were
performed with an RTX4090, we also provide some walltimes for 200M Atari frames for lower-end
machines, and provide a brief comparison of desktop PCs against internal clusters:

Desktops:

Original: RTX 4090, Intel i9-13900k (2023), 64GB RAM - 11.5 Hours

RTX 3070, Ryzen 9 3900X (2019), 64GB RAM - 52 Hours

RTX 2080 ti, Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz (2018), 128GB RAM - 32 Hours

Internal Clusters:

Nvidia H100, 48 Core Intel(R) Xeon(R) Platinum 8468 (2023), 2TB RAM - 15 Hours

Nvidia A100, 24 Core Intel(R) Xeon(R) Gold 6336Y (2021), 512GB RAM - 22 Hours

We note that there is significant variability in hardware (processors, memory bus speeds, etc), but
the results still show reasonable times compared to not using BTR. Overall, we found that training
BTR was very capable of running on lower end machines, with the agent (excluding the environ-
ments) using around 15GB of RAM. The main performance bottleneck was running the environment
in parallel, making the number of CPU cores and processor speed most important. BTR also pro-
vides strong performance long before 200M frames, thus providing practical utility for lower-end
machines.

I OTHER THINGS WE TRIED

Throughout the development of the BTR algorithm, we experimented with many different compo-
nents and hyperparameters. A brief list of ideas we tried that performed worse or equivalent to the
final algorithm includes:

Using Exponential Moving Average networks rather than using fixed target networks (this was both
computationally slower and performed worse), varying the frequency of updating the target network,
changing the size of maxpool layer following the convolutional layers (we tried 4 and 8, however
6 performed significantly better) and decaying the learning rate over the course of training. Using
a linearly decaying learning rate from 1 × 10−4 to 0 over the course of training gave showed no
significant difference. We also experimented with some different learning rates (with and without
decay), and found 1 × 10−4 to perform best, however 5 × 10−5 also performed similarly as was
used in Implicit Quantile Networks (IQN). We also tried replacing all ReLu activation units with
GeLu, however this lead to dramatically worse performance. Some other ideas which we performed
a single-game analysis of included annealing the discount rate from 0.97 to 0.997 (no significant
difference on performance), applying spectral normaliation to the linear layers (dramatically worse
performance), increasing the number of cos’ from IQN (no significant difference on performance)
and using Dopamine’s Prioritized Experience Replay buffer which doesn’t include a α value (mod-
erately worse performance). As discussed in G, we also tried not using ϵ-greedy when using noisy
nets.

Recently in RL, it has been shown that Neural Networks have a severe problem with under-
parameterisation (Kumar et al., 2020) and neurons becoming dormant (Sokar et al., 2023), pre-
venting larger models from seeing the success evident in other areas of Deep Learning. One method
used to remedy this is weight decay through the use of the AdamW optimizer (Loshchilov & Hutter,
2017). As this is far simpler than many other the other techniques to prevent under-parameterisation
we decided to test this approach, however no significant differences in performance were observed.
We tested this approach using the decay parameter 1e− 4, however potentially using a higher value
may results in significant changes in performance.

Lastly we also tried removing some of the original components from Rainbow DQN on Atari Bat-
tleZone, including Dueling, Prioritized Experience Replay and Noisy Networks. Prioritized Experi-
ence Replay and Noisy Networks both proved beneficial, so were kept in the algorithm. Dueling did

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 100 200
0

100k

200k

BattleZone

0 100 200

-20

0

20
DoubleDunk

0 100 200
0

10k

20k

30k

NameThisGame

0 100 200
0

200k

400k

Phoenix

0 100 200
0

20k

40k

Qbert

BeyondTheRainbow (BTR)
BTR + Layer Normalization

Figure I10: Graph shows individual game performance of BTR with and without Layer Normaliza-
tion. Layer Normalization makes a notable improvement on multiple games, including NameThis-
Game and BattleZone.

0 40 80 120 160 200
Frames (M)

0

2

4

6

8

IQ
M

 H
um

an
-N

or
m

al
ize

d
Sc

or
e

BeyondTheRainbow (BTR)
BTR + LayerNorm
Rainbow
IQN
DQN

Figure I11: Graph shows IQM human-normalized performance of BTR with and without Layer
Normalization on the Atari-5 Benchmark.

not seem to make any significant difference, however we did not choose to remove it for a clearer
continuation of Rainbow DQN, in addition to potentially being useful in other Atari environments.

Shortly after the submission of this work, we tested BTR with addition of Layer Normalization, and
found positive results. Layer Normalization can improve the robustness to a variety of pathologies
that cause loss of plasticity (Lyle et al., 2024), and helps to improve the conditioning of the network’s
gradients in RL (Ball et al., 2023). Below in Figures I10, I11 and Table I10, we show the results of
this addition into BTR.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 100 200
0

100k

200k

BattleZone

0 100 200

-20

0

20

DoubleDunk

0 100 200
0

10k

20k

30k

NameThisGame

0 100 200
0

200k

400k

600k Phoenix

0 100 200
0

10k

20k

30k

40k

Qbert

BeyondTheRainbow (BTR)
BTR No Sticky Actions

Figure J12: Graph shows individual game performance of BTR with and without Sticky Actions.
NameThisGame and Phoenix see small improvements. When using sticky actions, the impact of
disabling ϵ-actions is far more noticeable (ϵ-actions are disabled after 125M frames). This indicates
using sticky actions produces a policy more robust to noise, as would be expected.

Table I10: Maximum scores obtained during training (averaged over 100 episodes and all performed
random seeds) after 200M Frames on the Atari-5 Environment, compared to BTR with Layer Nor-
malization.

Game Random Human BTR + Layer Normalization BTR

BattleZone 2360 37188 204380 151877
DoubleDunk -19 -16 23 23

NameThisGame 2292 8049 32834 28710
Phoenix 761 7243 498264 367284
QBert 164 13455 48485 45034

IQM 0.000 1.000 8.369 7.627
Median 0.000 1.000 5.801 4.589
Mean 0.000 1.000 21.099 16.561

J ALTERED ATARI ENVIRONMENT SETTINGS

In order to investigate the impact of the environmental sticky actions parameter and to compare
against other works, we include results for it on the Atari-5 benchmark in Figure J12.

Some prior works choose to pass life information to the agent (Schmidt & Schmied, 2021). To
clarify, this is different to terminal on loss of life. Life information does not reset the episode
upon losing a life, but does pass a terminal to the buffer, allowing the agent to experience further
into episodes while also giving the agent a negative signal for losing a life. This setting is not
recommended in Machado et al. (2018), and works which use it are not comparable to those which
don’t. To emphasize this point, we take the three games from the Atari-5 benchmark which use lives
(as not all Atari games do), and perform a comparison.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 50 100 150 200
0

100k

200k

300k

400k

500k

600k

BattleZone

0 50 100 150 200
0

100k

200k

300k

400k

500k

600k

Phoenix

BeyondTheRainbow (BTR) BTR + Life Info
0 50 100 150 200

0

100k

200k

300k

400k
Qbert

Figure J13: BTR with and without life information.

K BTR FOR WII GAMES

BTR interfaces with different Wii Games via the Dolphin Emulator. Specifically, we use a forked
repository of to allow Python scripts to interact with the emulator. This includes loading savestates
(used to reset episodes), grabbing the screen as a PIL (Clark, 2015) image at the Wii’s internal
resolution of 480p (downsampled to 140x114 and grey-scaled, used for all observations), reading
the Wii’s RAM (used for reward functions and termination conditions) and allows programmatic
input into the emulator (used for actions). Using Dolphin’s portable setting, we are able to run
multiple Dolphin Emulators simultaneously on the same machine. Each instance runs as a unique
process, and communicates with the agent via Python’s multiprocessing library. Similarly to the
Atari benchmark, for all games we used a frameskip of 4.

K.1 SUPER MARIO GALAXY

This environment used Super Mario Galaxy’s final level, The Center of the Universe, and had to
make it to the final fight at the end of the game. The agent had 6 actions, including None, moving in
each direction and jumping. Additionally, if the jump action was performed following a movement,
the agent would continue to move in that direction.

Rewards were given via finding many values in the Wii’s memory that resembled progress in the
level. The agent was then rewarded for this progress value increasing from the last frame. If the
agent’s position entered a set region, the progress variable would be moved. Additionally, the game
uses a life system, where the player has a maximum of 3 lives and can lose or gain lives in many
different ways. The agent was given a reward of +1 for gaining a life, and -1 for losing a life. Lastly,
episode termination occurred if the agent reached 0 lives, or if the agent made it to the end of the
level. For this task, we also allowed the agent to start episodes at many points throughout the level,
which rapidly sped up training since the agent could easily experience different areas of the level.

Whilst a difficult task, once the agent first completed the level, it did not take long to start consis-
tently completing it due to the deterministic nature of the game.

K.2 MARIO KART WII

The Mario Kart Wii environment had the agent play against the game’s internal opponents (on hard
mode, with 12 racers including the agent), on the course Rainbow Road (with items on the 150cc
speed setting). The agent had to complete 4 laps of the course to finish the race. The agent had just
4 action, including accelerate, drifting left or right, and using its item. While this limited the agent’s
potential actions substantially, we found using fewer actions to dramatically accelerate training.

Rewards of +1 were given via reaching checkpoints that were scattered throughout the course (100
in total per lap). Additionally, if the agent’s speed dropped below a set threshold (65 km/h), the
agent would receive a reward of -0.01 per frame. The agent would be terminated with a reward of
-10 if its speed dropped below the threshold for over 80 frames, or with a reward of +10 for finishing
the race, with a bonus based on the position the agent finished in. Lastly, the agent was rewarded
with a +1 for using its item. Without this reward, we found the agent to often neglect using its item,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

likely due to many of the items only providing rewards in the long term, such as slowing down other
racers or blocking incoming items far in the future. Similarly to Super Mario Galaxy, we had the
agent start the episode in multiple positions around the first lap, allowing it to experience the whole
track early in training.

This agent took the longest to train, taking around 160M frames to reach consistent completion. In
particular, the agent took a long time to consistently complete the race due to the other racers and
randomized items making the environment highly stochastic, with many rare scenarios which could
cause the episode to terminate.

K.3 MORTAL KOMBAT

The Mortal Kombat environment put the agent in the game’s endurance mode, where the agent
would sequentially fight 15 different opponents, but keep retain its health between fights, and only
gain health after defeating every 3 opponents. We provided the agent with 14 actions, including:
None, Left, Right, Up, Down, Axe Kick, Punch, Snap Kick, Grab, Block, Toggle Weapon, Jump
Left, Jump Right, and Crouch. These actions were far from the game’s total action space, and limited
the agent’s ability to perform some of the combos within the game. We limited the agent’s actions
as the full action space is extremely large.

The agent was positively rewarded for damaging the opponent, and negatively rewarded for taking
damage, with one taking one tenth of the health bar equating to +1 reward respectively. The episode
was terminated with a reward of -10 for reaching 0 health, and +10 for defeating the 15th and final
enemy.

The Mortal Kombat agent learned considerably faster than Super Mario Galaxy and Mario Kart Wii,
first completing the environment in 50M frames, and getting progressively more consistent until
training was stopped at 90M frames. The agent quickly learned how to dodge enemy hits, and relied
heavily upon this strategy.

L ATARI-5 REGRESSION PROCEDURE

In our main paper ablation figure (Figure 4), we considered using the regression procedure recom-
mended in Atari-5 (Aitchison et al., 2023). This precedure is typically used to predict the Median
score across the entire 60 game Atari suite, while only needing to use 5 games. We find that BTR
was likely far outside of the distribution that this regression procedure was trained on, given we get
very poor predictions when comparing the Atari-5 prediction to the results from running BTR on all
60 games (134.72% relative error at 200M frames). Instead, we opted to just use the IQM across
the 5 games to give an easy to interpret average. Figure L14 shows the 60 game suite’s true median,
compared to the median predicted by Atari-5. These appears to be largely due to Phoenix causing
overestimation, where BTR achieves a human-normalized score of 56.55 compared to, for example,
Rainbow (Dopamine) with 1.21.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure L14: BTR’s 60 game median (based on a single seed) against that predicted by Atari-5 (3
seeds). Shaded areas show 95% confidence intervals.

30

	Introduction
	Background
	RL Problem Formulation
	Deep Q-Learning (DQN)
	Rainbow DQN and Improvements to DQN

	Beyond the Rainbow - Extensions and Improvements
	Extensions
	Hyperparameters

	Evaluation
	Atari and Procgen Performance
	Applying BTR to Modern Games

	Analysis
	Ablations Studies
	What are the effects of BTR's components?

	Related Work
	Conclusion and Future work
	Ethics and Reproducibility Statements
	Full Results Tables
	Full Results Graphs
	Hyperparameters
	Environment Details
	Algorithm Hyperparameters
	Clarity of the terms Frames, Steps and Transitions

	Beyond The Rainbow Architecture & Loss Function
	Architecture
	Loss Function

	BTR with Fewer Training Frames
	Analysis of BTR's Extensions
	BTR with and without Epsilon Greedy
	Experiment Compute Resources
	Our Compute Resources
	BTR with Different Hardware

	Other Things We Tried
	Altered Atari Environment Settings
	BTR for Wii Games
	Super Mario Galaxy
	Mario Kart Wii
	Mortal Kombat

	Atari-5 Regression Procedure

