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Abstract

A substantial gap persists in understanding the reasons behind the exceptional perfor-
mance of the Transformer architecture in NLP. A particularly unexplored area involves the
mechanistic description of how the distribution of parameters evolves over time during
training. In this work we suggest that looking at the time evolution of the statistic distribu-
tion of model parameters, and specifically at bifurcation effects, can help understanding the
model quality, potentially reducing training costs and evaluation efforts and empirically
showing the reasons behind the effectiveness of weights sparsification.

1 Introduction

Since its introduction in 2017 (Vaswani et al., 2017), the Transformer architecture has spurred enormous
research efforts leading to significant advancements across many research fields such as Computer Vi-
sion (Dosovitskiy et al., 2020), Speech (Gulati et al., 2020) and Language Processing (Brown et al., 2020).
As the deployment of state-of-the-art language models becomes ubiquitous in natural language process-
ing applications, the demand for transparency and explainability has intensified and a new research area
denoted as Mechanistic Interpretability (MI) emerged (Conmy et al., 2023).

MI is the attempt to microscopically describe the internals of neural networks by analysing the weights,
with the goal of reverse engineering their macroscopic properties. Similar to how statistical mechanics
links microscopic particle behavior to macroscopic system properties, MI delves into the micro-level de-
tails of neural networks’ parameters to elucidate their impact on macro-level functionalities and model
outputs. This analogy underscores interpretability’s role in bridging the explanatory gap within neural
networks, akin to how statistical mechanics contributes to understanding collective dynamics in particle
systems where individual microscopic laws give rise to large scale properties (Huang, 2008).

In this sense, researchers have undertaken diverse approaches, ranging from probing attention mecha-
nisms (Gurnee & Tegmark, 2023) to understand the internal space and time representation of Large Lan-
guage Models (LLMs), or by analyzing residual streams (Yu & Yang, 2023) as a way to describe the concepts
flowing through the network’s layers. Others have pushed forward analogies between Transformers and
interacting particle systems (Geshkovski et al., 2023), where each word, akin to a particle in a ensemble,
follows the flow influenced by the collective behavior.

In this paper, we extend the analogy between Mechanistic Interpretability and Statistical Mechan-
ics (Huang, 2008) to investigate the microscopic network parameters’ evolution over time, by exploring
the properties of Pythia (Biderman et al., 2023), a publicly accessible LLM. We describe the model in terms
of dynamical parameters’ evolution of the embedding layers, and study their effect on the generated out-
put.

Our empirical findings suggest a two-fold character of these internal parameters’ dynamics:

• In the first phases of the training process, a diffusive process takes place where the model explores
the landscape in every direction (as many as the number of network parameters);

∗“The Garden of Forking Paths" is a tribute to the title of a short novel from the writer and poet Jorge Luis Borges.
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• Then, after a certain transient period, the parameters’ dynamic converges to a deterministic evolu-
tion, whereas the underlying process is no longer diffusive.

With this study we aim to shed light on unexpected dynamics unfolding beyond the transient period.
We posit that this phenomenon is profound and has far-reaching implications, thus demanding thorough
analyses. Moreover, the observed phenomenon of weights converging to two distinct, apparently zero-
symmetric values, warrants further investigation due to its potential biological relevance. This symmetry
might hint at an underlying process mirrored in the brain, where excitatory and inhibitory neurons compete
for dominance during learning. Indeed, as observed in Najafi et al. (2020), excitatory and inhibitory subnet-
works are equally selective during decision-making process, and emerge simultaneously during learning
process. This intriguing parallelism demands deeper analysis to illuminate the connection between our
forking path behavior, observed in diverse model sizes, and the corresponding neurological processes ob-
served in the human and animal brain (Najafi et al., 2020).

Our observations yield insights with significant practical applications, particularly in relation to the dy-
namics observed during the training processes of neural networks. The presence of a bifurcation phe-
nomenon within the dynamics of the weights—across different models of varying sizes and trained on
diverse datasets—naturally suggests a practical protocol for spontaneously stopping the training process.
Specifically, this bifurcation signals a transition to a stationary state, indicating that further training may not
alter the weight values significantly. Therefore, by recognizing the absence of significant fluctuations in the
dynamics, one can efficiently conclude the training once such a stationary state is achieved. This advance-
ment has profound implications for efforts to mitigate the environmental impact of training LLMs. In an
era where combating climate change is paramount, reducing the energy consumption of training processes
is a critical goal. Our new exit protocol for training offers a strategy to achieve this objective, minimizing
energy expenditure without compromising the effectiveness of the training.

The structure of this manuscript follows a logical progression to facilitate the understanding of our work. In
Section 3 we provide an overview of the internal architecture of LLMs. We analyze and detail the methods
and tools we utilized to investigate the dynamics of the last embedding layer parameters. Following this, in
Section 4 we outline our key findings, with the effects of the bifurcation on model perplexity. We provide a
possible interpretation of these phenomena, aligning them with the underlying theory, and suggest possible
causes and implications. We finally summarize our insights, reiterate the implications of our findings, and
indicate directions for future research.

2 Related work

Our work follows the direction traced by Mechanistic Interpretability (MI) studies recently done for the
Transformers architecture. The first supporting studies behind most MI attempts are based on intuitive
visualizations of the internal layers of Transformers (Vig, 2019; Voita et al., 2019; Chefer et al., 2021), with
most of them based on individual neurons as unit of analysis.

At the heart of MI lies the conjecture that artificial neural networks, akin to their biological counterparts, ex-
hibit a nuanced interdependence between structure and function (Sporns, 2016). The algorithms implicitly
encapsulated within the computational graphs of models (analogous to synapses in the brain) are intricately
linked to synaptic strengths (parameter values). Consequently, the foundational capabilities manifested by
both systems are contingent upon the synergy of these inherent structural and functional attributes (Liu
et al., 2024; Nainani, 2024). In most MI studies it is prevailing to identify the neurons of a model as the
fundamental unit of examination. However, a scrutiny centered on neurons may lack insightfulness due
to phenomena such as polysemanticity, i.e. the neurons’ capacity to exhibit distinct responses to unrelated
inputs, as elucidated in previous works (Olah et al., 2017; Bricken et al., 2023).

Our work tries to address some of the aspects exposed in the MI literature. In particular, to our knowledge,
we are the first to visually analyze the parameters distribution of the embedding layers among multiple
training checkpoints, individuating a bifurcation effect with a quasi-symmetric bimodal weights distribu-
tion. We believe our observation is at the root of the effectiveness of extreme quantization methods like
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the one recently proposed by Ma et al. (2024) where weights are allowed to only take 3 distinct values
{1, 0,−1}.

Powerful MI techniques are used to explain factual association and hallucinations in Meng et al. (2022)
and Yuksekgonul et al. (2023), where the authors focused at the individual parameter-level showing that
while each MLP layer in the Transformer block has the ability to store factual associations, the attention
layer acts more like a router, transferring factual knowledge where it will be used in the next layer. More-
over, as shown by Voita et al. (2023), having a full mechanistic interpretation of the evolution of network
parameters is important, as fully trained models display a large amount of neurons that never activate
(dead neurons).

These observations motivate our study, as one of the reasons why methods like quantization (Dettmers &
Zettlemoyer, 2023; Xiao et al., 2023) and sparsification (Dettmers et al., 2022) lead to good downstream re-
sults, is probably a decrease in network information during training. Specifically, as demonstrated by Achille
et al. (2017), in the initial part of training a network weights are highly sensitive to input data and tend to
contain less information. Once the connections are aligned with the data distribution, they are harder to
modify, an observation that is also linked to learning processes in animals and human (Najafi et al., 2020).
In this respect, our work accumulates further experimental evidence about the presence of dead neurons
caused by counteracting inhibitory and excitatory effects.

Furthermore, the curious phenomenon of grokking (Power et al., 2022) is analyzed with the lens of MI
in Nanda et al. (2023) where the sudden increase in validation accuracy is explained as a gradual (and
not sudden) amplification of individual neural mechanisms encoded in the network weights. Other works
such as the ones by Liu et al. (2022a;b) have instead leveraged statistical mechanics principles to decode
the intricate grokking behavior witnessed in deep learning models. The observations of our study are in
line with the questions raised in the work by Merrill et al. (2023): how does grokking relate to network
sparsification? In other words, are training set memorization (as in grokking) and extreme network self-
sparsification two aspects of the same phenomenon? Indeed, grokking can be seen as the competition of a
dense network that dominates before the transition and generalizes poorly, and a sparse one that dominates
afterwards (Merrill et al., 2023).

The emerging properties of LLMs – and the lack thereof (Wei et al., 2022) – can also be evaluated in MI terms.
For example, the work by Schaeffer et al. (2023) has shown that emergent abilities are heavily dependent
on the non-linearity of the researcher’s choice of evaluation metrics, rather than specific phenomena within
network weights. Indeed, when evaluating the emergence of abilities using discrete evaluation metrics (on
multiple answers datasets) any improvement is detected only when exceeding a random choice threshold,
thus giving the illusion of ’emergence’ while instead the answer is simply efficiently retrieved from the
pre-training weights (Lu et al., 2023). This is the main reason why we only concentrate on perplexity
measurements (Section 4.2) rather than other evaluation metrics.

Motivated by these theoretical and empirical investigations in the next sections we detail our methodolog-
ical approach and results.

3 Materials and methods

3.1 Models and data

We analyzed the 143 checkpoints of the well-known LLM Pythia (Biderman et al., 2023), trained on both the
deduplicated and non-deduplicated ThePile dataset (Gao et al., 2020) and made available by EleutherAI1

through the Huggingface platform (Wolf et al., 2019) to facilitate interpretability works in both spatial and
temporal scaling dimensions. In pursuit of reproducibility, the Pythia model suite ensures uniformity across
its networks by employing identical global architectures (see Section 3.2), utilizing the same optimization
method, and processing data from a consistent dataset in a standardized order.

1https://www.eleuther.ai
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The network size ranges from small (14M parameters) to very large (≈ 12B parameters), with the number
of layers ranging from a minimum of six for the 14M, 31M and 70M models, to a maximum of thirty-six for
the largest 12B model.

Importantly, we have utilized two sets of models and we indicate in the text whether the model was trained
on the deduplicated (DD) or non-deduplicated (NDD) ThePile dataset. More specifically, the smallest mod-
els from the Pythia suite (14M and 31M parameters) have been trained on the NDD dataset, while the
models from 70M parameters and above are instead trained on the DD dataset. We analyzed both the
NDD and DD models: while the underlying training dataset is different, the behaviour observed on their
dynamics is similar.

As a side note, although intermediate checkpoints have been disclosed for BLOOM as well (Workshop
et al., 2022), BLOOM has undergone training using a singular model size, specifically with 176 billion
parameters. In contrast, Pythia has been trained across a spectrum of model sizes. This distinctive aspect,
facilitating examinations of both architectural scaling and training dynamics, serves as the rationale behind
our preference for Pythia over BLOOM. Finally, due to the high computational costs, this work focuses on
the smallest models, with parameters count ranging from 14M to 1B, as indicated in Table 1 by boldface
rows.

3.2 Network architecture

We follow the notation delineated in McGrath et al. (2023). Transformers function by processing sequences
of tensors flowing through a series of self-attention operations and token-wise feed-forward layers. Math-
ematically, an auto-regressive language model is a map from t − 1 input tokens x<t = (x1, . . . , xt−1) to a
probability distribution over the next token xt using a function fθ :

p(xt|x<t) = fθ(x<t) (1)
= softmax (πt(x<t)) (2)

where θ are the network parameters, distributed in multiple blocks and layers, and the output token scores
πt are called logits. The network architecture is encoded by the recursive function fθ , composed of a first
embedding layer mapping tokens into the latent network space (with an additional matrix of learnable po-
sitional embeddings WP), and followed by L repeated stacked layers implementing the following recursive
operations:

πt = LayerNorm(zl
t) · WU

zl
t = zl

t−1 + al
t + ml

t

al
t = MHSA(zl−1

≤t )

ml
t = MLP(zl−1

t ) (3)

where LayerNorm is the layer normalization operation (Ba et al., 2016), MHSA is the Multi Head Self Atten-
tion operator (Vaswani et al., 2017) and MLP(·) is a two layer perceptron with GeLU activation function.

Our emphasis is on decoder-only, autoregressive language models employing a causal attention mask.
Specifically, the Pythia models (Biderman et al., 2023) are based on the GPT-NeoX architecture with a few
modifications such as the introduction of rotary embeddings for the matrix WP (Su et al., 2021) and untied 2

embedding and unembedding matrices (Belrose et al., 2023), coloured in green in Figure 1. Additionally,
the basic Transformer block in Pythia entails a MHSA operator implemented through FlashAttention (Dao
et al., 2022) for computational efficiency reasons. To be precise, while the inner details of the GPT-NeoX
architecture are slightly different from the description provided in the recursive set of rules indicated in
Eq. 3, the main logic remains largely the same.

2As opposed to tied embedding and unembedding matrices where WT
U = WE.
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The last unembedding layer is represented by a rectangular matrix WU mapping the latent embedding
space into the larger vocabulary space. Finally, the softmax operation converts the logits πt to properly
normalized probabilities. The properties of the analyzed models in the Pythia suite utilized in this paper
are reported in Table 1.

Model Size Non-embed. parameters Layers Embed dimension Heads Dataset

14 M 1.2M 6 128 8 NDD
31 M 4.7M 6 256 8 NDD
70 M 19M 6 512 8 DD
160 M 85M 12 768 12 DD
410 M 302M 24 1024 16 DD
1.0B 806M 16 2048 8 DD

Table 1: Properties of the Pythia models utilized in this work.

Embedding parameters’ count is the product of embedding dimension times the vocabulary size and has a
larger effect in smaller and shallower models, whereas in larger models this is proportionally less relevant.
The entire Pythia decoder-only network architecture is shown in Figure 1.
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Figure 1: Panel A. Pythia models’ basic architecture. The unembedding layer WU is the last green layer.
The attention matrix A is entailed in the red coloured multi-head self attention layer. Panel B. shows the
output embedding matrix at first and last training step for the 14M model. For illustration purpose the first
512 out of 50304 columns are shown. Panel C. shows the first layer attention matrix at first and last training
step for the 1B model. Panel D shows the average of token logits of a long sentence for the 1B model both
at first and last training step.
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3.2.1 Dealing with very large arrays

Each model includes 143 training checkpoints at constant intervals of 1000 steps – from step 1000 to 143,000.
Storing in memory, for instance the 70M model, is feasible, requiring approximately 24GB of RAM for the
full snapshot in float16 precision; however, this proves unfeasible with larger models due to rapidly es-
calating memory requirements. For this reason, we have selectively sliced specific layers of the network,
while avoiding explicit storage in memory operating through disk/memory mapping. This memory map-
ping operation allows to visualize the temporal evolution over the training dimension of specific subsets of
the model parameters.

4 Results

In this section, we provide a number of interesting observations about the temporal dynamics of individual
network parameters. We have focused our analysis on the final unembedding layer represented by WU ,
a large rectangular matrix mapping the latent embedding space into the vocabulary space (and viceversa
for the initial embedding layer). The matrix WU has shape (d, v), where d is the embedding dimension
specific to each model, ranging from 128 to 2048, and v = 50304 is the fixed vocabulary size of the BPE
tokenizer (Black et al., 2022). Each of the Pythia suite models, as described earlier, contains 143 checkpoints
of WU . Importantly, the unembedding layer WU provides a direct mapping from the latent embedding
space to the more explainable dictionary space where each element is a token.

4.1 Temporal dynamic of unembedding layer parameters

We denote the entire history of unembedding layer matrices WU with elements wtdv, where: the first index
t denotes the checkpoint 1000 ≤ t ≤ 143000; d is the embedding dimension, and the v is the vocabulary
size. For visualization purposes, we flatten wtdv over the last two dimensions to obtain a matrix with two
indices t and k where k = 1, . . . (d × v).

Figure 2 shows the temporal evolution of the parameter density for the unembedding layer denoted as wtk
for the 14M, 31M, 70M and 160M models, top left, top right, bottom left and bottom right panel respectively.
14M and 31M models were trained on the non-deduplicated (NDD) version of ThePile dataset, while 70M
and 160M models were trained on the deduplicated (DD) version of ThePile dataset. Figure 2 shows how
such models exhibit abrupt changes in their temporal dynamics. All models display two clear regimes: the
first one is diffusive, the second one is bimodal quasi-deterministic. For example, in the bottom left panel,
we observe how, for the 70M model, these two clear regimes emerge: before reaching ≈ 80, 000 training
steps, the dynamics of the model’s parameters resemble a diffusion process; conversely, after ≈ 80, 000
training steps, the weights move into a bimodal quasi-deterministic process. From the bottom right panel
of Figure 2, we observe a very similar behavior for the 160M model, only shifted temporally along the
training time axis, and thus emerging after ≈ 105, 000 training steps. The other two models, i.e., 14M
and 31M, exhibit the same behavior; however, because they were trained on a different dataset, namely,
the non-deduplicated (NDD) one, a comparison between the four models to understand a possible scaling
with the number of training steps cannot be made and it will be addressed in future publications. Here,
the only observation we can make is that the composition of the dataset might influence the timing of the
bifurcation event (Ott, 2002). Specifically, when training involves non-deduplicated (NDD) datasets, the
redundant information contained within may hinder the rapid approach to the bifurcation point.

The observation that the models’ weights reach a stationary state through their own dynamics, as men-
tioned in the introduction, naturally suggests a practical protocol for spontaneously ending the training
process: this bifurcation marks a transition to a stationary state, indicating that further training is unlikely
to significantly alter the weight values. Thus, by observing the absence of significant fluctuations in the
dynamics, one can efficiently terminate the training upon achieving such a stationary state. Moreover, our
observations also suggest that a specific quantization of the weights can be performed. Indeed, as shown
in Ma & et al. (2024), using a ternary set of {−1, 0, 1} for each parameter, the performance of large lan-
guage models (LLMs) remains unchanged. In our observations, particularly in the unembedding layer, a
quantization to distinct values for the weights occurs naturally.
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Figure 2: Dynamics of the density of the unembedding layer for four models. On the first row the models
trained on NDD dataset, on the bottom row the models trained on DD dataset.

To better quantify the above observations, we have computed the mean square displacement over time
for the models. To do this, we integrate the demeaned slices of wtk over the first dimension t from 1 to τ
obtaining a new array ŵ as:

ŵτk =
τ

∑
t=1

wtk − ⟨wtk⟩, (4)

where ⟨wtk⟩ = 1
d×v ∑d×v

k=1 wtk. We then indicate the variance of ŵτk over each temporal slice as the mean
square displacement MSD(τ), defined as:

MSD(τ) =
1

(d × v)− 1

d×v

∑
k=1

ŵ2
τk (5)

Figure 3 illustrates the evolution of MSD(τ) over the available checkpoints for the 70M and 160M models
as well for the 14M and 31M. In physics, Brownian motion (Uhlenbeck & Ornstein, 1930) displays a linear
relation between mean-squared displacement and time (Zwanzig, 2001). In this case for both models, we
observe a quasi-linear growth. We believe this has to do with unbounded brownian diffusion in a first
phase of training, where uniform spreading of network parameters takes place within the loss landscape.
However, surprisingly after a peak in MSD(τ), corresponding exactly to the bifurcation (Strogatz, 2018)
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discussed above, a sharp fall follows. The drastic decrease of MSD(τ) (to its own small value) is related to
sub-linear diffusion, a phenomenon happening in the physics of crowded systems (Kok et al., 2016), where
the network is approaching a narrow minimum in the loss function landscape.

We hypothesize that the above described bifurcation process will appear for the 410M model too, however
we are restricted by the limited checkpoint availability. Hence, we reasonably believe that the bifurcation
hypothesis is valid and list some observations supporting it in the next sections of this manuscript.
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Figure 3: Mean square displacement over unembedding layer weights as a function of the training steps.
Left: the smallest 70M and 160M on the deduped dataset. Right: the smallest models 14M and 31M on the
non-deduped dataset. Vertical dashed lines are shown at the peak MSD(τ).

Importantly, the MSD(τ) is an implicit model property and it is not dependent on evaluation datasets. In
the next sections we draw a parallel between the observed pattern of gradual increase and sudden decrease
of MSD(τ) with model perplexity, suggesting that this numerical figure may significantly influence text
generation tasks. This observation makes it possible to numerically predict the onset of better text quality
without the need of standard evaluation metrics, like those based on multiple answer or those based on last
word prediction (Wang et al., 2018; Paperno et al., 2016).

4.2 Evaluation of model perplexity

We have evaluated the model perplexity based on token logits of a series of fixed length phrases. Notwith-
standing some known limitations, like direct effects of punctuation marks or dependency with text
length (Wang et al., 2022), perplexity is widely considered a fair and intuitive metric and it is commonly
adopted for language modeling evaluation. Indeed, as demonstrated in Dettmers & Zettlemoyer (2023),
evaluations based on perplexity are sufficient and preferable for comparing text generation tasks.

Perplexity is defined for a sequence of T tokens X = (x0, x1, . . . , xT) as the exponential of the average of
negative log-likelihoods of a sequence of tokens. It reads:

PPL(X) = exp

{
− 1

T

T

∑
i=1

log pθ(xt|x<i)

}
, (6)

where pθ(xt|x<t) is defined in Equation 1. Lower perplexity values indicate that the model is predicting
the next token with high level of confidence, while high perplexity indicates that most of the tokens appear
with equally likely probability, hence providing the text generation phase with high levels of ambiguity on
the next token to predict.

4.2.1 Forward approach

We have evaluated the perplexity of entire sentences contained in the first 500 elements of the test set of
the Lambada dataset (Paperno et al., 2016). We calculated the perplexity score for the above sentences
across all the models mentioned in the text, considering different checkpoints and model sizes. The results,
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shown in Figure 4, confirm the bifurcation behaviour observed over the unembedding layer both for the
DD and NDD models. The effect is more evident when appreciated in the logarithmic scale (right panel,
Figure 4). The model perplexity drops to zero exactly for the checkpoints where the bifurcation starts. We
have limited the evaluation on 10% of the Lambada test set for computational reasons.
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Figure 4: Perplexity of generated tokens on the first 500 examples of the test set of Lambada dataset. Left:
perplexity expressed in linear scale. Right: same plot of perplexity but expressed in logarithmic scale. An
horizontal black line is drawn at zero perplexity in both plots.

4.2.2 Causal unmasking approach

In parallel to the above simple perplexity calculation, we have devised another method to augment the
dataset that takes into account the model generated text quality. In detail, we have run a text generation
process with causal unmasking of the tokens in each phrase. We first tokenized each individual sentence s
with the GPTNeoxTokenizer, obtaining a sequence of ts tokens Xs = (x1, . . . xts). For each tokenized sentence
Xs we then considered the set of all ts linearly ordered sub-sentences ranging from length 1 to ts, in other
words the set xsk = {(x1, . . . , xk)} with k ≤ ts. We then let the model complete each of the sub-sentences
xsk up to the original length ts, resulting in a total of ts sets of logits for each sentence X.

At the initial phase with only few tokens being available, the model is forced to generate a large number of
remaining tokens, with results that spawn from pure repetition of few tokens (in early phases of training)
to repeated emission of longer sub-sequences. In this way we can evaluate how the model builds up on its
internal knowledge, having only a few tokens at disposal. On the other hand, when approaching the end
of the phrase, we expect logits to be more sharply peaked. For this reason we verified if logits are more
sharply peaked around certain tokens. As expected, larger models tend to provide realistic texts even in the
early phases of training, while smaller models have the tendency to repeat parts of the unmasked input.

We illustrate the causal unmasking process in Figure 5 with a short example phrase.

Similarly to what observed with the forward approach, Figure 6 shows a dramatic drop towards zero of the
perplexity for both the 70M and 160M models exactly at the same checkpoints displaying the emergence of
bifurcation in the parameters’ plot and the drop of the diffusion coefficient as already shown in Figure 3.
We also note that, as hypothesized above, perplexity for the 410M model is starting to drop to zero close to
the last checkpoints. This behaviour supports our hypothesis that larger models should tend to exhibit the
bifurcation behaviour, but only when trained longer than for the available checkpoints.

4.3 Rank of output embedding layer covariance

To support our findings, we have finally tested an hypothesis regarding the multidimensional distribution
of the embedding vectors produced by the last output unembedding matrix for all models, but here we
present the results only for the 70M and 160M models.
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Figure 5: Causal unmasking process. The tokenized sentence is used to generate six new sentences, where
the model completes from an initial set of tokens up to the initial phrase number of tokens. At each newly
generated sub-sentence the model generates new tokens, depicted in gray.
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Figure 6: Perplexity of generated tokens with the causal unmasking approach. Left: perplexity expressed in
linear scale. Right: same plot of perplexity but expressed in logarithmic scale. It is possible to see perplexity
rapidly going to zero exactly at the point of maximum MSD(τ). The smaller models, 14M and 31M, are not
shown in the figure solely for the sake of image clarity, but they show the same behaviour.

We have fed batches of various sizes (from 16 to 64) of multivariate normally distributed vectors V ∼
N (0, Idembed

) and multiplied them with the output unembedding matrix WUt at different checkpoints to get
transformed batches of vectors V̂t = WUt · V.

Then, we have computed the covariance matrices Ct over the batch dimension of the resulting vectors V̂t
and evaluated rank(Ct) up to a tolerance parameter with values in the domain [0.1, 1]. The covariance
matrix rank shrinks at different tolerance levels exactly at the checkpoints for which the model exhibits the
bifurcation in the weights’ dynamics as from Figure 2.

The net effect of the covariance matrix shrinkage observed in Figure 7 is the projection of isotropic embed-
dings onto a smaller subspace of the full vocabulary. This suggests that after the bifurcation, the model
focuses on a subset of the possible emitted tokens, leaving a much smaller probability to tokens associated
with dimensions for which the subspace is reduced, in accordance to the uneven distribution of words in
natural language, which is known to follow a power-law distribution of words (Zipf, 1949).

10



Under review as submission to TMLR

Figure 7: The covariance rank (left column) and its first derivative (right column) for the 70M model (top
row) and for the 160M model (bottom row).

5 Conclusions

In this study we have analyzed both the temporal and spatial dimensions of training a large language
model. As discussed above, our work is the first one dealing with distribution of network weights as a
whole, by means of computational methods borrowed from statistical mechanics.

More specifically, this work shows that a bifurcation occurs in the dynamics of the weights during the
training process. Such transitions are observed across various models of different sizes trained with distinct
datasets. We have conducted a thorough and meticulous analysis of this aspect and concluded that this
bifurcation marks a transition to a stationary state, indicating that further training is unlikely to significantly
alter the weight values. Thus, training can be efficiently terminated upon reaching such a stationary state.
Moreover, our study has offered a possible interpretation of the bifurcation phenomenon in terms of model
perplexity.

Just as in the early days of thermodynamics, when empirical observations drove technological advance-
ments, we advocate for the development of Large Language Models (LLMs) to be grounded in the obser-
vation of their internal dynamics. The identification of stationary states in the weight dynamics exemplifies
this philosophy, marking a step toward a more observational and theoretically informed approach to LLM
development.
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Intriguingly, we finally note how recent works in the physics of complex networks point at diversity of
information pathways as the main driver of sparsity in real networks Ghavasieh & De Domenico (2024): in
this sense, we hypothesize that the poli-semanticity of natural language may act as the main driving force
for network self-sparsification.

The presented results can have far-reaching implications as they demonstrate that keeping track of the
collective behaviour of network weights could be a powerful indicator of training convergence, as opposed
to the classical methods based on evaluation metrics which suffer from the confounding effects of non-
linearity, hence giving raise to false claims about "emergent" properties. As a future work, we would like
to further investigate the training loss dynamics, to check whether the sudden changes in quantitative
microscopic parameters align with the development of induction heads in the model, as shown by (Bietti
et al., 2023).
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