
OFA3: Automatic Selection of the Best Non-dominated 1

Sub-networks for Ensembles 2

Anonymous1 3

1
Anonymous Institution 4

Abstract Advancement of Neural Architecture Search (NAS) has the potential to significantly improve 5

the efficiency and performance of machine learning systems, as well as enable the exploration 6

of new architectures and applications across a wide range of fields. A promising direction 7

for developing more scalable and adaptive neural network architectures is the Once-for- 8

All (OFA), a NAS framework that decouples the training and the search stages, meaning 9

that one super-network is trained once, and then multiple searches can be performed 10

according to different deployment scenarios. More recently, the OFA2 strategy improved the 11

search stage of the OFA framework by taking advantage of the very low cost of sampling 12

already trained sub-networks and by exploring the multi-objective nature of the problem: 13

a set of non-dominated sub-networks are all obtained at once, with distinct trade-offs 14

involving hardware constraints and accuracy. In this work, we propose OFA3, building high- 15

performance ensembles by solving the problem of how to automatically select the optimal 16

subset of the already obtained non-dominated sub-networks. Particularly when components 17

of the ensemble can run in parallel, our results dominate any other configuration of the 18

available sub-networks, taking accuracy and latency as the conflicting objectives. The source 19

code is available at https://anon-github.automl.cc/r/once-for-all-3-89E3. 20

1 Introduction 21

The task of designing neural networks requires a lot of trial and error, as well as a deep understanding 22

of the problem at hand. And even then, there is no guarantee that we will arrive at the optimal 23

architecture. Seeking a way to automate the design of artificial neural architectures, the Neural 24

Architecture Search (NAS) framework emerges [1]. In other words, it includes techniques capable 25

of automatically optimizing the neural network architecture for a given task without human 26

intervention. By automating the process of designing neural networks, we can save a lot of time 27

and resources while potentially arriving at effective architectures. NAS works by searching through 28

a vast space of possible architectures, evaluating their performance, and iteratively refining the 29

search until it finds the best architecture for the given task [1]. 30

To implement the search, NAS frameworks use advanced techniques such as reinforcement 31

learning [2], evolutionary algorithms [3], and gradient-based optimization [4] to properly explore 32

the space of candidate architectures. Additionally, by combining these obtained learningmodels, it is 33

possible to create a more comprehensive representation that captures multiple levels of abstraction. 34

That is called ensemble learning, which can help compose a diverse set of final architectures that are 35

generated by the NAS process [1]. By combining multiple efficient learning models, the ensemble 36

can explore a wider range of design choices and trade-offs, potentially leading to better overall 37

performance [5]. However, when one considers real-world scenarios, there are often multiple 38

objectives that need to be optimized simultaneously, such as performance, model size, latency, and 39

deployment. 40

A way to address such a challenge is the Multi-objective Neural Architecture Search (MO-NAS) 41

which considers multiple conflicting objectives simultaneously [6]. MO-NAS typically works by 42

populating a Pareto frontier with distinct trade-offs among multiple objectives, using techniques 43

Submitted to AutoML 2023 © 2023 the authors, released under CC BY 4.0

https://anon-github.automl.cc/r/once-for-all-3-89E3
https://creativecommons.org/licenses/by/4.0/


such as evolutionary algorithms [3] or progressive search [7]. These candidate architectures are 44

evaluated on a validation set, and the ones that are deemed Pareto-optimal, meaning they cannot 45

be improved on any objective without sacrificing performance on another, are considered efficient 46

solutions and returned to the user. 47

MO-NAS has the advantage of allowing us to explore a wider range of trade-offs established 48

by conflicting objectives. For instance, we might be able to find architectures that are both highly 49

accurate and efficient [8], or architectures that can perform well on multiple related tasks simulta- 50

neously [9]. Also, it can help researchers and practitioners to make more informed a posteriori 51

decisions about the design of their neural networks. 52

Another factor is the computational cost of generating the optimal architecture. The search 53

process can be computationally expensive and time-consuming, requiring significant resources 54

and infrastructure. Therefore, there is a gain in considering the deployment scenario and available 55

resources as boundary conditions when designing the search process. In OFA2 it was presented 56

a multiobjective search with the evolutionary algorithm NSGA-II [10], for both accuracy and 57

latency, consistently outperforming other search strategies, particularly by combining the non- 58

dominated learning models along the Pareto frontier in an ensemble. The work not only finds 59

better architectures in terms of top-1 accuracy and latency but also returns a set of solutions instead 60

of a single one, each of them being optimal considering a specific trade-off among the conflicting 61

objectives. In this work, we propose OFA3, a technique to automatically select the best sub-networks 62

among a population of non-dominated architectures to form even more efficient ensembles. We also 63

provide experiments regarding the latency of the ensemble considering the scenarios of summed 64

and maximum latencies. We show that when the components of the ensemble can run in parallel, 65

thus considering the maximum latency scenario, our results dominate any other configuration 66

of the available single efficient neural networks, resulting in better architectures overall. Notice 67

that the assignment of the acronym OFA3 is motivated by the occurrence of a cascade of three 68

once-for-all mechanisms during the NAS: a single training step, a single search step to populate the 69

Pareto frontier, and a single selection step to compose the ensemble of efficient learning models. 70

After careful reflection, the authors have determined that this work presents no notable negative 71

impacts to society or the environment. 72

2 Related Works 73

Due to the diverse composition of our work, we discuss the background by highlighting the three 74

main modules of our approach. 75

76

Neural Architecture Search. The research field of automating the machine learning process [11], 77

including selecting algorithms, hyperparameters, and architectures, dates back to the early 2000s 78

[12]. However, the focus of those works was mostly on the algorithm and hyperparameter selection, 79

and NAS was not yet a major research topic [1]. In 2019, two new NAS methods were proposed, 80

called Efficient Neural Architecture Search (ENAS) [8] and Once-for-All (OFA) [13]. ENAS involved 81

using a shared weight scheme to reduce the search space, while OFA involved training a large 82

pre-defined network that can be efficiently adapted to different tasks and hardware platforms. 83

ENAS approaches, by sharing weight to reduce the number of parameters, significantly reduce the 84

time and cost required for NAS. While ENAS is computationally efficient, it can be limited by the 85

search space. Meanwhile, OFA is able to find a family of architectures that can perform well across 86

various resource constraints. Their weakness is that it can be challenging to scale to larger datasets 87

or more complex models. Nowadays, NAS has advanced significantly with the development of 88

new search algorithms and optimization techniques. With the ongoings in automating the archi- 89

tecture design process, it is possible to find an expressive number of surveys on NAS [1] [3] [14] [15]. 90

91

2



Multi-objective optimization in NAS. Emerged as a promising path to address the challenges of 92

traditional NAS methods (e.g., search space, computational cost, generalization, evaluation and 93

interpretability) is the multi-objective optimization approach. Accordingly, it was intuitive to resort 94

to evolutionary multi-objective optimization (EMOO) algorithms as in [10] [16]. Yet, using EMOO 95

algorithms for NAS still lacks an investigation of challenging scenarios such as lack of convexity 96

and presence of many objectives [17]. However, by the late 2010s, multi-objective optimization 97

gained popularity in NAS, and since then, several multiobjective optimization approaches have 98

been proposed, including NSGA-Net [18], DARTS+ [19], and MOEAs [9]. 99

100

Evolutionary algorithms. In the mid to late 2010s, researchers started exploring the use of 101

evolutionary algorithms in NAS. Works like in [20] [21] [22] aimed at adapting the powerful and 102

generic search strategy of meta-heuristics to the NAS specificities. Some methods [23] [24] [25] 103

involved training a controller or a population of architectures using evolutionary algorithms and 104

progressive search, capable of exploring the search space incrementally and sequentially. Other 105

works [26] [27] [28] tried to improve the quality of discrete decisions in the process of searching 106

architectures by utilizing a performance predictor to select promising candidates. 107

108

To our knowledge, the existing techniques cannot be scaled to many different deployment 109

scenarios. That means the whole search process must be repeated, thus not being once-for-all, and 110

the model needs to be retrained for different hardware platforms. Also, the overall model size is 111

huge and the footprint is considerable, because the individual trained models do not share weights. 112

3 Methodology 113

In the traditional Neural Architecture Search (NAS) pipeline, we have three main components: 114

search space, search strategy and performance estimation strategy [29]. We first choose or propose 115

a search space that defines all neural network architectures available to the framework. Then, 116

we choose a search strategy that will guide the exploration and exploitation of the search space. 117

Finally, a performance estimator measures how good the obtained models are and helps to guide 118

the search towards better architectures. 119

3.1 OFA 120

The Once-for-All (OFA) NAS framework [13] works a little differently than what is found in the 121

traditional NAS pipeline. More specifically, the OFA framework decouples the training and search 122

stages of the NAS pipeline. The biggest advantage of this decoupling is that a single supernetwork 123

is trained only once, and then multiple low-cost searches can be done in this supernetwork finding 124

nested smaller and already trained sub-networks according to different deployment scenarios. The 125

Figure 1: Once-for-All (OFA) framework overview. A single OFA supernetwork is trained only once,

and then multiple searches can be performed according to the different deployment scenarios.

3



Figure 2: OFA2 overview. Instead of manually performing one search for each deployment scenario,

an EMOA performs the search of the architectures for all deployment scenarios at once.

deployment scenario can be defined by a hardware constraint, such as latency or FLOPS. Figure 1 126

illustrates the OFA framework. 127

3.2 OFA2 128

More recently, a new search strategy called OFA2 [30] was proposed for the OFA framework. Instead 129

of performing multiple searches on the OFA supernetwork, the OFA2 optimizes the search stage of 130

the OFA framework by solving a multi-objective optimization problem (MOOP) with the use of an 131

evolutionary multi-objective optimization algorithm (EMOA). In other words, a single search is 132

enough to find a representative set of efficient learning models with distinct trade-offs among the 133

conflicting objectives, that being latency and accuracy. Figure 2 illustrates the OFA2 framework. 134

3.3 OFA3 135

Both OFA and OFA2 end up with a single or multiple architectures after the search stage of the 136

framework. In this work we aim to give one step further by proposing a strategy to automatically 137

select a subset of the networks found by the OFA2 search . This subset of efficient learning 138

models is evolved on a multi-objective perspective to compose a high-performance ensemble. The 139

combinatorial problem of selecting the best subset of efficient learning models is solved here by an 140

EMOA, jointly optimizing the accuracy and latency, by maximizing the former and minimizing the 141

latter. The OFA3 does not focus on the search stage of the framework. Instead, we use the efficient 142

learning models discovered by OFA2 during its search stage, and the problem now is how to select 143

among these architectures the best subset that will compose the ensemble. 144

3.4 Ensembles 145

Ensemble [31] is a technique for combining predictions from multiple individual learning models 146

aiming at a more robust performance. In this work, we propose to solve the problem of determining 147

the number of components in an ensemble and the components themselves as a multi-objective 148

optimization problem, and taking candidates from the Pareto frontier estimated by the OFA2 149

framework. The idea is to find a diverse set of efficient learning models [32], reducing the variance 150

of the error at the output, thus leading to better machine learning models [33]. The strategy of 151

using an evolutionary algorithm to obtain ensembles is not innovative [34]. However, most of 152

the evolutionary approaches for ensembles use the evolutionary process just to create diversity 153

among the individuals of the ensemble and does not propose the ensemble formation problem as a 154

multi-objective and combinatorial problem [35] [36]. 155

4



Figure 3: Ensemble output with hard majority voting. Figure 4: Ensemble output with soft majority voting.

3.5 Voting schemes 156

The simplest way to determine the output of an ensemble is by majority vote. Considering the 157

majority vote ensembles, there are two main approaches for classification problems: the hard voting 158

and the soft voting. In the hard voting, the output of the ensemble is decided according to the most 159

voted top-1 class among the participants of the ensemble. Draw in votes between more than one 160

class must be handled somehow, for example by checking the occurrences of these classes on the 161

second most likely output of each model (top-2 output) and deciding by the most frequent. If there 162

is still a draw in votes, we can keep checking the top-3, top-4, and so on. In this scheme, the output 163

of each neural network has the same importance, regardless how certain the model is about its 164

output. Figure 3 illustrates the hard voting scheme considering an ensemble with 3 components 165

and an image classification problem with 10 classes. The soft voting scheme, on the other hand, 166

takes into account the probability assigned to each class on the output. For this, in case the last 167

layer of the neural networks is not a softmax already (like in the case of the OFA supernetwork), 168

this layer is appended to the last layer of the neural networks. In order to decide the output of the 169

ensemble, we sum the probabilities for each class among all participants of the ensemble, and then 170

take the output with the highest accumulated value. Figure 4 illustrates the soft voting scheme. 171

This helps to alleviate the problem of the hard voting scheme, which is the fact that a vote from a 172

model with a low confidence in its output has the same weight of a vote from a model with a high 173

confidence. This voting scheme provides a way to weight the vote of each architecture according 174

to the confidence of the model in its output class, which can be beneficial in some cases. 175

3.6 Dataset 176

The dataset used for the training stage of the OFA supernetwork, the search stage of the OFA2 177

strategy, and the ensemble search of the OFA3 is the ImageNet [37], a standard dataset in the 178

computer vision area that consists of 1,281,167 images in the training set, 50,000 images in the 179

validation set and 100,000 images in the test set, organized in 1,000 categories. The training set was 180

used to train the OFA supernetwork. A subset of 10k images of the training set was set apart as a 181

holdout validation set to train the accuracy predictor of the OFA framework, used during the OFA2 182

search. For the OFA3 optimization, a subset with 50k images from the training set was used. 183

3.7 Objective functions 184

The objective functions optimized are the same as the OFA2 search: accuracy and latency. For the 185

accuracy, we use the performance of the ensembles on the validation set of ImageNet, considering 186

the soft voting scheme. For the latency, we use the latency predictor provided by the OFA framework 187

as a latency lookup table [38]. 188

5



Figure 5: Scenario considering the summed latency. Figure 6: Scenario considering the maximum latency.

3.8 Latency 189

We consider two approaches with respect to the latency of the ensembles: the summed and the 190

maximum latency. In the first approach, the latency of the ensemble is defined to be the sum 191

of all architectures participating in the ensemble. This strategy is based on the premise that we 192

have a single hardware with limited amount of memory to implement the ensemble, and therefore 193

we need to load each model one at a time to evaluate its performance. Figure 5 illustrates this 194

scenario considering an ensemble with 3 neural networks. In the second approach, the latency 195

of the ensemble is equal to the model’s latency that has the highest value among those networks 196

participating in the ensemble. This strategy is based on the premise that parallelization is viable, and 197

therefore all models can be evaluated simultaneously. Figure 6 illustrates this scenario considering 198

the same ensemble with 3 architectures. 199

3.9 Candidate architectures 200

The neural networks candidates to participate on the ensembles are the 100 efficient learning models 201

produced by the OFA2 search. Figure 7 shows the performance of these efficient architectures (in 202

red) in the objective space of the multi-objective formulation, properly characterizing a Pareto 203

frontier. 204

4 Experiments 205

The implementation of the code was done with the pymoo multi-objective optimization framework 206

[39] and the PyTorch framework [40]. For the evaluation of the neural network architectures, 207

an NVIDIA Quadro RTX 8000 with 48 GB of memory was used. We consider both the sum and 208

maximum latency approaches, but only the soft voting scheme was used to decide the output of 209

the ensemble. 210

Figure 7: OFA, OFA2 and OFA3 architectures. Figure 8: Encoding used to search the ensembles.

6



4.1 Encoding 211

The encoding used is a simple array with 100 binary genes, one for each neural network from the 212

pool of 100 candidate architectures to form the ensemble, meaning that if a specific gene has a 213

value 0, then the neural network represented by that gene does not compose the ensemble, and 214

if the gene has a value of 1, then the corresponding learning model is part of the ensemble. This 215

gives us a search space of 2
100

combinations. Figure 8 illustrates three examples of encodings and 216

their respective sets of neural networks participating in the ensembles. The encoding in blue has a 217

single gene with the value 1 in its first position, meaning that only the first neural network of the 218

population will compose the ensemble. The encoding in green has three consecutive genes with 219

the value of 1 in the middle of the array, meaning that these three models represented by these 220

genes will take part in the ensemble. The encoding in red has all genes at value 0, except the last 221

one, meaning that only the last neural network of the population will be included in the ensemble. 222

4.2 The solver 223

We adopted three solvers for the optimization: the NSGA-II [10], the SMS-EMOA [41] and the SPEA2 224

[42], although others EMOA algorithms could also be used. Four operators are used during the 225

iterations of evolutionary algorithms: sampling, mutation, crossover and selection. The sampling 226

operator is related to the initialization of the algorithm, and we decided to start it with all individuals 227

of the population having all their 100 genes set to one. This means that all candidate neural networks 228

compose the ensemble at the initial population, being the most inefficient scenario but revealing 229

the role performed by each candidate learning model. The mutation operator used is the bitflip 230

with probability of 1%. The crossover operator (also known as recombination) used is the uniform 231

crossover, which means that the value of each gene of the child solution is randomly taken from 232

one of the parents’ solution with equal probability. Finally, the selection operator defines a criterion 233

for choosing the individuals of the current population that will be used to generate the offspring, 234

that is, the next generation of individuals. The algorithms ran for a total of 1,000 generations for 235

the summed latency and 2,000 generations for the maximum latency. Three different random seeds 236

were used for each algorithm. The results are discussed in the next section. 237

5 Results 238

Table 1 show the results for the OFA, OFA2 and OFA3 searches. We can see that for most of the 239

latency constraints, the OFA3 considering the maximum latency performs better than OFA and 240

OFA2. For the highest latencies, the OFA and OFA2 perform better than OFA3 though. This could be 241

explained by the fact that the evolutionary algorithm populates mid and lower latencies regions 242

with more individuals than higher latencies, which could be alleviated by performing a local search 243

in this region. These results can also be seen in Figure 7. The computational costs of all methods 244

are negligible when compared with the cost of training the Once-for-All supernetwork (1,200 GPU 245

hours). Next, we show the progression of the populations in details for both the summed and the 246

maximum latencies scenarios. 247

Table 1: Comparison of ImageNet results between different hardware-aware NAS search methods.

ImageNet Top-1 % under latency constraints Search cost

method 10 ms 15 ms 20 ms 25 ms 30 ms 35 ms 40 ms 45 ms 50 ms GPU hour

OFA N/A 73.60 75.89 77.04 77.61 78.06 78.39 78.80 79.11 0.83

OFA2 69.84 73.95 75.94 77.11 77.56 78.17 78.66 78.89 78.89 0.01
OFA3 (sum) N/A N/A 70.03 73.59 75.21 76.22 76.68 76.34 77.76 0.98

OFA3 (max) 70.03 74.97 76.18 77.20 77.70 78.31 78.73 78.75 78.75 1.83

7



(a) Progression of the initial populations. (b) Population at generation 70.

(c) Final population at generation 1,000. (d) OFA, OFA2 and OFA3 results comparison.

Figure 9: Progression of the NSGA-II populations of individuals reprensenting ensembles for the

summed latencies approach. (a): Generations 0, 16, 32 and 64. (b): Generation 70. (c): Last

population at generation 1,000 (d): Comparison with OFA and OFA2 architectures.

5.1 Summed latency 248

For the summed latency scenario, the only restriction used during the optimization is that an 249

individual must have at least two genes with value one, meaning that no single architectures are 250

allowed. The single black point on the extreme right of Figure 9a illustrates the initial population. 251

We have just a single point because all ensembles represented by this first population are equal 252

(since the initialization starts with all genes of all ensembles equal to one), having therefore the 253

same accuracy and latency. In the same figure, we can see the populations for generations 16, 32 254

and 64, represented by the different clouds of points, as indicated. These generations were chosen 255

as power of two to illustrate the non-linear characteristic of the evolution. At generation 16, only 256

ensembles with 50 or more components are present. At generation 32, most of the ensembles have 257

between 10 and 49 components, and at generation 64, we start seeing ensembles with 2, 3 and 4 258

neural networks. We then plot the individuals at generation 70 in Figure 9b (please note the change 259

of scale in the latency axis). 260

In Figure 9c we can see the final population after 1,000 iterations. Finally, Figure 9d illustrates a 261

comparison between the results of the final population of ensembles using the summed latency 262

against the single architectures obtained from OFA and OFA2 searches, the latter one being used as 263

the foundation of the ensembles. We can see that the ensembles found approximates the Pareto- 264

front for a multi-objective optimization problem with two conflicting objectives. All of these 265

ensembles are, however, dominated by the single architectures found by OFA2 or OFA searches. 266

This dominance of single architectures can be explained due to the difference of scale between 267

the objective functions. Take for example the two smallest neural networks as components of the 268

ensemble. The first one presents a latency of 9.9 ms and accuracy of 69.84 %, while the second one 269

presents a latency of 10.0 ms and accuracy of 70.02 %. When summing the latencies of these two 270

architectures, we have a total latency of almost 20.0 ms. If we take the individual architecture with 271

8



(a) Progression of the initial populations. (b) Population at generation 700.

(c) Final population at generation 2,000. (d) OFA, OFA2 and OFA3 results comparison.

Figure 10: Progression of the NSGA-II populations of individuals reprensenting ensembles for the

maximum of latencies approach. (a): Generations 1, 32 and 512. (b): Generation 700. (c):

Last population at generation 2,000. (d): Comparison with OFA and OFA2 architectures.

the highest latency under 20 ms, we have a single neural network with 75.94 % of accuracy and 19.7 272

ms of latency. It is unlikely that and ensemble of two architectures with around 70 % of accuracy 273

surpass the 76 % accuracy of the single architecture with equivalent latency, even more considering 274

that these two neural networks of around 70 % of accuracy are probably similar to each other on 275

the decision space. We argue that the sum of latencies penalize too much the ensembles, and that 276

in this scenario, it may be better to use single architectures instead. 277

5.2 Maximum latency 278

To alleviate the problem of difference in scale between latency and accuracy presented during the 279

summed latency approach, we propose the same experiment but taking the maximum latency of 280

the neural networks participating on the ensemble to be the latency of the ensemble itself. The 281

lowest black point in Figure 10a illustrates the initial population, again with all genes equal to 1, 282

meaning that all candidate neural networks compose the initial ensembles. In the same figure we 283

see two clouds of points illustrating the populations at generations 32 and 512, as indicated. At 284

generation 32 we still have only ensembles with more than 50 components, while at generation 285

512 the ensembles present less than 50 neural networks. Figure 10b illustrates the population at 286

generation 700 showing ensembles with different number of components. Figure 10c shows the 287

last population of ensembles, after 2,000 generations. On the contrary to what was done with the 288

summed latency approach, here we do not restrict the optimization to ensembles with 2 components 289

or more. In fact, we can see that in the final population there are some individuals that are single 290

architectures (in orange), meaning that other ensembles with more neural networks with lower 291

latency perform actually worse than that specific single neural network. 292

Figure 10d compares the ensembles found by the evolutionary algorithm against the OFA and 293

OFA2 single architectures. Here we can clearly see advantages of the ensembles over the single 294

9



architectures, with the former dominating the latter for almost all the latency range. The only 295

exception happens at the beginning of the curve, where the accuracies and latencies of ensembles 296

and single architectures are similar, and at the very end of the curve, where single architectures 297

dominates the ensembles. In fact, some of the ensembles found by the evolutionary algorithm 298

in the region of lower latencies are actually single architectures. This can be explained since the 299

pool of neural networks to form the ensembles increases proportionally with the latency of the 300

ensembles. For example, for the ensemble with the highest latency, all neural networks are available 301

to join the ensemble, while at the ensemble with the lowest latency, there is no ensemble at all, 302

with only one neural network being available to form the “ensemble”. The degraded performance 303

of the OFA3 selection method on the region of higher latencies can be explained by the fact that the 304

evolutionary algorithm populates the region with intermediary latencies with more individuals 305

than other regions. This could be alleviated by performing a local search on these specific regions, 306

or by imposing some restriction during the optimization. 307

It is interesting to note that the evolutionary algorithm tends to reduce the number of neural 308

networks of the ensembles with the generations, even though the first generation started with all 309

neural networks being part of the ensembles. This indicates that ensembles with fewer components 310

may perform better than ensembles with all neural networks [43]. The computational burden of 311

the OFA3 search and of starting with full ensembles is not relevant, given that we have to run each 312

efficient learning model produced by OFA2 only once to allow any kind of voting configuration. 313

6 Concluding Remarks 314

In this work, we presented OFA3, an extension of OFA2 [44]. The starting principle was provided by 315

OFA [13], which has promoted the decoupling of training and search stages in NAS, thus making the 316

search stage of negligible cost, when compared to the Once-for-All training of the super-network. 317

In fact, any sub-network that is sampled from the search space is already trained, thus making of 318

low cost even a more elaborate search procedure. Therefore, there is room for the multi-objective 319

search performed by OFA2 and, in this paper, for the additional multi-objective selection performed 320

by OFA3. The OFA3 proposal involves a cascade of three once-for-all mechanisms during the NAS: 321

a single training step (provided by OFA), a single search step to populate an approximation of 322

the Pareto frontier (provided by OFA2), and a single selection step over the output of OFA2 to 323

compose the ensemble of efficient learning models. This is a remarkable achievement due to two 324

main reasons: (1) the whole computational cost for the search stage remains of a reduced amount 325

when compared to the once-for-all training of the super-network, even performing a cascade of 326

two consecutive multi-objective searches; (2) The multi-objective selection of efficient components 327

(taken from the output of OFA2) for the ensemble, which is the main contribution of OFA3, is 328

motivated by three main factors: (2.1) the guaranteed presence of distinct trade-offs among the 329

candidate components provided by OFA2, given that they populate an approximation of the Pareto 330

frontier; (2.2) the assurance that they are independent models and can operate fully in parallel; 331

(2.3) the possibility of automatically choosing just a subset of the efficient models produced by 332

OFA2 as components of the best ensemble. Those are the main motivation to support the gain 333

in performance when compared with, for instance, a single model of the same size of the whole 334

ensemble, which would not be implementable by resorting to independent fully parallelizable 335

sub-networks. This framework discovers architectures with improved top-1 accuracy and latency. 336

All the source code has been made available and we show in the experiments that OFA3 compares 337

favorably with the architectures found by the original OFA and OFA2, in the sense of achieving 338

higher accuracy for the same latency threshold, supposing that the components of the ensemble are 339

run in parallel, given that they are independent models. Additionally, the evolutionary algorithm 340

adopted by OFA3 is able to determine the appropriate number of components of the ensemble, 341

being a subset of the efficient models provided by OFA2, while keeping constraints (such as latency) 342

within specific bounds along the Pareto frontier. 343

10



References 344

[1] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search: A Survey,” Journal of machine 345

learning research, vol. 20, no. 55, pp. 1–21, 2019, Accessed: Mar. 23, 2023. [Online]. Available: 346

http://jmlr.org/papers/v20/18-598.html 347

[2] B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforcement Learning,” Feb. 15, 2017. 348

http://arxiv.org/abs/1611.01578 (accessed Mar. 24, 2023). 349

[3] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A Survey on Evolutionary Neural 350

Architecture Search,” Ieee transactions on neural networks and learning systems, vol. 34, no. 2, 351

pp. 550–570, Feb. 2023, doi: 10.1109/TNNLS.2021.3100554. 352

[4] X. Chen, R. Wang, M. Cheng, X. Tang, and C.-J. Hsieh, “DrNAS: Dirichlet Neural Architecture 353

Search,” Mar. 15, 2021. http://arxiv.org/abs/2006.10355 (accessed Mar. 24, 2023). 354

[5] R. Adamski, “Multi-objective differentiable neural architecture search : Busca multiobjetivo 355

e diferenciável de arquitetura de rede neural,” [s.n.], 2022. Accessed: Mar. 24, 2023. [Online]. 356

Available: https://repositorio.unicamp.br/acervo/detalhe/1243400 357

[6] A.-C. Cheng, C. H. Lin, D.-C. Juan, W. Wei, and M. Sun, “InstaNAS: Instance-Aware Neural 358

Architecture Search,” Proceedings of the aaai conference on artificial intelligence, vol. 34, no. 04, 359

04, pp. 3577–3584, Apr. 2020, doi: 10.1609/aaai.v34i04.5764. 360

[7] J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun, “DPP-Net: Device-aware Progressive 361

Search for Pareto-optimal Neural Architectures,” 2018, pp. 517–531. Accessed: Mar. 23, 2023. 362

[Online]. Available: https://openaccess.thecvf.com/content_ECCV_2018/html/Jin-Dong_ 363

Dong_DPP-Net_Device-aware_Progressive_ECCV_2018_paper.html 364

[8] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient Neural Architecture Search via 365

Parameters Sharing,” in Proceedings of the 35th International Conference on Machine Learning, 366

Jul. 2018, pp. 4095–4104. Accessed: Mar. 24, 2023. [Online]. Available: https://proceedings. 367

mlr.press/v80/pham18a.html 368

[9] Y. Tian et al., “Evolutionary Large-Scale Multi-Objective Optimization: A Survey,” Acm comput. 369

surv., vol. 54, no. 8, pp. 174:1–174:34, Oct. 2021, doi: 10.1145/3470971. 370

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic 371

Algorithm: NSGA-II,” in IEEE Transactions on Evolutionary Computation, 2002, vol. 6, pp. 372

182–197. doi: 10.1109/4235.996017. 373

[11] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA: Combined selection 374

and hyperparameter optimization of classification algorithms,” in Proceedings of the 19th ACM 375

SIGKDD international conference on Knowledge discovery and data mining, Aug. 2013, pp. 376

847–855. doi: 10.1145/2487575.2487629. 377

[12] W. H. Hsu, “Control of Inductive Bias in Supervised Learning Using Evolutionary 378

Computation: A Wrapper-Based Approach,” 2003. https://www.igi-global.com/ 379

chapter/control-inductive-bias-supervised-learning/www.igi-global.com/chapter/ 380

control-inductive-bias-supervised-learning/7595 (accessed Mar. 24, 2023). 381

[13] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for All: Train One Network and Specialize 382

it for Efficient Deployment,” in 8th International Conference on Learning Representations, 2020. 383

Available: https://iclr.cc/virtual_2020/poster_HylxE1HKwS.html 384

[14] D. Baymurzina, E. Golikov, and M. Burtsev, “A review of neural architecture search,” Neuro- 385

computing, vol. 474, pp. 82–93, Feb. 2022, doi: 10.1016/j.neucom.2021.12.014. 386

[15] D. Liu and Y. Cao, “Federated Neural Architecture Search Evolution and Open Problems: 387

An Overview,” in Bio-Inspired Computing: Theories and Applications, 2022, pp. 330–345. doi: 388

10.1007/978-981-19-1253-5_25. 389

[16] E. Zitzler, M. Laumanns, and S. Bleuler, “A Tutorial on Evolutionary Multiobjective Optimiza- 390

tion,” in Metaheuristics for Multiobjective Optimisation, 2004, pp. 3–37. doi: 10.1007/978-3-642- 391

17144-4_1. 392

11

http://jmlr.org/papers/v20/18-598.html
http://arxiv.org/abs/1611.01578
https://doi.org/10.1109/TNNLS.2021.3100554
http://arxiv.org/abs/2006.10355
https://repositorio.unicamp.br/acervo/detalhe/1243400
https://doi.org/10.1609/aaai.v34i04.5764
https://openaccess.thecvf.com/content_ECCV_2018/html/Jin-Dong_Dong_DPP-Net_Device-aware_Progressive_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Jin-Dong_Dong_DPP-Net_Device-aware_Progressive_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Jin-Dong_Dong_DPP-Net_Device-aware_Progressive_ECCV_2018_paper.html
https://proceedings.mlr.press/v80/pham18a.html
https://proceedings.mlr.press/v80/pham18a.html
https://proceedings.mlr.press/v80/pham18a.html
https://doi.org/10.1145/3470971
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/2487575.2487629
https://www.igi-global.com/chapter/control-inductive-bias-supervised-learning/www.igi-global.com/chapter/control-inductive-bias-supervised-learning/7595
https://www.igi-global.com/chapter/control-inductive-bias-supervised-learning/www.igi-global.com/chapter/control-inductive-bias-supervised-learning/7595
https://www.igi-global.com/chapter/control-inductive-bias-supervised-learning/www.igi-global.com/chapter/control-inductive-bias-supervised-learning/7595
https://www.igi-global.com/chapter/control-inductive-bias-supervised-learning/www.igi-global.com/chapter/control-inductive-bias-supervised-learning/7595
https://www.igi-global.com/chapter/control-inductive-bias-supervised-learning/www.igi-global.com/chapter/control-inductive-bias-supervised-learning/7595
https://iclr.cc/virtual_2020/poster_HylxE1HKwS.html
https://doi.org/10.1016/j.neucom.2021.12.014
https://doi.org/10.1007/978-981-19-1253-5_25
https://doi.org/10.1007/978-3-642-17144-4_1
https://doi.org/10.1007/978-3-642-17144-4_1
https://doi.org/10.1007/978-3-642-17144-4_1


[17] Z. Lu, R. Cheng, Y. Jin, K. C. Tan, and K. Deb, “Neural Architecture Search as Multiobjective Op- 393

timization Benchmarks: Problem Formulation and Performance Assessment,” Ieee transactions 394

on evolutionary computation, p. 1, 2022, doi: 10.1109/TEVC.2022.3233364. 395

[18] Z. Lu et al., “NSGA-Net: Neural Architecture Search using Multi-Objective Genetic Algorithm 396

(Extended Abstract),” Jul. 2020, vol. 5, pp. 4750–4754. doi: 10.24963/ijcai.2020/659. 397

[19] H. Liang et al., “DARTS+: Improved Differentiable Architecture Search with Early Stopping,” 398

Oct. 20, 2020. http://arxiv.org/abs/1909.06035 (accessed Mar. 24, 2023). 399

[20] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu, “Hierarchical Representa- 400

tions for Efficient Architecture Search,” Feb. 2018. Accessed: Mar. 24, 2023. [Online]. Available: 401

https://openreview.net/forum?id=BJQRKzbA- 402

[21] R. Miikkulainen et al., “Chapter 15 - Evolving Deep Neural Networks,” in Artificial Intelligence 403

in the Age of Neural Networks and Brain Computing, R. Kozma, C. Alippi, Y. Choe, and F. C. 404

Morabito, Eds. Academic Press, 2019, pp. 293–312. doi: 10.1016/B978-0-12-815480-9.00015-3. 405

[22] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized Evolution for Image Classifier 406

Architecture Search,” Proceedings of the aaai conference on artificial intelligence, vol. 33, no. 01, 407

01, pp. 4780–4789, Jul. 2019, doi: 10.1609/aaai.v33i01.33014780. 408

[23] F. Huang, J. Ash, J. Langford, and R. Schapire, “Learning Deep ResNet Blocks Sequentially 409

using Boosting Theory,” in Proceedings of the 35th International Conference on Machine Learning, 410

Jul. 2018, pp. 2058–2067. Accessed: Mar. 24, 2023. [Online]. Available: https://proceedings. 411

mlr.press/v80/huang18b.html 412

[24] C. Liu et al., “Progressive Neural Architecture Search,” 2018, pp. 19–34. Accessed: Mar. 413

24, 2023. [Online]. Available: https://openaccess.thecvf.com/content_ECCV_2018/html/ 414

Chenxi_Liu_Progressive_Neural_Architecture_ECCV_2018_paper.html 415

[25] P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random Search, Genetic Algorithm: A 416

Big Comparison for NAS,” Dec. 12, 2019. http://arxiv.org/abs/1912.06059 (accessed Mar. 417

24, 2023). 418

[26] C. Wei, C. Niu, Y. Tang, Y. Wang, H. Hu, and J. Liang, “NPENAS: Neural Predictor Guided 419

Evolution for Neural Architecture Search,” Ieee transactions on neural networks and learning 420

systems, pp. 1–15, 2022, doi: 10.1109/TNNLS.2022.3151160. 421

[27] Y. Peng, A. Song, V. Ciesielski, H. M. Fayek, and X. Chang, “PRE-NAS: Evolutionary Neural 422

Architecture Search With Predictor,” Ieee transactions on evolutionary computation, vol. 27, no. 423

1, pp. 26–36, Feb. 2023, doi: 10.1109/TEVC.2022.3227562. 424

[28] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural Architecture Optimization,” 425

in Advances in Neural Information Processing Systems, 2018, vol. 31. Accessed: Mar. 426

24, 2023. [Online]. Available: https://papers.nips.cc/paper_files/paper/2018/hash/ 427

933670f1ac8ba969f32989c312faba75-Abstract.html 428

[29] F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., Automated Machine Learning: Methods, Systems, 429

Challenges. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-030-05318-5. 430

[30] R. C. Ito and F. J. Von Zuben, “OFA2: A Multi-Objective Perspective for the Once-for-All Neural 431

Architecture Search,” Mar. 23, 2023. 432

[31] L. Hansen and P. Salamon, “Neural network ensembles,” Ieee transactions on pattern analysis 433

and machine intelligence, vol. 12, no. 10, pp. 993–1001, Oct. 1990, doi: 10.1109/34.58871. 434

[32] M. P. Perrone and L. N. Cooper, “When networks disagree: Ensemble methods for hy- 435

brid neural networks,” in How We Learn; How We Remember: Toward an Understanding of 436

Brain and Neural Systems, vol. Volume 10, WORLD SCIENTIFIC, 1995, pp. 342–358. doi: 437

10.1142/9789812795885_0025. 438

[33] S. Geman, E. Bienenstock, and R. Doursat, “Neural Networks and the Bias/Variance Dilemma,” 439

Neural computation, vol. 4, no. 1, pp. 1–58, Jan. 1992, doi: 10.1162/neco.1992.4.1.1. 440

12

https://doi.org/10.1109/TEVC.2022.3233364
https://doi.org/10.24963/ijcai.2020/659
http://arxiv.org/abs/1909.06035
https://openreview.net/forum?id=BJQRKzbA-
https://doi.org/10.1016/B978-0-12-815480-9.00015-3
https://doi.org/10.1609/aaai.v33i01.33014780
https://proceedings.mlr.press/v80/huang18b.html
https://proceedings.mlr.press/v80/huang18b.html
https://proceedings.mlr.press/v80/huang18b.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Chenxi_Liu_Progressive_Neural_Architecture_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Chenxi_Liu_Progressive_Neural_Architecture_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Chenxi_Liu_Progressive_Neural_Architecture_ECCV_2018_paper.html
http://arxiv.org/abs/1912.06059
https://doi.org/10.1109/TNNLS.2022.3151160
https://doi.org/10.1109/TEVC.2022.3227562
https://papers.nips.cc/paper_files/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://papers.nips.cc/paper_files/paper/2018/hash/933670f1ac8ba969f32989c312faba75-Abstract.html
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1109/34.58871
https://doi.org/10.1142/9789812795885_0025
https://doi.org/10.1162/neco.1992.4.1.1


[34] Y. Liu, X. Yao, and T. Higuchi, “Evolutionary ensembles with negative correlation learning,” 441

Ieee transactions on evolutionary computation, vol. 4, no. 4, pp. 380–387, Nov. 2000, doi: 442

10.1109/4235.887237. 443

[35] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation methods: A survey and categori- 444

sation,” Information fusion, vol. 6, no. 1, pp. 5–20, Mar. 2005, doi: 10.1016/j.inffus.2004.04.004. 445

[36] G. Brown, “Diversity in neural network ensembles,” 2004. Ac- 446

cessed: Feb. 01, 2023. [Online]. Available: https://www. 447

semanticscholar.org/paper/Diversity-in-neural-network-ensembles-Brown/ 448

b2329bfeaff2c9edbe4891ad56e4a4e03ad4fa59 449

[37] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical 450

image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2009, 451

pp. 248–255. doi: 10.1109/CVPR.2009.5206848. 452

[38] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct Neural Architecture Search on Target Task 453

and Hardware,” Feb. 22, 2019. http://arxiv.org/abs/1812.00332 (accessed Mar. 23, 2023). 454

[39] J. Blank and K. Deb, “Pymoo: Multi-Objective Optimization in Python,” Ieee access, vol. 8, pp. 455

89497–89509, 2020, doi: 10.1109/ACCESS.2020.2990567. 456

[40] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in 457

Advances in Neural Information Processing Systems, 2019, vol. 32. Available: https://papers. 458

nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html 459

[41] “SMS-EMOA: Multiobjective selection based on dominated hypervolume - ScienceDirect,” 2007. 460

https://www.sciencedirect.com/science/article/pii/S0377221706005443?via%3Dihub 461

[42] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength pareto evolutionary 462

algorithm,” ETH Zurich, Report, May 2001. doi: 10.3929/ethz-a-004284029. 463

[43] H. Bonab and F. Can, “Less Is More: A Comprehensive Framework for the Number of Compo- 464

nents of Ensemble Classifiers,” Ieee transactions on neural networks and learning systems, vol. 465

30, no. 9, pp. 2735–2745, Sep. 2019, doi: 10.1109/TNNLS.2018.2886341. 466

[44] R. C. Ito and F. J. Von Zuben, “OFA 467

Θ2 468

: A Multi-Objective Perspective for the Once-for-All Neural Architecture Search,” Mar. 23, 2023. 469

http://arxiv.org/abs/2303.13683 (accessed Apr. 14, 2023). 470

13

https://doi.org/10.1109/4235.887237
https://doi.org/10.1016/j.inffus.2004.04.004
https://www.semanticscholar.org/paper/Diversity-in-neural-network-ensembles-Brown/b2329bfeaff2c9edbe4891ad56e4a4e03ad4fa59
https://www.semanticscholar.org/paper/Diversity-in-neural-network-ensembles-Brown/b2329bfeaff2c9edbe4891ad56e4a4e03ad4fa59
https://www.semanticscholar.org/paper/Diversity-in-neural-network-ensembles-Brown/b2329bfeaff2c9edbe4891ad56e4a4e03ad4fa59
https://www.semanticscholar.org/paper/Diversity-in-neural-network-ensembles-Brown/b2329bfeaff2c9edbe4891ad56e4a4e03ad4fa59
https://www.semanticscholar.org/paper/Diversity-in-neural-network-ensembles-Brown/b2329bfeaff2c9edbe4891ad56e4a4e03ad4fa59
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1812.00332
https://doi.org/10.1109/ACCESS.2020.2990567
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://www.sciencedirect.com/science/article/pii/S0377221706005443?via%3Dihub
https://doi.org/10.3929/ethz-a-004284029
https://doi.org/10.1109/TNNLS.2018.2886341
http://arxiv.org/abs/2303.13683


7 Submission Checklist 471

1. For all authors. . . 472

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 473

contributions and scope? [Yes] We proposed the OFA3 technique to automatically select a 474

subset of architectures from a population of neural networks to compose the best ensemble. 475

We then show that this ensembles perform better on the ImageNet dataset for the maximum 476

latency approach. See Section 5. 477

(b) Did you describe the limitations of your work? [Yes] We show that the OFA3 selection 478

technique for ensembles can perform better than single architectures for the scenario of 479

maximum latency. For the summed latency, it may be better to use single architectures, 480

instead. See Section 5.1 481

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work is 482

related to the computer vision area, so the potential negative societal impacts are the same 483

of any other application that uses CIFAR/ImageNet datasets. 484

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? 485

https://automl.cc/ethics-accessibility/ [Yes] 486

2. If you are including theoretical results. . . 487

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical 488

results included. 489

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results 490

included. 491

3. If you ran experiments. . . 492

(a) Did you include the code, data, and instructions needed to reproduce the main experimen- 493

tal results, including all requirements (e.g., requirements.txt with explicit version), an 494

instructive README with installation, and execution commands (either in the supplemental 495

material or as a url)? [Yes] All source codes were provided as a anonymized GitHub reposi- 496

tory in the following link: https://anon-github.automl.cc/r/once-for-all-3-89E3. In 497

the repository there is a README.md with explanation on how to run the code, a require- 498

ments.txt with the prerequisites packages, several Jupyter notebooks with instructions to 499

reproduce the results and information on how to set up the dataset. 500

(b) Did you include the raw results of running the given instructions on the given code and 501

data? [Yes] The Jupyter notebooks provided in the anonymized GitHub repository contain 502

the outputs of the cells when the notebook runs sequentially from scratch. Aditional 503

information is provided in the README.md of the repository. 504

(c) Did you include scripts and commands that can be used to generate the figures and tables 505

in your paper based on the raw results of the code, data, and instructions given? [Yes] The 506

ofa2.ipynb Jupyter notebook generates the results for the OFA2 search. The ofa3-summed- 507

latency-N1000.ipynb and ofa3-max-latency.ipynb notebooks generate the results for the 508

OFA3 for the summed and maximum latencies, respectively. Finally, the ofa3.ipynb notebook 509

generates the results for the OFA search and plot the Figures7, 9 and 10. 510

(d) Did you ensure sufficient code quality such that your code can be safely executed and the 511

code is properly documented? [Yes] There are a sequence of steps to reproduce the results of 512

this paper. The first one is to run the OFA2 search on the OFA search space. Then the output 513

14

https://automl.cc/ethics-accessibility/
https://anon-github.automl.cc/r/once-for-all-3-89E3
https://anon-github.automl.cc/r/once-for-all-3-89E3/jupyter-notebooks/ofa2.ipynb
https://anon-github.automl.cc/r/once-for-all-3-89E3/jupyter-notebooks/ofa3-summed-latency-N1000.ipynb
https://anon-github.automl.cc/r/once-for-all-3-89E3/jupyter-notebooks/ofa3-summed-latency-N1000.ipynb
https://anon-github.automl.cc/r/once-for-all-3-89E3/jupyter-notebooks/ofa3-summed-latency-N1000.ipynb
https://anon-github.automl.cc/r/once-for-all-3-89E3/jupyter-notebooks/ofa3-max-latency.ipynb
https://anon-github.automl.cc/r/once-for-all-3-89E3/jupyter-notebooks/ofa3.ipynb


of the OFA2 search (100 efficient models) is used to generate a cumulative probability table. 514

Then, the OFA3 selection technique can be applied. There is one Jupyter notebook for each 515

of these steps, besides others to plot the figures. All of these steps are documented in the 516

README.md and there are also plenty of comments on the Jupyter notebooks. Additionaly, 517

we also plan to provide a Dockerfile to build a container with all the environment necessary 518

to safely run the experiments in a near future. 519

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed 520

hyperparameter settings, and how they were chosen)? [Yes] Information on data split is 521

provided on Section 3.6 and on the README.md of the GitHub repository. Information 522

about the search space is provided in Section 4.1. The hyperparameters are provided on 523

Section 4.2 and also hardcoded on the Git repository. 524

(f) Did you ensure that you compared different methods (including your own) exactly on 525

the same benchmarks, including the same datasets, search space, code for training and 526

hyperparameters for that code? [Yes] Table 1 compares the results over the search methods 527

of OFA, OFA2 and OFA3 (ours), all executed by us. Since the Once-for-All framework 528

is a particular NAS technique, due to the decoupling of the training and search stages 529

characteristic, we decided to compare only search methods, instead of comparing with 530

other NAS frameworks that properly train a neural network while doing the search. 531

(g) Did you run ablation studies to assess the impact of different components of your approach? 532

[No] Out method relies on any EMOA (evolutionary multi-objective optimization algorithm). 533

From our experiments, a change on the hyperparameters of the algorithms (mutation ratio, 534

type of crossover/recombination, etc) does not seem to affect the performance. The results 535

seem robust, regardless the EMOA used. We provided three Jupyter notebooks comparing 536

the NSGA-II, SMS-EMOA and SPEA2 algorithms for both the OFA2 and the OFA3 searches 537

(summed/maximum latency). 538

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] We use 539

a subset with 50k images of the training set of the ILSVRC (ImageNet-1k with 1,281,167 540

images) to both perform the OFA2 search and to generate the cumulative probabilities tables 541

used on the OFA3 selection method. All three techniques (OFA/OFA2/OFA3) are evaluated 542

on the 50k images of the validation set of the ImageNet, which remains untouched until 543

this evaluation. The test set, with 100k images are not used whatsoever in our experiments. 544

(i) Did you compare performance over time? [Yes] Table 1 give details about the computational 545

costs (GPU hours) and there are more information on that in Section 5.. 546

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] We 547

ran our experiments using three different seeds with values 1, 2 and 3. The results can be 548

found on the Jupyter notebooks provided in the anonymized GitHub repository. 549

(k) Did you report error bars (e.g., with respect to the random seed after running experiments 550

multiple times)? [No] Although we did run the algorithms with three different random 551

seeds, some metrics were not reported with error bars yet. We plan to update the GitHub 552

repository soon with these metrics and have these results for the final version of the paper. 553

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] Our methods 554

were evaluated "as is" under the validation set of ILSVRC (50k images). 555

(m) Did you include the total amount of compute and the type of resources used (e.g., type of 556

gpus, internal cluster, or cloud provider)? [Yes] Section 4 describes the GPU used to run the 557

experiments. Table 1 also provide information related to the search cost of our technique 558

and the methods compared. 559

15



(n) Did you report how you tuned hyperparameters, and what time and resources this required 560

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and 561

also hyperparameters of your own method)? [No] We did not use an algorithm to tune the 562

hyperparameters. Since our technique relies on an EMOA, we chose to track the metric on 563

the objective functions to check convergence and to decide when to terminate the search. 564

Also, the evolutionary hyperparameters did not seem to play a big role over the results, so 565

we decided to focus on other aspects of the research. 566

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . . 567

(a) If your work uses existing assets, did you cite the creators? [Yes] Our work is mainly based 568

on OFA and OFA2 frameworks. We also used the a few EMOAs (NSGA-II, SMS-EMOA, 569

SPEA2) and the pymoo and PyTorch frameworks. All of these works were properly cited. 570

(b) Did you mention the license of the assets? [Yes] Both the code of OFA and OFA2 are licensed 571

under the MIT license, according to their GitHub repositories. We decided to license our 572

code under the same MIT license, as stated in the file LICENSE of our GitHub repository. 573

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] Some 574

Jupyter notebooks were added to the anonymous repository. We also used a subset of 50k 575

images of the training set to guide the OFA3 selection technique. Information on how to set 576

this partition is provided on the GitHub as well. 577

(d) Did you discuss whether and how consent was obtained from people whose data you’re 578

using/curating? [N/A] We are not using any personal data. The dataset used is publicly 579

available (ILSVRC, ImageNet-1k). 580

(e) Did you discuss whether the data you are using/curating contains personally identifiable 581

information or offensive content? [N/A] We are not using any personal data. The dataset 582

used is publicly available (ILSVRC, ImageNet-1k). 583

5. If you used crowdsourcing or conducted research with human subjects. . . 584

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 585

cable? [N/A] 586

(b) Did you describe any potential participant risks, with links to Institutional Review Board 587

(irb) approvals, if applicable? [N/A] 588

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 589

on participant compensation? [N/A] 590

16

https://anon-github.automl.cc/r/once-for-all-3-89E3/LICENSE

	Introduction
	Related Works
	Methodology
	OFA
	OFA²
	OFA³
	Ensembles
	Voting schemes
	Dataset
	Objective functions
	Latency
	Candidate architectures

	Experiments
	Encoding
	The solver

	Results
	Summed latency
	Maximum latency

	Concluding Remarks
	Submission Checklist

