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Abstract

Ensuring fairness is essential when implementing machine learning models in practical
applications. However, recent research has revealed that benchmark datasets can be crafted
as fake evidence of fairness from unfair models using a method called Stealthily Biased
Sampling (SBS). SBS minimizes the Wasserstein distance to manipulate a fake benchmark
so that the distribution of the benchmark closely resembles the true data distribution.
This optimization requires superquadratic time relative to the dataset size, making SBS
applicable only to small-sized datasets. In this study, we reveal for the first time that
the risk of manipulated benchmark datasets exists even for large-sized datasets. This
finding indicates the necessity of considering the potential for manipulated benchmarks
regardless of their size. To demonstrate this risk, we developed FastSBS, a computationally
efficient variant of SBS using the Sliced Wasserstein distance. FastSBS is optimized by a
stochastic gradient-based method, which requires only nearly linear time for each update.
In experiments with both synthetic and real-world datasets, we show that FastSBS is an
order of magnitude faster than the original SBS for large datasets while maintaining the
quality of the manipulated benchmark.1
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1. Introduction

Machine learning models have been utilized in various decision-making scenarios, such as
loan approvals (Sheikh et al., 2020) and employment decisions (Raghavan et al., 2020).
However, these models sometimes produce different predictions based on sensitive attributes
such as gender or race, leading to unfairness (Mehrabi et al., 2021). Such unfair machine
learning models can cause disadvantages or discrimination against individuals who are the
subjects of these predictions (Angwin et al., 2016). Ensuring the fairness of models is
therefore an essential element when implementing machine learning models to real-world
usage.

A typical approach for ensuring fairness is to use fairness auditing tools (Saleiro et al.,
2018; Adebayo, 2016; Bellamy et al., 2018) for evaluating and disclosing the fairness of
models. Examples of these tools include those that compute various fairness metrics for
models (Saleiro et al., 2018), measure the importance of different input information to the
model (Adebayo, 2016), and identify groups with sensitive attributes that are being treated
unfairly (Bellamy et al., 2018).

1. Our code is available at https://github.com/yyd-Yudai/FastSBS

© 2024 Y. Yamamoto & S. Hara.

https://github.com/yyd-Yudai/FastSBS


Yamamoto Hara

Fukuchi et al. (2020) considered another way of ensuring fairness by publishing a bench-
mark dataset which is a subset of dataset with models’ decisions. By publishing the bench-
mark dataset, everyone can assess the fairness of the decisions using the aforementioned
auditing tools. Unfortunately, Fukuchi et al. (2020) also reported that the benchmark
dataset can be manipulated to mislead the auditing results. This means that even if the
model and its decisions are unfair, one can construct a benchmark dataset that appears fair
when evaluated with auditing tools. Moreover, such manipulation is almost impossible to
detect when the benchmark dataset is constructed using the method called Stealthily Biased
Sampling (SBS) (Fukuchi et al., 2020).

SBS manipulates the benchmark dataset by minimizing the Wasserstein distance be-
tween the original dataset and the benchmark dataset so that the two datasets to be almost
indistinguishable. SBS is formulated as the minimum-cost flow problem, which can be solved
in Õ(N2.5) time when applied to a dataset of size N . This superquadratic time complexity
indicates that SBS is not scalable to large datasets. Therefore, the risk of manipulated
benchmark datasets currently exists only for small-sized datasets.

In this study, we reveal that for the first time that the risk of manipulated benchmark
datasets exists even for large-sized datasets. This finding underscores the need to be aware of
the potential for manipulated benchmark datasets regardless of their size. To demonstrate
this risk, we developed FastSBS, a computationally efficient variant of SBS. FastSBS is
optimized by using a stochastic gradient-based method which requires only Õ(N) time in
each update. In the experiments with both synthetic and real-world datasets, we show that
FastSBS is an order of magnitude faster than the original SBS on large datasets.

2. Preliminaries

Data and Sampling Suppose that we want to assess the fairness of a model f . We
denote the input features to the model f as x ∈ Rd and the sensitive attribute as s ∈ {0, 1}.
The predicted label by the model for this input is y = f(x) ∈ {0, 1}, and a dataset consisting
of N tuples of (x, s, y) is represented as D = {(xi, si, yi)}Ni=1.

A benchmark dataset, which is a set of K data points sampled from the dataset D,
is denoted as Z. When constructing Z according to some sampling distribution, the
probability that the i-th data point (xi, si, yi) from D is included in Z is denoted as
P((xi, si, yi) ∈ Z) = µi. When Z is constructed by uniform random sampling, this proba-
bility is P((xi, si, yi) ∈ Z) = νi =

K
N .

Wasserstein Distance Wasserstein distance (Villani, 2009) is a distance between two
probability distributions. In this study, we consider the Wasserstein distance for discrete
probability distributions. Let Ci,j and πi,j represent the transportation cost and the trans-
portation amount from the i-th point with the probability mass µi to the j-th point with the
mass νj , respectively. The transportation cost Ci,j is non-negative Ci,j ≥ 0, which is typi-
cally chosen as Ci,j = ∥xi−xj∥ or its square. The transportation amount πi,j is non-negative

πi,j ≥ 0, and it satisfies the mass preservation laws
∑N

j=1 πi,j = µi and
∑N

i=1 πi,j = νj . We
denote these constraints on πi,j by π ∈ Π(µ, ν). The Wasserstein distance W(µ, ν) between
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µ and ν is defined as the optimal value of the following optimization problem:

W(µ, ν) = min
π∈Π(µ,ν)

N∑
i=1

N∑
j=1

Ci,jπi,j . (1)

Wasserstein distance can be computed in polynomial time using the Sinkhorn algorithm (Cu-
turi, 2013) or by reducing it to the minimum-cost flow problem (Kovács, 2015).

Sliced Wasserstein Distance Wasserstein distance between the one-dimensional dis-
tributions can be computed in O(N logN) time (Rabin et al., 2011). Sliced Wasserstein
distance (Rabin et al., 2011) leverages this property of the one-dimensional Wasserstein
distance for efficient computation. Let u ∈ Rd be a uniformly random vector on the unit
sphere of a d-dimensional space. The d-dimensional input feature x ∈ Rd is then projected
onto one dimension using u as z = u⊤x. Wasserstein distance in the one-dimensional space
projected by u is given by:

Wu(µ, ν) = min
π∈Π(µ,ν)

N∑
i=1

N∑
j=1

Cu
i,jπi,j , (2)

where the typical choice of the transportation cost Cu
ij is the Euclidean distance |zi − zj |.

Sliced Wasserstein distance is then defined as the expectation of this projected Wasserstein
distance over u:

SW(µ, ν) = Eu[W
u(µ, ν)]. (3)

3. Faking Fairness through Sampling

In this section, we review the existing methods for creating a fair benchmark dataset Z
from an unfair dataset D by manipulating the sampling distribution. To fake fairness, the
benchmark dataset Z needs to fulfill the following two requirements (Fukuchi et al., 2020).

(R1) Z is fair with respect to some fairness criteria.

(R2) The distribution of Z is close to the distribution of the original dataset D.

(R1) ensures that Z is successfully faking fairness. (R2) ensures that the faking remains
undetected. Otherwise, if the distribution of Z is clearly different from that of D, a third
party can detect that Z is unnatural and hence manipulated.

3.1. Case-Control Sampling

The simplest method to achieve (R1) is Case-Control Sampling (Mantel and Haenszel, 1959).
Suppose that one wishes to create a fair Z in terms of Demographic Parity (Dwork et al.,
2012). For each of the four combinations of sensitive attribute s ∈ {0, 1} and predicted
label y ∈ {0, 1}, let the number of data points included in Z be kZ(s, y). Then, the fairness
with respect to DP is realized on Z if the following holds:

kZ(0, 1)

kZ(0, 0) + kZ(0, 1)
=

kZ(1, 1)

kZ(1, 0) + kZ(1, 1)
. (4)
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Thus, any benchmark dataset Z satisfying (4) fulfills (R1). One can easily construct such
Z by sampling instances from D using the following distribution:

µi =
kZ(si, yi)

kD(si, yi)
, (5)

where kD(s, y) is the number of data points in D with the sensitive attribute value s and
the predicted label value y. One can naturally generalize this idea to other fairness metrics
such as Equalized Odds (Awasthi et al., 2020) and Equal Opportunity (Arneson, 2018) by
designing an appropriate kZ . Note that Case-Control Sampling only cares about the first
requirement (R1).

3.2. Stealthily Biased Sampling

Stealthily Biased Sampling (SBS) of Fukuchi et al. (2020) optimizes the sampling distribu-
tion µ so that it fulfills both (R1) and (R2). (R1) is fulfilled by appropriately designing kZ
as in (4), which is then expressed as the following constraint on µ2:∑

(xi,si,yi)∈D:,si=s,,yi=y

µi = kZ(s, y). (6)

We denote µ satisfying this constraint as µ ∈ P (k).

SBS then realizes (R2) by minimizing the Wasserstein distance between the sampling
with µ and the uniform random sampling with ν:

min
µ

W(µ, ν), s.t. µ ∈ P (k). (7)

Equation (7) is a linear programming problem which is linear with respect to both π and µ,
and can be solved in Õ(N2.5) time by reducing it to the minimum-cost flow problem (Fukuchi
et al., 2020).

4. Proposed Method

In this section, we propose FastSBS, a computationally-efficient variant of SBS. FastSBS
optimizes µ using a stochastic gradient-based method, which requires only Õ(N) time for
each update. Consequently, FastSBS can be applied to large datasets. This finding under-
scores the necessity of being aware of the potential for manipulated benchmark datasets,
regardless of their size.

In FastSBS, we replace the Wasserstein distance in SBS (7) with a computationally
more efficient Sliced Wasserstein distance (3) as follows:3

(FastSBS) min
µ

SW(µ, ν), s.t. µ ∈ P (k). (8)

2. We show the case for DP as the illustrative example.
3. One can also consider another variant of SBS using Tree-Sliced Wasserstein distance (Le et al., 2019).

See Appendix C.
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Algorithm 1: FastSBS Using Stochastic Gradient

Procedure FastSBS (D = {(xi, si, yi)}Ni=1, {η(ℓ) > 0}ℓ, L ∈ N)
µ
(0)
i ←

1
N , ∀i ∈ {1, 2, . . . , N};

for ℓ = 1, 2, . . . , L− 1 do
Randomly sample projection u;
Compute subgradient g(ℓ) with respect to µ for (8);
µ(ℓ+1) ← Update µ(ℓ) by using the subgradient step η(ℓ)g(ℓ) within P (k);

end

return
∑L

ℓ=1 η
(ℓ)µ(ℓ)/

∑L
ℓ=1 η

(ℓ);

The stochastic gradient-based optimization method for (8) is shown in Algorithm 1. In
the algorithm, we need two essential steps. First, we need an unbiased estimate of the
subgradient g of the objective function with respect to µ. Second, we need to update µ
using the subgradeint within the constraint P (k) so that the updated µ satisfies P (k).
The time complexity of the algorithm therefore depends on the time complexity for the
subgradient evaluation and the update operation. In the following subsections, we show
that both subgradient and update can be computed in Õ(N) time.

4.1. Update of µ within P (k)

When DP is adopted for the fairness metric of interest, the constraint P (k) in (6) can be
rewritten as ∑

(xi,si,yi)∈D:,si=s,,yi=y

µ̂i = 1, (9)

where µ̂i = µi/kZ(s,y). That is, we can interpret {µ̂i}si=s,yi=y as an element of a probability
simplex and ĝi = kZ(s, y)gi as its subgradeint. A well-known method for updating a pa-
rameter in the probability simplex is the multiplicative weight update (Arora et al., 2012),
which is given as

µ̂i ←
µ̂i exp (−ηĝi)∑

(xi,si,yi)∈D: si=s, yi=y µ̂i exp (−ηĝi)
, (10)

where η > 0 is a learning rate. By multiplying both sides by kZ(s, y), we obtain the updating
rule

µi ←
kZ(s, y)µi exp (−ηkZ(s, y)gi)∑

(xi,si,yi)∈D: si=s, yi=y µi exp (−ηkZ(s, y)gi)
. (11)

This update of µ can be computed in O(N) time.

4.2. Subgradient of Sliced Wasserstein Distance

By the linearity of expectation, the subgradient of Sliced Wasserstein Distance SW(µ, ν) is
the expectation of the subgradient of Wu(µ, ν). Thus, to obtain an unbiased subgradient
of SW(µ, ν), we only need to compute the subgradient of Wu(µ, ν) for a randomly chosen
u. Once u is given and fixed, Wu(µ, ν) is the Wasserstein distance in one-dimension, which
can be efficiently computed in Õ(N) time using sorting.
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One possible approach4 for computing the subgradient of the one-dimensional Wasser-
stein distance Wu(µ, ν) is to solve the dual problem of (2) (Peyré et al., 2019):

max
gµ,gν∈RN

N∑
i=1

µig
µ
i +

N∑
j=1

νjg
ν
j , s.t. gµi + gνj ≤ Cu

i,j , ∀i, j ∈ {1, 2, . . . , N}. (12)

The solutions gµ, gν of the problem (12) correspond to the subgradients of Wu(µ, ν) with
respect to µ and ν, respectively (Boyd and Vandenberghe, 2004).

By utilizing the one-dimensional structure of (12), we can solve the problem in Õ(N)
time using Algorithm 2. In the algorithm, we first sort zi = u⊤xi so that zi are sorted
in an increasing order. This sorting takes O(N logN) time and dominates the entire time
complexity of the algorithm; the other parts can be executed in O(N) time.

To derive the algorithm, we reparametrize gµ, gν by using hµi = gµi − gµi−1 and hνj =
gνj − gνj−1 for i, j ≥ 2 so that

gµ1 = 0, gµi =

i∑
k=2

hµk , gνj = gν1 +

j∑
ℓ=2

hνℓ , ∀i, j ∈ {2, 3, . . . , N}.

We note that we can always choose gµ1 = 0 without loss of generality because the problem
(12) remains the same for an operation gµi ← gµi +a, gνj ← gνj −a for any constant a.5 With
this reparametrization, we can rewrite the dual problem (12) as

max
gν1∈R,hµ,hν∈RN−1

gν1 +
N∑
k=2

µ̄kh
µ
k +

N∑
ℓ=2

ν̄ℓh
ν
ℓ , s.t. gν1 +

i∑
k=2

hµk +

j∑
ℓ=2

hνℓ ≤ Cu
i,j , (13)

where µ̄k =
∑N

i=k µi and ν̄ℓ =
∑N

j=ℓ νj .
An important property of the problem (13) is that we can decompose it to a series of

subproblems. First, we can solve the subproblem on gν1 :

max
gν1∈R

gν1 , s.t. gν1 ≤ Cu
1,1.

In our problem setting, Cu
1,1 = |z1 − z1| = 0. Hence, we immediately have gν1 = 0. Second,

suppose that hµk and hνℓ are optimized for k = 2, 3, . . . , n− 1 and ℓ = 2, 3, . . . ,m− 1. Then,
we can construct a subproblem on hµn and hνm as

max
hµ
n,hν

m∈R
un,m + µ̄nh

µ
n + ν̄mhνm, s.t. vn,m + hµn ≤ Cu

n,m−1, vn,m + hνm ≤ Cu
n−1,m, (14)

where un,m =
∑n−1

k=2 µ̄kh
µ
k +

∑m−1
ℓ=2 ν̄ℓh

ν
ℓ and vn,m =

∑n−1
k=2 h

µ
k +

∑m−1
ℓ=2 hνℓ . When µ̄n ≥ ν̄m, it

is desired to choose hµn so that µ̄nh
µ
n is maximized, which results in hµn = Cu

n,m−1−vn,m. For

4. One can also use POT library with automatic differentiation to compute subgradient. In Appendix A,
we show that our Algorithm 2 is faster than POT. (POT: https://pythonot.github.io/)

5. One can easily verify that
∑N

i=1 µi(g
µ
i + a) +

∑N
j=1 νj(g

ν
j − a) =

∑N
i=1 µig

µ
i +

∑N
i=1 νjg

ν
j +

a (
∑N

i=1 µi −
∑N

j=1 νj)︸ ︷︷ ︸
=0

and (gµi + a) + (gνj − a) = gµi + gνj .

https://pythonot.github.io/
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Algorithm 2: Solving the dual of the one-dimensional Wasserstein distance (12)

Procedure Subgrad 1D (D = {(xi, si, yi)}Ni=1, µ, ν ∈ RN
+ , u ∈ Rd)

σ = argsort{zi = u⊤xi}Ni=1 ▷ Sort after one-dimensional projection.

µ̄i ←
∑N

k=i µσ(i); ν̄i ←
∑N

k=i νσ(i); hµi ← 0; hνi ← 0; ∀i ∈ {2, 3, . . . , N}
n← 2; m← 2; v ← 0;
while n ≤ N and m ≤ N do

if µ̄n ≥ ν̄m then hµn ← Cu
n,m−1 − v; v ← Cu

n,m−1; n← n+ 1 ;

else hνm ← Cu
n−1,m − v; v ← Cu

n−1,m; m← m+ 1 ;

end
while n ≤ N do hµn ← Cu

n,m−1 − v; v ← Cu
n,m−1; n← n+ 1 ;

while m ≤ N do hνm ← Cu
n−1,m − v; v ← Cu

n−1,m; m← m+ 1 ;

gµσ(1) ← 0; gµσ(i) ←
∑i

k=2 h
µ
k ; ∀i ∈ {2, 3, . . . , N} ▷ Subgradients in the original order

gνσ(1) ← 0; gνσ(j) ←
∑j

ℓ=2 h
ν
j ; ∀i ∈ {2, 3, . . . , N}

return gµ, gν ▷ can be skipped when only gµ is necessary.

this choice of hµn, we also obtain the updated vn+1,m as vn+1,m ← vn,m+(Cu
n,m−1− vn,m) =

Cu
n,m−1. Similarly, when µ̄n < ν̄m, we have hνm = Cu

n−1,m − vn,m and vn,m+1 ← Cu
n,m+1.

We can then update n ← n + 1 or m ← m + 1 to construct a new subprolem (14) on the
updated n and m. By solving the subproblem (14) until n = N and m = N are met, we
obtain the optimal hµ and hν , and, hence, the optimal gµ and gν .

4.3. Accelerating FastSBS using Fixed Slicing

The time complexity of FastSBS is dominated by the sorting operation. The other parts
of the subgradient computations can be executed in O(N) time. In theory, we need inde-
pendent subgradients in every iteration for valid stochastic optimization. Thus, in every
iteration of the optimization, we need to sample an independent projection u, incurring the
cost of sorting for the new u.

Here, we consider a practical heuristic that can avoid the computational bottlenecks
above. The idea is to not to sample the projections in every iteration. Instead, we sample
sufficiently many projections before running FastSBS. That is, we first sample S projections
u1, u2, . . . , uS independently. For these projections, we compute the sorting of z = u⊤x and
store the results. In every optimization step, we randomly choose one projection among S
candidates, and load the sorting result for the chosen one. This approach allows us to com-
pute the subgradient in O(N) time in every iteration, thereby resolving the computational
bottleneck. Note that this heuristic corresponds to replacing the expectations of the Sliced
Wasserstein distance (3) with a finite sample average.

SW(µ, ν) ≈ 1

S

S∑
s=1

Wus(µ, ν).
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Our experimental results in Section 6 show that this heuristics is effective in practice. In
the experiments, we observed that S = 10 is sufficient to attain a comparative performance
with the independent random sampling of projections in every iteration. With the heuristics,
we can enjoy the significant speedup of FastSBS without sacrificing its performance.

5. Related Work

The possibility of fake-fairness is studied in the intersection of fairness and explainabil-
ity. Slack et al. (2020) and Merrick and Taly (2020) have shown that local explanation
methods, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017), can
be manipulated to produce fairer explanations even from unfair models. In the context of
counterfactual explanation, Laugel et al. (2019) have shown that one can generate fairer
counterfactuals. Aı̈vodji et al. (2019, 2021) have shown that global explanation methods
can be manipulated as well.

In line with these studies, the study of Stealthily-Biased Sampling (SBS) (Fukuchi et al.,
2020) can be categorized as the manipulation of the example-based explanations. Laberge
et al. (2023) applied SBS to SHAP, enabling not only the manipulation of SHAP explana-
tions but also the creation of fake benchmark datasets, making the results of the manipulated
SHAP reproducible from the benchmark.

The risk of these manipulations depends on whether they can be implemented at a
reasonable cost. If the cost of manipulation is prohibitively high, such methods are less
likely to be used, indicating a lower risk. Prior studies on SBS (Fukuchi et al., 2020;
Laberge et al., 2023) have demonstrated the capability of manipulation on relatively small
datasets due to their superquadratic time complexity. These results suggest that SBS is not
scalable to large datasets, and hence, the risk of manipulated benchmark datasets is mostly
limited to small-sized datasets.

In the current study, however, we show that the risk of manipulated benchmark datasets
exists even for large-sized datasets by designing FastSBS, a computationally efficient vari-
ant of SBS. This finding highlights the need to consider the potential for manipulated
benchmark datasets regardless of their size.

6. Experiments

We compared the proposed FastSBS with existing methods using both synthetic and two
real-world datasets, COMPAS (Angwin et al., 2016) and Adult (Dheeru and Taniskidou,
2017), following Fukuchi et al. (2020). In Sections 6.1 and 6.2, we show that FastSBS can
generate benchmark with comparative performance as SBS. In Section 6.3, we demonstrate
that FastSBS can be executed in far smaller runtime than SBS, while maintaining its per-
formance. All the experiments were conducted on a workstation with Windows 10 Home
64bit OS, Intel Core i7-9700K CPU, and 32GB of RAMs.

Sampling Methods We adopted Case-Control Sampling (CC) (Mantel and Haenszel,
1959) and Stealthily Biased Sampling (SBS) (Fukuchi et al., 2020) as the baseline methods
to be compared with. For these methods as well as for FastSBS, we set the number of
instances in the benchmark Z for each pair of (s, y) ∈ {0, 1} × {0, 1} to satisfy

kZ(0, 0) = (1−α)2K, kZ(0, 1) = α(1−α)K, kZ(1, 0) = α(1−α)K, kZ(1, 1) = α2K, (15)
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for several different values of α ∈ [0, 1] so that the demographic parity (Dwork et al., 2012)
of the sampled Z to be small.

For FastSBS, we set the number of fixed slices S = 10 in the heuristics. We set the
learning rate at step ℓ to η(ℓ) = 1/K

√
ℓ for the synthetic and COMPAS datasets, and to

η(ℓ) = 1/3K
√
ℓ for the Adult dataset. We adopted the following stopping criterion so that

the optimization to terminate when the output of Algorithm 1 is sufficiently stable:

N∑
i=1

|µ̄i
(t) − µ̄i

(t+1)| < ε, (16)

where µ̄(t) =
∑t

ℓ=1 η
(ℓ)µ(ℓ)/

∑t
ℓ=1 η

(ℓ). We set ε = 0.01 for the synthetic and COMPAS dataset
experiments while we set ε = 0.1 for the Adult dataset experiment.

Evaluation Metrics In the experiments, we verified whether the benchmark dataset Z
created by each method satisfies the requirements (R1) and (R2). As the fairness metric
for the requirement (R1), we used Demographic Parity (Dwork et al., 2012) defined by

DP(Z) =

∣∣∣∣ kZ(0, 1)

kZ(0, 0) + kZ(0, 1)
− kZ(1, 1)

kZ(1, 0) + kZ(1, 1)

∣∣∣∣ . (17)

Hence, the benchmark dataset Z with smaller DP(Z) is considered ideal. For assessing the
requirement (R2), we used the Kolmogorov-Smirnov test (Massey Jr, 1951) for the synthetic
data experiment in Section 6.1 and Wasserstein distance for the real-world data experiments
in Section 6.2.

6.1. Experiment 1: Synthetic Data

Dataset Description We considered the following synthetic model (Fukuchi et al., 2020)
that determines y ∈ {0, 1} from a uniformly random x ∈ [0, 1] and a uniformly random
s ∈ {0, 1}:

y = I(x+ 0.2s > 0.5). (18)

In this model, the probability of y = 1 is 0.2 higher when s = 1 compared to that of
s = 0. Therefore, the demographic parity of this model is 0.2. We generated a dataset
D with N = 1, 000 independent instances of (x, s, y) from this setup. For the purpose
of assessing the Requirement (R2), we also generated another dataset D′ with N ′ = 200
instances independently from D.

Evaluation of (R2) In the experiment, we sampled the benchmark dataset Z of size
K = 200 from the dataset D using each of the sampling methods. We used the Kolmogorov-
Smirnov test to compare the distribution of Z and D′ for assessing the requirement (R2).
Specifically, we conducted three statistical tests with null hypothesises (H1)–(H3):

(H1) pD′(x) = pZ(x), (H2) pD′(x|y = 0) = pZ(x|y = 0), (H3) pD′(x|y = 1) = pZ(x|y = 1),

where pD′ and pZ denote the distributions of x in the datasets D′ and Z, respectively. If
the test is frequently rejected for the sampled benchmark Z, the corresponding sampling
method is considered to fail the requirement (R2) because the distributions of Z is found
to be different from the independent dataset D′. We set the significance level of the tests
to 0.05.
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Figure 1: [Experiment 1] Comparison of the sampling methods on the synthetic dataset.
The solid lines represent the average over 100 runs, and the shaded areas represent
the standard deviation. The black dashed line in (a) indicates the original DP of
0.2, and the black dashed lines in (b)–(d) indicate the significance level 0.05.

Results Figure 1 shows the results of the 100 runs of the experiments. Figure 1(a) show
that DP of each method is far lower than the original DP of 0.2. This result confirms that
all the methods attained the requirement (R1) for any choice of α. Figures 1(b)–(d) show
the results of the three statistical tests. In each figure, the vertical axis denotes the rejection
ratio which is a fraction of the rejection over the 100 runs. Because we set the significance
level to 0.05, the results with the rejection ratio around 0.05 indicate that the test could
not distinguish D′ and Z with sufficient significance. The figures show that SBS and the
proposed FastSBS achieve rejection ratios close to 0.05 for around α = 0.6, confirming that
these methods fulfill the requirement (R2).

6.2. Experiment 2: COMPAS and Adult Data

COMPAS Dataset For the first real-world dataset, we used the COMPAS
dataset (Angwin et al., 2016). Following the preprocessing steps used in the ProPublica
analysis (Angwin et al., 2016), we obtained x ∈ R8, s ∈ {0, 1}, and y ∈ {0, 1}. In the
COMPAS dataset, the probability of y = 0 for s = 1 is approximately 0.24 higher than that
of s = 0, resulting in DP of 0.24. From the entire dataset of 5,278 instances, we randomly
sampled 4,000 instances to create the dataset D and left the remaining 1,278 instances as
the dataset D′ for assessing (R2). We sampled K = 1, 000 instances from D to construct
the benchmark dataset Z using each sampling method.

Adult Dataset For the second real-world dataset, we used the Adult dataset (Dheeru and
Taniskidou, 2017). In the preprocessing, categorical variables were converted to numerical
variables6, resulting in x ∈ R13, s ∈ {0, 1}, and y ∈ {0, 1}. From the entire dataset of
48,842 instances, we randomly sampled 10,000 instances as the training data and 20,000
instances as the test data, with the remaining 18,842 instances forming the dataset D′ for
assessing (R2). We trained linear logistic regression and random forest with 100 trees using
the training data. We then labeled each of the test instances using the trained models and

6. We used the implementation from https://www.kaggle.com/code/kost13/

us-income-logistic-regression/notebook.

https://www.kaggle.com/code/kost13/us-income-logistic-regression/notebook
https://www.kaggle.com/code/kost13/us-income-logistic-regression/notebook
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constructed the dataset D of size N = 20, 000. We sampled K = 2, 000 instances from D
to construct the benchmark dataset Z using each sampling method.

In the Adult dataset experiment, we used the bootstrap version of SBS (Fukuchi et al.,
2020) as the baseline because the original SBS tends to be computationally prohibitive for
the datasets D larger than 10, 000. In the bootstrap version, we first randomly sample 4,000
instances from D and then estimate µ using SBS on this 4,000 instances. We repeat this
procedure 30 times, and use the average of the estimated µ for sampling. We parallelized
this procedure to speed up SBS.

Evaluation of (R2) To assess the requirement (R2), we used the Wasserstein distance
between two datasets A = {(xi, si, yi)}NA

i=1 and B = {(x′j , s′j , y′j)}
NB
j=1 defined as follows:

W(A,B) = min
π∈RNA×NB

NA∑
i=1

NB∑
j=1

∥xi − x′j∥2πi,j , s.t.

NA∑
i=1

πi,j =
1

NB
,

NB∑
j=1

πi,j =
1

NA
.

Specifically, we evaluated three Wasserstein distances W(D′, Z), W(D′
y=0, Zy=0), and

W(D′
y=1, Zy=1). Here, D′

y=0 = {(x, s, y) ∈ D | y = 0} and Zy=0 = {(x, s, y) ∈ Z | y = 0}
denotes the subsets of D′ and Z with y = 0, respectively. D′

y=1 and Zy=1 are defined
analogously. If all the three Wasserstein distances are small, the corresponding sampling
method is considered to fulfill the requirement (R2) because the distributions of Z is found
to be similar to that of the independent dataset D′.

Results Figures 2 shows the results of 100 runs of the experiments. In Figures 2(a), (e),
and (i), we can observe that all the sampling methods could induce benchmark Z with small
DP indicating all the methods fulfilled the requirements (R1). Figures 2(b)–(d), (f)–(h),
and (j)–(l) confirm that the Wasserstein distance for SBS and the proposed FastSBS remain
small for an appropriately chosen α, satisfying the requirement (R2).

6.3. Runtime Comparison

In our experiments, two hyper-parameters are governing the running time of the proposed
FastSBS, which are the stopping threshold ε and the size of fixed slicing S. Larger ε leads to
earlier stopping of optimization, while smaller S can reduce the computational overheads of
sorting. Here, we show that, by appropriately choosing ε and S, the proposed FastSBS can
be significantly faster than the original SBS while maintaining the quality of the sampled
benchmark Z.

6.3.1. The Effects of ε

Setups We compared the runtime of FastSBS with the original SBS on the synthetic and
Adult datasets.7 For the synthetic and Adult datasets, we fixed the size of the benchmark
Z to be K = 200 and K = 2, 000, respectively, and varied the size of the dataset D.

7. Because the size of COMPAS is not large, we did not use it for the runtime comparison.
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Figure 2: [Experiment 2] The results on COMPAS (a)–(d), Adult + Logistic Regression
(e)–(h), and Adult + RandomForest (i)–(l). The solid lines represent the average
over 100 runs, and the shaded areas represent the standard deviation. The black
dashed lines in (a), (e), and (i) indicates the original DP, and the black dotted
lines in (b)–(d), (f)–(h), and (j)–(l) represent the Wasserstein distance between
the uniformly random sampled dataset from D and D′.

Result Figure 3 shows the average runtime on the synthetic dataset for each method
over 10 runs for several different sizes of D. In the figure, we varied the threshold ε in the
stopping criterion (16) to several different values. The figure indicates that the runtime of
the proposed method is significantly faster than that of SBS unless we set ε too small. From
these results, we can confirm that FastSBS can resolve the scalability issue of the original
SBS. With FastSBS, one can construct a fake benchmark Z even from large D.

One may wonder whether using the larger ε for the speedup can result in early stopping
of the optimization and the quality of the estimated µ can be poor. Figure 4 shows that
this is not the case in our synthetic data experiment.8 In the figures, we can find that
FastSBS could sample the benchmark Z with sufficiently small DP as well as rejection

8. In Appendix B, we show the results on the COMPAS and Adult datasets.
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Figure 3: Runtimes of FastSBS for different choices of ε on the synthetic and Adult datasets.
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Figure 4: The effects of ε on FastSBS on the synthetic data experiments.

ratios irrespective to the choice of ε. That is, the choice of ε is not that crucial in practice:
we can enjoy the speedup without sacrificing the quality of the sampled Z.

6.3.2. The Effects of S

We compared the runtime of the proposed FastSBS with the original SBS by varying the
the number of fixed slices S in our heuristics.

Result Figure 5 shows the average runtime on the synthetic dataset for each method over
10 runs for several different sizes of D. In the figure, we varied the sampling size S in
the proposed heuristics to several different values. The figure indicates that the runtime of
FastSBS is significantly faster than that of SBS for any S.

Figure 6 assesses the quality of the sampled benchmark Z for several different choice of
S.9 In the figures, we can find that the choice of S does not have significant impacts on the
quality of Z. The choice of S is therefore not that crucial in practice and we can enjoy the
speedup without sacrificing the quality of the sampled Z.

7. Conclusion

In this study, we demonstrate that it is possible to manipulate fake benchmarks even from
large datasets. Previously, such manipulation was feasible only for small-sized datasets
due to the superquadratic complexity of Stealthily Biased Sampling (SBS). However, our
FastSBS (FastSBS) runs in Õ(N) time per iteration, making it applicable to large datasets.
This finding highlights the necessity of being aware of the potential for manipulated bench-
mark datasets regardless of their size. Our experimental results with both synthetic and

9. In Appendix B, we show the results on the COMPAS and Adult datasets.
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Figure 5: Runtimes of FastSBS for different choices of S on the synthetic and Adult
datasets. Random does not use the proposed heuristics: it uses a new random u
in every iteration of the optimization.
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Figure 6: The effects of S on FastSBS on the synthetic data experiments. Random does
not use the proposed heuristics: it uses a new random u in every iteration of the
optimization.

real-world datasets show that FastSBS is an order of magnitude faster than the original
SBS on large datasets while maintaining the quality of the sampled benchmark.
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Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications
to data science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.
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