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Figure 1: Local geometry-controllable CAD generation achieved by GeoCAD. The input comprises:
(1) an original CAD model (the left side), (2) the local part to be modified (highlighted in blue), and
(3) user-specific geometric instructions. Subsequently, GeoCAD outputs the revised CAD models
where only the target part is altered while adhering to the provided geometric instructions.

Abstract

Local geometry-controllable computer-aided design (CAD) generation aims to
modify local parts of CAD models automatically, enhancing design efficiency. It
also ensures that the shapes of newly generated local parts follow user-specific
geometric instructions (e.g., an isosceles right triangle or a rectangle with one
corner cut off). However, existing methods encounter challenges in achieving
this goal. Specifically, they either lack the ability to follow textual instructions
or are unable to focus on the local parts. To address this limitation, we introduce
GeoCAD, a user-friendly and local geometry-controllable CAD generation method.
Specifically, we first propose a complementary captioning strategy to generate
geometric instructions for local parts. This strategy involves vertex-based and
VLLM-based captioning for systematically annotating simple and complex parts,
respectively. In this way, we caption ∼221k different local parts in total. In the
training stage, given a CAD model, we randomly mask a local part. Then, using its
geometric instruction and the remaining parts as input, we prompt large language
models (LLMs) to predict the masked part. During inference, users can specify
any local part for modification while adhering to a variety of predefined geometric
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instructions. Extensive experiments demonstrate the effectiveness of GeoCAD in
generation quality, validity and text-to-CAD consistency. Code will be available at
https://github.com/Zhanwei-Z/GeoCAD.

1 Introduction

Computer-Aided Design (CAD) is pivotal in industrial design, driving innovation and efficiency across
diverse domains such as mechanical manufacturing [8, 14, 17]. In CAD tools (such as SolidWorks and
AutoCAD), the sketch-extrude-modeling (SEM) workflow [35, 45, 50, 48] is commonly employed,
enabling users to control the parametric design process effectively. During this process, users
sequentially extrude each 2D sketch into 3D shapes to construct complex solid CAD models, with
each sketch comprising one or multiple local loops. Each local loop typically represents a pattern or
geometric shape, serving as the fundamental closed-path element of a CAD model [50, 48].

In practice, any minor mistake in local parts (i.e., local loops3) of a CAD model can potentially
result in significant systemic errors. Thus, after drawing a draft CAD model, users generally need to
modify its local parts to ensure that the final CAD product meets the expected functional or aesthetic
requirements. Compared to manual modifications, if a deep-learning method can automatically
adjust the shapes of local parts according to user-defined geometric instructions 4 (e.g., an isosceles
right triangle or a rectangular shape with one corner removed), it would significantly reduce labor
costs in CAD product optimization. Moreover, such a method must retain the remaining CAD parts
unchanged while ensuring that the newly generated local parts integrate with them without conflict.
We refer to these capabilities as local geometry-controllable CAD generation.

Unfortunately, existing controllable CAD generation methods face challenges in achieving local
geometry-control. Specifically, [50, 48, 46, 23, 57] typically take partial CAD parts or attributes
(e.g., incomplete sketches, topological or geometric parameters) as input and automatically generate
new CAD models. Yet, they lack the ability to follow textual instructions, which hinders users from
expressing their requirements intuitively and conveniently. To resolve this limitation, some text-to-
CAD methods based on LLMs or transformers [41] have demonstrated meaningful progress [24, 18,
47, 55, 44, 43, 2, 61]. However, these methods are not applicable for local geometry-controllable
generation. Specifically, [24, 18, 47, 44, 43, 2] typically generate a new CAD model from scratch
based on textual instructions, making it difficult to fully focus on the required local parts. In
addition, [18, 55, 43, 44] primarily collect textual descriptions of CAD models from global 3D views
rather than local 2D views. These 3D views are generally oblique, which prevents capturing accurate
geometric attributes (such as length and angle) of local parts for training. [61] can focus on local parts
well but incorporates little geometric constraint, thereby struggling to follow geometric instructions.

In this paper, we propose GeoCAD, a user-friendly and local geometry-controllable CAD generation
method. As shown in Fig. 1, GeoCAD takes the original CAD model, the local parts (highlighted
in blue), and user-specific geometric instructions as inputs. The local parts are then generated by
GeoCAD to align with the instructions, and are combined with the remaining parts to create new
CAD models. To achieve this objective, the primary challenge is addressing the insufficiency of
training data, specifically the geometric instructions for local parts. Given that manual captioning is
prohibitively costly and labor-intensive, we introduce a complementary captioning strategy. Specifi-
cally, we categorize local parts into simple and complex groups based on their internal side types
and numbers. Simple parts correspond to common geometric shapes (e.g., triangles with three lines,
quadrilaterals with four lines), while complex parts typically represent more intricate visual patterns.
For complex parts, we render them as 2D images and then employ advanced vision large language
models (VLLMs) [1, 4] to derive descriptive captions. However, for simple parts, VLLMs fail to
achieve accurate fine-grained captioning. For example, VLLMs do not reliably distinguish whether a
quadrilateral is a rhombus based solely on an image. To overcome this limitation, we introduce a
vertex-based captioning method for simple parts. This involves extracting vertex coordinates from
the original CAD model and then analyzing geometric attributes for accurate classification. For
instance, if a quadrilateral has four lines of equal length, it is a rhombus; if it contains right angles,
it is further categorized as a square. Utilizing the complementary strategy, we have successfully
captioned approximately 221k different local parts, comprising 116k complex parts and 105k simple

3In the following, local parts refer to local loops, the finest-grained closed-path elements of a sketch.
4In this paper, geometric instructions denote textual captions of loop shapes.
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parts. Inspired by the success of LLMs in text-to-CAD generation [47, 2, 55, 44, 43, 61], during
training, given a CAD model, we randomly mask a local part and prompt LLMs to predict this part
using the corresponding geometric instruction and the remaining visible parts as inputs. Once trained,
in real-world applications, users can mask any local part for modification based on various geometric
instructions. The new local parts generated by GeoCAD are then integrated with the remaining parts
of the original CAD model to form new CAD models. Overall, our contributions are:

• We propose GeoCAD, a local geometry-controllable CAD generation method, enabling
users to express design intent for specific parts through geometric instructions.

• To the best of our knowledge, GeoCAD is the first to achieve local geometry-control in the
CAD generation field. To achieve this, we propose a complementary captioning pipeline to
annotate ∼221k distinct local parts for the following two-stage LLM fine-tuning.

• Extensive experiments demonstrate that GeoCAD significantly enhances generation quality,
validity, and text-to-CAD consistency in local geometry-controllable CAD generation.

2 Related Work

CAD Model Generation. Existing CAD generation methods can be categorized into three types:
constructive solid geometry (CSG), boundary representation (B-rep) and sketch-and-extrude modeling
(SEM). CSG constructs CAD models by combining primitives (e.g., cubes or spheres) into a tree [21,
6, 53, 34]. B-rep denotes CAD models as interconnected faces, edges, and vertices [3, 7, 49, 37].
Compared to CSG and B-rep, SEM-based methods [45, 50, 48, 17, 31, 55, 43, 44, 23, 61, 57, 5] are
consistent with prevailing CAD tools, allowing users to sequentially extrude sketches into 3D shapes,
with each sketch comprising one or multiple loops. Notably, within a sketch, any loop nested inside
another loop serves as a hole. Recently, SEM-based controllable CAD generation has garnered a lot
of attention due to its potential to revolutionize the design process [50, 48, 46, 23, 57]. Specifically,
these methods allow for some level of control over the parts or attributes of the original CAD models.
Among them, [50, 46, 23, 57] achieve sketch-level control, while [48] offers finer-grained control
over local loops. Despite these capabilities, these methods struggle to follow textual instructions,
limiting users from conveying their design intent in an intuitive and convenient manner.

On the other hand, current text-to-CAD methods that have demonstrated meaningful progress [24,
18, 47, 55, 44, 43, 2]. Notably, [24, 18, 47, 44, 43, 2] typically generate a new CAD model from the
ground up based on textual instructions, which limits their ability to precisely target or refine specific
local parts as per user specifications. Moreover, [18, 55, 43] primarily gather textual descriptions
from global 3D perspectives rather than localized 2D views. These 3D perspectives are typically
captured in oblique orientations, which limits their ability to precisely quantify critical geometric
attributes (e.g., length and angle) of local parts during the training process. [61] can effectively
concentrate on the generation of local parts but fails to follow geometric instructions. To sum up,
current studies lack the ability to achieve local geometry-controllable generation.

Large Language Models (LLMs). Compared to traditional deep-learning based models [62, 60, 9,
12, 36, 25], LLMs have recently demonstrated a remarkable ability to follow textual instructions [40,
1, 54, 51, 28, 10, 29]. Leveraging this capability, LLMs have shown notable versatility and efficacy
across diverse applications [58, 22, 52, 13, 59, 38]. Users can employ various textual instructions to
direct LLMs in accomplishing diverse tasks like code generation [15, 11] and question answering [39,
20]. As a branch, vision large language models (VLLMs) have also achieved significant success in
vision domains [27, 56, 26]. More recently, both LLMs and VLLMs have shown promise in CAD
generation [47, 2, 55, 44, 43, 61]. Specifically, [47, 55, 43, 44, 61] primarily rely on VLLMs for CAD
caption synthesis or fine-tune LLMs or transformers [41] to generate CAD models from scratch. On
the other hand, [2] employs a training-free manner to generate CAD codes via informative prompts.
As mentioned above, these methods either cannot effectively focus on local generation or struggle to
follow geometric instructions accurately. Distinguished from them, our GeoCAD excels in local part
generation while precisely adhering to geometric instructions.

3 Methodology

In this section, we present GeoCAD, a user-friendly and local geometry-controllable CAD generation
method. As shown in Fig. 1, GeoCAD incorporates three inputs: (1) an original CAD model,
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Figure 2: The complementary captioning strategy. (a) Vertex-based captioning for simple local parts.
Vertex coordinates are initially extracted, followed by geometric analysis to enable precise captions.
(b) VLLM-based captioning for complex local parts. We first convert complex parts into 2D images
and subsequently employ powerful VLLMs to produce descriptive captions.

represented in a hierarchically textual format proposed by FlexCAD [61], (2) the local part designated
for modification, and (3) geometric instructions specified by the user. GeoCAD then generates
new CAD models, altering only the designated local part while closely adhering to the provided
instructions. To achieve this, we first propose a complementary captioning strategy to generate ∼221k
geometric instructions for local parts (Sec. 3.1). Building on these instructions, we then formulate a
two-stage training pipeline to fine-tune LLMs for local CAD generation (Sec. 3.2).

3.1 Complementary Captioning for Local Parts

The main challenge in achieving local geometry-control is tackling the lack of training data, par-
ticularly concerning geometric instructions for local parts within 3D CAD models. Since manual
captioning is excessively expensive and labor-intensive, we propose a complementary captioning
strategy. In the beginning, we collect local parts (i.e., local loops) from the CAD models within
the DeepCAD dataset [45], filtering out duplicates and discarding invalid ones (i.e., those that are
not closed loops or involve intersecting line segments). Subsequently, we adopt the textual format
introduced in FlexCAD [61] to represent CAD models and their local parts, where each local part
is denoted as a contiguous string comprising the side type and vertex coordinates, as illustrated in
Fig. 2. These local parts are then categorized into simple and complex groups based on their internal
side numbers and types. Specifically, as shown in the lower part of Fig. 2(a), simple parts represent
common geometric shapes (e.g., triangles with three lines, quadrilaterals with four lines, sectors with
two lines and an arc), making up roughly 50% of the entire set of local parts, while complex parts
typically exhibit more intricate visual patterns as shown in the lower part of Fig. 2(b).

As shown in the upper part of Fig. 2(b), for complex parts, we transform them into 2D images
and then leverage powerful VLLMs [1, 4] to obtain their geometric instructions (see the detailed
prompts to guide VLLMs in the appendix). However, VLLMs exhibit limitations in fine-grained
geometric descriptions for simple parts. For instance, they struggle to reliably discern whether a
quadrilateral is a rhombus according to an image alone. To address this problem, we propose a
vertex-based captioning method for simple parts. As shown in the upper part of Fig. 2(a), we first
extract vertex coordinates from the original CAD text representation and then analyze geometric
properties to precisely categorize these parts. For instance, given a quadrilateral, we can calculate its
side lengths and inter-side angles based on its vertex coordinates. If it has four lines of equal length,
it is a rhombus; if it includes right angles, it is further categorized as a square. Moreover, for partial
simple parts, we also incorporate key dimensional parameters into the captions (such as the radius
length of a circle and the side length of a square). In total, we annotate nearly 221k distinct local
parts, consisting of 116k complex parts and 105k simple parts.

3.2 Fine-tuning LLMs with Geometric Instruction

With the geometric instructions derived in Sec. 3.1, we fine-tune LLMs to achieve local geometry-
controllable CAD generation. The training procedure comprises two stages:
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Instruction: Generate a string that denotes a right trapezoid.

Answer (1): line,31,31 <curve_end> line,31,39 <curve_end> line,39,39 <curve_end> line,47,31 <curve_end> <loop_end>

Answer (2): line,41,37 <curve_end> line,41,45 <curve_end> line,49,45 <curve_end> line,57,37 <curve_end> <loop_end>

Answer (3): line,31,31 <curve_end> line,31,43 <curve_end> line,43,43 <curve_end> line,55,31 <curve_end> <loop_end>

Answer (4): line,31,31 <curve_end> line,39,31 <curve_end> line,39,23 <curve_end> line,31,15 <curve_end> <loop_end>

Answer (5): line,31,31 <curve_end> line,31,39 <curve_end> line,23,39 <curve_end> line,15,31 <curve_end> <loop_end>
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Figure 3: The prompt template used in stage 1. Local parts are first augmented through translation,
scaling, rotation, and reflection. Subsequently, we construct the corresponding prompt that incorpo-
rates the geometric instruction, and ask LLMs to predict both the initial and augmented parts.

Instruction: Below is a partial description of a CAD sequence where one command has been replaced with the 

string "[loop mask]":

line,26,31 <curve_end> line,31,18 <curve_end> line,36,31 <curve_end> line,31,44 <curve_end> <loop_end> 

<face_end> <sketch_end> add,31,39,31,31,31,1,0,0,0,1,0,0,0,1,37,24,28 <extrusion_end> [loop mask]  

<face_end> <sketch_end> cut,31,39,31,31,31,1,0,0,0,1,0,0,0,1,37,24,28 <extrusion_end>

Generate a string that could replace "[loop mask]" in the CAD sequence. Notably, the string denotes a semicircle. 

Answer: arc,35,31,31,27 <curve_end> line,27,31 <curve_end> <loop_end>
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Figure 4: The prompt template used in stage 2. Given a local part (highlighted in blue) in a CAD
model, we formulate the prompt that integrates the geometric instruction (highlighted in green) and
the remaining parts of the CAD model, and require LLMs to predict this local part.

Stage 1: Pre-training for CAD-text Alignment (Optional). As mentioned in Sec. 3.1, we
follow [61] to represent local parts using their internal side types and vertex coordinates. Since such
CAD-specific geometric representation is typically absent from the pretraining corpus of LLMs, this
stage focuses on aligning the representation of local parts with textual geometric instructions, thereby
further enhancing the LLMs’ understanding of the CAD-specific representation. Specifically, as
illustrated in Fig. 3, for each local part, we apply random data augmentation via translation, scaling,
rotation, and reflection. Notably, the geometric instructions of augmented samples remain unchanged
due to the geometric consistency (e.g., the geometric instructions of the augmented samples in Fig. 3
are all right trapezoids). Subsequently, for the initial and augmented samples, their corresponding
instructions and answers are all employed to fine-tune LLMs.

Stage 2: Instruction Fine-Tuning for Local Geometry-Control. In practice, when modifying a
specific part of a CAD model, it is crucial to retain the other parts of the CAD model unchanged.
Additionally, the newly generated part should integrate with them without any conflicts. To this end,
inspired by FlexCAD [61], at each epoch, for a given CAD model, we randomly mask a local part
and design geometric instructions. These instructions are employed to prompt LLMs to predict this
masked part autoregressively. However, FlexCAD’s training process has one critical limitation: its
prompts lack geometric constraints during training. Consequently, once trained, FlexCAD struggles
to follow geometric instructions. In light of this, as shown in Fig. 4, our prompts incorporate the
geometric instructions as constraints when fine-tuning LLMs to generate predictions. As shown in
Fig. 5, during stages 1 and 2, the cross-entropy (CE) loss between the predicted tokens and the answer

F
in

e-
tu

n
ed

 L
L

M

(a) The Training Process

Pretrained LLM LoRA+

Infilling&Rendering

... ...

Prompt Design

Instruction Tokens Answer Tokens

C
E

 L
o
ss

Instruction+Answer

 {GI}=

...
Training set

(In text format)

...
Training set

(In text format)

...
Random Loop

Masking

...
Random Loop

Masking

...
Predicted Tokens

...
Ignored Tokens

...
Predicted Tokens

...
Ignored Tokens

...
Test set

(In text format)

...
User-defined 

Loop MaskingP
ro

m
p
t 

D
es

ig
n

Instruction

Below is a partial .... Notably, 

the string denotes {GI}.  
Instruction

Below is a partial .... Notably, 

the string denotes {GI}.  

a square

a rounded rectangle

an annular sector

...

Predicted Tokens

(b) The Inference Process

a square a rounded rectangle an annular sector

...

Figure 5: The overall framework of GeoCAD. (a) Training process. Given a CAD model, we
randomly mask a local loop within it. During stages 1 and 2, we design the corresponding prompts
(as introduced in Fig. 3 and Fig. 4), and fine-tune LLMs. (b) Inference process. Users can optionally
mask any local part for modification, driven by various geometric instructions (GI). The mask part is
then infilled with the predicted local parts to construct new CAD models.
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tokens is back-propagated to update the trainable parameters of LLMs. Furthermore, we follow
FelxCAD [61] to fine-tune the LLM using LoRA [16], which enables partial parameters training
while freezing most parameter weights. This strategy allows us to retain the advantages of large-scale
pre-trained models while accelerating convergence during optimization.

Inference. In practical applications, users can selectively mask any local part for modification, guided
by various geometric instructions (e.g., a square, a rounded rectangle, or an annular sector). The
mask part is then replaced with the predicted local parts, which are seamlessly integrated with the
remaining parts of the original CAD model to form new CAD models, as shown in Fig. 5(b).

4 Experiments

4.1 Experimental Setup

Datasets. To maintain consistency with prior research [61], we evaluate our GeoCAD on DeepCAD
[45], a large-scale 3D sketch-extrude-modeling CAD dataset. This dataset contains 178,238 sketch-
extrusion sequences, which are randomly partitioned into training, validation, and test subsets
at a 90%-5%-5% ratio. Following established preprocessing protocols from SkexGen [50], we
first eliminate duplicate and invalid sequences to ensure data quality. Subsequently, we follow
FlexCAD [61] to convert the remaining CAD sequences into concise textual representations, which
can be easily fed into LLMs. Within this dataset, we systematically collect and caption approximately
221k distinct local parts, including 116k complex parts and 105k simple parts.

Implementation Details. To ensure a fair comparison with FlexCAD [61], we adopt Llama-3-8B
[32] as the base LLM, which achieves competitive performance among open-source LLMs. We
use the same LoRA [16] setting as used in [61], with a rank of 8 and an alpha of 32. In stage 1,
we implement translation, scaling, rotation, and reflection for simple parts, while applying only
translation and scaling to complex parts to avoid semantic inconsistencies in captions. The model is
trained on 8 A100 GPUs using AdamW [30], with a batch size of 32, a cosine annealing learning rate
initialized at 5× 10−4, and trained for 10 and 30 epochs across stage 1 and stage 2. During inference,
we set the temperature τ and Top-p at 0.9 and 0.9 to balance quality and validity in local generation.

Metrics. As this work pioneers local geometry-controllable CAD generation, we propose a compre-
hensive evaluation benchmark based on three key aspects:
1) Generation quality. We adopt metrics from prior work [50, 48, 61]. Specifically, Coverage (COV)
measures the diversity of generated shapes and helps identify whether the model suffers from mode
collapse. Minimum Matching Distance (MMD) reports the average minimum distance between real
data and the generated set. Jensen-Shannon Divergence (JSD) quantifies the similarity between the
distributions of real and generated samples. Together, these metrics measure generation quality on
generated CAD models with respect to the test set.
2) Validity. Predicted local parts must form closed loops and must not contain intersecting line
segments. In addition, these parts should seamlessly integrate with the existing parts to enable
successful rendering into valid 3D shapes, rather than invalid or empty outputs. Following [61], we
use Prediction Validity (PV) to quantify the overall validity rate of the generated predictions.
3) Text-to-CAD consistency. The generated 2D local parts should be consistent with user-defined
geometric instructions. To measure this, we propose a vertex-based score (Ver-score) for assessing
simple parts, and a VLLM-based score (VLLM-score) to evaluate complex parts. Finally, Realism
denotes the human evaluation score, manually assessing whether the generated 3D CAD models fully
satisfy user requirements for local geometry-control. See details of these metrics in the appendix.

4.2 Performance Comparision with Existing Methods

Baselines. As discussed above, most controllable CAD generation methods are not applicable to
the local geometry-control task. Thus, we compare our GeoCAD with OpenAI-o3 [33], one of the
most powerful closed-source LLMs, and FlexCAD [61], a state-of-the-art baseline for local CAD
generation by fine-tuning LLMs. Without fine-tuning, the output format of the vanilla OpenAI-o3
model does not conform to the textual representation defined in [61], making it unable to directly
generate local parts. To address this, we improve the performance of OpenAI-o3 with a few-shot
learning strategy. Moreover, we manually enhance FlexCAD’s performance when generating simple
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Table 1: Performance comparison on the DeepCAD test set. Five-shot denotes that each prompt
includes five exemplars selected from the training set that are either identical or semantically similar
to the target instruction. Exemplars used in OpenAI-o3 consist of instructions and answers, following
the format shown in Fig. 4. Best performances are in bold, and the second-bests are marked by *.

Model COV↑ MMD↓ JSD↓ PV↑ Ver-score↑ VLLM-score↑ Realism↑
OpenAI-o3 (five-shot) 53.6% 1.64 1.49 65.7% 33.6% 22.1% 18.7%
FlexCAD 58.3% 1.40 1.58 86.7% 19.8% 6.93% 13.6%
FlexCAD (five-shot) 59.4% 1.37 1.34 88.1% 43.5% 26.8% 20.2%
GeoCAD 64.9%* 1.13 0.98* 90.5%* 76.4%* 65.7%* 40.9%*
GeoCAD (five-shot) 66.0% *1.16 0.80 92.3% 82.2% 68.2% 43.6%
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Figure 6: Qualitative comparison results for three methods. On the left, we show the original CAD
models (in textual format), with the local parts to be modified (highlighted in blue, the same below).
On the right, the upper section presents the user-defined geometric instructions, and the lower section
displays the corresponding newly generated CAD models. Both FlexCAD and OpenAI-o3 are
enhanced using five-shot learning. Red boxes indicate frequently occurring shapes in the training
set (e.g., circles or rectangles) that do not conform to the given geometric instructions. Green boxes
highlight local parts that are poorly integrated with the remaining parts of the original CAD models.

parts by adjusting the internal curve types and numbers. For example, when aiming to generate an
isosceles trapezoid, we try our best to guide FlexCAD to produce a loop composed of four lines.

Quantitative Results. We randomly sampled 1k CAD models from the test set. For each CAD
model, a local part was randomly masked, and each method was prompted to generate 10 new
parts using 5 simple and 5 complex geometric instructions. Here, simple and complex instructions
correspond to the generation of simple and complex local parts, respectively. After infilling, this
process yielded a total of 10k generated CAD models per method. To compute the COV, MMD, and
JSD metrics, which rely on a subset of ground-truth samples, we randomly selected 3k CAD models
from the test set and calculated the average results over three separate runs. As presented in Table 1,
OpenAI-o3 delivers subpar performance without fine-tuning, even when supported by five-shot
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Figure 8: GeoCAD is capable of precisely controlling the key dimensional parameters. The right side
displays the newly generated CAD models and the corresponding geometric instructions.

learning. In comparison, our proposed GeoCAD achieves superior results over the state-of-the-art
baseline, FlexCAD, particularly in terms of Ver-score, VLLM-score, and Realism, with significant
improvements of up to 38.7%, 41.4%, and 23.4%, respectively. This is mainly because FlexCAD
lacks the ability to align with geometric instructions during the generation of local parts. On the other
hand, the few-shot learning ability of LLMs leads to performance improvements for both FlexCAD
and our GeoCAD. Overall, the results demonstrate the clear advantage of our GeoCAD in generation
quality, validity, and text-to-CAD consistency.

Qualitative Results. To intuitively demonstrate performance, we randomly selected six CAD
models from the test set. As shown in Fig. 6, the results clearly highlight that our GeoCAD
significantly improves controllability and text-to-CAD consistency compared to existing baseline
methods. In particular, GeoCAD is able to modify local parts in a way that closely adheres to
user-defined geometric instructions. In contrast, FlexCAD struggles to comply with such instructions
and frequently generates overly common shapes, such as circles or rectangles (see green boxes in
Fig. 6). Moreover, as shown in the red boxes in Fig. 6, both OpenAI-o3 and FlexCAD often produce
local parts that fail to align properly with the remaining parts of the original CAD models, resulting
in outputs that are functionally or aesthetically implausible. These visualizations further validate the
superior local controllability and effectiveness of our proposed GeoCAD.

Furthermore, we provide additional qualitative results generated by GeoCAD. As illustrated in Fig. 7,
given a CAD model, GeoCAD is capable of effectively modifying any target loop within it to form
simple or complex patterns. Moreover, for certain simple parts, we incorporate specific dimensional
constraints into the instructions, such as the radius of a circle, the side length of a square, and the
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Figure 9: Generalization ability of GeoCAD. On the right, each row contains two groups, with each
group comprising three examples generated based on semantically similar instructions.

Table 2: Effectiveness analysis of the complementary captioning strategy and pre-training.
Only Vertex-based Captioning and Only VLLM-based Captioning indicate that local parts are
described using only vertex-based or VLLM-based captioning, respectively. w/o stage 1 means that
stage 1 is skipped, i.e., no pre-training is conducted for aligning CAD data with textual descriptions.
w/o data augmentation represents that only the original samples are used during pre-training, with-
out any augmented data. Best performances are in bold.

Model COV↑ MMD↓ JSD↓ PV↑ Ver-score↑ VLLM-score↑
Only Vertex-based Captioning 63.6% 1.18 1.02 89.5% 78.3% -
Only VLLM-based Captioning 61.8% 1.26 1.05 89.1% - 64.2%

w/o stage 1 61.3% 1.21 1.16 89.6% 71.5% 60.4%
w/o data augmentation 62.9% 1.18 1.09 88.5% 73.2% 61.8%

Ours 64.9% 1.13 0.98 90.5% 76.4% 65.7%

length and width of a rectangle. As shown in Fig. 8, GeoCAD not only accurately generates the
desired shapes but also adheres closely to the specified dimensional parameters. On the other hand, as
shown in Fig. 9, GeoCAD demonstrates robust generalization capabilities in accurately understanding
and executing semantically similar instructions, even when some of these instructions (e.g., a narrow,
rounded-end rectangle and a right-angled triangle) never appeared in the training data.

4.3 Ablation Studies

We conduct a series of ablation studies under the same experimental settings described in Table 2.

Effectiveness of the complementary captioning strategy. As shown in Table 2, using only vertex-
based or VLLM-based captioning fails to generate complex parts (e.g., a letter V) or simple parts
(e.g., a trapezoid), thereby failing to obtain the corresponding Ver-score and VLLM-score. In contrast,
the complementary captioning integrating both of them leads to improved performance.

Effectiveness of Pre-training. As depicted in Table 2, omitting stage 1 results in the poorest perfor-
mance, demonstrating that pre-training is essential for achieving preliminary text-CAD alignment.
Additionally, excluding data augmentation during pre-training leads to a performance decline, indi-
cating that diverse augmented samples enhance GeoCAD ’s alignment capability. Together, these
findings confirm the effectiveness of the pre-training process.

5 Conclusion

In this paper, we introduce a local geometry-controllable CAD generation method, GeoCAD, enabling
users to specify design intent for specific parts through geometric instructions. To the best of our
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knowledge, GeoCAD is the first to achieve local geometry-control in the CAD generation field. To
accomplish this, GeoCAD introduces both vertex-based and VLLM-based captioning pipelines and
employs a two-stage training strategy for LLM fine-tuning. Extensive qualitative and quantitative
evaluations demonstrate that GeoCAD substantially improves generation quality, validity, and text-to-
CAD consistency in local geometry-controllable CAD generation.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose all the information needed to reproduce the main experimen-
tal results of the paper in Sec. 4.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our code and data are provided in the supplemental material, with sufficient
instructions to faithfully reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our paper specifies all the training and test details in Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report consistent performance across multiple runs and use fixed random
seed settings to support the statistical significance of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: For each experiment, the paper provides sufficient information on the computer
resources in Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets, including code, data, and models, are properly cited in
the paper, and their licenses and usage terms are respected in accordance with the original
sources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the code and data with accompanying documentation to ensure
usability and reproducibility in an anonymous manner.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: For crowdsourcing experiments, the paper includes the full text of instructions
given to participants. Workers are paid more than the minimum wage in the country of the
data collector.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: There are no potential risks associated with the crowdsourcing experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the usage of LLMs in Sec. 4.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


Appendix
Due to space limitations in the main paper, we provide additional results and discussions in this
appendix, organized as follows:

• Sec. A: More Details about VLLM-based Captioning.
• Sec. B: Detailed Comparison with Existing Work.
• Sec. C: Detailed Categories of Simple Parts and Complex Parts.
• Sec. D: Details about Metrics for Evaluating Text-to-CAD consistency.
• Sec. E: LLMs of Different Scales.
• Sec. F: Sensitivity Analysis of Key Hyper-parameters in Sampling.
• Sec. G: Criteria for Dataset Selection.
• Sec. H: Sketch-level Editing.
• Sec. I: Failure Cases, Limitations and Future Work.
• Sec. J: Five-shot Prompt Example.
• Sec. K: Additional Qualitative Results.

A More Details about VLLM-based Captioning

The prompt used for VLLM-based captioning is as follows:

"Given a loop in a CAD sketch, provide a brief description of its geometric
shape starting with ‘a’ or ‘an’ if identifiable; otherwise, state ‘None’."

Using this prompt, we randomly caption 1k complex local parts with GPT-4o [1] and Qwen2.5-VL-
72B-Instruct [4], respectively. Regardless of whether these models output a specific shape or ’None’,
we manually evaluate each result by judging its correctness as either "Yes" or "No". The overall
captioning accuracy across these 1,000 parts is 91.3% for Qwen2.5-VL-72B-Instruct and 86.5% for
GPT-4o. These results indicate that Qwen2.5-VL-72B-Instruct outperforms GPT-4o in this captioning
task, which is consistent with with the latest multimodal model leaderboard rankings. Furthermore,
given the lower cost of Qwen2.5-VL-72B-Instruct, we use it to caption the remaining complex parts.

B Detailed Comparison with Existing Work

As mentioned in lines 36-48 in our main paper, existing work struggles to achieve local geometry-
controllable CAD generation. Here, we further highlight the differences between CAD-Editor [55],
FlexCAD [61] and our GeoCAD. CAD-Editor has difficulty focusing on local generation for two
main reasons: 1) It may unintentionally modify the remaining parts, resulting in outputs that do not
align with user requirements (as illustrated in the last example of Fig. 1 in the original CAD-Editor
paper). 2) CAD-Editor fails to accurately obtain angle and length information, making it incapable of
generating even simple parts, such as a right triangle, let alone an isosceles right triangle, as mentioned
in line 45 of our main paper. FlexCAD, on the other hand, can focus on local parts but incorporates
minimal geometric constraints, thereby struggling to follow geometric instructions. In particular,
FlexCAD is unable to understand, let alone follow, simple or complex geometric instructions. This
limitation is clearly demonstrated in Fig. 1 of our main paper.

C Detailed Categories of Simple Parts and Complex Parts

The categories of simple parts include acute triangle, right triangle, obtuse triangle, isosceles triangle,
isosceles right triangle (Notably, equilateral triangles do not occur in the DeepCAD [45] dataset),
quadrilateral, trapezoid, isosceles trapezoid, kite (Two pairs of adjacent sides equal), parallelogram,
rectangle, rhombus, square, circle, semicircle, quarter-circle, three-quarter circle, major-arc loop
(defined as containing an arc longer than a semicircle), minor-arc loop (defined as containing an arc
shorter than a semicircle), and so on. The remaining local parts are classified as complex, exhibiting
more intricate and diverse visual patterns.
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Table 3: Ablation studies on fine-tuning LLMs with different scales. Llama-3-8B is the model used
in our main paper to enable a fair comparison with FlexCAD [61]. Transformer-4M is a small
Transformer-based [42] language model, with a total number of trainable parameters comparable to
that of our model in the main paper when using LoRA. Llama-3-8B-Full denotes full-parameter fine-
tuning. Llama-3-8B, Qwen2.5-3B-Instruct, and Qwen2.5-7B-Instruct are all fine-tuned using
LoRA. The best results are shown in bold, and the second-best results are marked with ∗.

Model COV↑ MMD↓ JSD↓ PV↑ Ver-score↑ VLLM-score↑
Transformer-4M 59.1% 1.32 1.26 85.5% 69.3% 51.2%
Llama-3-8B-Full 67.5%* 1.02* 1.06 89.7% 78.9%* 64.2%

Llama-3-8B 64.9% 1.13 0.98* 90.5% 76.4% 65.7%*
Qwen2.5-3B-Instruct 65.8% 1.01 1.10 87.4% 74.2% 64.9%
Qwen2.5-7B-Instruct 68.7% 1.05 0.86 90.1%* 79.8% 70.2%

D Details about Metrics for Evaluating Text-to-CAD consistency

As mentioned in lines 213–217 of our main paper, we employ Ver-score, VLLM-score, and Realism
to comprehensively evaluate model performance in terms of text-to-CAD consistency. Specifically,
to compute Ver-score, we extract vertex coordinates from the generated local parts and analyze
their geometric attributes to determine whether they align with the given geometric instructions. To
obtain VLLM-score, we first render the local parts into images and then prompt two of the most
powerful VLLMs, GPT-4o [1] and Qwen2.5-VL-72B-Instruct [4], to judge whether the rendered
images match the corresponding instructions, assigning a binary label: "Yes" or "No." We report the
average of their scores in Table 1 of our main paper, where both models significantly outperform the
baselines. To evaluate Realism, we randomly render 500 newly generated CAD models into images,
with the modified local parts clearly marked. Five crowd workers are then asked to assess whether
the generated local parts align with the geometric instructions and do not conflict with the remaining
parts. If both criteria are satisfied, they assign a binary label: "Yes"; otherwise, "No." The average
score from these workers is reported in Table 1 of our main paper.

E LLMs of Different Scales

As shown in Table 3, Transformer-4M achieves the lowest performance, confirming that LLMs
play a key role in enhancing local CAD generation. Llama-3-8B-Full performs comparably to
Llama-3-8B, demonstrating the effectiveness of the LoRA strategy [16]. As two of the most popular
open-source LLMs, Qwen2.5-7B-Instruct slightly outperforms Llama-3-8B.

F Sensitivity Analysis of Key Hyper-parameters in Sampling

Table 4: Effectiveness analysis of key hyper-parameters, including the sampling temperature τ and
Top-p. Best performances are in bold and the second-bests are marked by *.

Model COV↑ MMD↓ JSD↓ PV↑ Ver-score↑ VLLM-score↑
τ = 0.7 63.4% 1.18 1.03 91.2% 75.9% 63.2%
τ = 0.9 64.9%* 1.13 0.98* 90.5%* 76.4%* 65.7%
τ = 1.1 65.6% 1.16* 0.95 89.1% 77.5% 65.1%*

Top-p = 0.8 64.1% 1.21 1.09 91.0% 75.3% 64.4%
Top-p = 0.9 64.9%* 1.13 0.98* 90.5%* 76.4%* 65.7%*
Top-p = 1.0 65.2% 1.18* 0.92 88.3% 76.9% 66.8%

As shown in Table 4, we conduct a sensitivity analysis on key hyperparameters, including the sampling
temperature τ and Top-p. All other experimental settings follow those described in Section 4.2 of
our main paper. In general, increasing τ or Top-p results in more diverse and stochastic predictions.
However, this comes at the cost of reduced PV, while other metrics tend to improve, consistent with
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findings in [61]. In our experiments, we balance this trade-off by selecting τ and Top-p values that
ensure the PV remains above 90%.

G Criteria for Dataset Selection

DeepCAD [45] is a suitable dataset for evaluation, and the reasons are detailed below: 1) Scale: Deep-
CAD is a large-scale 3D CAD dataset, comprising over 178k samples. 2) Relevance to Controllability:
Compared to 2D sketch datasets, DeepCAD better reflects the requirements of controllable generation,
as aligning local parts within 3D CAD models is both more challenging and more practical. 3) Design
Process Alignment: In contrast to other 3D CAD datasets, such as the ABC dataset [19], DeepCAD in-
cludes sketch-and-extrusion sequences that closely mirror the design workflows of commercial CAD
tools like SolidWorks and AutoCAD. 4) Community Adoption: Due to its characteristics, DeepCAD
is also the only choice for prior studies, including SkexGen [50], HNC-CAD [48], CAD-Editor [55],
CADFusion [44], Text2CAD [18], and FlexCAD [61].

reflectiona rectangle

symmetry axis symmetry axis

Figure A1: An example of sketch-level editing.

H Sketch-level Editing

For sketch-level editing, if a sketch contains multiple loops, ideally, we would like to learn the
inter-loop constraints (e.g., symmetry, patterns, etc.) that define the overall structure. However, as
mentioned above, DeepCAD is currently the only dataset suitable for controllable 3D CAD generation,
and unfortunately, such inter-loop constraint annotations are not provided in the dataset. Fortunately,
even without supervision from these constraints, sketch-level editing is still achievable based on our
loop-level editing capability. This is because the loop serves as the fundamental element of a sketch.
For example, as shown in Fig. A1, if a user selects a sketch consisting of two symmetric loops and
wishes to replace them with another pair of symmetric loops, the following automatic process can
be performed: 1) Estimate the center point of each original loop by averaging its coordinate points,
which are extracted using string matching. 2) Determine the symmetry axis based on the two center
points. 3) Generate a new local loop through GeoCAD replacing one of the orignal loops. 4) Reflect
the newly generated loop across the symmetry axis to produce the second symmetric loop, thereby
replacing both original loops.

I Failure Cases, Limitations and Future Work

an irregular shape with two 
large, rounded lobes connected 

by a narrow isthmus

an irregular polygon 
resembling a six-pointed 
star with extended arms

a semicircle connected to a 
rectangle below it  a quarter-circle an isosceles trapezoid a semicircle connected to a 

rectangle below it

Figure A2: Failure cases. The generated local parts align well with the user’s geometric instructions
but do not integrate smoothly with the remaining parts of the original CAD model.

Failure cases. Despite notable advancements, our GeoCAD sometimes results in failure cases. As
shown in Fig. A2, given a CAD model, when only the special part is modified (i.e., the part upon
which the remaining parts are constructed and strictly aligned in size), the unchanged remaining parts
may lead to structural conflicts with it. To mitigate this issue, when modifying the special parts, users
should provide geometric instructions that account for the constraints imposed by the remaining parts,
since the DeepCAD dataset does not annotate the relationships between different parts.

Limitations and future work. In this paper, we fine-tune LLMs to enable local geometry-controllable
CAD generation, primarily guided by textual instructions. However, in practice, certain complex local
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parts may be difficult or even impossible to describe using text alone. Thus, in the future, if users can
complement textual inputs with hand-drawn images for local geometry-controllable CAD generation,
they may be able to convey their design intent more effectively. Given the strong capabilities of
VLLMs in both CAD generation and text understanding, our future work aims to develop a more
advanced multimodal LLM tailored for controllable CAD generation from both text and image inputs.

J Five-shot Prompt Example

To better illustrate the implementation details of the baselines and our GeoCAD in Table 1 of our
main paper, we present a five-shot prompt example, as shown in Fig. A3.

K Additional Qualitative Results

We provide additional qualitative results in Fig. A4.
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You answer questions about controllable CAD generation. When answering user questions, please follow these examples:

Example 1

Instruction:

Below is a partial description of a CAD sequence where one command has been replaced with the string "[loop mask]":

line,0,26 <curve_end> line,1,26 <curve_end> line,1,28 <curve_end> line,0,28 <curve_end> <loop_end> <face_end> [loop mask] <face_end> 

<sketch_end> add,31,45,31,31,31,1,0,0,0,1,0,0,0,1,44,31,36 <extrusion_end>

Generate an string that could replace "[loop mask]" in the CAD sequence. Notably, the string denotes an isosceles right triangle.

Answer:

line,0,28 <curve_end> line,1,29 <curve_end> line,1,28 <curve_end> <loop_end>

Example 2

Instruction:

Below is a partial description of a CAD sequence where one command has been replaced with the string "[loop mask]":

line,42,47 <curve_end> line,43,46 <curve_end> line,43,47 <curve_end> <loop_end> <face_end> line,43,15 <curve_end> line,44,15 

<curve_end> line,44,16 <curve_end> <loop_end> <face_end> [loop mask] <face_end> <sketch_end> add,28,34,31,31,31,1,0,0,0,0,1,0,-

1,0,38,46,31 <extrusion_end>

Generate an string that could replace "[loop mask]" in the CAD sequence. Notably, the string denotes an isosceles right triangle.

Answer:

line,43,47 <curve_end> line,44,46 <curve_end> line,44,47 <curve_end> <loop_end>

Example 3

Instruction:

Below is a partial description of a CAD sequence where one command has been replaced with the string "[loop mask]":

line,14,57 <curve_end> line,16,55 <curve_end> line,16,10 <curve_end> line,21,4 <curve_end> line,47,4 <curve_end> line,48,8 <curve_end> 

line,48,8 <curve_end> line,47,5 <curve_end> line,21,5 <curve_end> line,16,10 <curve_end> line,16,55 <curve_end> line,14,58 <curve_end> 

<loop_end> <face_end> <sketch_end> add,31,63,31,31,31,1,0,0,0,0,1,0,-1,0,21,39,45 <extrusion_end> line,26,0 <curve_end> line,29,0 

<curve_end> line,36,7 <curve_end> line,36,62 <curve_end> line,36,62 <curve_end> line,36,7 <curve_end> line,29,0 <curve_end> line,26,0 

<curve_end> <loop_end> <face_end> line,26,0 <curve_end> line,29,0 <curve_end> line,36,7 <curve_end> line,36,62 <curve_end> line,26,62 

<curve_end> <loop_end> <face_end> [loop mask] <face_end> <sketch_end> cut,27,31,31,31,55,-1,0,0,0,0,1,0,1,0,16,29,17 <extrusion_end>

Generate an string that could replace "[loop mask]" in the CAD sequence. Notably, the string denotes an isosceles right triangle.

Answer:

line,29,0 <curve_end> line,36,0 <curve_end> line,36,7 <curve_end> <loop_end>

Example 4

Instruction:

Below is a partial description of a CAD sequence where one command has been replaced with the string "[loop mask]":

[loop mask] <face_end> <sketch_end> add,31,62,31,31,31,1,0,0,0,0,1,0,-1,0,36,31,44 <extrusion_end> line,5,14 <curve_end> line,5,31 

<curve_end> line,22,48 <curve_end> line,40,48 <curve_end> line,57,31 <curve_end> line,57,14 <curve_end> line,31,40 <curve_end> 

<loop_end> <face_end> <sketch_end> add,31,39,31,31,31,1,0,0,0,0,1,0,-1,0,39,31,48 <extrusion_end>

Generate an string that could replace "[loop mask]" in the CAD sequence. Notably, the string denotes an isosceles right triangle.

Answer:

line,31,17 <curve_end> line,59,17 <curve_end> line,31,45 <curve_end> <loop_end>

Example 5

Instruction:

Below is a partial description of a CAD sequence where one command has been replaced with the string "[loop mask]":

line,6,12 <curve_end> line,6,50 <curve_end> line,43,50 <curve_end> line,56,36 <curve_end> line,56,33 <curve_end> line,32,33 <curve_end> 

line,32,29 <curve_end> line,56,29 <curve_end> line,56,26 <curve_end> line,43,12 <curve_end> <loop_end> <face_end> line,43,12 

<curve_end> line,56,12 <curve_end> line,56,26 <curve_end> <loop_end> <face_end> line,43,50 <curve_end> line,56,36 <curve_end> 

line,56,50 <curve_end> <loop_end> <face_end> <sketch_end> add,31,39,31,31,31,1,0,0,0,1,0,0,0,1,44,24,34 <extrusion_end> [loop mask] 

<face_end> line,20,61 <curve_end> line,42,39 <curve_end> line,42,61 <curve_end> <loop_end> <face_end> <sketch_end> 

cut,31,57,31,31,31,1,0,0,0,1,0,0,0,1,27,45,34 <extrusion_end> line,22,1 <curve_end> line,40,1 <curve_end> line,40,61 <curve_end> line,22,61 

<curve_end> <loop_end> <face_end> <sketch_end> add,31,41,30,33,39,1,0,0,0,1,0,0,0,1,27,3,31 <extrusion_end> line,0,25 <curve_end> 

line,6,37 <curve_end> line,56,37 <curve_end> line,62,25 <curve_end> <loop_end> <face_end> <sketch_end> 

cut,5,31,11,33,44,0,1,0,0,0,1,1,0,0,19,31,34 <extrusion_end>

Generate an string that could replace "[loop mask]" in the CAD sequence. Notably, the string denotes an isosceles right triangle.

Answer:

line,20,1 <curve_end> line,42,1 <curve_end> line,42,23 <curve_end> <loop_end>

Instruction:

Below is a partial description of a CAD sequence where one command has been replaced with the string "[loop mask]":

line,4,20 <curve_end> line,22,14 <curve_end> line,47,14 <curve_end> line,58,25 <curve_end> line,47,25 <curve_end> line,22,25 <curve_end> 

line,4,25 <curve_end> <loop_end> <face_end> line,4,37 <curve_end> line,22,37 <curve_end> line,22,48 <curve_end> line,4,42 <curve_end> 

<loop_end> <face_end> line,22,37 <curve_end> line,47,37 <curve_end> line,47,48 <curve_end> line,22,48 <curve_end> <loop_end> 

<face_end> arc,47,25,51,27 <curve_end> line,53,31 <curve_end> line,58,31 <curve_end> line,58,25 <curve_end> <loop_end> <face_end> 

arc,47,37,51,35 <curve_end> line,53,31 <curve_end> line,58,31 <curve_end> line,58,37 <curve_end> <loop_end> <face_end> [loop mask] 

<face_end> <sketch_end> add,29,33,31,31,31,1,0,0,0,1,0,0,0,1,32,18,31 <extrusion_end>

Generate an string that could replace "[loop mask]" in the CAD sequence . Notably, the string denotes an isosceles right triangle.

Answer:

Figure A3: A five-shot prompt example used in Table 1 of our main paper.
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a quarter circle

an ellipse with 
rectangular extensions 
at both the top and 

bottom

a rectangle missing 
one corner

a polygon that looks 
like an irregular cross 

shape

a broken ring 
shape

a shape that looks 
like a water droplet

a major-arc 
connected to a 

rectangle
a heart-shaped loop

a shape that 
looks like a 

semicircular ring

a shape formed by 
two smoothly 

connected circles
a cross-shaped loop

a semicircle 
connected to a 

rectangle below it

a quarter circle 
connected to a 

rectangle

a rounded rectangle 
with a circle at the 
top and bottom

an irregular polygon 
with a pointed tip at 

the top

a rectangle with a 
triangular notch 
at the bottom

a rectangle with a 
semicircular notch 
at the bottom

an irregular polygon
a rectangle 

connected to 
a semicircle

a rectangle with 
four pointed corners 
and four notches

a smooth cross-
shaped loop

a letter 'T'a letter 'I' a letter 'U' a letter 'L'a letter 'H' a letter 'C'

a letter 'Y'a letter 'I' a letter 'V' a letter 'X'a letter 'T' a letter 'L'

a letter 'U'a letter 'L' a letter 'V' a letter 'H'a letter 'X' a letter 'T'

a regular polygon 
with 8 sides a square a regular polygon 

with 6 sides an elongated rectangle a rectangle a rhombus

a right trapezoidan isosceles trapezoid an irregular 
quadrilateral a rhombus a square a circle

a rectangle with 
rounded corners 
and four notches

a rectangle with a 
semicircular notch 

at the top

a rectangle with 
a U-shaped notch 

at the top

Figure A4: Additional Qualitative Results.
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