
Published as a conference paper at ICLR 2023

VIEW SYNTHESIS WITH SCULPTED NEURAL POINTS

Yiming Zuo & Jia Deng
Department of Computer Science, Princeton University
{zuoym,jiadeng}@princeton.edu

ABSTRACT

We address the task of view synthesis, generating novel views of a scene given
a set of images as input. In many recent works such as NeRF (Mildenhall et al.,
2020), the scene geometry is parameterized using neural implicit representations
(i.e., MLPs). Implicit neural representations have achieved impressive visual qual-
ity but have drawbacks in computational efficiency. In this work, we propose a
new approach that performs view synthesis using point clouds. It is the first point-
based method that achieves better visual quality than NeRF while being 100×
faster in rendering speed. Our approach builds on existing works on differen-
tiable point-based rendering but introduces a novel technique we call “Sculpted
Neural Points (SNP)”, which significantly improves the robustness to errors and
holes in the reconstructed point cloud. We further propose to use view-dependent
point features based on spherical harmonics to capture non-Lambertian surfaces,
and new designs in the point-based rendering pipeline that further boost the per-
formance. Finally, we show that our system supports fine-grained scene editing.
Code is available at https://github.com/princeton-vl/SNP.

1 INTRODUCTION

We address the task of view synthesis: generating novel views of a scene given a set of images as
input. It has important applications including augmented and virtual reality. View synthesis can be
posed as the task of recovering from existing images a rendering function that maps an arbitrary
viewpoint into an image.

In many recent works, this rendering function is parameterized using neural implicit representations
of scene geometry (Mildenhall et al., 2020; Yu et al., 2021c; Park et al., 2021; Garbin et al., 2021;
Niemeyer et al., 2021). In particular, NeRF (Mildenhall et al., 2020) represents 3D geometry as a
neural network that maps a 3D coordinate to a scalar indicating occupancy. Implicit neural repre-
sentations have achieved impressive visual quality but are typically computationally inefficient. To
render a single pixel, NeRF needs to evaluate the neural network at hundreds of 3D points along the

Point Adding

MVS Network

Estimated Depths

Differentiable
Renderer

Ground-truth RGB

𝐿1 Loss

Initial Pointcloud

Reference RGB + Camera Pose

I. Point Extraction II. Point Sculpting III. Differentiable Rendering

Point Pruning

Figure 1: The overall pipeline of the Sculpted Neural Points. We first use an MVS network to extract
a point cloud. We then sculpt the point cloud by pruning (blue points) and adding (red points). The
featurized point cloud finally passes through a differentiable rendering module to produce the image.

1

https://github.com/princeton-vl/SNP

Published as a conference paper at ICLR 2023

ray, which is wasteful because most of the 3D spaces are unoccupied. NeRF’s implicit representa-
tion also makes it inflexible for scene editing operations such as deformation, which is important
for downstream applications including augmented reality and video games. Several works enable
NeRF to do scene editing (Lombardi et al., 2019; Liu et al., 2021; Yang et al., 2021a; Pumarola
et al., 2021), but either the way of editing is highly constrained, or images captured under all desired
object poses are required.

On the other hand, this limitation is easily overcome by explicit representations such as meshes
or point clouds. To rasterize a mesh or a point cloud, no computation is wasted on unoccupied
3D spaces. Scene editing operations such as composition and deformation is also straightforward.
Moreover, rasterizing meshes or point clouds is a mature technology already widely deployed in the
industry for movies and video games, capable of producing real-time performance and high realism.

An intriguing question is whether we can achieve state-of-the-art visual quality by using explicit
representations such as point clouds. The basic framework of point-based neural rendering is to
represent the scene as a featurized point cloud, which is reconstructed through a multiview stereo
(MVS) system. The features are learned by maximizing photoconsistency on the input images via
differentiable rendering. Although this framework has been studied in several recent works (Aliev
et al., 2020; Wiles et al., 2020; Lassner & Zollhofer, 2021), the overall rendering quality still lags
behind NeRF, mainly due to the ghosting effects and blurriness caused by the errors in geometry.

Our approach adopts this basic framework but introduces a novel technique we call “Sculpted Neu-
ral Points (SNP)”, which significantly improves the robustness to the errors and holes in the recon-
structed point cloud. The idea is to “sculpt” the initial point cloud reconstructed by the MVS system.
In particular, we remove existing points and add additional points to improve the photo-consistency
of the renders against input images. These sculpting decisions are discrete in nature, but are tightly
coupled with gradient-based optimization of the continuous per-point features.

We further propose a few novel designs in the point-based rendering pipeline that boost the per-
formance. We use spherical harmonics (SH) in high-dimensional point feature space to capture
non-Lambertian visual effects, which is faster and better than using MLPs. Inspired by Dropout
(Srivastava et al., 2014), we propose a point dropout layer that significantly improves the general-
ization to novel views. Last but not least, we find that it is essential to not use any normalization
layers in the U-Net.

Compared to previous works that use point cloud-based representation, ours is the first model that
achieves better rendering quality than NeRF, while being 100× faster in rendering, and reduc-
ing the training time by 66%. We evaluate our method on common benchmarks including DTU
(Jensen et al., 2014), LLFF (Mildenhall et al., 2019), NeRF-Synthetic (Mildenhall et al., 2020), and
Tanks&Temples (Knapitsch et al., 2017), and our method shows better or comparable performance
against all baselines.

Finally, we show that our model allows fine-grained scene editing in a user-friendly way. Compared
to previous works that can only do object-level composition (Lombardi et al., 2019; Yu et al., 2021b;
Yang et al., 2021b) or require a special user interface (Liu et al., 2021), our point-based representa-
tion inherently supports editing at a finer resolution, and users can use existing graphics toolbox to
edit the point cloud without any custom changes.

The main contributions of this paper are three-fold: 1) We propose a novel point-based approach to
view synthesis, “Sculpted Neural Points”, a technique that is key to achieving high quality and view-
consistent output; 2) We demonstrate, for the first time, that a point-based method can achieve better
visual quality than NeRF while being 100× faster in rendering. 3) We propose several improvements
to the point-based rendering pipeline that significantly boost the visual quality.

2 RELATED WORK

Methods for view synthesis can be categorized based on how they represent the scene geometry.

View Synthesis with Implicit Representations NeRF (Mildenhall et al., 2020) uses a neural net-
work to map a 3D spatial location to volume density. To render a pixel, the neural network needs
to be repeatedly evaluated along the ray, making rendering computationally expensive. Followup
works on NeRF (Yu et al., 2021c;b; Park et al., 2021) focus on improving the speed or the general-

2

Published as a conference paper at ICLR 2023

ization ability to new scenes or with a limited number of reference views. Our method does not use
an implicit representation; instead, we explicitly represent the scene geometry using a point cloud,
which allows much faster rendering, as well as easy and flexible scene editing.

View Synthesis with Point Clouds To use point clouds for view synthesis, existing approaches
typically use an external multiview stereo system to reconstruct a point cloud from the input images,
and then optimize the features and 3D positions of each point through differentiable rendering.
NPBG (Aliev et al., 2020) is the first work to combine neural rendering with point clouds; it uses a
featurized point cloud to represent the scene, and rasterizes with one-pixel point splats at multiple
scales followed by a post-processing U-Net to fill the holes. SynSin (Wiles et al., 2020) proposes
a soft rasterization pipeline that allows better gradient flow and produces smoother results. Our
method achieves significantly better visual quality compared to them. Pulsar (Lassner & Zollhofer,
2021) uses featurized spheres to represent the scene, and proposes a very efficient soft rasterizer
that can rasterize millions of spheres in less than 100 milliseconds. Pulsar qualitatively shows that
geometry reconstruction can be done through its differentiable rendering system, but has shown no
quantitative results on view synthesis. We adopt Pulsar as our backbone.

There are a few concurrent works using point cloud representations. NPBG++ (Rakhimov et al.,
2022) focuses on lifting the requirement of per-scene optimization. It does not revise the geometry
and is thus more sensitive to the point cloud quality compared to ours. It also proposes to use view-
dependent point features, but parameterized as MLP rather than SH as we do. ADOP (Rückert et al.,
2022) mainly focuses on unbounded outdoor scenes with large exposure changes among views.
Point-NeRF (Xu et al., 2022) uses a featurized point cloud to represent the scene geometry, but
renders with volume rendering instead of rasterization.

To revise the initial point cloud provided by an MVS system, existing differential renderers com-
pute gradients with respect to the 3D coordinates of each point. Pulsar (Lassner & Zollhofer, 2021)
approximates the gradient by modeling points as spheres with a certain radius, with the color blend-
ing weights changing smoothly with respect to the distance of the camera ray to the sphere center.
ADOP (Rückert et al., 2022) instead computes the partial derivatives of the photometric loss with
respect to the point positions by taking the finite difference in the pixel space. While Point-NeRF
(Xu et al., 2022) and our method both refine the point cloud by deleting and adding points, the dif-
ference are that: 1) their pruning is based on the volume density optimized for photo-consistency,
while our point pruning is based on multiview consistency and doesn’t require test-time training; 2)
their point growing progressively adds points near existing points, while our point adding has only
one round and can add new points in any location.

Our method builds upon existing techniques of differentiable point-based rendering but differs sub-
stantially in how we revise the initial point cloud given by an MVS system. Although we find prior
methods capable of local revision around the existing points by adjusting their locations using the
gradients, such local operations, however, cannot fill large holes or add new points in empty spaces
far away. In contrast, our sculpting technique is global. It does not use gradients and can add new
points in locations arbitrarily far away from existing points.

3 APPROACH OVERVIEW

An overview of our approach is illustrated in Fig. 1. The input is a set of H × W RGB images
{I1, . . . Im} ofm reference views and their corresponding intrinsic and extrinsic camera parameters,
{C1, . . . Cm}. We define the camera projection function Π and its inverse Π−1 as follows:

Π(P,C) := [KC (RCP + tC)]
↓
; Π−1(p, dp, C) := R−1

c

(
K−1

C dp

[
p
1

]
− tc

)
(1)

whereKC ,RC and tC are the intrinsics, rotation, and translation of cameraC. P ∈ R3 is a 3D point
and p ∈ R2 is its 2D projection in the pixel space with depth dp. Further, ([X,Y, Z]T)↓ is defined
as ([X/Z, Y/Z]T). Our approach consists of three main components: point cloud reconstruction,
point cloud sculpting, and differentiable rendering. In this section, we describe the backbone of our
approach with only point cloud reconstruction and differentiable rendering, and leave point cloud
sculpting to Sec. 4.

3

Published as a conference paper at ICLR 2023

3.1 POINT CLOUD RECONSTRUCTION

We use an MVS network (Ma et al., 2022) to extract a dense depth map {D1, . . . Dm} ∈ RH
4 ×W

4

for each of the reference views. Each depth map is un-projected into a set of 3D points by applying
the inverse projection in Eqn. 1. The points from all depth maps are combined, without any filtering,
to form a larger set of original 3D points Po = {p1, ..., pN}. We associate point pi ∈ R3 with a
learnable K-dimensional feature vector fi ∈ RK and a scalar oi ∈ [0, 1] representing its opacity.

3.2 DIFFERENTIABLE RENDERING

Given a featurized 3D point cloud and a target view, we use a differentiable rendering function with
learnable parameters to map the point cloud into an RGB image. For each scene individually, we
learn the parameters of this rendering function together with the point features through gradient
descent to minimize photometric errors against the input images.

Spherical Harmonic Point Feature We use the spherical harmonics (SH) functions to model the
view-dependent effects. Recently Yu et al. (2021b;a) brings up the attention of using SH in neural
rendering. Unlike previous works that use SH directly in RGB space, we propose to use SH in high-
dimensional feature space, where each element of a vector is modulated by a set of SH coefficients.

We use the SH basis up to degree 2, which yields 9 basis in total. This choice follows Yu et al.
(2021b) and we find it sufficient to capture highly non-Lambertian surfaces in our experiments. For
a 3D point pi, the SH layer takes its feature vector fi ∈ RK and a target view direction v as input, and
outputs a modulated feature vector si ∈ RK

9 . Specifically, we first compute the SH basis according
to v, yielding a basis vector bv ∈ R9×1. We then reshape fi into f ′i ∈ RK

9 ×9, and finally compute
si with a dot product si = f ′i · bv . Note that evaluating SH functions is cheap as it avoids complex
matrix multiplication operations. We find that it leads to better performance and faster rendering
speed compared to the MLP parameterization used in NeRF, as shown in Sec. 5.2.

Differentiable Soft Rasterization We use soft rasterization proposed in Liu et al. (2019); Lassner &
Zollhofer (2021) to convert the view-dependent features into a 2D feature map F given a target view.
Soft rasterization blends the features of multiple points hit by a camera ray with weights depending
on their depth and opacities. We refer the readers to Pulsar (Lassner & Zollhofer, 2021) for details.

Note that in addition to updating fi, we also compute the gradient of the photometric loss w.r.t. the
point positions pi and opacity oi, and optimize them through gradient descent, following Lassner &
Zollhofer (2021), which we show helpful in improving fine geometric details in our experiments.

Point Dropout Layer We find that the existing point rendering pipeline is prone to over-fitting, i.e.,
the image quality on test views is much worse than on training views. The reasons are two-fold: 1.
The “training set” for view synthesis consists of only tens of images, and there are barely any data
augmentation techniques that can be applied except random cropping. 2. Some points are covered
by their neighbors in training views, but get visible in test views. The features for these points are
not well-optimized. The blending weights are very low for these points when the rasterizer is “soft”.

To resolve the above issue, we propose to use a “Point Dropout Layer” before rasterization. In each
forward pass, we randomly select a subset of points to feed into the rasterizer, whose size depends on
the dropout rate pd. Note that at inference time, we cannot simply rasterize all points and multiply
the output by pd as in the neural network (NN) case, because the rasterization operation is non-linear
in contrast to the matrix multiplication in NN. Since it is impossible to traverse all subsets, we simply
rasterize L multiple random subsets and average the output feature maps at inference time. When
rendering videos, we find that sampling independently for each frame causes obvious flickering
artifacts. Therefore, we use the same subsets across all frames, which leads to a better consistency.

Intuitively, the point dropout layer allows us to train on an ensemble of point clouds, and give
all points a chance to get optimized even if they are covered, and thus alleviating the over-fitting
problem. As a side effect, we also gain a speed-up because fewer points get rasterized. Although
the design is simple, this idea has not been explored in previous works, and our experiments show
that it significantly improves the image quality on test views.

2-D Rendering without BatchNorm Given a target view, we convert the 2D feature map F into
the RGB image It with a 2D ConvNet. We use a U-Net (Ronneberger et al., 2015) with two

4

Published as a conference paper at ICLR 2023

(a) (b)

(c) (d) (e)

Figure 2: (a) The initial point cloud is incomplete and noisy. (b) The point cloud filtered with Yan
et al. (2020) is accurate but incomplete. (c) The output of SNP. It removes most of the outliers and the
points added (colored red) further fill the missing areas. (d) The closest training view, which shows
what the actual geometry should look like. (e) The blue curve and dashed black curve represent
the reconstructed surface and the actual surface, respectively. A set of candidates is generated along
the ray from camera B. c is discarded because it occludes the existing surface in view A, and a is
discarded because we only keep the closest M = 5 non-occluding points. Only b is added.

downsampling layers and two upsampling layers, and optionally one more upsampling layer to
produce high-resolution outputs. The intuition behind using a U-Net is that it can remove noise
in the feature map. We use a dropout layer and relatively small point radius, leaving the rasterized
feature map with tiny holes, which makes such denoising necessary. The large receptive field of
U-Net is favorable for denoising.

Previous works (Aliev et al., 2020; Rakhimov et al., 2022) directly use the original U-Net design
with BatchNorm (Ioffe & Szegedy, 2015) layers, which we find unsuitable for the view synthesis
task for two reasons. First, the small training set size makes the estimation of the moving average
in BatchNorm unstable. Second, the benefit of accelerated training is minimal since the network is
shallow. Therefore, we use no normalization layer in our U-Net.

4 POINT SCULPTING

The point clouds reconstructed from MVS usually contain many errors, even with the state-of-the-art
MVS systems. The errors typically take the form of distorted or incomplete geometry. If we directly
use such point clouds, the synthesized views will have poor visual quality with salient artifacts. To
address this issue, we introduce a new technique we call “point sculpting”. It has two steps, Point
Pruning and Point Adding. The sculpting procedure and outputs are illustrated in Fig. 2.

4.1 POINT PRUNING

The MVS system we use produces a dense depth map for each input image. Like other depth-based
systems (Yao et al., 2018; Yan et al., 2020; Chen et al., 2020), it adopts a fusion step that merges
the depth maps from different views into a final point cloud. A geometry consistency check is often
used to remove outlier points. Using the depth maps, the consistency check projects a pixel into
another view, reprojects the corresponding point back, and sees if the original pixel is recovered up
to a threshold. For example, COLMAP (Schönberger & Frahm, 2016) defines the consistency error
ψi,j
p between view i and j for pixel p as:

q = Π(Π−1(p, dip, C
i), Cj); ψi,j

p =
∥∥p−Π(Π−1(q, djq, C

j), Ci)
∥∥
2

(2)
where q is p’s corresponding point in view j. Yan et al. (2020) further propose an improved ver-
sion, Dynamic Consistency Checking (DCC), which achieved the state-of-the-art filtering results.
The main problem of this type of forward-backward consistency check is that it tends to be over-
aggressive in filtering out points, resulting in highly incomplete geometry that is detrimental to view
synthesis. In datasets such as DTU and LLFF, many areas are only visible in a small number of
views. Those areas can easily be filtered out by this check as no confident match could be found.

Therefore, we take the raw depth maps from the multiview stereo system and propose a new tech-
nique for our own consistency checking geared toward view synthesis. We check only the forward
consistency to maximize completeness while still removing outliers. Formally, a pixel p in view i

passes the check if and only if
m⋂
j=1

[
Dj(Π−1(p, dip, C

i)) ≥ δd · djq
]
, where q is p’s corresponding

5

Published as a conference paper at ICLR 2023

point in view j (same as in Eqn. 2), djq is the predicted depth of q in view j, Dj(·) is the depth of
a point in view j (the z value of a 3D point in camera j’s coordinate), and δd is a hyperparameter
controlling the relative tolerance.

Intuitively, our point pruning method keeps a point as long as it is not significantly closer than the
original surface to any reference view camera. It filters out the points that are floating in the free
space between the actual surface and the camera, which are likely to be outliers. It also keeps all
points that are only visible in a small number of views. Although the position of such points may
not be accurate, it is useful to keep them as candidates for further optimization.

4.2 POINT ADDING

As Fig. 2 shows, after pruning, the point cloud can have holes, either due to points being pruned
or incorrect depth estimates (e.g. depth estimates that are close to infinity or zero). Previous works
(Lassner & Zollhofer, 2021; Yifan et al., 2019) tackled this problem by performing gradient-based
updates to the point locations. However, such updates are limited to local changes of existing points
and are unable to recover large areas of missing geometry.

We thus introduce a technique to add new points to the pruned point cloud. The basic idea is to find
a set of 3D points that, if added to the point cloud, could help minimize the photometric error after
optimization of the point features. Note that these new points do not need to be perfect; they just
need to be a superset of the ground truth geometry, because the extraneous points can get optimized
through the subsequent gradient-based optimization. On the other hand, an excessive number of new
points can lead to overfitting and slower rendering, so a good balance is needed. Our point adding
algorithm consists of two steps:

• Optimizing with existing points: We optimize the features and opacity of the current points
through gradient descent until convergence. For the i-th input image, we extract an error map be-
tween the rendered and ground-truth image: Ei = ||Igti − Irenderi ||1. Note that we use fi ∈ R27,
which is converted to si ∈ R3 by the SH layer. si is directly treated as RGB values during raster-
ization, and we use no U-Net in this step, as the U-Net hallucination makes Ei less informative.

• Proposing new points: For a pixel (u, v) in an input view i, we check if its rendering error
Ei(u, v) is bigger than a pre-defined threshold δe. If so, we sample 3D points uniformly along
the ray of the pixel within the bounds of the scene, and search for points that do not occlude
any of the existing points in any of the input views. If multiple such points exist, we propose
the closest M points, where M is a hyperparameter. We go through all pixels in all input views,
collect all the proposed points, and add them to the existing point cloud.

The design of this algorithm builds upon the assumption that our rendering pipeline can approximate
the radiance of each point arbitrarily well on the input images and that any high rendering error can
only be caused by incomplete geometry, as those areas having no points covered can only take the
default background color. Based on this assumption, we propose new points for pixels with high
rendering errors, but exclude points that occlude the existing surface in other views. We propose
up to M closest points and choose M = 5 in our experiments to strike a good balance between
geometry coverage and rendering speed. We can alternate between gradient-based optimization and
point adding for multiple rounds, but in practice we find one round of point adding to be sufficient
for good results. We present the full details of the point adding algorithm in Appendix C.

5 EXPERIMENTS

Datasets We evaluate our method on DTU (Jensen et al., 2014), LLFF (Mildenhall et al., 2019;
2020), NeRF’s Realistic Synthetic 360◦ (Mildenhall et al., 2020), and Tanks&Temples (Knapitsch
et al., 2017). The datasets we choose provide good coverage of both forward-facing and 360◦ scenes.
We evaluate using the standard PSNR, SSIM, and LPIPS (Zhang et al., 2018) metrics.

Baselines We compare our model with NeRF (Mildenhall et al., 2020). On DTU and LLFF, we
run two point-based methods NPBG (Aliev et al., 2020) and SynSin (Wiles et al., 2020) using the
same external MVS system to reconstruct point clouds, with no pruning or adding. We additionally
compare against two point-based methods NPBG++ (Rakhimov et al., 2022) and Point-NeRF (Xu
et al., 2022), and two voxel-based methods NV Lombardi et al. (2019) and NSVF Liu et al. (2020).

6

Published as a conference paper at ICLR 2023

Implementation Details We implement our method with PyTorch (Paszke et al., 2019) and Py-
Torch3D (Ravi et al., 2020). We experiment on a single RTX 3090 GPU, optimizing for 50,000
steps on each scene with a batch size of 1. We initialize all SH coefficients for each point as 0s and
the point opacity as 1. We initialize the U-Net parameters randomly. We set the point radii to be
a dataset-specific hyperparameter, which is the same for all points and fixed. See Appendix B for
details on the MVS network and other implementations.

5.1 PRIMARY RESULTS

NeRF Ours Ground TruthNPBG SynSin

Figure 3: Qualitative comparison of our model v.s. baselines on the LLFF dataset.

Results on DTU The quantitative comparison is presented in Tab. 1. Results show that our model has
better SSIM and LPIPS, and slightly worse PSNR compared to NeRF. We present the visualizations
in Fig. 13, Appendix F. We claim to use LPIPS as the major quality metric, as we find that PSNR
and SSIM may not reflect actual visual quality because they are highly sensitive to small pixel shifts
(See Appendix. A).

Table 1: Quantitative results on the DTU and the LLFF dataset. For all tables in this paper, we mark
the best number in bold and the second-best number with an underline.

DTU LLFF

Method NPBG SynSin NeRF SNP (ours) NPBG SynSin NeRF SNP (ours)

PSNR↑ 19.38 21.04 28.97 26.68 19.98 22.34 26.50 25.32
SSIM↑ 0.652 0.714 0.846 0.884 0.624 0.705 0.811 0.817
LPIPS↓ 0.412 0.337 0.266 0.156 0.454 0.351 0.250 0.229

Results on LLFF The quantitative results are shown in Tab. 1. Similar to DTU, our method achieves
consistently better SSIM and LPIPS, while being slightly worse in PSNR. Qualitative comparisons
are shown in Fig. 3 and Fig. 12, Appendix F. Compared to NeRF, our model can reconstruct very
fine details. Our method also has significantly better visual quality compared NPBG and SynSin.

Table 2: Quantitative results on Tanks&Temples.
Tanks&Temples

Method NV NeRF NSVF Point-
NeRF

SNP
(ours)

PSNR↑ 23.70 25.78 28.40 29.61 29.78
SSIM↑ 0.848 0.864 0.900 0.954 0.942
LPIPSAlex↓ 0.260 0.198 0.153 0.080 0.079

Results on Tanks&Temples We present
the numbers in Tab. 2. All baselines num-
bers are from Point-NeRF (Xu et al., 2022).
Our method achieves comparable quality as
Point-NeRF, while being significantly bet-
ter than other baselines. We present qualita-
tive comparisons in Fig. 16, Appendix F.

Results on NeRF-Synthetic Results are shown in Tab. 3. Our method achieves comparable perfor-
mance to NeRF while being worse than Point-NeRF, which is also reflected in Fig. 4. Our method is
better at capturing the reflective drum surfaces, while struggles with the microphone which has fine
geometry. Our explanation is that our view-dependent point features are very expressive in modeling
high-frequency textures, while our point cloud is not accurate enough in cases of fine geometries.

Table 3: Quantitative results on the NeRF-Synthetic dataset. NPBG++ only presents results on the
hotdog, ficus, and mic scenes. All other baseline numbers are copied from the Point-NeRF paper.

NeRF-Synthetic (all 8 scenes) NeRF-Synthetic (3 scenes)

Method NPBG NeRF Point-NeRF SNP (ours) NPBG++ SNP (ours)

PSNR↑ 24.56 31.01 33.31 27.47 28.67 29.16
SSIM↑ 0.923 0.947 0.978 0.939 0.952 0.961
LPIPS↓ 0.109 0.081 0.049 0.067 0.050 0.037

7

Published as a conference paper at ICLR 2023

Point-NeRF OursNPBG NeRF Ground Truth

Figure 4: Qualitative comparison of our model v.s. baselines on the NeRF-Synthetic dataset.

5.2 ABLATION STUDIES

Table 4: Ablation studies on the DTU dataset.
View-dependent
Layer Latency Num. Points Dropout Rate PSNR↑ SSIM↑ LPIPS↓

Use DCC(Yan et al., 2020) Filtering 15ms 3.3M 50% 19.97 0.844 0.196
No Adding; No Pruning 15ms 4.2M 50% 25.06 0.836 0.201
No Adding 15ms 4.0M 50% 26.15 0.882 0.163
No Gradient-based Refine 15ms 4.4M 50% 26.52 0.880 0.157

No View Dependence N/A 4.4M 50% 25.67 0.876 0.160
View Dependence w/ MLP 79ms 4.4M 50% 26.30 0.881 0.160

No Point Dropout 31ms 4.4M 0% 25.40 0.852 0.191
Low Dropout Rate 23ms 4.4M 25% 26.47 0.880 0.158
High Dropout Rate 8ms 4.4M 75% 26.46 0.883 0.157

BatchNorm in UNet 15ms 4.4M 50% 25.19 0.857 0.171
InstanceNorm in UNet 15ms 4.4M 50% 26.08 0.869 0.169
2-layer 1×1 Conv, no UNet 15ms 4.4M 50% 19.63 0.656 0.355

Complete Model 15ms 4.4M 50% 26.68 0.884 0.156

No Adding OursDCC
Filtering

No Adding;
No Pruning

Ground TruthNo Grad-based
Refinement

Figure 5: Qualitative comparison of point sculpting v.s. baselines on the DTU dataset.

We conduct ablation studies of our proposed designs. We show results in Tab. 4. In the 1st block, We
compare with several baselines on point cloud refinement, including 1) the filtering algorithm DCC
(Yan et al., 2020) which achieves SOTA performance on MVS, 2) using the raw MVS point cloud
without any pruning or adding, 3) pruning with the proposed point pruning but no point adding, 4)
using the same point cloud as the complete model, while keeping the point positions and opacity
values fixed during gradient updates. Also see Fig. 5 for qualitative comparisons. Results show that
all proposed geometry refinement components contribute to the final model. While point pruning
contributes to sharper object boundaries near the head of the plush, point adding is especially helpful
for filling large holes on the table in the rabbit scene. See Fig. 11, Appendix C for visualizations of
the point cloud generated by each method.

The 2nd block shows that using SH reduces the layer latency by 82% and improves the PSNR by
0.38dB compared to MLP. For the MLP baseline, we use a 2-layer MLP with 256 hidden units,
which takes as input the concatenation of the point feature and the positional-encoded view direction,
following NeRF. See also Fig. 14, Appendix F for visualization of the non-Lambertian effect learned
by our model. The 3rd block shows that using dropout layer improves the PSNR by 1.28dB, and the
model is not sensitive to the dropout rate. The 4th block shows that not using any normalization

8

Published as a conference paper at ICLR 2023

layers improves the PSNR by 1.49dB compared to using BatchNorm, and by 0.60dB compared to
InstanceNorm. Replacing U-Net with a 2-layer 1×1 Conv network gives significantly worse results.

5.3 SCENE EDITING

Composition Deformation Erasing

We show that our system supports,
with high fidelity, scene editing oper-
ations such as scene composition, ob-
ject deformation, and erasing. Results
are shown in the inset figure on the
right. Composition is achieved by first
co-training two scenes with separate
point features and a shared U-Net, then
putting the points into a single scene at inference time. For deformation, we export the sculpted
point cloud into MeshLab (Cignoni et al., 2008), where we manually select the moving part and its
axis of rotation. For erasing, we filter out points based on their z coordinates.

Compared to existing neural rendering pipelines that support scene editing, our system has two main
advantages: 1. Fine-grained editing: Previous works (Lombardi et al., 2019; Yu et al., 2021b; Yang
et al., 2021b) use explicit representations like voxel grids, which are typically limited in resolution.
Therefore, they can only achieve object-level operations such as composition. In comparison, we
represent object surfaces densely with millions of points, so we can do fine-grained editing such as
object deformation. 2. Ease of use: Previous works doing scene editing with NeRF either require a
special interface to take user inputs (Liu et al., 2021), or a complex pipeline that uses meshes as an
intermediate representation (Yuan et al., 2022). In contrast, our point cloud representation is directly
supported by nearly all graphics toolboxes such as MeshLab or Blender, which allows users to edit
the scene intuitively without any specialized tool.

5.4 INFERENCE SPEED, TRAINING TIME, AND MODEL SIZE

We compare our model’s inference speed, training time, and model size with a few baselines on the
NeRF-Synthetic dataset, shown in Tab. 5. All speeds are benchmarked using an RTX 3090 GPU.
Compared to NeRF, our model is more than 100× faster in inference and requires only 33% training
time. PlenOctrees (Yu et al., 2021b) bakes the radiance field into a voxel-based cache, resulting
in faster rendering speed but also a significantly larger model size and longer training time. NPBG
(Aliev et al., 2020) achieves faster inference speed with their one-pixel point splats, but at the cost of
worse visual quality. Finally, we are about 25× faster than Point-NeRF (Xu et al., 2022) in rendering
while other metrics are roughly the same.

Table 5: On the NeRF-Synthetic dataset, we compare model inference speed, training time, model
size, and rendering quality (measured in LPIPS) with baselines.

NeRF PlenOctrees NPBG Point-NeRF SNP (ours)

Inference↑ (FPS) 0.053 127 20.3 0.192 5.06
Training↓ (Hours) 20 50 6.9 8.0 6.6
Model Size↓ 14MB 1.9GB 31MB 106MB 290MB
LPIPS↓ 0.081 0.053 0.109 0.049 0.067

6 DISCUSSIONS AND LIMITATIONS

There are a few limitations that need to be addressed in future work: 1) MVS dependency. Al-
though the proposed point sculpting can partly solve this problem, the performance of the system
still depends heavily on the MVS quality. That said, as MVS systems continue to improve, we do
not see this as a fundamental limitation in the long run. 2) View Consistency. Our system has a
2D U-Net and is thus only approximately 3D consistent. Especially when viewed in videos, some
background areas have flickering effects due to the hallucination of U-Net. Doing away with a 2D
post-processing network is a future direction. 3) Far-away background. Our current system cannot
deal with outdoor scenes with arbitrarily far-away objects (e.g. sky or clouds). Using a spherical
environment map as in Zhang et al. (2020); Rückert et al. (2022) could resolve this problem.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This work was partially supported by the National Science Foundation under Award IIS-1942981.
We thank Jing Wen, Zeyu Ma, and Lahav Lipson for their insightful discussions. We thank Artem
Sevastopolsky for generously sharing the NPBG data and clarifying the paper details.

REFERENCES

Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempitsky. Neural
point-based graphics. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXII 16, pp. 696–712. Springer, 2020.

Rui Chen, Songfang Han, Jing Xu, and Hao Su. Visibility-aware point-based multi-view stereo
network. IEEE transactions on pattern analysis and machine intelligence, 43(10):3695–3708,
2020.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, Guido
Ranzuglia, et al. Meshlab: an open-source mesh processing tool. In Eurographics Italian chapter
conference, volume 2008, pp. 129–136. Salerno, Italy, 2008.

Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. Fast-
nerf: High-fidelity neural rendering at 200fps. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14346–14355, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola, and Henrik Aanæs. Large scale multi-
view stereopsis evaluation. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 406–413, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

Christoph Lassner and Michael Zollhofer. Pulsar: Efficient sphere-based neural rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1440–
1449, 2021.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel
fields. Advances in Neural Information Processing Systems, 33:15651–15663, 2020.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable renderer for
image-based 3d reasoning. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 7708–7717, 2019.

Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard Zhang, Jun-Yan Zhu, and Bryan Russell.
Editing conditional radiance fields. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 5773–5783, 2021.

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann, and Yaser
Sheikh. Neural volumes: Learning dynamic renderable volumes from images. ACM Trans.
Graph., 38(4):65:1–65:14, 2019. ISSN 0730-0301.

Zeyu Ma, Zachary Teed, and Jia Deng. Multiview stereo with cascaded epipolar raft. arXiv preprint
arXiv:2205.04502, 2022.

Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ra-
mamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with
prescriptive sampling guidelines. ACM Transactions on Graphics (TOG), 38(4):1–14, 2019.

10

Published as a conference paper at ICLR 2023

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
conference on computer vision, pp. 405–421. Springer, 2020.

Michael Niemeyer, Jonathan T Barron, Ben Mildenhall, Mehdi SM Sajjadi, Andreas Geiger, and
Noha Radwan. Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs.
arXiv preprint arXiv:2112.00724, 2021.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318–10327, 2021.

Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor Lempitsky, and Evgeny Burnaev. Npbg++: Ac-
celerating neural point-based graphics. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15969–15979, 2022.

Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson,
and Georgia Gkioxari. Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Darius Rückert, Linus Franke, and Marc Stamminger. Adop: Approximate differentiable one-pixel
point rendering. ACM Transactions on Graphics (TOG), 41(4):1–14, 2022.

Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-Motion Revisited. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, 2016.

Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise
View Selection for Unstructured Multi-View Stereo. In European Conference on Computer Vision
(ECCV), 2016.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial Intelligence and Machine Learning for Multi-Domain Operations
Applications, volume 11006, pp. 1100612. International Society for Optics and Photonics, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Yi Wei, Shaohui Liu, Yongming Rao, Wang Zhao, Jiwen Lu, and Jie Zhou. Nerfingmvs: Guided op-
timization of neural radiance fields for indoor multi-view stereo. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5610–5619, 2021.

Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. Synsin: End-to-end view
synthesis from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7467–7477, 2020.

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich Neu-
mann. Point-nerf: Point-based neural radiance fields. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 5438–5448, 2022.

11

Published as a conference paper at ICLR 2023

Jianfeng Yan, Zizhuang Wei, Hongwei Yi, Mingyu Ding, Runze Zhang, Yisong Chen, Guoping
Wang, and Yu-Wing Tai. Dense hybrid recurrent multi-view stereo net with dynamic consistency
checking. In European Conference on Computer Vision, pp. 674–689. Springer, 2020.

Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han Zhou, Hujun Bao, Guofeng Zhang, and
Zhaopeng Cui. Learning object-compositional neural radiance field for editable scene render-
ing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13779–
13788, 2021a.

Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han Zhou, Hujun Bao, Guofeng Zhang, and
Zhaopeng Cui. Learning object-compositional neural radiance field for editable scene render-
ing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13779–
13788, 2021b.

Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth inference for unstruc-
tured multi-view stereo. In Proceedings of the European Conference on Computer Vision (ECCV),
pp. 767–783, 2018.

Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long Quan.
Blendedmvs: A large-scale dataset for generalized multi-view stereo networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1790–1799, 2020.

Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung. Differentiable
surface splatting for point-based geometry processing. ACM Transactions on Graphics (TOG),
38(6):1–14, 2019.

Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks. arXiv preprint
arXiv:2112.05131, 2021a.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752–5761, 2021b.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
one or few images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4578–4587, 2021c.

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. Nerf-editing:
geometry editing of neural radiance fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 18353–18364, 2022.

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving
neural radiance fields. arXiv preprint arXiv:2010.07492, 2020.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

12

Published as a conference paper at ICLR 2023

APPENDIX

A LIMITATION OF PSNR AND SSIM AS VIEW SYNTHESIS METRICS

PSNR, SSIM, and LPIPS are commonly used metrics to measure the similarity between two images.
The LPIPS paper (Zhang et al., 2018) found that LPIPS is significantly more robust than PSNR or
SSIM under distortions such as random noise, blurring, and spatial shifts. Although the evidence is
pretty strong for the 2D cases, the robustness of the three metrics is seldom discussed in the context
of view synthesis, where 3D geometry plays a key role.

We here provide a detailed case study to show that LPIPS is more robust and consistent with hu-
man perception than PSNR and SSIM for the novel view synthesis task, and is more suitable as an
evaluation metric.

A.1 MISALIGNMENT IN NOVEL VIEW SYNTHESIS

Our key observation is that spatial misalignment is a very common type of error in the view synthesis
task. The misalignment could be caused by inaccurate camera intrinsics and extrinsics (e.g., the
COLMAP camera pose used in LLFF). Even in the DTU dataset, where the cameras are carefully
calibrated with a robotic arm, there is misalignment caused by ambiguity in geometry. For example,
many background objects are only visible in one view, which makes it impossible to synthesize
pixels that are identical to the ground truth.

Such errors in the camera poses of existing views will cause small shifts in the rendering of a new
target view. We find that PSNR and SSIM, especially PSNR, can drop significantly in the presence
of such pixel shifts, even though they have no detectable impact on the perceived visual quality.
In contrast, LPIPS is relatively more robust. In Fig. 6, we show by a synthetic experiment that a
slight shift could cause a huge drop in PSNR, while LPIPS is robust to such a shift, behaving more
similarly to the human perceptual system, which is very insensitive to a such shift. See the figure
caption for details.

(a)
7.17/0.095/0.242

(b)
7.54/0.237/0.401

(c)
Ground Truth

Figure 6: The numbers under each image are PNSR, SSIM, and LPIPS. Based on the reference
image (c), we create (a) by shifting 1 pixel, and (b) by adjusting the pixel intensities toward grey.
Clearly (a) is visually more similar to the reference image, while only LPIPS agrees with the fact.

We also conduct an experiment on the NeRF-Synthetic dataset to demonstrate our findings, where
the ground-truth camera poses are perfect. We apply a tiny noise∼ N (0, 0.01I) in the tangent space
to the camera rotation. As shown in Tab. 6, under such a small perturbation, the PSNR and SSIM of
our method and NeRF become even lower than the NPBG baseline, which has significantly worse
visual quality, while our LPIPS score is consistently better. In Fig. 7, we show the visual effect of
such perturbation.

Table 6: We apply an almost imperceptible random noise ∼ N (0, 0.01I) to the camera rotation in
the tangent space. While PSNR and SSIM are sensitive to such perturbation, LPIPS remains stable.

NeRF Ours NPBG NeRF Ours

Camera Noise ✓ ✓ ✗ ✗ ✗

PSNR↑ 24.21 22.70 24.56 31.01 27.47
SSIM↑ 0.887 0.876 0.923 0.947 0.939
LPIPS↓ 0.089 0.088 0.109 0.081 0.067

13

Published as a conference paper at ICLR 2023

(a) Ours + Noise
19.05/0.888/0.080

(b) Reference (c) Error Map
of (a)&(b)

(d) Ours
28.67/0.972/0.051

(e) NPBG
22.71/0.910/0.082

(f) NeRF + Noise
19.28/0.893/0.074

Figure 7: The numbers under each image are PSNR, SSIM, and LPIPS. We see from (a) and (b) that
the tiny perturbation of camera poses is perceptually undetectable, unless visualized as the error map
(c). Under perturbation, our method achieves better visual quality compared to NPBG (e), which is
only reflected by LPIPS, but not PSNR or SSIM.

A.2 QUALITATIVE EVALUATION

We show qualitative results on the LLFF dataset in Fig. 8. Our rendering results have better visual
quality and contain sharper details compared to NeRF, while having lower PSNR due to the mis-
alignment caused by imperfect camera parameters. We further apply a 3×3 Gaussian blurring to our
results, which leads to worse visual quality but higher PSNR. It indicates that blurred images could
have advantages in PSNR under misalignment, whereas LPIPS always prefers our sharper results.

NeRF Ours Ours + blurring Ground Truth

20.25/0.591/0.317 18.56/0.580/0.223 19.23/0.584/0.264

18.12/0.666/0.316 16.34/0.619/0.259 16.74/0.568/0.319

21.33/0.742/0.308 20.40/0.824/0.197 20.05/0.737/0.266

Figure 8: The numbers under each image are PNSR, SSIM, and LPIPS towards the reference image.
See text for details.

14

Published as a conference paper at ICLR 2023

B IMPLEMENTATION DETAILS

B.1 DATASETS

DTU We select 10 scenes from the DTU test set. We only use scenes from the test set because
the training data of CER-MVS (Ma et al., 2022) includes the DTU training scenes. The render
resolution is 400× 300, following PixelNeRF (Yu et al., 2021c). We reserve 1 in every 7 images for
testing, resulting in 42 training views and 7 test views.

LLFF LLFF contains 8 forward-facing scenes. Following NeRF, we render under the resolution of
1008× 720 and reserve 1/8 of the views for testing.

NeRF-Synthetic We use the same setting as NeRF (Mildenhall et al., 2020). The training set and
test set for each scene contain 100 and 200 images respectively, and the resolution is 800 × 800.

Tanks&Temples We test on 5 scenes using the split and masks provided by NSVF (Liu et al., 2020).
The render resolution is 1088× 640, following Point-NeRF (Xu et al., 2022).

B.2 MVS RECONSTRUCTION

We use the CER-MVS (Ma et al., 2022) network to extract depth maps for all scenes. We scale the
scenes so that the median depth is about 600, which is the depth scale that CER-MVS was trained
on. For the DTU dataset, we use the CER-MVS trained on the DTU training set, which has no
overlap with our test scenes. For the NeRF-Synthetic and the Tanks&Temples datasets, we use the
CER-MVS trained on BlendedMVS (Yao et al., 2020).

For LLFF, since the domain gap is large, we take the CER-MVS pre-trained on DTU and finetune the
model individually for each scene with the dense depth map provided by COLMAP (Schönberger &
Frahm, 2016; Schönberger et al., 2016). Specifically, we use COLMAP customized by the authors of
NerfingMVS (Wei et al., 2021), which additionally generates a confidence mask based on geometric
consistency. We apply loss only to the areas with a positive mask. The intuition for finetuning
is that we leverage COLMAP at geometric consistency areas, and we rely on the learning-based
priors at the areas where COLMAP fails, thus taking advantage of both methods. To justify the
proposed point cloud generation pipeline, we compare our method to directly using the COLMAP
point cloud, as shown in Tab. 7 and Fig. 9. The “w/ COLMAP” baseline uses the fused point cloud
from COLMAP, with our differentiable rendering but no point sculpting. Results show that our
method achieves better performance, especially in texture-less areas such as the ceiling, where the
COLMAP point cloud is incomplete.

Running the COLMAP MVS takes 0.3 hours. We finetune for 5k steps on each scene, which takes
about 1 hour. The 1.3 hours additional overhead is insignificant compared to the 6-8 hours training
time of our model. Taking this overhead into account, our method is still more efficient in training
than NeRF (about 21 hours on LLFF). All numbers are reported on a single RTX 3090 GPU.

After the point sculpting step, we downsample the point cloud sizes to 500K for LLFF and NeRF-
Synthetic, and 1M for DTU and Tanks&Temples, to make the training and inference speed roughly
the same for all scenes.

Oursw/ COLMAP Ground Truth
Figure 9: We visually compare the results of using the COLMAP fused point cloud against our
proposed MVS finetuning + point sculpting. Our point cloud has higher completeness and thus
better visual quality, especially in texture-less areas (e.g., the zoomed-in ceiling region).

15

Published as a conference paper at ICLR 2023

Table 7: Quantitative comparison with the COLMAP point cloud baseline.

PSNR↑ SSIM↑ LPIPS↓
w/ COLMAP point cloud 24.81 0.817 0.240
Ours 25.32 0.817 0.229

B.3 MODEL DETAILS

The feature vector fi attached to each point is 288-dim, and the modulated feature outputted by the
SH layer is 32-dim. Unlike using the tiny 8-dim feature vector as in NPBG (Aliev et al., 2020), we
find that increasing the feature dimension would monotonically give better results. We choose the
dimension by balancing the performance and speed/memory cost.

For the point dropout layer, we use a dropout rate pd = 0.5. At inference time we rasterize L = 2
random subsets for all experiments. We empirically find that L = 2 gives a significant improve-
ment in performance over L = 1, while the advantage is minimal for averaging more subsets. See
Appendix E for details.

The U-Net we use has two down-sampling layers and two up-sampling layers with skip connections
between the feature maps with the same resolution. Empirically, we find that limiting the capacity
of the U-Net could reduce artifacts and leads to better generalization to novel views. Therefore, we
use a shallower network compared to the 5-layer U-Net used in NPBG (Aliev et al., 2020). For the
LLFF, NeRF-Synthetic, and Tanks&Temples datasets which have higher resolution, we rasterize at
half resolution and add an additional up-sampling layer to output the high-resolution images. The
U-Net is randomly initialized and trained individually for each scene.

We use an L1 loss between the rendered image and the target. We also add a total variation loss on
the 2D feature map to improve the smoothness of the output:

LTV (F) =
∑
i,j

|Fi+1,j − Fi,j |+ |Fi,j+1 − Fi,j | (3)

The final loss can be written as L = L1 + λTV · LTV , where λTV is set to 0.01 in all experiments.
The learning rates for the U-Net, the feature vectors f , the point position p, and the opacity o are set
to 10−4, 10−2, 10−4, 10−4, respectively. The rasterization “softness” hyper-parameter γ is selected
to be 10−3. The opacity is passed through a sigmoid layer to map its range into [0, 1].

We use the Adam optimizer (Kingma & Ba, 2014) with the OneCycleLR learning rate scheduler
(Smith & Topin, 2019), and train the model with a batch size of 1 for 50,000 steps for all experiments.
No augmentation including random cropping is applied. We find using a larger batch size and data
augmentations are not helpful.

We set the point radius to be 1.5 × 10−3, 1.0 × 10−3, 7.5 × 10−3 for all scenes in DTU, LLFF
and NeRF-Synthetic, respectively. For Tanks&Temples, since there is a large scale variance among
scenes, we use different radius for each scene. Specifically, radius are 1.0× 10−3 for “Ignatius” and
“Family”, 1.0× 10−2 for “Truck” and “Caterpillar”, and 5.0× 10−3 for “Barn”.

C THE POINT SCULPTING ALGORITHM

For point pruning, we set the depth tolerance threshold to δd = 0.8 in all experiments.

The formal description of the point adding algorithm is presented in Alg. 1. The definition of Π,
Π−1, RC and tC are the same as Eqn. 1 in the main body of the paper.

For DTU, we set znear and zfar to be 800 and 1400, respectively. For LLFF, since those are
unbounded scenes, we borrow the idea of using inverse depth as the NDC parameterization in NeRF.
We sample uniformly in the inverse depth space, and the equivalent znear and zfar is 800 and +∞.
For NeRF-Synthetic, we use znear = 2.0 and zfar = 6.0, and for Tanks&Temples we find the depth
range for each scene using the bounding box provided by the NSVF (Liu et al., 2020) authors.

zstep is set so that there are 100 depth bins. The hyperparameters δe is set to 5 · Avg(E), as we
find that using δe relative to the average error improves the robustness. We keep the closest M = 5

16

Published as a conference paper at ICLR 2023

points for each ray. Fig. 11 shows the visualization of the point cloud generated by DCC (Yan
et al., 2020), the initial MVS point cloud (“No Adding; No Pruning”), the point cloud filtered by our
pruning only (“No Adding”), and our point sculpting method. We see that most of the outlier points
floating in free spaces are pruned by our method (blue points in “Pruning Only”). We also show
how many points get pruned and added in Tab. 8. Note that the initial numbers of points for each
scene are slightly different because we filter out the points based on the scene depth range znear and
zfar. More points are added for scan110, scan114, and scan118 (corresponding to the last 3 rows
in Fig. 11), where the tables in the scene contain large holes in the initial point cloud.

Table 8: Number of points statistics for pruning and adding.
Number of Points (×105)

Scan Id.

1 4 15 24 32 33 49 110 114 118 Avg.

Initial 42.93 39.53 43.51 45.20 42.61 45.30 43.64 37.42 39.42 40.11 41.97
Pruning -1.75 -2.22 -0.86 -1.10 -2.71 -3.89 -1.87 -1.60 -1.38 -1.94 -1.93
Adding 1.34 0.80 1.31 1.32 1.71 1.60 1.42 8.87 8.93 11.50 3.88

D COMPARISON WITH PULSAR

Pulsar (Lassner & Zollhofer, 2021) is a highly related work to our method. Unfortunately, we are
unable to do a quantitative comparison with Pulsar, because the code for the view synthesis part of
Pulsar is not available. We show qualitatively that our method is better than Pulsar in Fig. 10, where
the Pulsar figure is directly copied from the paper. Conceptually, while using the same rasterization
backbone, our method is better because 1) we use MVS to initialize point positions, whereas they
start from random positions; 2) we do point adding to improve the completeness, whereas they don’t;
3) we use SH features and a point dropout layer to boost the performance, whereas they don’t have
such designs.

Pulsar Ours Ground Truth
Figure 10: Qualitative comparison with Pulsar on the fern scene of the LLFF dataset. Our method
is much better at capturing the fine details such as the fern leaves.

E ANALYSIS OF THE POINT DROPOUT LAYER

We do an analysis of the visual quality v.s. the number of subsets used in the point dropout layer. We
do experiments on the DTU dataset and the results are shown in Tab. 9. Results show that averaging
two subsets gives a significant improvement over using only one subset, but using more subsets
doesn’t help. On the other hand, the latency grows almost linearly as we rasterize more subsets.
Therefore, one would prefer using a small number of subsets such as 2.

Table 9: Performance v.s. the number of subsets used. Results are averaged on 10 DTU scenes.

Number of Subsets

1 2 3 4 5

PSNR↑ 26.49 26.68 26.66 26.70 26.70
SSIM↑ 0.879 0.884 0.885 0.886 0.885
LPIPS↓ 0.159 0.156 0.156 0.157 0.157
FPS↑ 6.2 3.4 2.3 1.8 1.4

17

Published as a conference paper at ICLR 2023

Algorithm 1 Point Adding

1: Input Differentiable renderer R, Initial point cloud Po, Cameras {C1:m},
2: Reference images {Iref1:m}, Depth maps {D1:m}, Scene near bound znear,
3: Scene far bound zfar, Depth sampling stride zstep, Error map threshold δe,
4: Max candidates to keep for each ray M .
5: Output Updated point cloud Po

6:
7: Train model R with current Po on reference views until convergence.
8: Render images {Ipred1:m } and compute error maps {E1:m = ||Ipred1:m − I

ref
1:m||1}.

9: Candidates = ∅
10: for i = 0 : m do ▷ loop over the views
11: for u = 0 : H , v = 0 :W do ▷ loop over all pixels
12: if Ei(u, v) ≥ δe then ▷ propose in the regions with large error
13: Candidates = SAMPLECANDIDATES(Ci, (u, v))
14: counter = 0
15: for c in Candidates do
16: if EVALUATECANDIDATES(c, C1:m, D1:m) == 1 then
17: Po← Po ∪ c ▷ add to the point cloud
18: counter = counter + 1
19: end if
20: if counter ≥M then
21: break ▷ break once we have M candidates
22: end if
23: end for
24: end if
25: end for
26: end for
27:
28: function SAMPLECANDIDATES(C, (u, v))
29: Candidates = ∅
30: for z = znear : zstep : zfar do ▷ linearly sample the depth
31: Candidates← Candidates ∪ Π−1([u, v]T , z, C) ▷ add the 3D point
32: end for
33: return Candidates
34: end function
35:
36: function EVALUATECANDIDATES(c, C1:m, D1:m)
37: no conflict = 1
38: for i = 0 : m do ▷ loop over the views
39: (ui, vi) = Π(c, Ci) ▷ the corresponding 2D point
40: [xi, yi, zi]

T = RCi
c+ tCi

▷ c in the i-th camera coordinates
41: if 0 ≤ ui ≤ H − 1, 0 ≤ vi ≤W − 1 and zi < Di(ui, vi) then
42: no conflict = 0 ▷ conflict if c occludes the existing surface
43: end if
44: end for
45: return no conflict
46: end function

18

Published as a conference paper at ICLR 2023

No Adding;
No Pruning

Point Sculpting
(Ours)

Closest
Reference

DCC No Adding

Figure 11: Qualitative comparison of different point cloud refinement algorithms. Compared to the
initial point cloud (“No Adding; No Pruning”), our point sculpting method removes the outliers
(the blue ones in the “No Adding” column), and adds new points (the red ones) that further fill the
missing areas. Although DCC (Yan et al., 2020) provides point clouds with higher accuracy in the
foreground, the completeness is much worse than our results. For scenes where the initial point
cloud quality is low (e.g., the bottom 3 rows), more points are used to fill the holes. Although the
final sculpted point cloud can still contain outliers and small holes, those can be handled by
the gradient-based refinement.

19

Published as a conference paper at ICLR 2023

F MORE VISUALIZATIONS

Due to the limited space in the main body of the paper, we present more visualizations of our model
in this section, to help the readers better compare our methods with the baselines. Results are
presented in Fig. 12, 13, 14, 15, and 16. See figure captions for detailed comparisons.

NeRF Ours ReferenceNPBG SynSin

horns

leaves

fern

orchids

Figure 12: Compared to NeRF, our model can reconstruct very fine details such as the thin leaves in
the fern scene; the cracks on the bones, the letters on the board, and the textures on the carpet in the
horns scene; the strips on the flowers and leaves in the orchids and the leaves scene. Our method
also has significantly better visual quality compared to the two point-based baselines.

20

Published as a conference paper at ICLR 2023

NeRF OursNPBG SynSin Ground Truth

Figure 13: Our model can capture fine details, such as the cracks on the statue, the antenna and tiles
on the roof, and the letters on the soup can and the earphone. NeRF results are often over-smoothed.
The NPBG results contain some degrees of detail but are noisy, while fine details are often missing
in the SynSin results.

Figure 14: Qualitative results of the proposed spherical harmonics view-dependent shader. Two
crops are rendered using the same camera pose and two different virtual viewing directions. Results
show that our model can effectively learn the appearance of highly non-Lambertian surfaces.

21

Published as a conference paper at ICLR 2023

Point-NeRF OursNPBG NeRF Ground Truth

Figure 15: Qualitative comparison of our method against baselines on the NeRF-Synthetic dataset.
Our method is especially good at capturing surfaces with complex textures and strong non-
Lambertian effects, such as the glossy ball and the transparent drum surfaces. For tiny structures
such as the microphone and the ficus leaves, our rendering tends to be over-smoothed compared to
Point-NeRF.

22

Published as a conference paper at ICLR 2023

Point-NeRF Ours Ground Truth
Figure 16: Qualitative comparison of our model and Point-NeRF Xu et al. (2022) on the
Tanks&Temples dataset. Our model renders smoother results in general, especially on reflective
or transparent surfaces (e.g., the windows of the truck).

23

Published as a conference paper at ICLR 2023

G PER-SCENE BREAKDOWN

We show the per-scene PSNR, SSIM and LPIPS in Tab. 10, 11, 12, 13, and 14.

PSNR↑
1 4 15 24 32 33 49 110 114 118

NPBG 16.91 18.07 17.54 18.58 17.62 15.47 17.48 22.87 22.49 26.75
SynSin 19.69 18.22 19.16 19.86 17.81 15.57 19.46 26.54 25.41 28.63
NeRF 28.43 26.74 25.79 28.03 26.87 26.49 28.35 31.34 29.10 38.55
Ours 24.90 25.15 25.08 24.98 25.21 23.26 25.00 30.47 29.03 33.74

SSIM↑
1 4 15 24 32 33 49 110 114 118

NPBG 0.576 0.558 0.640 0.615 0.644 0.604 0.687 0.733 0.711 0.756
SynSin 0.681 0.638 0.698 0.639 0.726 0.629 0.760 0.813 0.771 0.789
NeRF 0.818 0.737 0.830 0.793 0.878 0.888 0.888 0.878 0.841 0.906
Ours 0.851 0.845 0.901 0.862 0.894 0.898 0.893 0.900 0.889 0.904

LPIPS↓
1 4 15 24 32 33 49 110 114 118

NPBG 0.411 0.417 0.410 0.407 0.429 0.476 0.423 0.391 0.373 0.384
SynSin 0.322 0.345 0.333 0.334 0.329 0.348 0.340 0.324 0.341 0.351
NeRF 0.236 0.341 0.242 0.253 0.180 0.169 0.212 0.370 0.369 0.283
Ours 0.159 0.175 0.120 0.132 0.147 0.154 0.151 0.175 0.172 0.176

Table 10: Per-scene quantitative results on the DTU dataset.

PSNR↑
Room Fern Fortress Leaves Orchids Flower T-Rex Horns

NPBG 22.75 19.33 24.35 15.71 15.95 21.06 19.86 20.79
SynSin 26.81 20.37 28.04 16.80 16.43 25.03 21.59 23.64
NeRF 32.70 25.17 31.16 20.92 20.36 27.40 26.80 27.45
Ours 30.35 23.80 30.88 18.76 20.14 27.75 24.73 26.14

SSIM↑
Room Fern Fortress Leaves Orchids Flower T-Rex Horns

NPBG 0.813 0.569 0.766 0.441 0.397 0.654 0.686 0.668
SynSin 0.883 0.621 0.836 0.548 0.450 0.783 0.768 0.751
NeRF 0.948 0.792 0.881 0.690 0.641 0.827 0.880 0.828
Ours 0.941 0.784 0.901 0.649 0.677 0.859 0.870 0.853

LPIPS↓
Room Fern Fortress Leaves Orchids Flower T-Rex Horns

NPBG 0.433 0.500 0.343 0.480 0.557 0.401 0.459 0.459
SynSin 0.328 0.405 0.237 0.384 0.473 0.258 0.355 0.366
NeRF 0.178 0.280 0.171 0.316 0.321 0.219 0.249 0.268
Ours 0.231 0.230 0.149 0.289 0.248 0.185 0.255 0.242

Table 11: Per-scene quantitative results on the LLFF dataset.

24

Published as a conference paper at ICLR 2023

PSNR↑
Chair Drums Ficus Hotdog Lego Mat. Mic Ship

NPBG 26.47 21.53 24.60 29.01 24.84 21.58 26.62 21.83
NPBG++ - - 24.61 32.31 - - 29.08 -
NeRF 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
Point-NeRF 35.40 26.06 36.13 37.30 35.04 29.61 35.95 30.97
Ours 30.49 22.78 25.43 33.24 27.94 26.02 28.80 25.07

SSIM↑
Chair Drums Ficus Hotdog Lego Mat. Mic Ship

NPBG 0.939 0.904 0.940 0.964 0.923 0.887 0.959 0.866
NPBG++ - - 0.925 0.964 - - 0.967 -
NeRF 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856
Point-NeRF 0.991 0.954 0.993 0.991 0.988 0.971 0.994 0.942
Ours 0.962 0.913 0.933 0.977 0.949 0.939 0.972 0.866

LPIPS↓
Chair Drums Ficus Hotdog Lego Mat. Mic Ship

NPBG 0.085 0.112 0.078 0.075 0.119 0.134 0.060 0.210
NPBG++ - - 0.070 0.050 - - 0.029 -
NeRF 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
Point-NeRF 0.023 0.078 0.022 0.037 0.024 0.072 0.014 0.124
Ours 0.049 0.081 0.050 0.036 0.057 0.072 0.025 0.167

Table 12: Per-scene quantitative results on the NeRF-Synthetic dataset.

PSNR↑
Ignatius Truck Barn Caterpillar Family

NV 26.54 21.71 20.82 20.71 28.72
NeRF 25.43 25.36 24.05 23.75 30.29
NSVF 27.91 26.92 27.16 26.44 33.58
Point-NeRF 28.43 28.22 29.15 27.00 35.27
Ours 29.62 28.05 29.80 27.37 34.07

SSIM↑
Ignatius Truck Barn Caterpillar Family

NV 0.992 0.793 0.721 0.819 0.916
NeRF 0.920 0.860 0.750 0.860 0.932
NSVF 0.930 0.895 0.823 0.900 0.954
Point-NeRF 0.961 0.950 0.937 0.934 0.986
Ours 0.968 0.931 0.915 0.919 0.979

LPIPSAlex↓
Ignatius Truck Barn Caterpillar Family

NV 0.117 0.312 0.479 0.280 0.111
NeRF 0.111 0.192 0.395 0.196 0.098
NSVF 0.106 0.148 0.307 0.141 0.063
Point-NeRF 0.069 0.077 0.120 0.111 0.024
Ours 0.038 0.096 0.109 0.135 0.018

Table 13: Per-scene quantitative results on the Tanks&Temples dataset.

25

Published as a conference paper at ICLR 2023

PSNR↑
1 4 15 24 32 33 49 110 114 118

Use DCC Filtering 13.03 16.10 20.81 19.44 17.76 13.87 16.61 27.74 26.14 28.16
No Adding; No Pruning 23.47 23.51 23.84 23.37 23.31 21.93 23.51 28.97 27.76 30.88
No Adding 25.06 25.33 24.98 24.60 25.10 23.19 24.78 28.65 28.43 31.42
No Gradient-based Refine 24.99 25.13 24.72 24.90 25.00 22.99 24.75 30.24 28.88 33.61

No View Dependence 24.07 24.52 24.07 23.49 24.45 22.70 23.63 28.81 28.02 32.95
View Dependence w/ MLP 24.56 24.96 24.53 24.50 24.74 23.06 24.05 29.96 28.91 33.70

No Point Dropout 24.05 23.85 24.34 23.81 23.97 22.70 23.96 29.40 25.21 32.75
Low Dropout Rate 24.75 25.09 24.63 24.78 24.97 23.01 24.67 30.25 28.95 33.61
High Dropout Rate 24.79 25.07 24.94 24.43 25.11 23.02 24.62 30.17 28.88 33.57

BatchNorm in UNet 22.68 23.35 23.79 23.88 23.59 22.67 23.70 28.57 27.67 31.99
InstanceNorm in UNet 24.89 24.83 23.56 24.76 25.03 21.72 24.52 30.01 28.50 32.96
2-layer 1×1 Conv, no UNet 15.57 18.46 17.84 17.24 16.91 15.13 15.38 26.46 25.35 27.99

Complete Model 24.90 25.15 25.08 24.98 25.21 23.26 25.00 30.47 29.03 33.74

SSIM↑
1 4 15 24 32 33 49 110 114 118

Use DCC Filtering 0.772 0.790 0.888 0.846 0.861 0.824 0.850 0.872 0.862 0.870
No Adding; No Pruning 0.799 0.798 0.859 0.817 0.837 0.850 0.844 0.859 0.844 0.855
No Adding 0.853 0.847 0.902 0.868 0.897 0.898 0.894 0.886 0.887 0.892
No Gradient-based Refine 0.846 0.840 0.898 0.861 0.889 0.894 0.890 0.898 0.882 0.904

No View Dependence 0.837 0.832 0.890 0.857 0.889 0.892 0.887 0.890 0.884 0.901
View Dependence w/ MLP 0.845 0.838 0.897 0.862 0.893 0.895 0.889 0.898 0.890 0.906

No Point Dropout 0.815 0.870 0.817 0.834 0.854 0.865 0.859 0.870 0.856 0.876
Low Dropout Rate 0.848 0.841 0.895 0.858 0.890 0.893 0.890 0.897 0.885 0.901
High Dropout Rate 0.851 0.843 0.899 0.860 0.895 0.895 0.892 0.900 0.889 0.904

BatchNorm in UNet 0.822 0.791 0.883 0.839 0.850 0.878 0.869 0.876 0.870 0.890
InstanceNorm in UNet 0.849 0.841 0.873 0.856 0.888 0.848 0.879 0.885 0.881 0.894
2-layer 1×1 Conv, no UNet 0.627 0.624 0.694 0.604 0.657 0.510 0.560 0.765 0.749 0.767

Complete Model 0.851 0.845 0.901 0.862 0.894 0.898 0.893 0.900 0.889 0.904

LPIPS↓
1 4 15 24 32 33 49 110 114 118

Use DCC Filtering 0.217 0.238 0.135 0.146 0.175 0.223 0.193 0.205 0.211 0.215
No Adding; No Pruning 0.205 0.220 0.169 0.185 0.208 0.213 0.200 0.198 0.200 0.209
No Adding 0.167 0.177 0.125 0.135 0.146 0.150 0.154 0.195 0.183 0.197
No Gradient-based Refine 0.158 0.176 0.123 0.133 0.149 0.153 0.154 0.175 0.174 0.178

No View Dependence 0.165 0.179 0.127 0.132 0.152 0.155 0.154 0.179 0.178 0.179
View Dependence w/ MLP 0.169 0.179 0.129 0.136 0.152 0.152 0.156 0.177 0.177 0.177

No Point Dropout 0.199 0.211 0.160 0.166 0.193 0.207 0.187 0.194 0.197 0.194
Low Dropout Rate 0.161 0.177 0.124 0.132 0.150 0.151 0.151 0.175 0.176 0.178
High Dropout Rate 0.158 0.172 0.121 0.131 0.147 0.155 0.153 0.177 0.176 0.180

BatchNorm in UNet 0.180 0.192 0.136 0.146 0.164 0.160 0.159 0.190 0.188 0.191
InstanceNorm in UNet 0.161 0.179 0.150 0.139 0.160 0.196 0.161 0.182 0.179 0.186
2-layer 1×1 Conv, no UNet 0.333 0.346 0.328 0.359 0.361 0.446 0.418 0.315 0.317 0.332

Complete Model 0.159 0.175 0.120 0.132 0.147 0.154 0.151 0.175 0.172 0.176

Table 14: Per-scene breakdown for the ablation studies on the DTU dataset.

26

	Introduction
	Related Work
	Approach Overview
	Point Cloud Reconstruction
	Differentiable Rendering

	Point Sculpting
	Point Pruning
	Point Adding

	Experiments
	Primary Results
	Ablation Studies
	Scene Editing
	Inference Speed, Training Time, and Model Size

	Discussions and Limitations
	Appendices
	Limitation of PSNR and SSIM as View Synthesis Metrics
	Misalignment in Novel View Synthesis
	Qualitative Evaluation

	Implementation Details
	Datasets
	MVS Reconstruction
	Model Details

	The Point Sculpting Algorithm
	Comparison with Pulsar
	Analysis of the Point Dropout Layer
	More Visualizations
	Per-scene breakdown

