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ABSTRACT

Although reinforcement learning (RL) is considered the gold standard for policy
design, it may not always provide a robust solution in various scenarios. This
can result in severe performance degradation when the environment is exposed
to potential disturbances. Adversarial training using a two-player max-min game
has been proven effective in enhancing the robustness of RL agents. However,
we observe two severe problems pertaining to this approach: (i) the potential
over-optimism caused by the difficulty of the inner optimization problem, and (ii)
the potential over-pessimism caused by the selection of a candidate adversary set
that may include unlikely scenarios. To this end, we extend the two-player game
by introducing an adversarial ensemble, which involves a group of adversaries.
We theoretically establish that an adversarial ensemble can efficiently and effec-
tively obtain improved solutions to the inner optimization problem, alleviating the
over-optimism. Then we address the over-pessimism by replacing the worst-case
performance in the inner optimization with the average performance over the worst-
k adversaries. Our proposed algorithm significantly outperforms other robust RL
algorithms that fail to address these two problems, corroborating the importance
of the identified problems. Extensive experimental results demonstrate that the
proposed algorithm consistently generate policies with enhanced robustness.

1 INTRODUCTION

Deep reinforcement learning (RL) has shown its success toward synthesizing optimal strategies over
environments with complex underlying dynamics (Arulkumaran et al., 2017; Vinyals et al., 2019;
Ibarz et al., 2021; Gao et al., 2022). However, given the large parameter search space under the
function approximation schema and the limited scale of exploration over the state-action space during
training due to sophisticated dynamics and environmental stochasticity (Shen et al., 2020), limited
performance guarantees can be provided for the resulting policies. Consequently, there are often
concerns regarding the robustness of RL (Pinto et al., 2017), i.e., whether RL policies can perform
consistently well under unforeseeable external disturbances applied to the agent upon deployment.
One framework that has been proven to effectively enhance the robustness of the RL agents is
robustness through adversarial training (Gu et al., 2019; Kamalaruban et al., 2020; Pattanaik et al.,
2017; Pinto et al., 2017; Vinitsky et al., 2020; Zhang et al., 2021). In this framework, the RL agent is
assumed to share the environment with a hostile agent (adversary). The adversary takes actions to
disturb the environment and/or the RL agent directly so that the cumulative reward received by the
RL agent is minimized. Formulated as a max-min optimization problem, this framework optimizes
the worst-case performance of RL agents under a pre-defined set of disturbance.

Despite these strengths of robustness through adversarial training, we observe two severe challenges
pertaining to this approach. The first challenge is the over-optimism caused by the difficulty of the
inner optimization problem. Without a closed-form solution, the optimal solution is approximated
by a first-order method such as gradient descent that can be trapped in local optimum with high
probability, resulting in an over-optimistic estimation of of the worst case performance. The second
challenge is the over-pessimism caused by the selection of a candidate adversary set that may include
unlikely scenarios. In most practical real-world scenarios it is often challenging, if not fully unfeasible,
to have complete knowledge (e.g., probabilities of specific actions) of the environmental disturbances
or the potential adversarial attacks. Consequently, most approaches only consider simple restrictions
on the opponent’s actions, such as the norm of the parameter or the entropy of the policy, leading to a
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Figure 1: Motivation for an adversarial ensemble. The green regions represent the pre-defined set
of adversaries. In real life applications it is challenging to choose the set of adversaries with high
precision, leading to an adversary set with irrelevant or unlikely scenarios (denoted by the red square
region). The triangle represents the single adversary in the regular adversarial training; the circles
represent the extra adversaries in the adversarial ensemble. Left: The green square is the optimal
adversary in the iterations of adversarial training. Compared to a single adversary, an ensemble can
better approximate the optimal adversary, thus better approximating the inner optimization problem.
Right: During the adversarial training, the protagonist can be diverted and become over-conservative
if the single adversary steps into irrelevant regions. An ensemble can relieve this by distributing the
attention of the protagonist from the irrelevant worst case to other cases.

candidate adversary set that lacks precision and thus is too broad. This can result in a over-conservative
agent under the scheme of worst-case optimization. For instance, when training a controller for a
helicopter, if the adversary is allowed to modify the environmental parameters to some physically
unfeasible values, the agent must sacrifice its performance in real-world scenarios to improve its
performance in these unlikely environments so that the worst-case performance is optimized.

To this end, we extend the two-player max-min game by introducing a structured adversarial ensemble
that involves a group of adversaries. Figure 1 presents an intuitive demonstration of the advantages of
an adversarial ensemble. In this work, we first theoretically establish that an adversary ensemble can
relieve the first issue by proving that it can efficiently estimate the solution and the optimal value
of the inner minimization problem, alleviating the over-optimism. Next, we employ the proposed
adversarial ensemble to mitigate the over-pessimism by altering the objective of the RL agent from
the original worst-case performance to the average performance of the worst-k adversaries (hence
the name structured adversarial ensemble). By addressing these problems, our proposed method
significantly outperforms other robust RL baselines, corroborating the importance of these identified
problems. Extensive experiments on a wide range of tasks with strong baselines have demonstrated
that the policies generated by our method has enhanced robustness, and the improved robustness is
consistent across various types of environmental disturbance.

2 PRELIMINARY

For any finite set A, we use |A| to denote its cardinality. For any positive integer m, we use [m]
to represent the set of integers {1, . . . ,m}. For any setM, we use ∆(M) to denote the set of all
possible probability measures over the Borel σ-algebra ofM. In this work, we consider a Markov
Decision Process (MDP) with adversaries in the environment, defined by a tuple of 6 elements
(S,Ap,Aa,P, r, γ, p0); here, S is the set of states, Ap/Aa are the sets of actions that the agent
(protagonist) or adversaries can take, P : S × Ap × Aa → ∆(S) is the transition function that
describes the distribution of the next state given the current state and actions taken by the agent
and the adversaries, r : S ×Ap ×Aa → R is the reward function for the agent (we set the reward
function for the adversary to −r as we consider a zero-sum game framework in this work), γ ∈ [0, 1)
is the discounting factor, and p0 is the distribution of the initial state. We use πθ : S → ∆(Ap) and
πϕ : S → ∆(Aa) to respectively denote the polices of the agent and the adversaries, where θ and ϕ
are their parameters. Specifically, we use πϕi and ϕi to denote the policy of the i-th adversary and its
parameter. Let st ∈ S be the state of the environment at time t, apt ∈ Ap (respectively aat ∈ Aa) the
action of the agent (respectively adversary) at time t. We use

R(θ, ϕ)
.
= E

s0∼p0

[ ∞∑
t=0

γtr(st, a
p
t , a

a
t )|a

p
t ∼ πθ(st), a

a
t ∼ πϕ(st)

]
(1)
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to represent the cumulative discounted reward that the agent πθ can receive under the disturbance
of the adversary πϕ. The objective of adversarial training (two-player max-min game) for robust-
ness (Pinto et al., 2017; Vinitsky et al., 2020) is defined as follows:

max
θ∈Θ

min
ϕ∈Φ

R(θ, ϕ), (2)

where Θ and Φ are pre-defined parameter spaces for the agent and the adversaries. In this approach,
the RL agent maximizes the worst-case performance under disturbance.

3 ROBUSTNESS THROUGH ADVERSARIAL ENSEMBLE

Although adversarial training has achieved great empirical success, two major challenges persist.
First, it is challenging to obtain a close approximation of the optimal solution ϕ∗ ∈ Φ to the inner
minimization problem in equation 2. This can result in an over-optimistic estimation of the worst
case performance of the RL agents. Second, an imprecise choice of the candidate adversary set Φ
will result in an over-conservative agent if it is distracted by unlikely scenarios during learning. To
address these challenges, we propose to employ an adversarial ensemble which involves a group of
adversaries. In this section, our algorithm will be presented along with the theoretical results that
illustrate the motivations and justify its effectiveness. Specifically, in Section 3.1, we first establish
that introducing an adversarial ensemble can alleviate the over-optimism by proving that it can
help estimate the solutions to the inner optimization problem efficiently, i.e., the required size of
an ensemble for a desired approximation precision is amiable. In Section 3.2, we propose a new
objective to replace the worst-case performance optimization in equation 2 to prevent the trained
agents from being over-conservative. In Section 3.3, we summarize and present detailed steps of the
proposed algorithm.

3.1 ADVERSARIAL ENSEMBLE

Here we present the motivation for introducing an adversarial ensemble and theoretically establish its
advantage over a single adversary. Proofs to all the theoretical results are deferred to Appendix B.
Due to the complexity of R(θ, ϕ), the most popular approach to solve the inner optimization problem
for a given θ is to use a single adversary and update the adversary with first-order optimization
method such as gradient descent. However, this approach is likely to be stuck in the local optima as
R(θ, ϕ) is often highly non-convex over ϕ, deviating from the global optimal solution and value of the
inner problem. To address this issue, we first propose a variation of the above approach that employs
multiple adversaries. Specifically, instead of a single adversary that updates itself, we employ a set of
fixed adversaries denoted by Φ̂

.
= {ϕi}mi=1, where m is the total number of adversaries and for all

i ∈ [m], ϕi ∈ Φ. Subsequently, we transform the original optimization problem in equation 2 into
the following one

max
θ∈Θ

min
ϕ∈Φ̂

R(θ, ϕ); (3)

in the new objective the agent πθ still optimizes the worst-case performance but only over a finite
set of adversaries. A direct methodological advantage of this approach over the original one is that
there is no need to use a first-order method. To find the optimal solution and value of the inner
minimization problem in equation 3, one only need to approximate R(θ, ϕi) for all ϕi in Φ̂, and
to select the adversary ϕ that results in the minimum R(θ, ϕ). This process takes linear time with
respect to the number of adversaries. Note in this approach, only the 1-dimensional R(θ, ϕ) needs to
be approximated. However, in the original approach, to update the adversary, the gradient of R(θ, ϕ)
(with respect to ϕ) must be estimated, which is a dϕ-dimensional object where dϕ is the dimension of
ϕ and often a large number. We next prove that the proposed approach can efficiently approximate
the inner optimization problem in equation 2.

Definition 1 (L∞ Norm). For a function h : X → R, we define its L∞ norm as ||h||∞ =
supx∈X |h(x)|.
Definition 2 (ϵ-packing). Let (U , d) be a metric space where d : U ×U → R+ is the metric function.
Then a finite set X ⊂ U is an ϵ-packing if no two distinct elements in X are ϵ-close to each other, i.e.,

inf
x,x′∈X :x ̸=x′

d(x, x′) > ϵ.
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Let RΦ denote a function class defined as

RΦ
.
= {Rϕ

.
= R(θ, ϕ) : Θ→ R |ϕ ∈ Φ}.

Our first result illustrates that if one chooses a set of adversaries that are different enough, then the
number of adversaries needed to approximate the inner optimization problem is in approximately
linear order of the desired precision.
Theorem 1. Consider the metric space (RΦ, || · ||∞) where for any two functions Rϕ, Rϕ′ ∈ RΦ,
the distance between them is defined as d(Rϕ, Rϕ′)

.
= ||Rϕ − Rϕ′ ||∞. Assume that RΦ has finite

radius under this metric, i.e.,
sup

ϕ,ϕ′∈Φ
d(Rϕ, Rϕ′) ≤ rmax, (4)

where rmax < ∞ is a finite number. Let Φ̂ = {ϕi}mi=1 ⊂ Φ. If RΦ̂ is a maximal ϵ-packing then
|RΦ̂| ≥ ⌈

rmax

ϵ ⌉, where ⌈c⌉ is the smallest integer that is larger than or equal to c. Moreover, for any
θ ∈ Θ, let ϕ̂ .

= argminϕ∈Φ̂ R(θ, ϕ) denote the approximated solution and ϕ∗ .
= argminϕ∈Φ R(θ, ϕ)

denote the optimal solution. Then, the approximation error of ϕ̂ on the inner optimization problem is
upper bounded by ϵ, i.e.,

|R(θ, ϕ∗)−R(θ, ϕ̂)| ≤ ϵ.

The assumption in equation 4 is essentially requesting that for any policy πθ, its performance in
two different environments cannot vary infinitely. This is a common condition satisfied by any RL
problems with finite reward functions. From another perspective, this is equivalent to suggesting that
the adversary cannot be omnipotent. Under this assumption, if we can construct a set of adversaries
that are distinct from each other, then the number of adversaries one needs for approximation is about
O( 1ϵ ), where ϵ can be interpreted as the desired level of accuracy towards the approximation. We
next show that if one only wants to use an adversarial ensemble to approximate accurately with high
probability, instead of an almost sure approximation as in Theorem 1, then the number of required
adversaries can be reduced.
Theorem 2. Assume that Φ is a metric space with a distance function d : Φ × Φ 7→ R. Let σ be
any probability measure on Φ. Let Φ̂ = {ϕi}mi=1 be a set of independently sampled elements from Φ
following identical measure σ. Consider a fixed θ ∈ Θ and assume that R(θ, ϕ) is an Lϕ-Lipschitz
continuous function of ϕ with respect to the metric space (Φ, d). Let ϕ̂ and ϕ∗ be defined the same as
in Theorem 1. For presentation simplicity, assume that σ({ϕ : d(ϕ, ϕ∗) ≤ ϵ}) ≥ Lσϵ. Let 0 < δ < 1

denote the probability of a bad event. Then with probability 1− δ, the approximation error of ϕ̂ on
the inner optimization problem is upper bounded by ϵ if m ≥ log(δ) log−1(1− Lσ

Lϕ
ϵ).

In Theorem 2, one can replace Lσ with other dense conditions about measure of Φ and reach similar
results. Compared with Theorem 1, if one can sample from a measure that is dense around the
optimal ϕ, then the required number of adversaries can be decreased. Specifically, if one would like
to decrease of probability of bad approximation by half, the extra number of adversaries needed is
about O( 1c ) where c is a constant related to how dense one can sample close to the true optimal.

While the above results shed some lights on how we should design the adversarial ensemble algorithm,
one may still encounter a couple of challenges in practice. In Theorem 1,we would like to construct an
ϵ-packing. However, as even verifying for two adversaries ϕ, ϕ′ that d(Rϕ, Rϕ′) = ||Rϕ−Rϕ′ ||∞ ≥ ϵ
is challenging, it makes construction of an ϵ-packing to be intractable. In Theorem 2, it is often
challenging to estimate Lϕ as well as to construct a measure σ that is dense near ϕ∗. To address these
problems, we let ϕi ∈ Φ̂ be learners, instead of fixed adversaries. The objective then becomes

max
θ∈Θ

min
ϕ1,...,ϕm∈Φ

min
ϕ∈{ϕi}m

i=1

R(θ, ϕ). (5)

It is important and interesting to observe that the solution set of equation 5 is identical to that of the
maximin problem in the original approach.
Lemma 3. The solution set to the optimization problem in equation 2 is identical to the solution set
of the optimization problem in equation 5. That is, for any θ ∈ Θ and integer m ≥ 1,

min
ϕ∈Φ

R(θ, ϕ) = min
ϕ1,...,ϕm∈Φ

min
ϕ∈{ϕi}m

i=1

R(θ, ϕ).
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Insights from the Theoretical Results. From an intuitive perspective, Theorem 1 and Theorem 2
reveal that when the adversaries in the ensemble are distinct to each other, the accuracy for ap-
proximating the true worst-case performance can be efficiently improved with increased number
of adversaries. Lemma 3 implies that the true benefit brought by the adversarial ensemble lies in
the optimization process instead of the final optimal solution it offers. In other words, adversarial
training with an ensemble of adversaries still optimizes the worst-case performance of an agent over
a pre-defined candidate adversary set Φ, but adversarial ensemble can alleviate the challenge brought
by the inner optimization. Importantly, these results assure us that the required size of the adversarial
ensemble to improve performance is not overwhelming. To verify the correctness of these insights,
we conduct empirical study about the effect of the number of adversaries on the performance of the
RL agents (see Section 4), and found that even with only 10 adversaries the robustness of agents can
still be significantly improved.

3.2 RESOLVING POTENTIAL OVER-PESSIMISM

The max-min game in equation 2 can lead to a solution that is too conservative due to the worst case
optimization if the range of the adversaries Φ is not chosen correctly. Specifically, as the max-min
problems in robust RL are normally solved by iterative updates of the protagonist and the adversaries,
where in each iteration we have an adversary ϕ against whom we will optimize the protagonist.
However, if the adversary set is not precise, ϕ may be a mis-specified scenario. If the rest k − 1
adversaries (or the majority of the worst-k adversaries) are indeed in the true interested scenarios,
optimizing the average over the worst-k adversaries distracts the attention of the protagonist from the
single uninterested worst case to the cases of interest.

To this end, we modify the objective of the agent πθ, from optimizing its worst-case performance to
optimizing its average performance over the worst-k adversaries. We define the worst-k adversaries
in a set of adversaries {ϕi}mi=1 for a fixed agent πθ as follows. A group of k adversaries is the
worst-k adversaries if the expected cumulative rewards received by the agent πθ under their attack
are smaller than that under the attack from the rest m− k adversaries. Specifically, for a given set of
adversaries Φ̂ .

= {ϕi}mi=1 and θ, let Wθ(ϕ)
.
= {ϕ′ ∈ Φ̂ : R(θ, ϕ′) ≤ R(θ, ϕ)}. For an integer k ≥ 1,

let Iθ,Φ̂,k

.
= {i ∈ [m] : ϕi ∈ Φ̂, |Wθ(ϕi)| ≤ k} denote the set of indices of the worst-k adversaries

for a given policy πθ. The new objective is then defined as:

max
θ∈Θ

min
ϕ1,...,ϕm∈Φ

1

|Iθ,Φ̂,k|
∑

i∈Iθ,Φ̂,k

R(θ, ϕi). (6)

Average over worst-k performances can balance out the pessimism, preventing the agent from
attaching to the scenarios that can potentially lead to over-conservative policies.

3.3 ROBUST REINFORCEMENT LEARNING WITH STRUCTURED ADVERSARIAL ENSEMBLE

We now introduce our algorithm, Robust Reinforcement Learning with Structured Adversarial
Ensemble (ROSE) in Algorithm 1. ROSE is an iterative algorithm that sequentially update the policy
πθ and the adversarial ensemble {ϕi}mi=1 to solve

max
θ∈Θ

min
ϕ1,...,ϕm∈Φ

1

|Iθ,Φ̂,k|
∑

i∈Iθ,Φ̂,k

R(θ, ϕi),

where R(θ, ϕ) = E
[∑∞

t=0 γ
trt|πθ, πϕ

]
is the expected (discounted) cumulative rewards that the

agent πθ can receive under the disturbance of the adversary πϕ. For ease of presentation, we
assume that all the rollout trajectories have length H . We will use superscript to denote the index of
iteration number. For instance, ϕt

i denotes the parameter of the i-th adversary in the t-th iteration
of the algorithm. ROSE first randomly initialize the agent policy and the adversarial ensemble. In
each iteration, we first update the adversary ensemble and then update the agent policy with the
updated adversaries. Specifically, in the t-th iteration, for i ∈ [m], we collect a batch of trajectories
ρti = {τ t,ji }

ba
j=1 where ba is the batch size for training the adversarial ensemble. The trajectories

are collected by rolling out the agent πθ and the i-adversary in the environment. Each trajectory
in ρti consists of H transition tuples {(s0, a0,−r0, s1) × · · · × (sH , aH ,−rH , sH+1)}, where for
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0 ≤ h ≤ H , ah is the action by the i-th adversary and rh is the reward received by the agent. After
collecting the trajectories for all the adversaries, we use these trajectories to estimate R(θ, ϕi) for
all i ∈ [m], and select the worst-k adversaries. Then we update these k selected adversaries with
the corresponding trajectories. The rest m − k adversaries remain unchanged. Note that any RL
algorithms can be used in the update. After the adversarial ensemble has been updated, we update
the agent policy πθ. To identify the worst-k adversaries, i.e., the elements in Iθ,Φ̂,k, we first estimate
R(θ, ϕi) for i ∈ [m] by rolling out the agent πθ with the i-th adversary in the environment to have an
estimation R̂i. Then we set Iθ,Φ̂,k to contain all the indices i such that R̂i is no greater than the k-th

smallest element of the set {R̂j}mj=1. For each adversary i in Iθ,Φ̂,k, we roll out the agent πθ with πϕi

to collect bp trajectories, each trajectory consisting of {(s0, a0, r0, s1)× · · · × (sH , aH , rH , sH+1)},
where for 0 ≤ h ≤ H , ah is the action by the agent πθ and rh is the reward received by the agent.
Then we pull all the collected trajectories together as the training dataset ρtp with k · bp trajectories in
total. Finally we use Trust Region Policy Optimization (TRPO) (Schulman et al., 2015)1 to update θ,
i.e., the parameter of the agent, with ρtp. The proposed algorithm is executed until the parameter of
the agent policy θ converges or for a maximum of T iteration, whichever happens first.

4 EXPERIMENTS

In this section, we empirically evaluate ROSE with the following baselines: (i) RL agents trained
without adversarial training, (ii) RARL (Robust Adversarial Reinforcement Learning): RL agent
trained against a single adversary in a zero-sum game (Pinto et al., 2017), (iii) RAP (Robustness
via Adversary Populations): agent trained with a uniform sampling from a population of adver-
saries (Vinitsky et al., 2020), and (iv) M2TD3 (Tanabe et al., 2022): a state-of-the-art (SOTA) method
for robust RL which, in contrast to all the baselines with adversarial training, requires information
about the uncertainty set of the environment. We note that, despite the additional information,
ROSE still outperforms M2TD3 in most scenarios with adversarial attacks (see Table 1), further
corroborating the importance of the identified problems and the value of ROSE.

We investigate 2 types of robustness: (a) robustness to disturbance on the agent (e.g., action noise
and adversarial policies) and (b) robustness to environmental change (e.g., mass and friction). For
fairness and consistency of the performance, we use TRPO to update policies for all baselines as well
as ROSE. Our adversarial setting follows Pinto et al. (2017), where the adversary learns to destabilize
the protagonist by applying forces on specific points, which is denoted by red arrows in Figure 8. The
details of the experiments can be found in Appendix E.

Table 1: Performance of ROSE and baselines under various disturbances using TRPO.

Method Baseline (0 adv) RARL (1 adv) RAP (population adv) ROSE (ours) M2TD3
Ant (No disturbance) 0.77±0.16 0.81±0.12 0.83±0.08 0.87±0.13 0.84±0.22
Ant (Action noise) 0.66±0.19 0.67±0.16 0.67±0.09 0.70±0.14 0.66±0.16
Ant (Worst Adversary) 0.21±0.18 0.25±0.17 0.30±0.14 0.38±0.16 0.29±0.11

InvertedPendulum (No disturbance) 1.00±0 0.96±0.11 0.99±0.04 0.99±0.03 1.00±0
InvertedPendulum (Action noise) 0.91±0.13 0.91±0.15 0.95±0.10 0.96±0.13 0.97±0.16
InvertedPendulum (Worst Adversary) 0.86±0.16 0.88±0.18 0.90±0.19 0.92±0.12 0.90±0.21

Hopper (No disturbance) 0.78±0.003 0.79±0.02 0.84±0 0.95±0.01 0.97±0.11
Hopper(Action noise) 0.71±0.001 0.74±0.004 0.80±0 0.91±0.006 0.77±0.07
Hopper (Worst Adversary) 0.42±0.03 0.54±0.04 0.70±0.007 0.84±0.14 0.83±0.25

Half-Cheetah (No disturbance) 0.77±0.05 0.72±0.03 0.76±0.02 0.87±0.05 0.81±0.06
Half-Cheetah(Action noise) 0.59±0.2 0.76±0.04 0.67±0.1 0.76±0.16 0.68±0.13
Half-Cheetah (Worst Adversary) 0.16±0.1 0.19±0.05 0.24±0.36 0.52±0.21 0.50±0.10

Walker2d (No disturbance) 0.85±0.27 0.84±0.43 0.43±0.02 0.84±0.44 0.88±0.31
Walker2d (Action noise) 0.78±0.31 0.80±0.28 0.36±0.04 0.83±0.37 0.79±0.21
Walker2d (Worst Adversary) 0.36±0.26 0.34±0.12 0.34±0.22 0.68±0.23 0.21±0.43

Robustness to Agent Disturbance. To investigate robustness to action disturbance, we conduct
experiments on the Ant, InvertedPendulum, Hopper, Half-Cheetah, and Walker2d continuous control

1This can be generalized to any RL policy optimization method. We provide ablation studies in Section 4 to
investigate the effect of the RL algorithm that implements ROSE.
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tasks in MuJoCo environments. To measure robustness to such effect, we report the normalized return
of the learned policies in Table 1 for 3 types of disturbances during evaluation: (i) no disturbance,
(ii) random adversary that adds noise to the actions of the agents, and (iii) the worst adversary that
represents the worst case performance of a given policy. To provide such an extreme disturbance in
(iii), for each policy trained either by a baseline method or ROSE, we train an adversary to minimize
its reward while holding the parameters of that policy as constant, and this process is repeated with
10 random seeds. In other words, the trained policies undergo disturbances from distinct adversaries,
specifically trained to minimize their rewards. In Table 1, we first show that learning with adversaries
improves the performance compared with the baseline (1st column in Table 1) even though there is no
change between training and testing conditions for the baseline, an observation also reported by Pinto
et al. (2017). We also emphasize that ROSE outperforms RAP under disturbance, which supports
our argument that simply averaging over all the adversaries may decrease robustness. We observe
that M2TD3 training with an uncertainty parameter set is relatively competitive in the environment
without disturbance while our ROSE demonstrates its strength in robustness to the action noise and
learned adversarial policy.

Robustness to Test Conditions (Environmental Change). In addition to being robust to exter-
nal disturbance, robustness should also be reflected in different internal conditions. We consider
robustness to the conditions of the test environments, such as mass and friction, which are critical
parameters for locomotion tasks in the MuJoCo environment. We conduct experiments on the Ant,
InvertedPendulum, Hopper, Half-Cheetah, and Walker2d continuous control tasks in MuJoCo envi-
ronments. During training, all the policies across different methods are trained in the environment
with a specific pair of mass and friction values. To evaluate the robustness and generalization of the
learned policies, we test the policies in distinct environments with jointly varying mass and friction
coefficients. As shown in Figure 2, our method (ROSE) has competitive performance (significantly
improved performance in Hopper and Half-Cheetah) under varying test conditions. Notably, ROSE
has demonstrated symmetric robustness with respect to varying mass and friction in Hopper task
(1st row (a)-(d) in Figure 2) where we set both the friction and mass coefficients equal to 1.0 during
training. It can observed that the performance of ROSE is symmetric under decrease/increase of the
coefficients centered at 1.0, the training coefficients. The performance of RAP and other baselines
does not demonstrate this trend. Moreover, when tested in environments that gradually shift away
from the training environments, the performance drop of ROSE is less rapid compared to other
baselines. This demonstrates the stability and predictability of ROSE. In Figure 7 in Appendix, We
provide additional experimental results about the distribution of the rewards of various methods in
distinct environments. Compared with other baselines, the rewards of ROSE are more centered in the
high-reward region and there is no extremely low rewards, further demonstrating the efficacy of our
approach. Note we omit evaluation of M2TD3 with varying test conditions since M2TD3 is already
trained with additional information on mass and friction values.

Ablation Studies. Here we provide ablation studies to better understand: (A1) the gain of addressing
the potential over-pessimism; (A2) the effect of the total number of adversaries; (A3) the effect of
value of k in the worst-k set; (A4) the update frequencies of all adversaries in ROSE; (A5) the effect
of the underlying RL algorithm that implements ROSE.

A1. To understand the benefits of addressing over-pessimism, we investigate a variation of ROSE (re-
ferred to as ROSE-all) where instead of updating the worst-k adversaries we update all the adversarial
policies. To validate our analysis in Section 3, we conduct experiments in Hopper environment and
cross-validate the robustness. Empirical evidence demonstrates that ROSE significantly outperforms
ROSE-all. Due to space limitation, please refer to Appendix C.1 and C.2 for details.

A2/A3. We vary the size the adversarial ensemble and the value of k in the worst-k set. As can be
seen from Table 2, when the value of k increases, we are approaching RAP and focusing less on
worst-case optimization. When the value of k decreases too much, the performance also decreases.
This aligns with our conjecture that a single adversary can get trapped into extreme cases, also leading
to degraded performance.

A4. It is theoretically possible that the worst adversaries stay worst and thus untrained. However, we
find in practice if initialized differently, the worst-k adversaries keep changing and all adversaries are
updated frequently. We conduct an experiment to verify this, and result is deferred to the Appendix
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(b) RARL (1 adv)
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(c) RAP (population)
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(d) ROSE
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(e) Baseline (0 adv)
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(f) RARL (1 adv)
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(g) RAP (population)
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(h) ROSE
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(i) Baseline (0 adv)
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(j) RARL (1 adv)
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(k) RAP (population)
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(l) ROSE

Figure 2: Average normalized return across 10 seeds tested via different mass coefficients on the
x-axis and friction coefficients on the y-axis. High reward has red color; low reward has blue color.
1st row: Hopper, 2nd row: Half-Cheetah, 3rd: Walker2d

due to space constraints. As can be seen in Figure 6 in the Appendix, the updates are distributed
evenly across adversaries, demonstrating that the worst-k adversaries keep changing.

A5. To ensure that the superior performance of ROSE is consistent, we conduct additional ex-
periments where all the baselines and ROSE are implemented with Proximal Policy Optimization
(PPO) (Schulman et al., 2017b) and Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2019). Notably, DDPG is an off-policy RL algorithm in contrast to the on-policy TRPO and PPO.
Due to space constraints, please see Appendix D for details. It can be observed that ROSE maintains
its strong performance across various of RL algorithms for implementation.

Table 2: Ablation Studies of Number of k in Half-Cheetah Environment.

Number of Adversaries N 5 10 20

worst k with percentage of N 10% 30% 50% 10% 30% 50% 10% 30% 50%

No disturbance 0.73±0.02 0.73±0.04 0.70±0.03 0.74±0.05 0.87±0.05 0.84±0.04 0.73±0.03 0.81±0.04 0.78±0.06
Action Noise 0.63±0.22 0.68±0.23 0.61±0.18 0.65±0.18 0.76±0.16 0.74±0.15 0.60±0.17 0.73±0.21 0.72±0.23
Worst Adversary 0.23±0.11 0.21±0.15 0.18±0.09 0.36±0.15 0.52±0.21 0.43±0.26 0.33±0.19 0.44±0.18 0.40±0.24

5 RELATED WORKS

Recent deep RL advancements, over TD learning (Kostrikov et al., 2021; Kumar et al., 2020),
actor-critic (Haarnoja et al., 2018; Lee et al., 2020), model-based (Hafner et al., 2019; Kaiser et al.,
2019) and RvS (Chen et al., 2021; Emmons et al., 2021) methods, have significantly impacted how
autonomous agents can facilitate efficient decision making in real-world applications, including
healthcare (Gao et al., 2022; Tang & Wiens, 2021), robotics (Ibarz et al., 2021; Kalashnikov et al.,
2018), natural language processing (Ziegler et al., 2019), etc. However, the large parameter search
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space and sample efficiency leave the robustness of RL policies unjustified. Consequentially, there
exists a long line of research investigating robust RL (Moos et al., 2022).

One research topic closely related to our method is domain randomization, which is a technique to
increase the generalization capability over a set of pre-defined environments. The set of environments
are parameterized (e.g., friction and mass coefficient) to allow the agent to encode the knowledge about
the deviations between training and testing scenarios. The environment parameters are commonly
uniformly sampled during training (Tobin et al., 2017; Peng et al., 2018; Siekmann et al., 2021; Li
et al., 2021b). Even though ADR (Mehta et al., 2020) is proposed to learn a parameter sampling
strategy on top of domain randomization, all of the aforementioned methods are not learned over the
worst-case scenarios. Moreover, in real-life applications, if not chosen carefully, the environment set
can also lead to over-pessimism with a larger range while selecting a smaller range of the set will be
over-optimistic. Hence, our proposed method can be readily extended into domain randomization by
considering the environments as fixed adversaries.

Robustness to transition models has been widely investigated. It was initially studied by robust
MDPs (Bagnell et al., 2001; Iyengar, 2005; Nilim & Ghaoui, 2003) through a model-based manner by
assuming the uncertainty set of environmental transitions is known, which can be solved by dynamic
programming. In this approach, a base dynamic model is assumed and the uncertainty set is crafted
as a ball centered around the base model with a predetermined statistical distance or divergence,
e.g., KL-divergence or Wasserstein distance. Following works address scenarios where the base
model is unknown but samples from the base model are available. For example, Panaganti & Kalathil
(2022); Shi et al. (2023) propose model-based algorithms that first estimates the base model and then
solve the robust MDP; Panaganti & Kalathil (2021); Roy et al. (2017) propose online model-free
policy evaluation and policy iteration algorithms for robust RL with convergence guarantees; Xu et al.
(2023) proposes algorithms with polynomial guarantees for tabular cases where both the number of
states and actions are finite.; Panaganti et al. (2022); Shi & Chi (2022) further extends the study of
robust RL with only offline data. In contrast to these works, we follow the approach of RARL which
does not explicitly specify the set of environments but learns a robust policy by competing with an
adversary. Subsequent works generalize the objective to unknown uncertainty sets, and formulate the
uncertainty as perturbations/disturbance introduced into the environments (Shi et al., 2023; Abraham
et al., 2020; Tanabe et al., 2022; Vinitsky et al., 2020; Pinto et al., 2017). Notably, RARL (Pinto
et al., 2017) introduces an adversary with the objective to affect the environment to minimize the
agent’s rewards. Notably, while in this work we focus on robustness to the transition model, there are
two other types of robustness: robustness to the disturbance of actions (Tessler et al., 2019; Li et al.,
2021a) and robustness to state/observation (Zhang et al., 2021; He et al., 2023). There are meta-RL
works that tackle distributional shift across tasks (Lin et al., 2020; Zahavy et al., 2021), which are
orthogonal to the type of robustness we consider. We also distinguish the difference in set-ups
between our work and several works. Specifically, Shen & How (2021) focuses on the scenario where
there are other agents with unknown objectives and employs an ensemble to simulate the behaviors of
these agents but not for a policy with robustness to environmental disturbance; Huang (2022) employs
Stackelberg game to address the potential over-conservatism in scenarios where the adversaries do
not act simultaneously, while our work follows the conventional Nash equilibrium widely employed
by the robust RL works (Moos, 2022); Zhai (2022) proposes to adaptively scale the weights of of
a set of adversaries to improve stability and robustness, while our method employs the ensemble
differently to address the over-pessimism caused by potential misspecification of the adversary set.
Moreover, our work additionally establishes theoretical support and rigorous understanding for the
application of ensemble methods in robust RL, which is the element missing in these works.

6 DISCUSSION

We have proposed a new algorithm ROSE that employs an adversarial ensemble to address two
important challenges in adversarial training for robust RL: the over-optimism and over-pessimism.
Experimental results on diverse RL environments corroborate that ROSE can generate policies robust
to a variety of environmental disturbance. One limitation of our work is the extra computation
power required by the adversarial ensemble. However, our algorithm can be easily distributed and
paralleled as the adversaries attack independently. Another interesting problem worth investigation is
the convergence conditions of the RL agents under adversarial training. We will pursue this question
in our future work.
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REPRODUCIBILITY STATEMENT

We have submitted the code of our implementation of ROSE as supplementary material. Information
about the benchmarks are detailed in Section 4. The experimental details including the values of
hyper-parameters are elaborated in Section 4 and in Appendix E.
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APPENDIX

A ALGORITHM

Algorithm 1 Robust Reinforcement Learning with Structured Adversarial Ensemble (ROSE)
Input: m: size of the adversarial ensemble ; k: the number of the worst adversaries to use; λp: step

size for updating the agent policy; λa: step size for updating the adversary ensemble;
Output: θ̂: parameter for the agent policy.

Randomly initialize θ and {ϕi}mi=1
t← 0, θt ← θ, ϕt

i ← ϕi ∀i ∈ [m]
for t = 0 : T − 1 do
{Update the adversarial ensemble.}
for i = 1 : m do

Estimate R(θt, ϕt
i) by rolling out the agent πθt with the adversary πϕt

i

end for
Construct Iθ,Φ̂,k with the estimations.
ϕt+1
j ← ϕt

j − λa∇ϕR(θt, ϕt
j) ∀j ∈ Iθ,Φ̂,k

{Update the agent policy.}
for i = 1 : m do

Estimate R(θt, ϕt+1
i ) by rolling out the agent πθt with the adversary πϕt+1

i

end for
Construct Iθ,Φ̂,k with the estimations.
θt+1 ← θt − λp

∑
j∈Iθ,Φ̂,k

∇θR(θt, ϕt+1
j )

end for
θ̂ ← θT

B PROOFS OF THEORETICAL RESULTS

Theorem 1. Consider the metric space (RΦ, || · ||∞) where for any two functions Rϕ, Rϕ′ ∈ RΦ,
the distance between them is defined as

d(Rϕ, Rϕ′)
.
= ||Rϕ −Rϕ′ ||∞.

Assume that RΦ has finite radius under this metric, i.e.,

sup
ϕ,ϕ′∈Φ

d(Rϕ, Rϕ′) ≤ rmax, (7)

where rmax < ∞ is a finite number. Let Φ̂ = {ϕi}mi=1 ⊂ Φ. If RΦ̂ is a maximal ϵ-packing then
|RΦ̂| ≥ ⌈

rmax

ϵ ⌉, where ⌈c⌉ is the smallest integer that is larger than or equal to c, and RΦ̂ is also an
ϵ-net. Moreover, for any θ ∈ Θ, let ϕ̂ .

= argminϕ∈Φ̂ R(θ, ϕ) denote the approximated solution and

ϕ∗ .
= argminϕ∈Φ R(θ, ϕ) denote the optimal solution. Then, the approximation error of ϕ̂ on the

inner optimization problem is upper bounded by ϵ, i.e.,

|R(θ, ϕ∗)−R(θ, ϕ̂)| ≤ ϵ.

Proof. Since RΦ̂ is an ϵ-packing, balls of radius ϵ
2 do not overlap. Consider U the union of the balls.

Any point in U is clearly within distance ϵ
2 < ϵ from RΦ̂. Consider a point ϕ∗ ̸∈ U . If the ball of

radius ϵ
2 around ϕ∗ is disjoint from U , then RΦ̂ ∪ ϕ∗ is an ϵ packing that strictly contains RΦ̂. This

violates the maximality assumption on RΦ̂. Since RΦ̂ is an ϵ-packing,then balls of radius ϵ
2 do not

overlap. Consider U the union of the balls. Any point in U is clearly within distance ϵ
2 < ϵ from RΦ̂.

Now, consider a point ϕ∗ ̸∈ U . If the ball B(ϕ∗,
ϵ
2 ) of radius ϵ

2 around ϕ∗ is disjoint from U then
RΦ̂∪ϕ∗ is an ϵ-packing that strictly contains RΦ̂. This violates the maximality of RΦ̂. Thus B(ϕ∗,

ϵ
2 )

has an intersection with at least a ball of radius ϵ
2 around some point of RΦ̂. It follows from triangle

inequality that ϕ∗ is within distance ϵ of this point. Since ϕ∗ was arbitrary, then RΦ̂ is an ϵ-covering
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and an ϵ-net. The fact that |RΦ̂| ≥ ⌈
rmax

ϵ ⌉ follows trivially from the fact that balls of radius ϵ
2 around

the points of RΦ̂ do not intersect and the triangle inequality.

Since RΦ̂ is an ϵ-net of RΦ, for any ϕ∗ there exists ϕ ∈ Φ̂ such that ||Rϕ − Rϕ∗ ||∞ ≤ ϵ. By
definition of the L∞ norm, this implies that for any θ ∈ Θ, |R(θ, ϕ∗)−R(θ, ϕ)| ≤ ϵ. Also because
ϕ̂

.
= argminϕ∈Φ̂ R(θ, ϕ), we have R(θ, ϕ̂) ≤ R(θ, ϕ). Since ϕ∗ is defined as argminϕ∈Φ R(θ, ϕ),

it holds that

|R(θ, ϕ∗)−R(θ, ϕ̂)| = R(θ, ϕ̂)−R(θ, ϕ∗)

≤ R(θ, ϕ)−R(θ, ϕ∗)

= |R(θ, ϕ∗)−R(θ, ϕ)| ≤ ϵ,

completing the proof.

Theorem 2. Assume that Φ is a metric space with a distance function d : Φ × Φ 7→ R. Let σ be
any probability measure on Φ. Let Φ̂ = {ϕi}mi=1 be a set of independently sampled elements from Φ
following identical measure σ. Consider a fixed θ ∈ Θ and assume that R(θ, ϕ) is an Lϕ-Lipschitz
continuous function of ϕ with respect to the metric space (Φ, d). Let ϕ̂ and ϕ∗ be defined the same as
in Theorem 1. For presentation simplicity, assume that σ({ϕ : d(ϕ, ϕ∗) ≤ ϵ}) ≥ Lσϵ. Let 0 < δ < 1

denote the probability of a bad event. Then with probability 1− δ, the approximation error of ϕ̂ on
the inner optimization problem is upper bounded by ϵ if m ≥ log(δ) log−1(1− Lσ

Lϕ
ϵ).

Proof. Assume that we have Φ̂ = {ϕi}mi=1 as a batch of independently sampled elements from Φ, all
following the measure of σ during sampling. For any c > 0, we have that

P(∃ϕ ∈ Φ̂ s.t. d(ϕ, ϕ∗) ≤ c)

= 1− P(∀ϕ ∈ Φ̂ : d(ϕ, ϕ∗) > c)

= 1− Pm(ϕ : d(ϕ, ϕ∗) > c)

= 1− (1− σ({ϕ : d(ϕ, ϕ∗) ≤ c}))m. (8)

On the other hand, if there exists ϕ ∈ Φ̂ such that d(ϕ, ϕ∗) ≤ c, then by the assumption that Rϕ is
Lϕ-Lipschitz continuous, |R(θ, ϕ)−R(θ, ϕ∗)| ≤ Lϕ · c. By definition of Φ̂, it holds that

|R(θ, ϕ̂)−R(θ, ϕ∗)| = R(θ, ϕ̂)−R(θ, ϕ∗)

≤ R(θ, ϕ)−R(θ, ϕ∗) = |R(θ, ϕ)−R(θ, ϕ∗)|
≤ Lϕ · c.

To prove the theorem, let c = ϵ
Lϕ

, and we want

1− δ ≤ P(∃ϕ ∈ Φ̂ s.t. d(ϕ, ϕ∗) ≤ c)

1− δ ≤ 1− (1− σ({ϕ : d(ϕ, ϕ∗) ≤ c}))m (9)
(1− σ({ϕ : d(ϕ, ϕ∗) ≤ c}))m ≤ δ

m ≤ log(δ)

log(1− σ({ϕ : d(ϕ, ϕ∗) ≤ c)

m ≤ log(δ)

log(1− Lσ

Lϕ
ϵ)

(10)

m ≤ log(δ) log−1(1− Lσ

Lϕ
ϵ)

where in Eq. equation 9 we use Eq. equation 8 and in equation 10 we use the fact that c = ϵ
Lϕ

and the
density assumption that σ({ϕ : d(ϕ, ϕ∗) ≤ ϵ}) ≥ Lσϵ. This concludes the proof.

Lemma 3. The solution set to the optimization problem in equation 2 is identical to the solution set
of the optimization problem in equation 5. That is, for any θ ∈ Θ and integer m ≥ 1,

min
ϕ∈Φ

R(θ, ϕ) = min
ϕ1,...,ϕm∈Φ

min
ϕ∈{ϕi}m

i=1

R(θ, ϕ).
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(a) ROSE-all
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(b) ROSE-worst

Figure 3: Average normalized return across 10 seeds tested via different mass coefficients on the
x-axis and friction coefficients on the y-axis for two variations of ROSE in the Hopper environment.
High reward has red color; low reward has blue color.

Proof. There are only 3 possibilities regarding the order of minϕ∈Φ R(θ, ϕ) and
minϕ1,...,ϕm∈Φ minϕ∈{ϕi}m

i=1
R(θ, ϕ):

• (i) minϕ∈Φ R(θ, ϕ) = minϕ1,...,ϕm∈Φ minϕ∈{ϕi}m
i=1

R(θ, ϕ);

• (ii) minϕ∈Φ R(θ, ϕ) > minϕ1,...,ϕm∈Φ minϕ∈{ϕi}m
i=1

R(θ, ϕ);

• (iii) minϕ∈Φ R(θ, ϕ) < minϕ1,...,ϕm∈Φ minϕ∈{ϕi}m
i=1

R(θ, ϕ).

We prove by contradiction that (ii) and (iii) are impossible to happen.

If (ii) holds, let Φ̂∗ denote the optimal solution to the right hand side (RHS) and let ϕ̂
.
=

minϕ∈Φ̂∗ R(θ, ϕ). Because (ii) holds, we have that minϕ∈Φ R(θ, ϕ) > R(θ, ϕ̂). However, this

is impossible because ϕ̂ ∈ Φ by definition of Φ̂.

If (iii) holds, let ϕ∗ .
= minϕ∈Φ R(θ, ϕ) be the optimal solution of the left hand side (LHS).

Consider any Φ̂ that includes ϕ∗, then minϕ∈Φ R(θ, ϕ) = R(θ, ϕ∗) ≥ minϕ∈Φ̂ R(θ, ϕ) ≥
minϕ1,...,ϕm∈Φ minϕ∈{ϕi}m

i=1
R(θ, ϕ). This is contradicting to the fact that (iii) holds. Hence, the

Lemma is proved.

Table 3: Performance of ROSE and baselines under various disturbances in Hopper environment.

Method ROSE-all ROSE-worst
Hopper (No disturbance) 0.86±0.07 0.95±0.01
Hopper(Action noise) 0.81±0.01 0.91±0.006
Hopper (Worst Adversary) 0.63±0.22 0.84±0.14

C ABLATION STUDIES FOR UNDERSTANDING THE COST OF OVER-PESSIMISM

To validate our theory in Section 3, we conduct extra experiments in the Hopper environment. We
investigate two versions of ROSE that updates the adversarial head with different schemes: in each
iteration during training, (i) ROSE-worst: only update the worst-k adversaries, where the worst-
k adversaries are defined as in Section 3.2, and (ii) ROSE-all: update the whole population of
adversaries.
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(a) Adversarial policy from ROSE-all
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(b) Adversarial policy from ROSE-worst

Figure 4: Average normalized return for Hopper task cross-tested with the worst adversary from (1)
ROSE-all and (2) ROSE-worst.

C.1 ROBUSTNESS TO DISTURBANCE ON THE AGENT

We report the normalized return of ROSE with different update methods as the discussion in Section
4 in Table 3 for 3 types of disturbances during evaluation: (i) no disturbance, (ii) random adversary
that adds noise to the actions of the agents, and (iii) the worst adversary that represents the worst case
performance of a given policy. Empirical evidence demonstrates that ROSE (referred to as ROSE-all)
leads to more robustness to disturbance compared with ROSE-all, which supports our analysis in
Section 3.

C.2 ROBUSTNESS TO TEST CONDITIONS (ENVIRONMENTAL CHANGES)

We follow the same evaluation metrics as we demonstrate in Section 4, considering training with a
fixed pair of mass and friction values while evaluating the trained policies with varying mass and
friction coefficients. We show that the ability to generalization is better with only updating the
worst−k adversaries during training in Figure 3.

C.3 CROSS-VALIDATION OF ROSE

After the training process of ROSE is finished, we have access to a trained agent and a group of
trained adversarial policies. To evaluate the effectiveness of training, we evaluate all the baseline
methods and ROSE-worst/all under the disturbance from two adversaries: (i) the worst adversary in
the trained adversarial ensemble of ROSE-worst and (ii) the worst adversary in the trained adversarial
ensemble of ROSE-all. The selection of the worst adversary follows the same process as described
in Section 4. As can be seen in Figure 4, ROSE-all cannot survive from its own adversary, i.e., the
adversary that it has encountered during training.

D ABLATION STUDIES ON THE RL ALGORITHM IMPLEMENTING ROSE

In Section 4, we adopt TRPO as our core baseline and consider different adversarial algorithms
built on top of TRPO. Here we mainly conduct the experiments on the Hopper, Half-Cheetah, and
Walker2d tasks using Proximal Policy Optimization (PPO) (Schulman et al., 2017a) and show the
robustness comparison with varying test conditions in Figure 5 and with various disturbances in Table
4. We also extend our method (ROSE) to an off-policy version using DDPG (Lillicrap et al., 2019),
demonstrating better performance consistently in Table 5. Our ROSE performs better against other
baselines using PPO and DDPG, indicating that our approach is not limited to a specific RL policy
optimization method.
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(a) Baseline (0 adv)

0.7 0.8 0.9 1.0 1.1 1.2 1.3

Mass Coefficient

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Fr
ict

io
n 

Co
ef

fic
ie

nt

0.0

0.2

0.4

0.6

0.8

1.0

(b) RARL (1 adv)
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(c) RAP (population)
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(d) ROSE
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(e) Baseline (0 adv)
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(f) RARL (1 adv)
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(g) RAP (population)
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(h) ROSE
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(j) RARL (1 adv)
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(k) RAP (population)
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(l) ROSE

Figure 5: Average normalized return across 10 seeds tested via different mass coefficients for PPO
on the x-axis and friction coefficients on the y-axis. High reward has red color; low reward has blue
color. 1st row: Hopper, 2nd row: Half-Cheetah, 3rd: Walker2d
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Figure 6: Number of updates for the adversaries in Ant environment with N=10 and k=3
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(b) RARL (1 adv)
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(c) RAP (population)
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(d) ROSE
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(e) Baseline (0 adv)
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(f) RARL (1 adv)

0.0 0.2 0.4 0.6 0.8 1.0

Average Normalized Return
0

10

20

30

40

50

Nu
m

be
r o

f T
es

tin
g 

Co
nd

iti
on

s
(g) RAP (population)
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(h) ROSE
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(i) Baseline (0 adv)
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(j) RARL (1 adv)
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(k) RAP (population)
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(l) ROSE

Figure 7: Distribution of average normalized return across 10 seeds with jointly varying test conditions.
High reward on the right; low reward on the left. 1st row: Hopper, 2nd row: Half-Cheetah, 3rd:
Walker2d.

(a) Hopper (b) Walker2d (c) Half-Cheetah (d) Ant (e) Pendulum

Figure 8: Illustrations of the environments evaluated in our experiments.
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Table 4: Performance of ROSE and baselines under various disturbances for PPO.

Method Baseline (0 adv) RARL (1 adv) RAP (population adv) ROSE
Hopper (No disturbance) 0.89±0.009 0.97±0.003 0.87±0.003 0.97±0.33
Hopper(Action noise) 0.72±0.07 0.94±0.002 0.53±0.2 0.88±0.001
Hopper (Worst Adversary) 0.65±0.04 0.88±0.009 0.68±0.17 0.87±0.24

Half-Cheetah (No disturbance) 0.89±0.04 0.91±0.04 0.89±0.08 0.92±0.08
Half-Cheetah(Action noise) 0.91±0.03 0.89±0.10 0.53±0.43 0.91±0.03
Half-Cheetah (Worst Adversary) 0.21±0.24 0.24±0.04 0.28±0.39 0.51±0.43
Walker2d (No disturbance) 0.94±0.32 0.91±0.33 0.90±0.10 0.98±0.09
Walker2d (Action noise) 0.93±0.29 0.86±0.35 0.99±0.14 0.98±0.03
Walker2d (Worst Adversary) 0.30±0.13 0.51±0.16 0.53±0.24 0.71±0.37

Table 5: Performance of ROSE and baselines under various disturbances using DDPG with Ant
environments

Method Baseline (0 adv) RARL (1 adv) RAP (population adv) ROSE
Ant (No disturbance) 0.80±0.12 0.84±0.06 0.86±0.09 0.89±0.10
Ant (Action noise) 0.58±0.19 0.61±0.18 0.63±0.12 0.63±0.15
Ant (Worst Adversary) 0.20±0.07 0.26±0.09 0.28±0.15 0.35±0.14

E EXPERIMENTAL DETAILS

All our experiments are run on Nvidia RTX A5000 with 24GB RAM and our implementation are
partly based on the codes published by rllab (Duan et al., 2016). In our experiments, 10 adversarial
candidates are considered in RAP and ROSE and select the worst-k adversaries for updating in each
iteration with k = 3. We implement our method as well as existing baselines using TRPO and PPO.
We list the hyperparameters we choose in Table 6. The clipping range for PPO is 0.2. For those
hyperparameters which are not listed, we adopt the default values in rllab.

Table 6: The hyperparameter used for experiments.
Hyperparameters Values

No of layers 3
Neurons in each layer 256, 256, 256
Batch Size 4000
Discount Factor (γ) 0.995
GAE parameter (λ) 0.97
No of iterations 500
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