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ABSTRACT

With the increasing application of image generation technology in artistic creation
and image editing, its potential for misuse in image forgery has also become in-
creasingly prominent, posing new challenges to verifying image authenticity. In
response to this issue, we propose the DMIL-Net. Specifically, we first design
a multi-view feature learning strategy combining RGB views, noise views, and
high-frequency information to fully capture clues from forgery regions. Secondly,
we introduce multi-level contrastive learning to capture long-term dependencies
across different modalities, leading to better fusion of multi-view features. Fi-
nally, we propose a forgery region decoupling and integration strategy, which iter-
atively decouples and integrates the body region and detail region to generate com-
plete and detail-accurate localization results. In addition, we construct the DMI
dataset, which contains 50,000 generative forgery images created via five preva-
lent diffusion-based generative image forgery methods, to support model training
and testing. Experimental results show that DMIL-Net outperforms five main-
stream methods on localization performance, generalization, extensibility, and ro-
bustness.

1 INTRODUCTION

Artificial intelligence is revolutionizing the field of visual creation with the advent of diffusion
model-based techniques like Stable Diffusion Rombach et al. (2022). These methods simulate phys-
ical diffusion to learn complex data structures and create new samples, showing significant potential
in image synthesis by generating diverse styles and detailed artworks. Local image generation,
which fills in missing or damaged image areas, is a notable application that uses surrounding pixel
information to produce coherent and realistic content. This technology excels in quality and style
preservation, benefiting art restoration and digital editing. However, it also presents challenges in
image authenticity verification due to its potential misuse for tampering, making it hard even for
experts to differentiate between authentic and AI-generated content, thus posing new challenges to
forensics.

Mainstream image tampering localization (ITL) methods are inadequate for addressing the task of
diffusion-based generative image forgery localization (DMIL). Diffusion models preserve image de-
tails and structures so well that tampered regions closely resemble originals, challenging mainstream
ITL methods that rely on traditional noise view strategies Dong et al. (2022) and frequency domain
strategies Wang et al. (2022a) for accurately detecting tampering traces. Moreover, the seamless
integration of tampered regions with the background in diffusion model outputs lacks clear bound-
aries, further complicating the localization process. These diffusion-generated images often lack the
distinct edges that mainstream ITL methods depend on, resulting in localization outcomes lacking in
edge detail. Lastly, lacking a large-scale dataset for DMIL hampers research and model training in
this field. Creating a high-quality DMIL dataset requires extensive annotation efforts and must sim-
ulate the characteristics of artificially tampered images to ensure its effectiveness and practicality.

In response to existing challenges, we introduce DMIL-Net, whose structure is shown in Figure 2.
Specifically, we divide the DMIL task into two stages: Capturing Tamper Traces and Localizing
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Figure 1: Five tampering types in DMI dataset. A: Example-guided, B: Text-guided, C: Context-
aware, D: Object removal, E:Shape-guided.

Tampered Regions. In the first stage, we first propose a multi-view feature learning strategy. Target-
ing the characteristics of diffusion models, we innovatively introduce a novel noise view extractor
and a high-frequency information extractor. We comprehensively capture clues from tampered re-
gions by combining RGB views, noise views, and high-frequency information features. Secondly,
we propose a multi-level contrastive learning strategy. On the one hand, it better captures the long-
term dependencies between the three modalities, generating more comprehensive fused features. On
the other hand, it calculates pixel-level contrastive losses of multi-view fusion features at multiple
levels, forming a deep understanding of the scene. In the second stage, we decouple the tampered
region into a body region and a detail region, with the body region concentrated in the center of
the tampered region and the detail region composed of pixels around the edge. We design three
decoder branches, two of which analyze the body and detail region of the tampered region, and
the third branch integrates the output features of the two decoupled branches to generate complete
and detail-rich localization results. To support model training, we constructed a large-scale dataset
called DMI. It covers five mainstream diffusion-based generative local image forgery methods, and
includes five common forms of tampering as depicted in Figure 1, offering comprehensiveness and
diversity. It contains 50,000 tampered images with diverse scenarios, and most masks are manually
drawn to simulate real-world tampering.

The main contributions of this work include: (1) We propose DMIL-Net, a novel generative image
forgery localization model that integrates multi-view feature learning, multi-level contrastive learn-
ing, and a tampering region decoupling-integration strategy. (2) We construct a high-quality DMI
dataset, characterized by its substantial scale, diversity, and comprehensiveness. (3) Extensive ex-
periments demonstrating the superior performance of DMIL-Net over five mainstream methods in
localization precision, generalization, extensibility, and robustness.

2 RELATED WORK

We categorize mainstream ITL methods into four main groups: traditional methods Ren et al. (2023);
Liu et al. (2022), noise-assisted methods Dong et al. (2022); Niloy et al. (2023); Lin et al. (2023); Wu
et al. (2019); Xu et al. (2023); Ji et al. (2023); Wang et al. (2023), frequency domain-assisted meth-
ods Wang et al. (2022a); Xu et al. (2023); Liu et al. (2023); Kwon et al. (2021), and edge-assisted
methods Dong et al. (2022); Lin et al. (2023); Zhang et al. (2021); Shi et al. (2023). Traditional meth-
ods primarily rely on attribute differences between tampered and untampered regions in RGB image
features. By learning these attribute differences, models can detect tampered regions. However,
image forgeries generated by diffusion models are almost indistinguishable. Noise-assisted meth-
ods aim to improve detection accuracy by combining RGB space features with noise views. Noise
views generated through operations like BayarConv Dong et al. (2022) or SRM filter Niloy et al.
(2023) can leverage differences in noise distribution between new elements introduced by forgery
operations and authentic regions Dong et al. (2022); Wu et al. (2019); Zhou et al. (2018). Frequency
domain-assisted methods mainly use DCT Wang et al. (2022a); Xu et al. (2023) or FFT Liu et al.
(2023) to extract features, capturing subtle forgery traces not visible in the RGB domain Kwon et al.
(2021); Arpita et al. (2019). However, most existing models do not fully capture the long-term de-
pendencies between multi-view features, failing to achieve effective interaction and fusion between
multi-view features. Moreover, the design of ineffective noise/frequency domain view generators
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Figure 2: The structure of DMIL-Net, components include: Noise Residual Extractor (NRE), High
Frequency Extractor (HFE), Multi-Level Contrastive Learning (MCL), Coarse Prediction Decoder
(CPD), Edge Prediction Module (EPM), Region Enhancement Block (REB), Edge Enhancement
Block (EEB), Body-Aware Block (BAB), Detail-Aware Block (DAB), and Interaction Fusion Block
(IFB).

often introduces redundant information, causing adverse interference in localization results. Image
tampering can lead to edge inconsistencies, and edge assistance can capture these inconsistencies,
thereby improving the accuracy of tampering localization Lin et al. (2023). However, forgery im-
ages generated by diffusion models does not have obvious boundaries. A single and overconfident
edge prior can often mislead the model into generating incorrect localization results.

3 METHOD

3.1 CAPTURING TAMPER TRACES

Tampering regions generated by diffusion models may have noise patterns that differ from those of
authentic regions, which can serve as clues of tampering. Inspired by Frick & Steinebach (2024), we
designed a Noise Residual Extractor (NRE). Specifically, as shown in Figure 3, first, the NRE uses
a non-local means filter as a denoising method to generate a noise-free clean view corresponding to
the original tampered image. Then, the original tampered image is subtracted from the clean view
to obtain the noise residual. Finally, to further enhance the difference areas, we multiply the values
of the noise residual map by 100. This process can be described as:

NV = (I − Denoise(I))⊗ 100. (1)

where, NV refers to the noise view, I refers to the original tampered image, Denoise(·) refers to the
non-local means filter, ⊗ denotes the multiplication operation.

High-frequency features contain details such as edges, textures, and patterns, which are crucial for
identifying subtle changes within the image. In image tampering forensics, the loss or anomaly of
these details is often direct evidence of tampering Guo et al. (2023). We designed a High-Frequency
Extractor (HFE) that applies the Laplacian of Gaussian (LoG) function to the original RGB tampered
image to obtain high-frequency information HF . This process can be described as:

HF = I − U×2(D×2(G(I))). (2)
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Figure 3: Noise view extraction process.

where, G(·) refers to the convolution operator with a Gaussian filter, U(·) denotes the upsampling
operation, and D(·) denotes the downsampling operation.

We adopt three PVTv2s Wang et al. (2022b) as the backbones of DMIL-Net, feeding the original
RGB tampered image I , high-frequency information HF , and noise view NV into respective back-
bone networks to extract tampering features ri, ni, ni, i = {1, 2, 3, 4}. Features from the same level
across the three modalities are then concatenated, and CBRs (Convolution, Batch Normalization,
and ReLU) are applied to adjust the channel number of the fused features to 64.

fi = C1×1

(
Cat(hi, ri, ni)

)
, i = 1, 2, 3, 4. (6)

where, C1×1(·) refers to 1× 1 CBR, Cat(·) refers to the concatenation operation. Contrastive learn-
ing leverages the comparison of positive and negative sample pairs to learn effective representations
of data. In the feature fusion task of three views, it can better capture the long-term dependencies
between the three modalities and generate more comprehensive fused features. Inspired by Niloy
et al. (2023); Xiao et al. (2024); Wang et al. (2021), we propose a Multi-Level Contrastive Learning
(MCL) strategy. First, we apply the contrastive learning strategy to fused features from multiple
levels, which helps the model to form an in-depth understanding of the scene at each level, thereby
more accurately localizing the tampered regions. As shown on the left of Figure 4, we select f2−4 as
the feature inputs for the MCL module, and use different numbers of 4 × 4 transpose convolutions
with two strides to upsample f2, f3, and f4 by 2, 4, and 8 times, respectively.

f↑2
2 = C1×1(TC4×4(f2)),

f↑4
3 = C1×1(TC4×4(TC4×4(f3))),

f↑8
4 = C1×1(TC4×4(TC4×4(TC4×4(f4)))).

(3)

where, TC(·) refers to transpose convolution, which is significant for restoring detail informa-
tion, enhancing feature expression capabilities, and ensuring feature space dimensionality matching,
thereby improving the accuracy and efficiency of contrastive learning. Secondly, to reduce compu-
tational costs, we use sampling operations and reshape operations to downsample the ground truth
mask by a factor of four, ensuring it matches the size of f↑2

2 . The sampling operation means that if
a batch contains more than 25% tampered pixels, it will be marked as tampered, and if it is less than
25%, it will be marked as real. Lastly, we utilize the semi-hard example sampling strategy Wang
et al. (2021) to calculate the pixel contrastive loss. For the specific level features of each training
image, we construct a memory bank by sampling 10 pixels from each class. Then, for each pixel
anchor, we draw 512 closest negative samples and 512 randomly selected negative samples from the
memory bank to calculate the contrastive loss. The process is as follows:

cl =
1

|Pz|
∑

z+∈Pz

− log
exp(z · z+/τ)

exp(z · z+/τ) +
∑

z−∈Nz
exp(z · z−/τ)

(8)

where, the positive sample for pixel z is denoted by Pz , and the negative sample by Nz . τ represents
a temperature hyper-parameter, which is set to 0.1 here. The total pixel-level contrastive loss is
denoted by Lcl, Lcl = clf2 + clf3 + clf4 .

3.2 LOCALIZING TAMPERED REGIONS

In the Localizing Tampered Regions Stage, we designed three decoder branches: the body region
decoupling branch with a Coarse Prediction Decoder (CPD), a Region Enhancement Block (REB),
and four Body-Aware Blocks (BABs); the detail region decoupling branch with an Edge Prediction
Module (EPM), an Edge Enhancement Block (EEB), and four Detail-Aware Blocks (DABs); and
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Figure 4: (left) The structure of MCL. (right) The structure of IFB.

the interaction and integration branch with four Interaction Fusion Blocks (IFBs). Next, we will
provide a detailed description of these key modules.

CPD is mainly used for generating coarse localization result cp. To ensure semantic consistency
within levels and contextual connectivity between levels, we first utilize cross-connections to fully
exploit the semantic context relationships across different levels, then progressively aggregate fea-
tures from various levels, and finally generate the cp through a 1× 1 CBR.

f∗
4 = f4 ⊗D×2(f3),

f∗
3 = f3 ⊗D×2(f2)⊗ U×2(f4)⊗ U×2(f

∗
4 ),

f∗
2 = f2 ⊗ U×2(f3)⊗ U×2(f

∗
3 ).

(9)

cp = C1×1(C3×3(Cat(f∗
2 , U×2(C3×3(Cat(f∗

3 , U×2(f
∗
4 ))))))). (10)

EPM is primarily used for generating the initial predicted edge map em. First, EPM takes low-level
feature f1 and high-level feature f4 as inputs, with the low-level feature containing rich edge details
and the high-level feature possessing abundant semantic information. Secondly, to enhance patterns
related to edges, we introduce the Sobel layer. The Sobel layer differentiates edge-related pixels
from other pixels in the given feature map using edge-related weights[7]. Finally, we obtain the
edge map em through a series of convolutional operations.

em = σ(C1×1(C3×3(Cat(f1 ⊕ S(f1), U×8(f4 ⊕ S(f4)))))). (11)

where, ⊕ refers to element addition operation, σ refers to Sigmoid function, S(·) refers to the Sobel
operator.

To maintain equilibrium between the two decoupling branches, REB and EEB are designed with
identical structures. Focusing on EEB for a detailed discussion, it leverages edge prior information
to bolster the detail region decoupling branch’s sensitivity to the edges of tampering regions and
their surrounding pixels. Additionally, by incorporating global context features, EEB allows the
network to grasp the image content more holistically.

fe
i = em⊗ fd

i ⊕ fd
i , i = 1, 2, 3, 4. (12)

gd = C1×1(Cat(fe
1 , f

e
2 , f

e
3 , f

e
4 )). (13)

where, fd
i are the multi-view fusion features fi, i ∈ {1, 2, 3, 4} after being processed by 1×1 CBRs.

The sizes of fd
2−3 are all upsampled to match those of fd

1 . gd refers to the global context features.

DAB is primarily used to analyze the detail regions and generate detail maps. To obtain the most
comprehensive information, DAB first integrates the global context feature gd, the interactive fusion
feature ci+1 output from the previous level’s IFB (when the current feature is not fd

4 ), and the
features fd

i . {
ad4 = C1×1(Cat(fd

4 , g
d)),

adi = C1×1(Cat(fd
i , g

d, ci+1)), i = 1, 2, 3
(14)
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Secondly, when faced with tampering regions that perfectly blend into the background, by capturing
multi-scale features, the model can better understand the shape and contour of the target. We input
adi into a 3 × 3 CBR and three parallel dilated convolutions with dilation rates of 2, 3, and 4,
respectively, to meticulously capture multi-scale features within different receptive fields. Then, we
calculate the feature differences between adjacent scales to identify details that were not captured
under different receptive fields.{

DBn = C3×3(a
d
i ), n = 1

DBn = DCDilation Rate=n(a
d
i ), n = 2, 3, 4

(15)

resm = DBm −DBm+1, m = 1, 2, 3 (16)

where, DC(·) refers to dilated convolution. Finally, we fuse adi with all feature residuals to obtain
the output features di and the detail map dmi.

d = C3×3(a
d ⊕ res1 ⊕ res2 ⊕ res3). (17)

dm = C1×1(d). (18)

BAB is designed to analyze the body of tampering regions, with a structure identical to DAB. Its
outputs include the body map bmi and the body decoupling features bi.

The main purpose of IFB is to fuse the output features of the two decoupling branches at a specific
level and generate complete localization results[28]. Its structure is shown on the right of Figure 4.
Specifically, feature interaction and feature fusion are first carried out through mutual connection.
This process can be described as:

d∗i = Cat(C3×3(di), bi). (19)
b∗i = Cat(C3×3(bi), di). (20)
bdi = C3×3(Cat(d∗i , C3×3(d

∗
i ), b

∗
i , C3×3(b

∗
i ))). (21)

Next, the Multi-Scale Channel Attention (MSCA) Dai et al. (2021) is introduced to further optimize
information fusion by enhancing feature selectivity. MSCA consists of two branches: one obtains
global context information through global average pooling, and the other obtains local context in-
formation. This process can be described as:

ci = C3×3(bdi ⊗MSCA(bdi)⊕ bdi). (22)

where, MSCA(·) refers to MSCA. ci refers to the interactive fusion features, which serve two pur-
poses: firstly, it is used to predict the complete localization result cmi, and secondly, it is used for
the decoupling tasks in the next hierarchical level.

3.3 LOSS FUNCTION

We utilize a combination of WBCE and WIoU loss functions Wei et al. (2020) for precise and coarse
localization maps, respectively. For body and detail maps, BCE loss is applied, while Dice loss Xie
et al. (2020) is used for edge supervision.

Lcm =

4∑
i=1

LWBCE+WIOU (cmi, GT ). (23)

Lcp = LWBCE+WIOU (cp,GT ). (24)

Lbd =

4∑
i=1

LBCE(dmi, GTdm) +

4∑
i=1

LBCE(bmi, GTbm). (25)

Lem = Ldice(em,GTem) (26)

where, GTdm, GTbm, and GTem represent the detail region labels, body region labels, and edge
labels, respectively. Then the total loss function is as follows:

Ltotal = χLcm + δLcp + εLbd + ϕLem + φLcl. (27)

where, χ, δ, ε, ϕ, φ are hyperparameters, we set them to 1, 1, 1, 1, 0.5 respectively.
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4 EXPERIMENTS

4.1 DMI DATASET

To solidify the foundation for DMIL tasks, we introduce a high-quality dataset named DMI. It covers
five mainstream tampering models, each contributing 10,000 tampered images, which significantly
influence image editing and tampering. These models include BrushNet (BN) Ju et al. (2024), Paint
by Example (PE) Yang et al. (2023), Inpaint Anything (IA) Yu et al. (2023),PowerPaint (PP) Zhuang
et al. (2024) , and Repaint (RP) Lugmayr et al. (2022) Secondly, the DMI dataset encompasses five
prevalent tampering types, representing the main trends in current image tampering techniques.
These types include example-guided generative forgery, text-guided forgery, context- aware forgery,
object removal, and shape-guided forgery. Lastly, the DMI dataset span various scenes and sub-
jects, including natural landscapes, urban environments, and portraits, offering rich material for the
training and testing of tampering detection algorithms.

4.2 IMPLEMENTATION DETAILS

In this paper, we implemented DMIL-Net using the PyTorch framework, and the model training is
facilitated with the Adam optimizer. The learning rate is configured at 1× 10−4, and the batch size
is set to 10. The model undergoes a total of 50 training epochs. All experiments were carried out on
a single NVIDIA GeForce RTX 4090 GPU device. We resize all the input images to and augment
them by randomly horizontal flipping. We choose the F1-Score (F1) to evaluate the performance
of DMIL-Net. The experiments utilized a total of six datasets, including DMI, DID Wu & Zhou
(2021), IMD Novozamsky et al. (2020), Nist16 NIST (2016), DEFACTO (Splicing) Mahfoudi et al.
(2019), and AutoSplice (AUTO) Jia et al. (2023). Among them, DID was used solely as a test set,
while DMI, IMD, Nist16, DEFACTO, and AUTO were divided into train and test sets in an 8-to-2
ratio.

4.3 ABLATION STUDY

We conducted a detailed ablation study on DMIL-Net. We devised six schemes, with the specific
configuration of each scheme detailed in Table 1. The experiments were conducted on the DMI
dataset, which includes five sub-test sets in its test set: BN, PE, IA, PP, and RP, with each sub-
test set containing 2,000 tampered images. The results, as shown in Table 2, lead to the following
conclusions: Firstly, the incorporation of noise views and high-frequency information significantly
improved model performance, with Scheme 3 showing a 0.047 increase in F1 over Scheme 1 when
dealing with the PP subset. Then, the introduction of a multi-level contrastive learning strategy
enhanced multi-view feature fusion, leading to better detection of tampering regions, and Scheme 4
outperformed Scheme 3 across all subsets. Notably, there was a 0.16 increase in F1 for the IA subset
and a 0.12 increase for the PP subset. Lastly, the decoupling and integration strategy preserved local
details while ensuring the completeness of localization results. Scheme 6 demonstrated a clear
performance improvement over Scheme 4 in all subsets.

4.4 COMPARISON WITH STATE-OF-THE-ART METHODS

We compared DMIL-Net with five mainstream methods: MVSS-Net Dong et al. (2022), MFI-Net
Ren et al. (2023), TA-Net Shi et al. (2023), CFL-Net Niloy et al. (2023), and EMF-Net Ren et al.
(2024). We selected DMI as the training and testing dataset. The results are shown in Table 3. The
experimental results indicate that DMIL-Net outperforms all other methods across all subsets. EMF-
Net has the second-best performance, but DMIL-Net significantly surpasses EMF-Net. The local-
ization results of the six methods are depicted in Figure 5. DMIL-Net produces the most complete
localization results with the richest edge details. This demonstrates that DMIL-Net has excellent
performance in dealing with diffusion-based generative forgery operations.

4.5 GENERALIZATION EVALUATION

The DID dataset includes ten representative inpainting methods, six of which are deep learning-
based, including GC Yu et al. (2019), CA Yu et al. (2018), SH Yan et al. (2018), EC Nazeri et al.

7
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Image Masks MVSS-Net MFI-Net TA-Net EMF-Net EMF-Net DMIL-Net

Figure 5: The localization results of six SOTA methods on DMI.

(2019), LB Wu et al. (2021), and RN Yu et al. (2020), and four traditional methods, including NS
Bertalmio et al. (2001), LR Telea (2004), PM Herling & Broll (2014), and SG Huang et al. (2014).
Each of these ten methods contributed 1000 fake images. In this experiment, we trained DMIL-Net
on the DMI train set and tested it against five other methods on the DID dataset. As shown in Table
5, cross-dataset testing is challenging, with few models achieving satisfactory results. DMIL-Net
slightly underperformed EMF-Net in the GC subset. However, it outperformed other methods in the
remaining nine subsets, demonstrating its robust generalization ability.

Table 1: Configurations of six schemes.

Methods Configurations

Scheme 1 Base + None
Scheme 2 Scheme 1 + HFE
Scheme 3 Scheme 2 + NRE
Scheme 4 Scheme 3 + MCL
Scheme 5 Scheme 4 + BAB+ DAB +IFB
Scheme 6 Scheme 5 + CPD+ EPM + REB + EEB

Table 2: Results of the ablation study.

Methods BN PE IA PP RP

Scheme 1 0.885 0.865 0.848 0.852 0.586
Scheme 2 0.887 0.875 0.849 0.867 0.593
Scheme 3 0.889 0.885 0.857 0.899 0.604
Scheme 4 0.891 0.892 0.873 0.911 0.609
Scheme 5 0.906 0.897 0.891 0.920 0.618
Scheme 6 0.918 0.928 0.893 0.936 0.627

4.6 EXTENSIBILITY EVALUATION

IMD is a real-life manipulated dataset that focuses more on simulating complex and challenging
real-life situations. Nist16 includes three types of tampering: splicing, copy-move, and removal.
DEFACTO contains the splicing tampering type. AUTO is an AIGC dataset constructed using the
DALL-E2 model for automatic image editing. In this experiment, we evaluated the extensibility of
DMIL-Net on the four aforementioned datasets. As shown in Table 4, the results indicate that DMIL-
Net has a significant advantage in handling tampering types other than local generative forgery,
achieving the best performance across all four datasets and demonstrating its excellent extensibility.
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Table 3: Results of six SOTA methods on DMI
dataset.

Methods BN PE IA PP RP

MVSS-Net 0.774 0.689 0.606 0.717 0.511
MFI-Net 0.864 0.856 0.722 0.863 0.564
TA-Net 0.581 0.483 0.266 0.587 0.288
CEL-Net 0.809 0.719 0.656 0.791 0.486
EMF-Net 0.899 0.881 0.855 0.875 0.589
DMIL-Net 0.918 0.928 0.893 0.936 0.627

Table 4: Results of six methods on the IMD,
Nist16, DEFACIO, and AUTO datasets.

Methods IMD Nist16 DEFACIO AUTO

MVSS-Net 0.363 0.879 0.715 0.913
MFI-Net 0.457 0.866 0.844 0.922
TA-Net 0.433 0.883 0.831 0.934
CEL-Net 0.433 0.884 0.907 0.917
EMF-Net 0.453 0.900 0.842 0.929
DMIL-Net 0.593 0.923 0.924 0.958

Table 5: The cross-dataset test results of six methods, with the train set being DMI.

Methods GC CA SH EC LB RN NS LR PM SG

MVSS-Net 0.261 0.319 0.539 0.239 0.288 0.445 0.380 0.301 0.224 0.533
MFI-Net 0.249 0.515 0.794 0.606 0.709 0.643 0.359 0.426 0.363 0.659
TA-Net 0.127 0.106 0.313 0.351 0.189 0.237 0.054 0.115 0.027 0.091
CFL-Net 0.210 0.186 0.406 0.176 0.140 0.347 0.227 0.138 0.116 0.293
EMF-Net 0.306 0.228 0.488 0.167 0.377 0.390 0.172 0.079 0.049 0.140
DMIL-Net 0.286 0.848 0.916 0.859 0.943 0.861 0.653 0.743 0.797 0.897

4.7 ROBUSTNESS EVALUATION

In this experiment, we individually applied Gaussian noise, Gaussian filtering, gamma correction,
and scaling attacks to the BN subset of the DMI test set to assess the stability of DMIL-Net. As
illustrated in Figure 6, all of these attacks increased the challenge of localization, resulting in a
noticeable performance decline in all models as the severity of the attacks escalated. Despite this,
DMIL-Net consistently outperformed other models, indicating its high resistance to the individual
effects of Gaussian noise, Gaussian filtering, gamma correction, and scaling attacks. These findings
highlight DMIL-Net’s robustness against a range of image perturbations, even when subjected to
varying levels of each specific attack.

Figure 6: Results of robustness evaluation.

5 CONCLUSION

In this paper, we propose a novel network, DMIL-Net, for the DMIL task and construct the DMI
dataset based on five different diffusion models. DMIL-Net incorporates the multi-view feature
learning strategy, the multi-level contrastive learning strategy, and the tampering region decoupling
and integration strategy. Extensive experiments have proven the effectiveness of the proposed strate-
gies and demonstrated DMIL-Net’s significant advantages in localization performance, generaliza-
tion, extensibility, and robustness. In future work, for the DMIL task, we consider designing new
forensic models based on diffusion models to further enhance the generalization capabilities against
the latest generation model image tampering tasks.
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A PRODUCTION OF THE DMI DATASET

To construct the DMI dataset, we initially curated original images from a variety of high-quality
sources, including datasets such as Wider Person Zhang et al. (2019), Total-Text Ch’ng et al. (2020),
RCTW 17 Shi et al. (2017), Coco Lin et al. (2014), CelebA-HQ Liu et al. (2015), and Place2 Zhou
et al. (2017), as well as real photographs from the internet that are free of copyright restrictions,
ensuring both diversity and authenticity in our dataset. Subsequently, we created tampering masks
through hand drawing, SAM, or the object selection tool in Photoshop, with the specific location,
target, and shape of the tampering chosen freely by the creators to simulate real-world tampering
scenarios while ensuring the masks have semantic meaning. Furthermore, we manually crafted or se-
lected prompts and examples for the diffusion model to enhance the credibility of the forged images
and increase the challenge of the dataset. The generated images were then filtered, retaining only
those without obvious tampering traces, with semantic meaning, and of the highest visual quality.
Finally, we subjected the selected tampered images to various post-processing operations, includ-
ing selective blurring, JPEG compression, JPEG restoration, downscaling, and super-resolution, to
further eliminate traces of tampering and increase detection difficulty. The number of images un-
dergoing post-processing operations is detailed in Table 6, with a typical image often undergoing
multiple post-processing operations.
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B DATASETS COMPARISON

As shown in Table 7, we conducted a comparative analysis of 18 image tampering datasets. We
observed that most existing datasets primarily focus on traditional tampering types, such as splicing,
copy-move, and removal, which rely mainly on manual operations or non-deep learning techniques.
Forensics models trained on these datasets are no longer suitable for the current reality of AIGC
image tampering scenarios. Among these datasets, only DID, AutoSplice, CoCoGlide, and DMI
include deep learning-based generative models. The DID dataset mainly contains inpainting meth-
ods based on CNNs and GANs, which leave noticeable tampering traces. Although AutoSplice
and CoCoGlide incorporated diffusion models, they suffer from small scale and limited tampering
types. In contrast, the DMI dataset includes five mainstream diffusion model-based local generative
forgery methods, covering five major tampering types, and provides 50,000 high-quality tampered
images, effectively addressing the shortcomings of current mainstream datasets.

Table 6: Number of post-processed images.

Operation Selective blur JPEG compression JPEG restoration Downsizing Super-resolution

Number of images 21K 12K 12K 5K 5K

Table 7: Summary of previous image tampering datasets and our DMI.

Datasets Number of
forged images

Traditional image forgery AIGC image forgery

Splicing Copy-
move Removal Example-

guided
Text-

guided
Context-

aware
Shape-
guided

Object
Removal

Columbia Ng et al. (2009) 180 ✓ × ✓ × × × × ×
CASIA1 Dong et al. (2013) 921 ✓ ✓ × × × × × ×
CASIA2 Dong et al. (2013) 5,123 ✓ ✓ × × × × × ×
Wild Zampoglou et al. (2015) 9,657 ✓ ✓ ✓ × × × × ×
IMD2020 Novozamsky et al. (2020) 35,000 ✓ ✓ ✓ × × × × ×
Nist16 NIST (2016) 564 ✓ ✓ ✓ × × × × ×
HTSI12K Hao et al. (2024a) 12,000 ✓ × × × × × × ×
IPM15K Ren et al. (2023) 15,000 ✓ ✓ ✓ × × × × ×
TMI12K Ren et al. (2024) 12,000 ✓ ✓ ✓ × × × × ×
MICCF-2000 Amerini et al. (2011) 700 ✓ × ✓ × × × × ×
VIPP Synth Amerini et al. (2011) 4,800 ✓ × ✓ × × × × ×
MFC2018 Guan et al. (2019) 3,265 ✓ ✓ ✓ × × × × ×
MFC2019 Guan et al. (2019) 5,750 ✓ ✓ ✓ × × × × ×
RLS26K Hao et al. (2024b) 26,000 ✓ ✓ ✓ × × × × ×
DID Wu & Zhou (2021) 10,000 × × ✓ × × ✓ × ✓
AutoSplice Jia et al. (2023) 2,273 × × × × ✓ × × ×
CoCoGlide Guillaro et al. (2023) 512 × × × × × × × ✓
DMI (Ours) 50,000 × × × ✓ ✓ ✓ ✓ ✓

C GENERALIZATION EVALUATION VISUALIZATION

In generalization evaluation experiment, the localization results of cross-dataset testing are shown
in Figure 7, demonstrate that DMIL-Net can generate more precise localization results compared to
other methods, confirming the superiority of DMIL-Net in localization performance.
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GC CA SH EC LB RN NS LR PM SG

Figure 7: The localization results of cross-dataset testing. The first to eighth rows correspond to
fake images, masks, MVSS-Net, MFI-Net, TA-Net, CFL-Net, EMF-Net, and DMIL-Net.
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