
Emergence and Effectiveness of Task Vectors in In-Context Learning:
An Encoder Decoder Perspective

Seungwook Han * 1 Jinyeop Song * 1 Jeff Gore 1 Pulkit Agrawal 1

Abstract
Autoregressive transformers exhibit adaptive
learning through in-context learning (ICL), which
begs the question of how. Prior works have shown
that transformers represent the ICL tasks as vec-
tors in their representations. In this paper, we
leverage the encoding-decoding framework to
study how transformers form task vectors dur-
ing pretraining and how their task encoding qual-
ity predicts ICL task performance. On synthetic
ICL tasks, we analyze the training dynamics of
a small transformer and report the coupled emer-
gence of task encoding and decoding. As the
model learns to encode different latent tasks (e.g.,
“Finding the first noun in a sentence.”) into dis-
tinct, separable representations, it concurrently
builds conditional decoding algorithms and im-
proves its ICL performance. We validate this
phenomenon across pretrained models of varying
scales (Gemma-2 2B/9B/27B, Llama-3.1 8B/70B)
and over the course of pretraining in OLMo-7B.
Further, we demonstrate that the quality of task en-
coding inferred from representations predicts ICL
performance, and that, surprisingly, finetuning the
earlier layers can improve the task encoding and
performance more than finetuning the latter lay-
ers. Our empirical insights shed light into better
understanding the success and failure modes of
large language models via their representations.

1. Introduction
Throughout history, humans have made sense of the world
by distilling complex experiences into fundamental abstrac-
tions, such as physics and mathematics. These mental mod-
els enable us to learn quickly, predict outcomes, and adapt
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to new situations. In artificial intelligence, autoregressive
transformers are beginning to exhibit similar capabilities
(Brown et al., 2020; Bubeck et al., 2023; Ajay et al., 2023;
Han et al., 2024). Through in-context learning (ICL), they
adapt to new tasks without parameter updates, suggesting
they might also be forming internal abstractions (Raventós
et al., 2024; Hong et al., 2024; Zheng et al., 2024; Kumar
et al., 2024; Han et al., 2024).

Hendel et al. (2023); Merullo et al. (2023); Todd et al.
(2023) introduce a mechanistic perspective on how pre-
trained LLMs represent the latent concepts underlying the
ICL task as vectors in their representations. They empiri-
cally demonstrate that these task-specific vectors can trigger
the desired ICL behavior in many cases, with the effec-
tiveness varying across tasks. Although an impactful first
observation, there still remains unanswered questions of
why these task vectors exist in the first place and why the ef-
fectiveness varies by task. This necessitates a deeper mech-
anistic understanding of this internal abstraction behavior
of LLMs.

In our work, we leverage the encoding-decoding framework
to investigate the origin and formation of task vectors in
transformers. To study their emergence during pretraining,
we train a small transformer on a mixture of sparse linear
regression tasks. We find that task encoding emerges as
the model learns to map different latent tasks into distinct,
separable representation spaces. This geometric structuring
of the representation space is coupled with the development
of task-specific ICL algorithms – namely, task decoding.
Through causal analysis, we demonstrate that the model
associates different algorithms to different learned concepts
in the representation space and that ICL happens through
the two-step process. Importantly, we see that the emer-
gence of the two-stage process coincides with each other,
suggesting a mutual dependence between the two.

Inspired by these findings, we investigate the task encoding-
decoding phenomenon across different pretrained model
families and scales (Llama-3.1-8B/70B and Gemma-2
2B/9B/27B) on more natural ICL tasks, such as part-of-
speech tagging and bitwise arithmetic. We introduce task
decodability, a geometric measure that quantifies how ef-
fectively a model can decode the task from its intermediate
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Figure 1. An overview of our work. We study the task encoding-decoding to explain why and how task vectors emerge in pretrained
LLMs. We demonstrate that transformers concurrently learn to map latent concepts into separable representations and develop task-specific
decoding algorithms. We validate the generality of this finding across model families and scales, and show that the quality of task
encoding-decoding can predict ICL task performance.

representations. We demonstrate that task decodability is
causally related to ICL performance through ablation stud-
ies on ICL examples, finetuning, and prompting. Overall,
our study reveals that the encoder-decoder frameworks pro-
vide valuable insights into the emergence of task vectors
and why their effectiveness varies across tasks.

Our main contributions are as follows:

1. We first study the emergence of task vectors during
training under the encoder-decoder framework. By
training a small transformer on synthetic ICL tasks
(§3.3), we observe the coupled occurrence of task en-
coding and task decoding, ultimately forming task vec-
tors.

2. We introduce Task Decodability (TD) as a geometric
measure to quantify how well the model can infer the
latent tasks from its representations and demonstrate
that TD effectively predicts downstream ICL perfor-
mance in pretrained LLMs (§4.2). We demonstrate our
framework’s generality across tasks, model families,
and scales (Llama 3.1 8B/70B, Gemma 2B/9B/27B)
and further study its evolution throughout pretraining
using different checkpoints of OLMo-7B.

3. We establish the causal relationship between TD and
ICL performance in pretrained LLMs through mech-
anistic intervention (§4.1) and controlled finetuning
(§4.4). Contrary to common convention, we show that
finetuning the earlier layers improves ICL performance
more than finetuning the later layers (Wu et al., 2024;
Kumar et al., 2022).

4. We offer an unifying perspective on how the learning
signal of more in-context examples, finetuning, and
prompting (§4.5) materializes in LLMs.

2. Related Work
Mechanisms of ICL. Astounded by LLMs’ ability to per-
form ICL, many have proposed theories to understand the
mechanisms of ICL. Some works (Dai et al., 2023; von Os-
wald et al., 2023; Ahn et al., 2024; Akyürek et al., 2024)
have proposed that LLMs, with linear attention (Katharopou-
los et al., 2020), can implement stochastic gradient descent
to perform ICL. Other works (Xie et al., 2021; Wang et al.,
2024; Ye et al., 2024) have presented a Bayesian frame-
work to theoretically explain the workings of ICL. This
view implies that the model implements a two-stage algo-
rithm to estimate the posterior P (z|D) and the likelihood
P (y∗|x∗,D). In this work, we adopt this framework and
demonstrate how the model implements it through its in-
termediate representations. More specifically, we study the
emergence of task encoding and decoding.

Task Vectors and Latent Concepts in LLM Represen-
tations. Recent work by Todd et al. (2023) and Hendel
et al. (2023) identifies task-specific vectors in LLMs that can
induce desired in-context learning behaviors (e.g., object-
color mapping). Building on this foundation, our study ex-
amines when and how task-specific representations emerge
and how their quality (TD score) can be measured and used
to predict downstream ICL performance. Moreover, Park
et al. (2024) study the different algorithmic stages for ICL
under homogeneous Markov chain settings. In contrast, our
work expands the study to heterogeneous tasks, a regime
more reflective of LLM pretraining, and proposes a more
general encoding-decoding framework to understand the
mechanics of ICL.

Beyond the scope of task-specific vectors, several studies
have explored how language models encode a wide range
of latent concepts (Dalvi et al., 2022; Merullo et al., 2023),
including truthfulness (Marks & Tegmark, 2023), time, and
space (Gurnee & Tegmark, 2024). These investigations re-
veal that such notions can be linearly separable in the hidden
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representations, and that model scaling often yields more
interpretable features (Bricken et al., 2023; Cunningham
et al., 2023)

Mechanistic Interpretability. To study the causal rela-
tionship between the quality of task encoding-decoding and
downstream ICL performance, we adopt causal mediation
analysis techniques from Geiger et al. (2020); Vig et al.
(2020); Todd et al. (2023); Heimersheim & Nanda (2024);
Merullo et al. (2024). We specifically use the method of
activation patching, where we replace the activations of an
intermediate layer from a sample with another.

3. Understanding In-context Learning
3.1. Notation and Background

We focus on ICL problems, where the goal is to pre-
dict y∗ from a query x∗, given some in-context examples
D = {(xi, yi)}ni=1. Each problem shares a latent task z
that links inputs x to outputs y. For instance, in an ICL
task where the latent task is object-color mapping, we pro-
vide demonstrations like (apple, red), (banana, yellow), and
(grape, purple), and then ask for what comes after (lemon,
?). We employ this parameterization to accommodate latent
tasks varying in complexity, from simple function regres-
sion problems (Garg et al., 2022; von Oswald et al., 2023;
Li et al., 2023) to Part-of-Speech (POS) tagging (Blevins
et al., 2022; Banko & Moore, 2004) and bitwise arithmetic
(He et al., 2024).

3.2. Theoretical Framework

Of the many different frameworks (Bai et al., 2024; Min
et al., 2022; von Oswald et al., 2023; Akyürek et al., 2024)
to understand the workings of ICL, we adopt the Bayesian
view (Xie et al., 2021; Mittal et al., 2024; Wang et al., 2024;
Ye et al., 2024). It proposes that transformers implicitly
infer the latent variable z underlying the demonstrations
and apply it to generate an answer. More formally,

p(y∗ | x∗,D) =
∫
Z
Pθ(y∗ | x∗, z)Pθ(z | D) dz (1)

This framework suggests ICL is a two stage process. First,
latent concept inference. Latent concept z is approxi-
mated from D through the distribution ẑ ∼ Pθ(z|D). Sec-
ond, selective algorithm application. The model applies
an algorithm conditioned on ẑ to predict y∗ as given by
Pθ(y∗|x∗, ẑ).

Although theoretically compelling, it was not until recently
that Hendel et al. (2023); Todd et al. (2023); Merullo et al.
(2023) showed empirical evidence of models encoding the
latent concepts in the intermediate representations. They

illustrate that task-specific vectors are then decoded and
trigger the desired ICL task behavior. With a simple encoder-
decoder analogy, these findings suggest that the two-stage
behavior of ICL, as described in Equation (1), is mediated
by the encoding and decoding of latent variables within the
representation space. Building on this idea, we begin our
investigation with the following questions:

1. How do task vectors emerge during training, and what
drives their varying effectiveness across tasks?

2. How is the model’s ability to accurately infer the latent
tasks related to downstream ICL performance?

3.3. Motivation: Synthetic Experiments

As a motivating experiment, we study the formation of
task vectors during training dynamics of a small autoregres-
sive transformer on synthetic ICL tasks. We observe that,
as the model “localizes” the latent task by building a dis-
tinct representation from the others, it associates it with a
uniquely corresponding decoding algorithm. Building on
this observation, we outline the task encoding and decoding
framework to explain the formation and mechanism of task
vectors.

Task. We compose our task as a mixture of sparse linear
regression. We follow the conventional linear regression
setup from Garg et al. (2022); von Oswald et al. (2023)
and construct the input-output pair (xi, yi) by sampling
xi ∼ N (0, ID) and yi = WTxi+ϵi, where W is randomly
generated from a standard normal distribution, N (0, ID),
and ϵi ∼ N (0, σ2). We, however, add sparsity constraints
to W with the sparsity pattern represented by the basis Bk.
Each Bk has a rank of r. In other words, the basis chooses
the dimensions of W to turn on and off. The basis is sampled
uniformly from B = {B1, B2, B3, B4} and each basis is
non-overlapping and orthogonal to each other. By default,
we set D = 16 and r = 4. By adding this layer of latent
concept of B, we can explicitly control and interpret the
latent concepts, and analyze their representations.

Model and Training. We train a 12-layer GPT-2 architec-
ture transformer (Radford et al., 2019) with an embedding
dimension of 128 and 8 attention heads. We train the model
to minimize mean squared error (MSE) loss over the se-
quence length of 20. We run 5 different random seeds for
training and report observations that generalize across the
runs. We detail the experimental setup in Appendix D.2.

Theoretical Error Bounds. The error bounds of
regression depend on whether the model learns to infer
the underlying bases. If the model can infer the bases,
then the model can theoretically achieve r-dimensional
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Figure 2. Coupled emergence of task encoding and conditional decoding algorithms in mixture of sparse linear regression. The loss
curve on the left-hand side shows different convergence dynamics per basis and show three phases of descent, which we mark with (a),
(b), and (c). The test MSE is the mean squared error computed over a sequence of 20 in-context examples. On the right-hand side, we
plot the geometric changes in the representations and how they separate by basis at these marked points. These points coincide with the
algorithmic switching behavior. For the UMAP visualizations, we randomly draw 100 samples for each basis. Next, we collected y-token
representations of 5th layer at 20th demonstrations and plotted the UMAP with the parameters of n neighbors=15 and min dist=0.1.

regression, where the MSE approaches 0 with r in-context
examples. If not, the model, in the worst case, can perform
D-dimensional regression with r-sparsity, which has
a longer tailed error curve that approaches 0 with D
in-context examples. With these insights, we can better
analyze which latent basis the model has learned and the
associated algorithm from its error curve. Note that we
define “algorithm” as a class of statistical methods for linear
regression, as detailed in Appendix D.1.

Observation 1: Different Loss Dynamics per Basis. We
interestingly observe that each basis, despite having identi-
cal task complexities, exhibits different loss descents during
training. Figure 2 shows the test MSE averaged over the
sequence over training. B1 displays a distinct loss descent
dynamic, undergoing an abrupt drop at epoch 10. In contrast,
the other three bases, B2, B3, and B4, exhibit correlated
loss descent dynamics, with two smaller descents at 10 and
40 epochs. This suggests that the model learns to infer B1

differently and applies a selective decoding algorithm.

Observation 2: Emergence of Separable Representations
and Coupled Algorithmic Phase Transitions. We also an-
alyze the geometry of the intermediate representations at
layer 5 to question how the model may be encoding the
latent bases. Surprisingly, at the three points of descent
(a, b, c) marked in Figure 2, the model gradually builds
separate representations for the different bases as shown in
the UMAP visualizations. At point (a), the three bases are
clustered together and the model’s algorithm resembles a 16-
dimensional weighted LASSO regression. As B1 separates
out at point (b), the model starts to leverage the inferred
basis to switch to a 4-dimensional regression. At point (c),
when all four classes are separable, the model converges

to the optimal 4-dimensional regression. This observation
suggests that model encodes the tasks into separated repre-
sentations to conditionally apply decoding algorithms.

Causal Relation between Task Encoding and Perfor-
mance. We conduct perturbation analysis to validate that
the model conditionally applies decoding algorithms based
on the separated representations. Given an input of a source
basis, we patch the activations of layer 5 – representations
of the residual stream of the transformer layer – with the
mean activations of a target basis and analyze whether it
will improve or degrade performance. We specify layer 5
for this activation patching analysis because the separation
of representations by concept is only clearly observed from
that layer and afterwards based on the UMAP visualizations
in Figure 11. We formally describe the activation patch-
ing procedure in Appendix C. When the source is equal to
the target (self-perturbation), the patching should help the
model identify the basis and improve performance. Other-
wise, it should hinder correct basis inference and therefore
degrade performance. We perform this analysis at different
steps of training – (b) and (c) from Figure 2, when the latent
task representations are semi and fully separable.

In Figure 7 of Appendix D.3, we present the perturbation
analysis at point (b) on the left. In this case, B2,3,4 forms
one cluster and B1 another. We observe that all the self-
perturbations along the diagonal and intracluster (B2,3,4)
slightly decrease the loss or show no effect. However, when
we apply perturbations across different clusters, the loss
spikes, indicating that we trigger different decoding algo-
rithms unsuitable for the input sequence. This analysis
shows that, because the model was only able to encode two
different latent concepts in the intermediate representations,
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it only learns two classes of algorithms, one for B1 and
another for B2,3,4.

On the right of Figure 7, we conduct the same study at
convergence, when the model learns to encode all of the
latent concepts as distinct representations. Surprisingly, we
observe that the model undergoes an algorithmic phase tran-
sition of implementing individual task-specific algorithms.
Not only does all the self-perturbation along the diagonal
improve performance more noticeably, but also any per-
turbation to a different basis results in significantly higher
losses.

These results altogether draw the picture that a transformer,
when trained to perform ICL, gradually learns to encode the
latent tasks into separable representation spaces and learns
to conditionally apply decoding algorithms simultaneously.
These observations suggest that task encoding and decoding
are mutually dependent.

Generalizability to Increasing Dimensions and Basis
Overlap We investigate this coupled emergence of task
encoding and decoding under more complex settings. To
this end, we increase the number of tasks and introduce
non-orthogonal bases with overlaps (i.e., some bases are
correlated). We describe the specific details in Appendix
D.4. First, we, once again, observe the coupled emergence
of task encoding and decoding in these more complex tasks
in Figure 13 of Appendix D.4. Second, as shown in Fig-
ure 15 of Appendix D.4, a more intriguing pattern emerges:
bases that share overlap and are correlated, even at conver-
gence, are not fully separated in the representation space
and share the same loss over training. This suggests that, in
natural text, where tasks are often correlated and exhibit se-
mantic overlaps, the model may similarly fail to disentangle
their representations and distinguish these tasks.

Generalizability to Mixture of Various Regression Tasks
To further validate the robustness of the task encoding-
decoding framework, we trained a transformer using a mix-
ture of various regression tasks (linear, sparse linear, leaky
ReLU, and quadratic regression) from Li et al. (2023) de-
tailed in Appendix F. In Figure 16, the model successfully
learns linear, sparse linear, and leaky ReLU regression but
fails at quadratic regression. Despite strong ICL perfor-
mance, intermediate representations across the regression
tasks in intermediate layers have high overlap. We hypothe-
size that task vectors do not naturally emerge here because
these tasks could be solved with the same core linear regres-
sion algorithm (Li et al., 2023).

To verify the conjecture, we perform attention head pruning
experiments detailed in Appendix F and report that the dif-
ferent regression families, excluding quadratic regression,
share the same decoding algorithm. We sequentially prune

each attention head and measure the resulting change in
MSE. Figure 17 shows that in the mixture of regression
tasks, there is a consistent sharing of attention heads across
linear regression, leaky ReLU, and sparse linear regression
tasks, excluding quadratic regression. This contrasts with
the head pruning result of the sparse linear regression in
Figure 18, where each basis seemingly operates with a dif-
ferent set of attention heads and algorithm. This suggests
structural similarity in the algorithms in this new mixture
setting and provides a direct evidence that they are struc-
turally indistinguishable within the model, supporting our
hypothesis.

3.4. Task Encoding-Decoding

Based on the observations above, we define task encoding
and decoding that serves as the core framework throughout
the paper. The formal definition is in Appendix B.

Definition 3.1 (Task Encoding and Decoding). Over
training, transformers learn separable representa-
tions by latent tasks – task encoding. Simultane-
ously, the model learns task-specific algorithms by
leveraging the separable representation spaces – task
decoding. We illustrate that these two processes
combined manifest as task vectors, and that they
emerge concurrently during training.

4. Towards Natural Experiments
In this section, we empirically study the task encoding-
decoding phenomenon in pretrained LLMs. Specifically,
we test several hypotheses driven by the the proposed task
encoding-decoding framework and demonstrate that our
geometric measure - called Task Decodability - can serve as
a proxy of the quality of task vector and ICL performance.

Tasks. We construct two classes of algorithmic tasks –
natural language processing and arithmetic – comprising a
total of 12 tasks. Within each class, the tasks are designed to
be semantically similar, ensuring that the input distributions
are alike across tasks. While the underlying tasks differ
(e.g., different arithmetic operations or linguistic patterns),
the surface features of inputs remain consistent. By keeping
the input distributions similar, we can effectively assess the
model’s ability to infer and encode latent concepts based
solely on subtle differences in the data, rather than simply
relying on the input variations. Refer to Appendix G for
more details.

Part-of-Speech (POS) tagging. We construct a POS tagging
(Blevins et al., 2022; Banko & Moore, 2004) dataset from
Marcus et al. (1994), consisting of POS tags, such as Noun,
Adjective, Verb, Adverb, Preposition, and Pronoun. Given
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an input text and hidden POS tag zi (e.g., Noun), one needs
to output the first word that is of the specified POS tag.

Bitwise arithmetic. We construct a bitwise arithmetic dataset
consisting of 6 different operators, AND, NAND, OR, NOR,
XOR, and XNOR. Given a pair of 5-digit binary numbers
and the hidden operator zi (e.g., AND), one needs to output
the resulting binary number after the operation.

For both of these tasks, we create an additional Null class,
for which there is no latent concept. In bitwise arithmetic,
the Null operator outputs random binary digits, and in POS
tagging, the Null class pairs the input sentences with a
randomly selected word. This task helps us identify the
cases in which the model is confused about the concept.

Model. We use Llama-3.1-8B as the default model for
the experiments. We test our hypothesis across different
families and scales (Gemma-2 2B/9B/27B and Llama-3.1-
8B/70B) in Section 4.1 and Appendix G. For analyzing the
models over the course of pretraining, we use the check-
points of OLMo 7B (Groeneveld et al., 2024). We do not
train any model, except when we study the causal effect of
task decodability by finetuning in Section 4.4. We further
detail the experimental setup in Appendix G.

Evaluation. We evaluate the performance of the model
on different tasks by computing the exact-match accuracy
between the generated output under greedy decoding and
the ground truth. All of the evaluations assume 4-shots of
examples, unless specified otherwise.

Task Decodability (TD). To quantify how the task encod-
ing progresses, we employ a simple k-Nearest Neighbor
(k-NN) classification metric. Inspired by prior studies us-
ing linear probes (Rimanic et al., 2020; Alain & Bengio,
2018), we assess whether the latent task can be extracted
in a simple manner from their representations. Specifically,
we use the representations of the token immediately before
y∗ at a chosen layer and predict the latent task by majority
voting among its k nearest neighbors (k = 10, N = 100).
For choosing which layer to measure TD, we compute TD
across all layers and choose the layer that best encodes the
task. We empirically validate with UMAP visualizations
that the representations become separable precisely when
the TD score peaks (See Figures 10, 11 and 19).

We now formally define TD. Let T be the set of latent
tasks. For each task z ∈ T , sample N = 100 datapoints
{(xi, yi)}Ni=1 and collect the intermediate representations
{hi}Ni=1 from a chosen layer (e.g., the token embedding
immediately after xi). Label each representation hi with the
corresponding task z. This yields a set S =

⋃
z∈T {(hi, z) |

i = 1, . . . , N} , over all tasks z.

Given a query point (hi, z), we exclude (hi, z) from S (i.e.,

S \ (hi, z)) and find its k nearest neighbors (with k = 10)
in the remaining set. We then use majority voting on these
neighbors’ task labels to produce a predicted label ẑ. If
ẑ = z, classification for the task label is correct. The TD
score at this layer is the fraction of query points classified
correctly. TD = 1

|D|
∑

(hi,z)∈D 1
[
ẑ = z

]
.

(a) POS Tagging
1-shot 4-shot 10-shot

(b) Bitwise Arithmetic
1-shot 4-shot 10-shot

Figure 3. Task encoding in Llama-3.1-8B. (Top) UMAP of the
intermediate representations and (Bottom) TD scores for each
tasks at layers 15 and 13, respectively, for POS tagging and bitwise
arithmetic with varying numbers of in-context examples.

4.1. Task Encoding and Decoding in Pretrained LLMs

Hypothesis 1: In pretrained LLMs, task decodabil-
ity varies across tasks and determines the effective-
ness of the task vector.

Task decodability varies across tasks. We begin by quali-
tatively analyzing the intermediate representations of LLMs
across different tasks using UMAP. As shown in Figure
3, the degree of localization of representations depends on
the task. For instance, tasks like AND, OR, Noun, and
Pronoun exhibit clear and distinct clusters when sufficient
in-context examples (e.g., 10-shots) are provided, while
tasks like XNOR and XOR in bitwise arithmetic or Ad-
jective and Preposition in POS tagging remain overlapped
with the Null class. This suggests that the model inherently
learns certain tasks better than others during pretraining,
likely due to differences in their predictability or frequency
in the pretraining corpus. Importantly, the emergence of sep-
arability with increasing examples highlights that in-context
examples act as a signal for materializing task-specific rep-
resentations.

To better quantify such variability of representational sep-
arations between different tasks in Figure 3, we use our
proposed Task Decodability (TD) scores. Analogous to the
UMAP visualizations, we observe that some tasks, such as
Noun and Pronoun in POS tagging and AND and OR in
bitwise arithmetic, are much more decodable from their rep-
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resentations than the others. Also, we confirm in Figure 19a
of Appendix G.1, TD score peaks in the middle, suggesting
earlier layers encode the task and latter layers execute the
decoding algorithm.

Task decodability as an indicator of task vector effec-
tiveness. Through mechanistic interventions, we further
examine how TD represents the quality of the task vector
formation – how effective injecting the task vector is at trig-
gering the desired ICL behavior. By patching layer outputs
with either mean activations from correctly inferred latent
concepts (positive intervention) or the Null class (negative
intervention), we measure their impact on task performance.
As shown in Figure 20, tasks with highly separable rep-
resentations, such as Noun and Verb in POS tagging and
AND and OR in bitwise arithmetic, exhibit significant im-
provements from positive interventions (up to ∼ 14%) and
noticeable degradation from negative interventions (up to
∼ 15%).

In contrast, tasks with overlapping representations, such
as XOR, XNOR, Adjective, and Preposition, show lim-
ited sensitivity to interventions, with positive interventions
improving performance by only ∼ 2% and negative inter-
ventions causing a modest ∼ 6% drop. These differences
suggest that when task encoding is done correctly and the
representations are well-separated, the task vectors are more
effective at guiding decoding processes, as they can eas-
ily map distinct concepts to their respective downstream
algorithms. Conversely, overlapping representations hin-
der the ability of the task vectors to reliably trigger distinct
decoding algorithms, reducing their overall effectiveness.

Overall, these findings demonstrate that task decodability
is a direct reflection of task vector quality. This implies
that, when the model becomes more adept at a task, the
task becomes correspondingly easier to decode from their
representations. We further assess this hypothesis in the
next section.

4.2. Task Decodability Predicts ICL Task Performance

Hypothesis 2: Quality of task encoding-decoding is
predictive of ICL performance.

We now investigate the second hypothesis of whether the
quality of task encoding-decoding is predictive of down-
stream ICL performance. If the model is conditionally ap-
plying a decoding algorithm by first inferring the latent task,
the quality of the latent task encoding (measured by TD
score) and ICL task performance should be closely corre-
lated. To this end, we analyze the relationship between
TD and test accuracy in Figure 4. In both datasets, we see
that, higher TD scores correspond to better performance on

(a) POS Tagging
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Figure 4. TD score vs ICL performance in Llama-3.1 8B. We
observe a positively correlated trend across most tasks. The grey
dashed lines are linear lines of best fit. These results suggest that
the accuracy of task encoding is closely coupled with downstream
ICL performance.

the respective tasks. Notably, referring back to Figure 3,
we again remark that the representations of some classes
(Adjective and Preposition in POS tagging and XOR and
XNOR in bitwise arithmetic) are mapped to those of the
Null class. We notice that this set of classes whose repre-
sentations overlap with those of Null generally have low
task performance and do not improve as much as the others
given more demonstrations. We conjecture that the model
does not accurately encode the latent tasks of those that are
overlapped with the Null class representations.

We also test the generality of our hypothesis that TD predicts
ICL performance across different model families and scales.
We perform the same analysis on Gemma-2 2B, 9B and 27B
(Google, 2024) and Llama-3.1 70B and present the results in
Figure 21 in the Appendix G.3. These results demonstrate
that the correlation between TD and ICL performance is
robust across models and tasks. Interestingly, in all of the
Gemma-2 family and Llama-3.1 70B models, Noun, Pro-
noun, and Verb show the clearest signs of task encoding and
decoding behavior, as we saw in the Llama-3.1 8B model.
In the bitwise arithmetic task, AND, NAND, OR, and NOR
(classes that showed the strongest encoding-decoding be-
havior in Llama-3.1 8B), also show the strongest signs of
task encoding-decoding behavior across all of these mod-
els. Given that many LLMs are trained on similar sources
of pretraining data (Soldaini et al., 2024; Gao et al., 2020)
(CommonCrawl, Wikipedia, etc.), we conjecture that the
models may have learned similar task vector mechanisms
for these concepts (Huh et al., 2024).

4.3. Studying the Emergence of Task Encoding and
Decoding in LLM Pretraining

Another natural question is whether the simultaneous emer-
gence of ICL ability and task encoding observed in synthetic
experiments in Section 3.3 also occurs during LLM pretrain-

7



Emergence and Effectiveness of Task Vectors in In-Context Learning: An Encoder Decoder Perspective

(a) POS Tagging

10
3

10
4

10
5

Step

0.4

0.7

1.0

TD
 S

co
re

0.0

0.2

0.4

A
cc

ur
ac

y

(b) Bitwise Arithmetic

10
3

10
4

10
5

Step

0.2

0.4

0.6

TD
 S

co
re

0.00

0.15

0.30

A
cc

ur
ac

y

Mean TD Score across tasks Mean Accuracy across tasks

Figure 5. TD scores and ICL accuracy during OLMo-7B pre-
training (Groeneveld et al., 2024), averaged across POS tagging
and bitwise arithmetic tasks, evaluated using 4-shot prompts on
1000 test examples per task. The shaded regions represent the
standard deviation across the tasks.

ing. Since large-scale pretraining studies are computation-
ally infeasible, we leverage different training checkpoints
of OLMo-7B (Groeneveld et al., 2024) to investigate the
relationship between TD and ICL task performance during
pretraining. As shown in Figures 5 and 6, increases in TD
scores closely align with gains in ICL accuracy. Interest-
ingly, unlike the synthetic setup, this progression is more
gradual. This suggests that task encoding and decoding for
natural ICL tasks emerge more gradually during pretraining,
likely because LLMs are simultaneously learning a diverse
range of tasks, making the training dynamics more intricate
to disentangle and comprehend. Thus, further investiga-
tion into how task-specific representations evolve during
pretraining is warranted.

Generalization to Recurrent Language Models Recent
work shows that recurrent language models, such as LSTMs
(Xie et al., 2021) or Mamba (Gu & Dao, 2023), exhibit
ICL behavior (Grazzi et al., 2024). To verify whether our
encoding-decoding view explains the emergence and ef-
fectiveness of task vectors in such models, we performed
the same analysis on Mamba 8B (see Appendix G.4). As
shown in Figure 22, a strong positive correlation between
TD scores and task performance confirms our hypothesis
that TD scores predict ICL performance for state-space mod-
els as well. This implies that the proposed task encoding-
decoding perspective could potentially be generalized across
various architectures beyond transformers.

4.4. Improving Task Encoding by Finetuning the Early
Layers

Hypothesis 3: Building on the encoder-decoder
framework, finetuning the early layers enhances task
encoding and should yield greater improvements in
ICL performance compared to finetuning the later
layers.

POS Tagging Bitwise Arithmetic

Avg. TD Avg. Acc. Avg. TD Avg. Acc.

Pretrained 0.68 ± 0.11 25.5 ± 6.7 0.43 ± 0.13 26.2 ± 15.5

FT (first 10) 0.95 ± 0.02 69.4 ± 14.2 0.85 ± 0.11 90.2 ± 15.0

FT (last 10) 0.68 ± 0.11 33.9 ± 12.3 0.43 ± 0.13 66.3 ± 9.01

Prompting 0.97 ± 0.02 34.4 ± 10.3 0.90 ± 0.10 57.2 ± 30.1

Table 1. Average TD scores and task accuracies with finetuning
and prompting for POS Tagging and Bitwise Arithmetic.

Given our observation that the earlier layers are responsible
for task encoding and the latter layers for the decoding al-
gorithms, we hypothesize that finetuning the earlier layers
will enhance task representation and improve ICL task per-
formance more effectively than finetuning the latter layers.
This approach challenges the common assumption in model
finetuning (Wu et al., 2024; Kumar et al., 2022), where the
focus typically lies on adjusting the latter layers or the linear
head, under the belief that the final layers primarily gov-
ern task-specific adaptation. However, our findings reveal
that targeting the earlier layers provides a more effective
pathway for improving ICL performance.

Finetuning only the last 10 layers results in minimal im-
provements to task encoding, as these layers do not change
the upstream representations. As illustrated in Table 1, the
TD scores of the last 10 layers remain unchanged compared
to the pretrained model. In contrast, finetuning the first 10
layers significantly improves TD scores, aligning the repre-
sentation subspaces with the latent concepts and enhancing
task-specific abstractions.

This improvement in representation encoding directly trans-
lates to better downstream ICL performance. With 4-shot
examples, finetuning the first 10 layers outperforms fine-
tuning the last 10 layers by 37% in the POS task and 24%
in bitwise arithmetic. Moreover, finetuning the first 10 lay-
ers achieves near-perfect accuracy across bitwise arithmetic
tasks, except for XNOR, where overlapping representations
with Null limit further improvement.

4.5. Investigating the Effect of Prompting on Task
Encoding and Decoding

Hypothesis 4: Prompting enhances TD by providing
a stronger learning signal for task inference, and thus
improves ICL performance correspondingly.

In previous sections, we showed that in-context examples
and finetuning both improve task encoding and hence ICL
task performance. Prompting (Liu et al., 2023) is also a sim-
ple and common method to improve a model’s performance.
In this section, we experiment with prompting to see how
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it changes TD along with performance. As shown in Table
1, prompting in fact improves the task encoding and perfor-
mance simultaneously. Together with the previous results, it
suggests that enhancing task encoding may be the unifying
principle through which the learning signal materializes in
the model’s representations across different strategies (e.g.,
in-context examples, finetuning, and prompting). We detail
the setup and results in Appendix I.

5. Discussion
Our insights on the origins and mechanism of task vec-
tors have several implications in light of recent works on
understanding the mechanics of ICL (Mittal et al., 2024)
and activation-steering methods (Bürger et al., 2024; Pan-
ickssery et al., 2024; Marshall et al., 2024).

Why do models succeed at some ICL tasks, but not oth-
ers? It is yet puzzling how to categorize the types of ICL
tasks LLMs can and cannot solve (Qiu et al., 2023; Dziri
et al., 2023). An intuitive explanation is that the model can
effectively encode the tasks frequently seen during pretrain-
ing (Razeghi et al., 2022; Li et al., 2024). In our experiments,
we observe patterns consistent with this conjecture, where
AND and OR, the more common logical operators in lan-
guage, were encoded more accurately. However, under our
proposed two-stage mechanism, we show the bottleneck in
ICL tasks can exist in both levels of task inference and sub-
sequent decoding algorithms. Therefore, even if the model
already learned the algorithm for a task, if the model cannot
clearly distinguish the latent concept from the inputs, it will
fail, and vice versa.

Does learning the right latent variables help? Mittal
et al. (2024) investigate whether explicitly modeling the la-
tent variables in ICL outperforms implicit learning through
ordinary autoregressive training with transformer. They
draw the counterintuitive conclusion that explicit modeling
does not enhance performance, albeit not worse; the under-
lying reasons for which remain unclear. In our work, we
explain this specific observation by analyzing the extent to
which implicit modeling (standard transformers) captures
the true latent variables. Our findings show that transformers
can inherently encode these latent variables without explicit
regularization. Therefore, we propose that the comparable
performance between explicit and implicit models arises
not because modeling the latent variables is unhelpful, but
because both types of models effectively learn them.

Limitations. A limitation of our work is that the experi-
mental setup used in this study does not encompass tasks
that require multi-step reasoning (Clusmann et al., 2023; Zu-
pan et al., 1999; Hosseini et al., 2024). Although we analyze
the task encoding-decoding mechanism with varying levels

of complexity in Appendix D.4, further studies are essential
to apply our findings and insights to the real-world. Another
limitation stems from our proposed TD metric. Since we
measure the separability from one task to the others, for
the measure to be meaningful, the distribution of tasks on
which TD is computed needs careful design to consist of
semantically similar, confusing tasks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Emergence and Effectiveness of Task Vectors in In-Context Learning: An Encoder Decoder Perspective

A. Investigating Predictability of ICL Task Performance in Large-Scale Pretraining
Since it is computationally infeasible to conduct large-scale pretraining studies, we leverage the different training check-
points for OLMo-7B (Groeneveld et al., 2024) to investigate the relationship between concept decodability and ICL task
performance on POS tagging. Interestingly, as shown in Figure 5, we observe a correlated emergence of the two variables.
This analysis shows that the coupled emergence of concept encoding and decoding algorithms may also hold in large-scale
pretraining. However, this warrants further investigation, since we do not fully understand the training dynamics of a LLM.

(a) POS Tagging
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Figure 6. Test accuracy and TD scores for POS tagging and bitwise arithmetic tasks across OLMo-7B (Groeneveld et al., 2024) checkpoints
(1000-500000 steps), evaluated using 4-shot prompts on 100 test examples per task.

B. Task Encoding
In this section, we formally define the Task Encoding and Decoding.

Definition B.1 (Task Encoding). Let M be a transformer model, Z = z1, z2, . . . , zn be a set of latent tasks, and D be
in-context examples with arbitrary length K. A task encoding is an internal mapping E : D → Rdemb , where Rdemb is the
intermediate representation over the model’s demb-dimensional embedding space.

Definition B.2 (Task Decoding). Given a transformer model M with concept encoding E, a task decoding is a transformer’s
behavior that there exists a simple function G that can recover the original latent concept and condition the algorithm:

G : Rdemb → Z

ICL performance of given z is related to how well the decoder G can infer the original latent variable z. To quantify this, we
introduce the notion of decodability. For any given decoder, we define decodability as follows:

Definition B.3 (Decodability). For a given decoder G : Rdemb → Z and a specific latent variable z, the decodability
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measures how accurately the correct latent variable is inferred from representations. Representation is distributed as E(z,D),
and the inferred latent variable is ẑ ≡ G(E(z,D)).

1. One-hot Accuracy: A1-hot(z) = E[1
[
ẑ = z

]
]

2. f-divergence: Af (z) = Df (ẑ ∥ z), where f is some f-divergence metric

In our study, we employ the one-hot accuracy metric with a kNN classifier to report task decodability.

C. Activation Patching
We perform the activation patching procedure in the synthetic and natural experiments as follows. We collect representations
{hi}ni=1 at selected position and layer for set of in-context examples {(xi, yi)}ni=1 by passing the prompt through the
model and recording the activations at a specified layer after xi. We then average these activations to obtain a single “task”
representation htask = 1

n

∑
i hi. For a new query xquery, we add htask into the same layer’s activations—effectively replacing

the representation after xquery—and let the model continue forward.

D. Synthetic ICL Experiment
D.1. Theoretical Error Bounds in sparse linear regressions

It is known that transformers can achieve Bayes-optimal solutions for linear regression problems by implementing least-
squares solutions on the prior of weight sampling (Garg et al., 2022; Raventós et al., 2024). The least-squares estimation of
linear regression with a Gaussian prior for task weights can be performed using ridge regression. In the presence of sparsity,
the least-squares solution can be obtained through lasso regression with optimal weight searching. The error bounds of our
task depend on whether the underlying basis is discovered by the model. We consider two extreme cases:

1. If the model is incapable of inferring any basis in B, it would perform a D-dimensional regression with r-sparsity,
where D is the total dimension and r is the number of non-zero elements.

2. If the model is capable of inferring the basis in B, it can perform an r-dimensional regression adjusted for the
corresponding non-zero elements of the inferred basis. In this case, the model could benefit from the tighter r-
dimensional regression bound.

The possibility of diverse algorithms and corresponding error changes enables us to track the Bayesian inference behavior of
the model in a more detailed way. In the following results, we indeed observe a transition from D-dimensional regression to
r-dimensional regression, accompanied by changes in the representations of tasks for each basis.

D.2. Experimental Details

Mixture of Sparse Linear Regression. We adapt the conventional linear regression setup from (Garg et al., 2022; von
Oswald et al., 2023) to create latent bases B that we can interpret far more easily than W . We study this setting with
D = 16 dimensional with up to K = 20 in-context examples. Each Bi has a rank of 4 and is orthogonal with each other.
We independently sample W and xi for each new input sequence from N(0, ID) the noise ϵ ∼ N(0, 0.01). We add the
sparsity constraints to the linear regression task to introduce the latent concept of sparsity basis B that is easily interpretable
and analyzable in their representations. With the sparsity constraints, we construct the graphical model B →W → Y ← X .
This construction allows us to visualize the representations of each of the bases (latent concepts in this graph) by aggregating
the representations across a set of W and (X,Y ) pairs.

Model. We use a 12-layer GPT-2 (Radford et al., 2019) architecture transformer, as implemented by HuggingFace (Wolf
et al., 2020). This model is parameterized with an embedding dimension of 256 and 8 attention heads and hasa total of 9.5M
parameters.

Training. We train the model with a batch size of 128 for 80K training steps. We use the Adam optimizer (Kingma & Ba,
2017) with a learning rate of 1e-4 and betas of 0.9 and 0.9999. We use a MSE loss over the sequence and only compute the
losses on the prediction ŷi.
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Evaluation. We construct a test dataset of 1K samples and evaluate the model on MSE loss for the predictions ŷi along
the sequence.

Compute. We use an A100 GPU with 80GB of VRAM. To train these models, it takes about ∼ 8 hours.

D.3. Additional results

Figure 7. Causal analysis by perturbation. On the left are perturbation results at epoch 20, when the latent concepts’ representations are
semi-separate (B1 and B2,3,4). Intracluster refers to B2,3,4. At this stage of training when there are only two clusters of representations,
there only exists two decoding algorithms as well. On the right are results at convergence, when the latent concepts’ representations are
fully separable. In this case, each Bi follows a different algorithm and patching the activations of any other basis than itself increases the
loss noticeably. On the other hand, self-perturbation improves ICL performance.

Perturbation analysis to study the causal relation between task encoding and performance over the course of training.

Replicate experiments Here, we run the different seeds of synthetic experiments in Figure 2, and we report the results in
figure 8. We observe that a single basis produces distinct loss trajectories for Seeds 1 and 2 as in Figure 2, while Seed 3
demonstrates a consistent loss descent across basis.
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(c) Replicate 3

Figure 8. Results from three replicates of experiments corresponding to Figure 2. Each subfigure shows the loss trajectory by basis by
different random seeds.
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D.4. Additional Analysis on Section 3.3

TD Over Training. We quantified the TD score for the synthetic experiments shown in Figure 2 , with the results presented
in Figure 9 and Figure 10. The TD scores for Basis 1 effectively capture the separation of representations observed at (a).
An increase in TD scores correlates with a corresponding drop in MSE, as seen in Figure 2, supporting our hypothesis that
the TD score can serve as a predictor for the predictability of TD.
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Figure 9. TD score of synthetic experiments in Figure 2 over training. (a), (b), (c) denote the same training points in Figure 2.
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Figure 10. TD score across layers at epoch 10, 20, 100 from the synthetic experiment in Figure 2.

UMAP Over Training. To analyze how the representations evolve over training across the different layers in the sparse
linear regression task, we visualize the UMAP of the representations in Figure 11. We see that concept encoding, the
separation of representations by concept, starts to appear at epoch 20 and is only clearly observed from layer 5. Note that
the layer index in the figure starts at 0, so layer 4 in the plot equals to what we call layer 5. At convergence, each of the
concepts’ representations becomes separated from layer 5 and later.

E. Increasing complexity in synthetic experiments

E.1. Experiment - More Orthogonal Bases

We conduct an experiment with 6 orthogonal bases, each spanning 4 dimensions out of 24 total bases. Similar to Figure 1, we
observe distinct loss curves over the bases, coupled with clear separation in the representations (see Figure X). Importantly,
we observe that basis 6 is learned first (after around 100 epochs), and basis 2 is learned second (after around 200 epochs),
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Figure 11. UMAP visualization of representations across the layers over training in the synthetic sparse linear regression task. We visualize
the UMAP at epochs 5, 20, and 100 across all the layers. Note that the plot uses zero-based indexing, but we use one-based indexing to
refer to the layers in all of the text.
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Figure 12. Loss curve over training 300 epochs
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Figure 13. Experiment - More orthogonal bases analysis

while the other four bases are not distinguished by the model until around 300 epochs. Notably, it requires significantly more
epochs for the model to learn each concept compared to the scenario in Figure 1 (which uses 4 bases on 16 input dimensions).
Following our intuition, it suggests that learning concepts becomes more challenging as the number of concepts increases.
Overall, these results support the idea that our proposed concept encoding-decoding mechanism also holds under more
complex settings.

E.2. Experiment - Overlapping Bases

We conduct an experiment with 8 overlapping bases, where the first 4 bases (Bases 1, 2, 3, and 4) span 8 dimensions, and the
remaining 4 bases span the other 8 dimensions (with a total input dimension of 16). Thus, the first four bases have overlap
with another and the second bases have overlap with another. In this setup, we investigate the emergence of separation both
within overlapping bases (e.g., within Bases 1, 2, 3, and 4) and between the groups (e.g., between Bases 1, 2, 3, 4 and Bases
5, 6, 7, 8), and examine their relation to subsequent ICL performance.

We observe that the loss curve for each base is identical and undergoes a steep descent around epoch 5 (see Figure D-2 in
the link). This loss descent coincides with the separation of the two groups of bases by their representations around epoch 5,
while bases within the same group remain entangled and unsorted.

These observations suggest several key points. First, the models may not learn to fully separate overlapping concepts, as
they can develop shared algorithms to predict the overlapping portions. Second, non-overlapping concepts can be fully
separated, which accounts for the significant ICL improvement, as it allows the development of algorithms for orthogonal
(non-overlapping) concepts. Third, transformers seemingly learn to classify tasks based on their similarity and associate
algorithms at different levels of resolution over the course of training.

F. Mixture of Different Regression Families Experiment
To further validate the robustness of the concept encoding-decoding framework under more diverse and complex conditions,
we conduct experiments with a mixture of regression families—linear, polynomial (degree 3), and sinusoidal regressions.
Each regression type represents a distinct latent concept with fundamentally different functional relationships between
inputs and outputs.
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Figure 15. Experiment - Overlapping bases analysis
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Experimental Setup We construct datasets with equal proportions of each regression type. Input dimensionality remains
consistent with previous setups (D = 16), and training parameters follow the synthetic experiment protocol outlined in
Appendix D.2.

Results Results shown in Figure 16 indicate clear separability of latent representations corresponding to each regression
family after training. Furthermore, we observe significant performance improvements when latent concepts are clearly
encoded, confirming that models effectively infer and leverage concept-specific algorithms. This suggests that trans-
formers naturally learn to adaptively switch between qualitatively distinct prediction algorithms based on their internal
representations.
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Figure 16. Mixture of Different Regression Families Analysis. (a) Loss curves highlight performance improvements when latent
concepts are clearly encoded. (b) UMAP visualization demonstrates distinct clusters corresponding to each regression family, indicating
successful latent concept encoding. (c) TD scores across layers validate the emergence of clear representations for each regression type.

Verification of Head-Pruning Results We validate our claim that distinct latent bases form separate representations by
analyzing attention-head pruning effects in synthetic and mixture regression tasks. Attention-head pruning was conducted
individually based on magnitude-based importance scores, removing each head one at a time.

Figure 18 shows that attention-head pruning in synthetic sparse linear regression tasks. Changes in mean squared error (MSE)
were measured across 100 random sequences per basis (same setup as main manuscript Figure 2). Attention Importance
Estimation (AIE) quantifies performance degradation. Layer 4 distinctly maps attention heads to specific bases (e.g., l4h5
for base 0 and l4h3 for base 2), supporting distinct algorithm implementations.
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Figure 17 shows that attention-head pruning on mixture regression families. MSE changes assessed across 100 random
sequences for each regression type (linear, leaky ReLU, sparse linear, quadratic). Attention heads are notably shared across
linear, leaky ReLU, and sparse linear regressions (excluding quadratic), indicating structural similarity. This aligns with the
previously observed ”common structure” (Kim et al.), confirming structural indistinguishability among these regression
variants.

Overall, This confirms that distinct algorithms require dedicated representational capacities, whereas shared algorithms
benefit from structural overlap.

Figure 17. Head-Pruning: Mixture Tasks. Minimal impact of individual attention-head pruning indicates robustness from shared
algorithmic structures.
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Figure 18. Head-Pruning: Synthetic Tasks. Individual attention-head pruning significantly affects synthetic task performance, demon-
strating distinct basis sensitivity.

G. Natural ICL Experiments
Part-of-speech Tagging. We construct a Part-of-speech (POS) tagging dataset from the English Penn Treebank corpus
(Marcus et al., 1994) from the articles of Wall Street Journal. Our POS tags are, Noun, Adjective, Verb, Adverb, Preposition,
Pronoun, and Pronoun. We abide by the data-use regulations and, from a total of 4K samples, we filter out sentences that
have all 6 POS tags. Then, we split the dataset into a 80-20 train-test split. We evaluate all the models on the test split, and
the train split is only reserved for the finetuning experiments.

Bitwise Arithmetic. We construct a bitwise arithmetic dataset consisting of 6 different operators: AND, NAND, OR,
NOR, XOR, and XNOR. We randomly sample pairs of input binary digits and generate the resulting binary. For training, we
construct 10K samples, and, for evaluation, we construct 500 samples.

Model. We use a pretrained Llama-3.1-8B model for all of the main natural ICL experiments, if not specified otherwise.

Training. For most of the experiments, we do not train the model and only evaluate its ICL performance on the different
tasks. However, we only finetune the model in the causal experiments to study the causal relation between the accuracy of
concept encoding and ICL task performance. We finetune a model per task family (i.e. POS and bitwise arithmetic). For
computationally efficient finetuning given compute constraints, we use LoRA (Hu et al., 2021), a type of parameter efficient
finetuning. We set the rank and alpha to be 16 and the dropout to be 0.1. We train the model on a total of 10K samples with
the next-token prediction loss. We only backpropagate the losses on the ŷi predictions.

Evaluation. To evaluate the model’s ICL performance, we use greedy decoding to generate answers given different
number of in-context examples and compute an exact-match accuracy score – whether the generated sequence is exactly
equal to the ground truth.

Compute. We use an A100 GPU with 80GB of VRAM for training and inference. Training takes∼ 4 hours and evaluation
takes ∼ 30 minutes for each run.
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G.1. TD score by Layers from Section 4.1

We present the TD scores across the 32 layers of LLaMA 3.1 8B for POS tagging and bitwise arithmetic tasks. We found
that TD scores peak at layer 15 for POS tagging and layer 13 for bitwise arithmetic tasks, and we used these layers for
measuring TD throughout Section 4. The observation that TD scores peak in the middle layers is consistent with the findings
of (Hendel et al., 2023) and (Todd et al., 2023).

(a) TD Scores By Layers
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Figure 19. TD Scores by layers and number of demonstrations. (a) Mean TD scores across layers for POS tagging and Bitwise arithmetic
with 4-shot in-context examples, showing peak decodability in intermediate layers. (b) For POS tagging and (c) for Bitwise arithmetic,
TD scores all increase with the number of demonstrations, but the improvement in TD noticeably varies by task.

G.2. Mechanistic Intervention Study from Section 4.1

We present the results for the mechanistic intervention study probing whether helping or hindering concept encoding improve
or degrade activation of corresponding decoding algorithms and whether they are causally related in Figure 20.
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Figure 20. Causal analysis of concept encoding by intervention. We patch the activations of the input with the correct and incorrect latent
concept to demonstrate that the inferred concept embedded in the representation can causally improve or degrade performance. We
intervene at layers 15 and 13 respectively for the POS and arithmetic tasks. The results show that the performance is causally dependent
on the latent concept representations. Error bars represent the standard deviation across five different replicates of experiments.

G.3. Generalization with Different Model Families and Scales

In both the POS and bitwise arithmetic tasks, we observe a positive correlation between CD and ICL test accuracy across
different model families and scales. Interestingly, in all of the Gemma-2 family and Llama-3.1 70B models, Noun, Pronoun,
and Verb show the clearest signs of concept encoding-decoding behavior, as we saw in the Llama-3.1 8B model in Figure 4.
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(c) Bitwise: Gemma-2 27B
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Figure 21. TD score vs ICL performance across Gemma-2 models (2B/9B/27B) and Llama-3.1-70B. The positive correlation between TD
and ICL performance seen in Llama-3.1-8B generalizes across different models and scales. The grey dashed lines are linear lines of best
fit. These results suggest that the accuracy of concept encoding is closely coupled with downstream ICL performance.

In the bitwise arithmetic task, AND, NAND, OR, and NOR (classes that showed the strongest encoding-decoding behavior
in Llama-3.1 8B), also show the strongest signs of concept encoding-decoding behavior across all of these models. Given
that many LLMs are trained on similar sources of pretraining data (Soldaini et al., 2024; Gao et al., 2020) (CommonCrawl,
Wikipedia, etc), we conjecture that the models may have learned similar encoding-decoding mechanisms for these concepts.

G.4. Extension to Recurrent Neural Network Architectures

To examine whether our task encoding-decoding framework generalizes beyond transformer-based models, we conduct
experiments using a recurrent neural network (RNN) architecture. Specifically, we utilize a two-layer LSTM model with
512 hidden units per layer. The training and evaluation setups replicate those used for transformer experiments in Figure 4.
Figure 22 shows that the LSTM-based architecture also demonstrates a positive correlation between task decodability (TD
score) and in-context learning performance. Although absolute performance metrics differ from transformer-based models,
the fundamental relationship between representation clarity and task performance remains consistent. These findings suggest
that the task encoding-decoding mechanism is not exclusive to transformers, but also is applicable to sequential neural
models more broadly.
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Figure 22. TD scores vs ICL perofrmance for Mamba-2 8B model. The positive relationship between TD scores and accuracy in the
Mamba-2 8B model suggests that the capacity of TD scores to serve as a proxy for task encoding-decoding processes might generalize to
RNN-based language models.

G.5. Pairwise Concept Decodability Comparison
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Figure 23. Pairwise TD scores for POS Tagging and arithmetic tasks at 4 shot. Pairwise TD scores identifies the clustered tasks

H. Finetuning Experiments
We visualize the ICL test accuracy changes before and after finetuning the first and last 10 layers of the model on each of the
tasks in Figure 24. These results confirm the hypothesis that, contrary to the common practice of finetuning the last layers
for classification tasks for instance, finetuning the earlier layers directly improves the task encoding and thus the ICL task
performance more than finetuning the latter layers.
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Figure 24. ICL test accuracy at 4 shots across 12 tasks in POS and arithmetic after finetuning (FT) the first 10 and last 10 layers. When
restricting the model’s ability to encode latent concepts in its intermediate representation (finetuning last 10 layers), the model fails to
fully align its representations for learning the latent concepts and falls behind the performance of finetuning the first 10 layers.

I. Prompting Experiments
Experimental Setup. To study whether concept encoding is a unifying principle that underlies different mechanisms to
improve ICL, we also experiment with prompting. Instead of hiding the concepts and letting the model infer, we include
information about the true concept for the examples (e.g., including the true label of AND operator or the instruction of
“Find the first noun in the sentence”).

Results. As discussed in Section 5, we question how prompting may be affecting the concept encoding in increasing
task performance. As expected, prompting improves the performance of the model, especially in the bitwise arithmetic
experiments. Simultaneously, we observe that the decodability score of the latent concepts also increases drastically.
However, we interpret these results with caution because the model may be capturing spurious correlations from the
differences in the input distribution. Specifically, the bitwise arithmetic experiments show high decodability even in the
beginning layers of the model.
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Figure 25. TD score across layers for POS tagging and bitwise arithemetic in Llama-3.1-8B for the prompting experiments. We include
the true labels of the latent concept (i.e. “Find the first noun in the sentence.”). We detail the experimental setup in Appendix I.
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Figure 26. ICL test accuracy across 12 tasks in POS tagging and bitwise arithmetic with prompts containing the true concept (e.g., AND,
“Find the first noun in the sentence”) of the task.
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