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ABSTRACT

Large language models (LLMs) are transforming everyday applications, yet de-
ployment in cybersecurity lags due to a lack of high-quality, domain-specific mod-
els and training datasets. To address this gap, we present CyberPal 2.0, a family
of cybersecurity-expert small language models (SLMs) ranging from 4B–20B pa-
rameters. To train CyberPal 2.0, we generate an enriched chain-of-thought cyber-
security instruction dataset built with our data enrichment and formatting pipeline,
SecKnowledge 2.0, which integrates expert-in-the-loop steering of reasoning for-
mats alongside LLM-driven multi-step grounding, yielding higher-fidelity, task-
grounded reasoning traces for security tasks. Across diverse cybersecurity bench-
marks, CyberPal 2.0 consistently outperforms its baselines and matches or sur-
passes various open and closed-source frontier models, while remaining a fraction
of their size. On core threat-investigation tasks—such as correlating vulnerabil-
ities and bug tickets with weaknesses—our best 20B-parameter model outper-
forms GPT-4o, o1, o3-mini, and Sec-Gemini v1, ranking first, while our smallest
4B-parameter model ranks second. On core cyber threat intelligence knowledge
tasks, our models outperform almost all tested frontier models, ranking second
only to Sec-Gemini v1. To foster reproducibility and practical adoption, we will
release our models as open source.

1 INTRODUCTION

Language models have the potential to reshape cybersecurity across the stack, from vulnerability
triage to code and malware analysis. One of the most promising areas for practical impact is threat
management and security operations (Motlagh et al., 2024; Yao et al., 2024). This encompasses
correlating heterogeneous telemetry across endpoints, networks, cloud, and application sources; pri-
oritizing and summarizing incidents; hypothesis-driven investigations; and recommending response
actions and playbooks (Zhang et al., 2025a; Lin et al., 2025). This paper focuses on that direction,
proposing a single defensive model that encompasses the entire security operations loop. The goal
is to create a domain-specialized backbone that delivers the core capabilities for detection, investi-
gation, response, threat hunting, and data classification, while remaining straightforward to integrate
and deploy in enterprise pipelines.

However, adopting frontier models for security is a challenging task. Commercial offerings typically
enforce strict safety guardrails, which limit their practical utility in real-world security workflows
(Weerawardhena et al., 2025). Additionally, full integration with organizational data sources is
further constrained by compliance requirements, as security telemetry often contains highly sen-
sitive and private information (Zhang et al., 2025b). For these reasons, many enterprises require
on-premises solutions to meet privacy, compliance, and data residency obligations, making it im-
practical to send sensitive telemetry to external frontier services. These constraints make security
another domain where domain-specific Small Language Models (SLMs) are preferable to general-
purpose frontier models (Belcak et al., 2025).

In addition to practical deployability, such a model must support core capabilities in the cyberse-
curity domain. It requires deep technical grounding across multiple domains: operating systems,
computer networks, cloud platforms, identity and access management, and enterprise security con-
trols (Li & Liu, 2021; Aslan et al., 2023). Such a model should also understand organizational
security monitoring and visibility, including how to interpret and digest telemetry from diverse sys-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Evaluation results on weaknesses Root Cause
Mapping (RCM) tasks.

(b) Evaluation results on core cyber threat intelligence
knowledge tasks.

Figure 1: Comparing our models (blue) against frontier models such as Sec-Gemini v1, o1, and
o3-mini (gray) on key benchmarks.

tems. Most importantly, the model needs to incorporate comprehensive understanding of threats that
includes attacker tactics, techniques, and procedures (TTPs), as well as software vulnerabilities, con-
figuration weaknesses, adversary tooling, and probable attack paths. It must also align with security
operation workflows, covering hypothesis-driven threat hunting, investigation, severity assessment,
and generation of precise detection and remediation steps. Finally, such a model must connect the
dots across these domains, reason effectively over partial and noisy evidence, and deliver defensible
conclusions that are accurate and reliable for mission-critical decisions.

In earlier work Levi et al., took an initial step in this direction. They introduced SecKnowledge, a
domain-knowledge-driven cybersecurity instruction dataset built through a multi-phase generation
process anchored in expert curation, along with SecKnowledge-Eval, a comprehensive evaluation
suite covering a wide range of cybersecurity tasks. Models fine-tuned on SecKnowledge demon-
strated significant improvements over baseline methods, highlighting the effectiveness of expert-
guided instruction design and domain-specific evaluation in advancing cybersecurity LLMs.

In this paper, we take a substantial step toward a practical security model for threat management and
security operations:

• SecKnowledge 2.0. We propose a dataset enrichment pipeline that incorporates domain
expertise via expert-in-the-loop schema-driven formatting, and applies multi-source, multi-
step grounding to improve reasoning traces for security tasks and overall data quality.

• Suite of cybersecurity-expert SLMs. We train a suite of cybersecurity-focused SLMs,
ranging from 4B to 20B parameters, that reason over complex threats and map domain
knowledge to setting-specific analyses and recommendations.

• Frontier cybersecurity performance. Across rigorous cybersecurity benchmarks, our
SLMs consistently outperform their baselines and state-of-the-art open-source models,
yielding 7–14% average gains; on core cybersecurity threat intelligence (CTI) benchmarks,
our models match or surpass frontier closed models (e.g., Sec-Gemini v1, OpenAI’s o1),
all while retaining the cost efficiency, openness, and on-premises deployability required by
enterprises.

2 RELATED WORK

Recent work positions LLMs as security tools across Cyber Threat Intelligence (CTI), malware
analysis, and incident response, among other security tasks. Recent systematic reviews synthesize
both the landscape and open gaps in evaluation and datasets (Zhang et al., 2025b; Xu et al., 2024).
In this work, we focus primarily on using LLMs as security tools and evaluate their performance in
applied security settings.

Yu et al. curates a multi-source cybersecurity corpus for pre-training (web content, blogs, books,
Wikipedia, and MITRE-linked resources), filters a general crawl for security-related text, and aug-
ments it with LLM-style rewrites; it then performs instruction fine-tuning on real-life cybersecurity-
oriented tasks with LLM-generated references and distills reasoning on CTI-Bench using a general-
purpose model with chain-of-thought. Despite the breadth of the pre-training data, their fine-tuning
dataset is limited in size and is derived primarily via distillation. Following this work, Weeraward-
hena et al. created an instruction-tuned, security-specialized chat model built on the Foundation-Sec-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

8B base (a Llama-3.1-8B continued-pretrained on a curated cybersecurity corpus), which is compet-
itive with closed models such as Gemma Team et al. and GPT-4o-mini (Hurst et al., 2024). The work
minimizes security-specific content during post-training, relying on continued pre-training for do-
main knowledge; their post-training data emphasize diversity and instruction-following rather than
security knowledge injection. Taken together, these studies emphasize security-focused pretraining,
leaving underexplored the role of expert-driven, document-grounded supervised fine-tuning, which
is crucial not only for reliability but also for enabling practical problem-solving and actionable guid-
ance for cybersecurity workflows Zhang et al. (2025b).

Few practitioner-built checkpoints appear on community hubs (e.g., Hugging Face) without an ac-
companying paper or technical report (DeepHat-V1; SegoLily Labs). These releases often omit
essential details (e.g., training data sources), making rigorous comparison and reproducibility chal-
lenging. Closed vendor security models sometimes likewise report only headline scores. Google’s
Sec-Gemini v1 (Bursztein & Tishchenko, 2025) Combines Gemini’s reasoning with security knowl-
edge and tools by tying in Google Threat Intelligence (Mandiant/GTI) and OSV1. They report strong
results on CTI core knowledge and root-cause mapping tasks, though access remains limited.

We build upon SecKnowledge introduced by Levi et al., which takes a data-first route with an expert
instruction set and an evaluation suite, and reported sizable improvements in threat-hunting Q&A
and investigation assistance.

3 SECKNOWLEDGE 2.0: DATA REFORMATTING AND ENRICHMENT PIPELINE

In this section, we introduce SecKnowledge 2.0 - an enhanced version of SecKnowledge, a com-
prehensive cybersecurity instruction dataset originally introduced by Levi et al., which generates
synthetic data from curated cybersecurity seed sets. SecKnowledge 2.0 extends SecKnowledge via a
reformatting and enrichment pipeline, shown to improve downstream task performance (Fan et al.,
2024; Nguyen et al., 2025; Abdin et al., 2024).

This section is organized as follows: Section 3.1 introduces SecKnowledge, which serves as our
starting point dataset. Section 3.2 describes standard data reformatting and enrichment approaches.
Section 3.3 then presents our improvements on top of the standard approaches described in 3.2,
which combine LLMs with expert-in-the-loop feedback to define reasoning structures and employs
LLM-automated query generation to retrieve external evidence for enriched, reliable responses. We
use gpt-oss-120b with Medium reasoning effort as the backbone LLM. The result is SecKnowledge
2.0, a dataset whose responses are structured, interpretable, and supported by evidence.

3.1 SECKNOWLEDGE: A DIVERSE SET OF CYBERSECURITY INSTRUCTIONS SET

SecKnowledge is a domain-knowledge–driven instruction dataset for cybersecurity, constructed in
two stages that combine expert curation with structured automation. In the first stage, schema-based
parsers were designed for foundational security corpora from public security data sources. In the
second stage, SecKnowledge was then extended by generating high-quality seed instructions that
capture both per data-source concepts and cross data-source relationships using a novel synthetic
data generation method. For example, paths in BRON (a graph that interconnects security entities
introduced in Hemberg et al. (2021)) are transformed into chain-of-thought (CoT) Wei et al. (2022)
rationales. Sigma rules are converted into step-by-step “how to detect” explanations, and SIEM rules
are mapped to ATT&CK TTPs with grounded rationale. First stage yields ∼153k instructions across
sources, providing a structurally diverse and practically grounded seed set. In the second stage,
SecKnowledge increased both diversity and difficulty through dynamic content-grounded synthetic
generation, yielding a 403k-example cyber-security corpus.

While SecKnowledge provides broad coverage and high-quality supervision, instruction families
are intentionally template-based, which can yield limited rationales and shorter reasoning chains.
Building on this foundation, our work enriches those items with explicit, step-by-step trajectories
and stronger grounding by composing and adapting data reformatting and enrichment methods to
the security domain, culminating in SecKnowledge 2.0.

1https://www.mandiant.com/, https://osv.dev/
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Figure 2: 3-step reformatting and enrichment pipeline overview - experts define task formats for the
seed dataset, relevant evidence is retrieved from documents or web sources, answers are reformatted
and enriched into structured, knowledge-grounded outputs with LLMaaJudge verification (see A.2).

3.2 BASELINE: DATA REFORMATTING AND ENRICHMENT PIPELINE

We build on prior work showing that reformatting existing data sources, conditioned on chain-of-
thought (CoT) reasoning, improves performance on downstream tasks (Fan et al., 2024; Nguyen
et al., 2025; Abdin et al., 2024) and training token efficiency (Kimi Team et al., 2025). These
pipelines often incorporate a stage that reformats raw answers into CoT reasoning traces, encour-
aging systematic reasoning. Within this line of work, Fan et al. introduces Reformatted Alignment
(ReAlign), a format-driven pipeline that upgrades instruction datasets through three stages: (i) hu-
mans define CoT formats; (ii) enrichment adds auxiliary information; and (iii) reformatting imposes
an explicit CoT structure.

Despite SecKnowledge’s breadth, responses tend to be concise with short rationales. A pipeline
such as ReAlign can expand these compact answers into explicit, step-by-step trajectories while
grounding them in retrieved documents and authoritative sources, making it a natural baseline and
a strong foundation for SecKnowledge 2.0. At the same time, instruction generation in complex
domains is prone to hallucinations (Jiang et al., 2023) and divergence from expert intent (Levi et al.,
2025; Ramjee et al., 2025; Eachempati et al., 2025). We therefore believe a more domain-appropriate
pipeline for cybersecurity should be adopted.

3.3 PIPELINE EXTENSIONS

In the next section, we move beyond vanilla reformatting by introducing an expert-in-the-loop work-
flow that semi-automatically derives domain-specific formats for each task in the dataset. These
formats specify the exact reasoning steps needed to reach the final answer. We further enhance them
with document grounding and targeted web search, ensuring that each step is anchored in evidence
and minimizing hallucinations during reformatting.
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3.3.1 EXPERT-IN-THE-LOOP SYSTEM FOR AUTOMATING DOMAIN-SPECIFIC FORMATS

For reformatting and enriching a given dataset D, the first step is to partition it into distinct
tasks {T1, ..., TN}, each task representing a coherent sub-domain or capability. Formally: S =

{T1, ..., TN |
⋃k=N

k=1 Tk = D,Ti ∩Tj = ∅}. Since different problem types demand different ways of
structuring outputs, each task Ti must be paired with a corresponding format Fi (refer to Figure 7 for
an example format) that defines the task more precisely by specifying the steps needed to be taken
to provide a detailed and logically coherent answer. Manually constructing such tailored formats,
however, can be highly time-consuming, particularly in specialized domains such as cybersecurity,
where expert knowledge is required, yet remains both scarce and costly.

To efficiently scale format definition across a large and hierarchical label space - such as SecKnowl-
edge, which contains 105 unique tasks - we developed an expert-in-the-loop system capable of
semi-automatically generating and evaluating format templates. The system employs a LLM that,
given a concise task description together with an optional set of illustrative instruction–response ex-
amples from any task, generates a corresponding candidate output format. Within the same frame-
work, experts can immediately evaluate this format by executing the full pipeline on representative
inputs, obtaining rewritten responses along with auxiliary feedback such as search results and LLM-
as-a-judge scores for readability and factuality. Based on this feedback, experts can directly edit
the format and rerun the pipeline, enabling a tight feedback loop that supports iterative refinement
while substantially reducing the manual burden of format specification and enhancing the efficiency,
accuracy, and scalability of the pipeline. For implementation details, refer to Appendix A.1.

3.3.2 LLM-GUIDED SEARCH AND DOCUMENT GROUNDING PIPELINES

The vast majority of tasks in SecKnowledge can greatly benefit from enrichment through evidence
retrieval. Such grounding is necessary to reduce the risk of LLM hallucinations when rewriting
responses and to ensure that outputs remain accurate and reliable. Evidence can be provided in two
primary ways: (1) by attaching a grounding document directly to the instruction–response pair, such
as an advanced persistent threat (APT) report describing a specific attack, or (2) by searching for
relevant documents on demand. The first method is largely straightforward, as it simply links an
instruction–response pair to the document from which it was derived. The second method, however,
requires more substantive mechanisms, such as searching a pre-indexed corpus (e.g., via a vector
database) or the world wide web. Accordingly, the discussion that follows concentrates on the latter,
given its broader applicability and scalability. To obtain high-quality search results, we design the
mechanism as a structured multi-step process:

1. Query building. Given only the instruction, the LLM is prompted to generate K candidate
search queries. This stage can be viewed as a brainstorming step to provide diverse queries.

2. Query filtering. A second LLM, conditioned on the instruction, the original answer, the
task format, and the candidate queries, selects only those queries expected to provide new
or useful information that can fill gaps.

3. Results retrieval. The filtered queries are then executed against either a vector database or
the web, with the top Rmax results retrieved for each query (yielding ≤ K×Rmax results).

4. Results parsing. For each query, the top R results that could be parsed to text are retained,
while un-processable ones (e.g., websites that block automated access) are discarded.

5. Optional summarization. When retrieved documents are large (e.g., web pages), they
may be summarized in a manner conditioned on the task format, ensuring that the retained
content aligns with the information required to populate the format steps.

In our experiments, we used K = 2, Rmax = 8, and R = 2, without applying summarization.
This configuration is motivated by two considerations: (1) automatic summarization often omits
critical details required by the task format, and (2) full documents, when not summarized, can ac-
cumulate into a large number of tokens that risk exceeding the context window allocated for the
LLM. Moreover, even when the context window is not exceeded, long inputs can lead the model
to disproportionately attend to the beginning and end of the prompt rather than its middle content
(Liu et al., 2023), effectively nullifying the benefit of providing additional context. To balance these
constraints, we restricted retrieval to at most four results (K × R = 4), thereby prioritizing fewer,
higher-quality search results over larger volumes of noisier content.
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Figure 3: Q&A example from SecKnowledge (green), and our improved answer (orange).

4 TRAINING AND EVALUATION PROCESS

We detail the training and evaluation pipelines. For the evaluation, we report results on widely
used open-source security benchmarks. When comparing to state-of-the-art frontier models (such
as Sec-Gemini v1), we follow the evaluation protocol of Sec-Gemini v1 and report results on the
well-known CTIBench-RCM and CTIBench-MCQ (Alam et al., 2024). Additionally, for both the
baseline and our fine-tuned models, we evaluate on further benchmarks (Li et al., 2023; Tihanyi
et al., 2024; Levi et al., 2025), as elaborated in Section 4.2.

4.1 TRAINING RECIPE

To train our models, we use our generated SecKnowledge 2.0 dataset. We employ Qwen3-4B-base,
Qwen3-8B-base, and Qwen3-14B-base, alongside gpt-oss-20b as our starting point. Training is
performed with a learning rate of 4 × 10−5 and a linear warm-up ratio of 0.15. The context length
is set to 8192, and the batch size is 3072. We train our models for two epochs.

To train our models with adaptive reasoning capabilities, we incorporate adaptable reasoning depth:
long-form chain-of-thought examples from SecKnowledge 2.0 are augmented with “step-by-step”
requests, while shorter instructions from the original SecKnowledge dataset are paired with concise,
fast-response requests. This design, similar to the notion of reasoning effort in gpt-oss, balances
reasoning-intensive and lightweight tasks. For the shorter, fast-response requests, we sample ap-
proximately 25% of the original instructions and responses from the original SecKnowledge dataset,
focusing primarily on short, high-quality examples selected using LLMaaJ. The procedure of mixing
a portion of the high-quality original responses with their enhanced counterparts not only teaches
the models to perform adaptive reasoning, but also improves token utility by amplifying the volume
of high-quality tokens while reducing overfitting, as observed by Kimi Team et al. (2025).

Additionally, we observed a phenomenon also reported in recent studies (Huerta-Enochian & Ko,
2024; Shi et al., 2024; Chatterjee et al., 2025): it is often preferable to retain at least partial loss on
the prompt rather than masking it out entirely during training. Finally, we conducted experiments to
determine whether a base or a post-trained model is a better starting point for fine-tuning. We found
that base models tend to learn more effectively than their post-trained counterparts. Appendix B
presents additional training details, alongside a small-scale experiment comparing Qwen3-8B and
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Qwen3-8B-post-trained under the same training recipe, illustrating the differences between starting
from a base versus a post-trained model.

4.2 EVALUATION BENCHMARKS

We evaluate models exclusively on cybersecurity benchmarks spanning governance/compliance, ar-
chitecture/operations, and threat detection & response. The suite emphasizes document-grounded
reasoning, consistent mapping across security taxonomies, and resilience to adversarial distractors.
Our evaluation uses the benchmarks listed below; See Appendix C.1 for further details and statistics.

CTI-MCQ tests breadth of CTI knowledge via multiple-choice items on attack patterns, actors, de-
tections, mitigations, and frameworks (Alam et al., 2024). CTI-RCM evaluates document-grounded
root-cause mapping by linking CVE evidence and bug reports to the correct CWE(s) with taxonomy-
aware disambiguation (Alam et al., 2024). SecEval offers over 2,000 multi-option questions across
nine security domains from authoritative sources, measuring accurate recall and the ability to apply
controls and frameworks to concrete scenarios (Li et al., 2023). CyberMetric-2000 comprises 2000
expert-validated questions spanning diverse subdomains, indicating professional-level declarative
security knowledge under closed-book conditions (Tihanyi et al., 2024). CISSP exams contains
questions drawn from the assessment tests within the CISSP learning material, assessing analysts’
skills across the entire security posture. Technical Weakness Impact Mapping requires assigning
CWE descriptions a weakness to one or more of eight technical impacts, emphasizing consequence-
centric reasoning beyond exploitability (Levi et al., 2025). Adversarial CTI ties questions to spe-
cific MITRE ATT&CK entities and uses adversarial distractors to probe robustness on campaigns,
tactics, detections, and mitigations (Levi et al., 2025). CTI Detection & Mitigation checks whether
models propose appropriate detections and mitigations for tactics/techniques, attack patterns, weak-
nesses, and vulnerabilities (Levi et al., 2025). CTI Relationship Prediction tests cross-taxonomy
reasoning and relationship hallucinations by choosing the correct justification for whether two CTI
entities (e.g., CVE and CWE mapping) are related (Levi et al., 2025).

Figure 4: Domain composition of each data source in the evaluation benchmarks.

Figure 4 shows the benchmark’s distribution across our cybersecurity taxonomy — domain-specific
categories used to quantify coverage across the cybersecurity landscape (see Appendix C.2.1). Our
benchmarks are closely aligned with organizational security priorities, with a particular focus on
threat Intelligence, incident response, security operations, application security, and identity man-
agement. This alignment ensures that evaluation outcomes are not only theoretically sound but also
operationally relevant to real-world defensive strategies.

4.3 EVALUATION PROCESS AND METRICS

Similar to Wang et al. (2024), we also found that models utilizing Chain of Thought (CoT) reason-
ing achieved better performance on complex security benchmarks, compared to direct answering.
Therefore, we utilize a zero-shot CoT prompting. The CoT template incorporates essential reasoning
steps and format to allow models to easily follow the given instructions. We used zero-temperature
for consistency. We then use a regular expression parser to extract the final answer from the model’s
CoT process. The prompt used in the evaluation is provided in Figure 11 in Appendix D. For the
Qwen suite of models, we compared our fine-tuned versions to baseline models (post-trained) with
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Table 1: Evaluation results for CyberPal 2.0 models compared to their corresponding baseline (post-
trained) models and the gpt-oss-120B open-source model.

Model
CTI

Bench

MCQ

CTI

Bench

RCM

SecEval
Cyber

Metric

2000

CISSP

Exams

Adv.

CTI

Weakness

Impact

Mapping

CTI

Detect &

Mitigate

CTI

Relationship

Prediction

Avg.

Qwen3-4B 61.88 49.95 57.38 87.40 79.80 64.51 57.02 60.77 67.99 65.19

CyberPal-2.0-4B
69.70

(+7.82)
81.15

(+31.20)
59.02

(+1.64)
87.80

(+0.40)
80.80

(+1.00)
68.03

(+3.52)
66.48

(+9.46)
64.03

(+3.26)
77.12

(+9.13)
72.68

(+7.49)
Qwen3-8B 63.13 63.25 56.19 88.45 83.33 64.93 53.58 59.88 60.67 65.93

CyberPal-2.0-8B
75.15

(+12.02)
85.95

(+22.70)
66.93

(+10.74)
89.85

(+1.40)
88.89

(+5.56)
87.61

(+22.68)
71.06

(+17.48)
70.26

(+10.38)
87.66

(+26.99)
80.37

(+14.44)
Qwen3-14B 64.28 70.50 61.48 89.85 86.36 69.43 62.46 63.44 58.48 69.59

CyberPal-2.0-14B
75.51

(+11.23)
86.00

(+15.50)
69.71

(+8.23)
89.95

(+0.10)
90.40

(+4.04)
89.58

(+20.15)
70.77

(+8.31)
70.95

(+7.51)
92.93

(+34.45)
81.76

(+12.17)
gpt-oss-20B 64.57 68.95 67.65 90.20 79.80 61.83 71.91 67.49 65.42 70.87

CyberPal-2.0-20B
75.71

(+11.14)
87.40

(+18.45)
72.86

(+5.21)
89.05

86.87
(+7.07)

84.93
(+23.10)

70.77
67.69

(+0.20)
87.66

(+22.24)
80.33

(+9.46)
gpt-oss-120B 69.37 79.95 68.02 92.55 84.34 72.76 65.90 64.52 70.56 74.21

the thinking flag enabled, allowing them to leverage their reasoning process. For gpt-oss, we used
reasoning effort Medium to avoid failures caused by the full CoT exceeding maximum window size.

5 CYBERPAL 2.0: A SUITE OF CYBERSECURITY LANGUAGE MODELS

To demonstrate the effectiveness of our method, we train a family of security-expert SLMs ranging
from 4B to 20B parameters. We then report results against the post-trained versions of the same base
models from which our models were fine-tuned, alongside results against state-of-the-art frontier
models (e.g., o1, Sec-Gemini v1). Lastly, we perform ablation studies.

5.1 RESULTS

Results Compared to Baselines. In Table 1, we present results compared to the baseline models
from the same families that CyberPal 2.0 was fine-tuned from. Meaning, for example, we measure
improvements across various benchmarks between Qwen3-8B and CyberPal 2.0-8B, which was
fine-tuned from Qwen3-8B-base. Similarly, we compare the other models. On average, our models
outperform their baselines by 7–14%. We also observe substantial gains on key benchmarks such as
CTIBench-RCM, where our models exceed the baselines by 16–31%, and CTIBench-MCQ, where
they achieve improvements of 8–12%. We also include gpt-oss-120B as a reference to highlight our
models’ strong performance.

Results Compared to Open Source cybersecurity models. We evaluated our models against recent
7B–8B open-source cybersecurity models; our 8B leads across all benchmarks. Full details are in E.

Results Compared to Frontier LLMs. We evaluated our models against state-of-the-art gen-
eral models such as Sec-Gemini v1 and OpenAI’s o1. As evaluation is costly, we follow Sec-
Gemini v1 evaluation protocol and report results on the CTIBench benchmarks: CTIBench-MCQ
and CTIBench-RCM (Alam et al., 2024). CTIBench-MCQ assesses an LLM’s understanding of
core cyber–threat intelligence concepts, while CTIBench-RCM evaluates model’s ability to perform
Root Cause Mapping (RCM), identifying the underlying causes of vulnerabilities by correlating vul-
nerabilities records and bug tickets with weaknesses. This benchmark is considered a leading threat
intelligence benchmark and serves as a strong indicator of a model’s threat management capabilities.

As shown in Figure 1, our models are on par with—or better than—most frontier models. RCM:
CyberPal 2.0–20B ranks first overall, surpassing Sec-Gemini v1; the 14B, 8B, and 4B variants all
ranked second and exceed the remaining frontier models. MCQ: the 20B and 14B models ranks
second and third respectively, immediately behind Sec-Gemini v1 and ahead of o1; the 8B model is
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(a) CTIBench MCQ (b) CTIBench RCM (c) Avg. across all benchmarks

Figure 5: Ablation studies (using 4B parameters models) comparing CyberPal 2.0-4B (Ours) against
Baseline Reformatting (Fan et al., 2024) and SecKnowledge (Levi et al., 2025).

competitive with GPT-4o; and even the 4B model outperforms much larger models such as Mistral
Large and DeepSeek-v3, with performance close to o3-mini.

5.2 ABLATION STUDIES AND LLM-AS-A-JUDGE EVALUATION

We conduct ablation studies to verify that the observed gains are attributable to our contributions.
First, we measure the impact of data quality by training on the original SecKnowledge versus our
improved dataset. We refer to this model as SecKnowledge. Second, we isolate the effect of our
improved reformatting and enrichment pipeline, which extends the reformatting pipeline suggested
in Fan et al. (2024). We use the pipeline of Fan et al. (2024) to improve the orignal SecKnowledge,
refer to this model as Baseline Reformatting. All ablations are run on the same base model (Qwen3-
4B-base) under an equal training budget (two epochs) and identical optimization and context settings
(§4.1), and are evaluated on all nine evaluation benchmarks.

In Figure 5, we visualize results for CTIBench-MCQ and CTIBench-RCM (§4.2), as well as the
average improvement over all nine benchmarks. Full results for all benchmarks are presented in
Table 7 in Appendix G. As shown in Figure 5, our model consistently outperforms both the original
SecKnowledge-based model and the Baseline Reformatting-based model.

Figure 6: Pairwise comparison results
from LLMaaJ (o3) with grounding.

Finally, we assess answer quality via LLM-as-a-Judge
(LLMaaJ) (Zheng et al., 2023). 30 cybersecurity experts
authored 115 open-ended questions spanning command-
line risk assessment, enterprise security, general cyber-
security, network security, and CTI-related topics. We
used OpenAI’s o3 as the judge. For each question and
pair of model answers, the judge received expert-curated
grounding documents. To validate the judge, we mea-
sured agreement with human experts and found that, with
proper grounding, o3 aligns with human preferences in
over 90% of cases. As seen in Figure 6, our model is con-
sistently preferred over both baselines. See Appendix H
for experiment details and additional results.

6 CONCLUSION

CyberPal 2.0 demonstrates that compact, domain-specific SLMs (4B–20B) can deliver frontier-
level capability for security operations without frontier-level cost. Built on SecKnowledge 2.0—with
schema-driven reformatting, expert-in-the-loop enrichment, and a multi-step grounding pro-
cess—our models achieve 7–14% average gains over strong open-source baselines and, on core
CTI tasks, match or surpass leading closed models; notably, the 20B model outperforms GPT-4o,
o1, o3-mini, and Sec-Gemini v1, while even the 4B variant ranks second. Ablations and LLMaaJ
validated by human experts attribute the gains primarily to data-quality improvements from our
SecKnowledge 2.0 enhanced reformatting and enrichment pipeline.

9
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7 REPRODUCIBILITY STATEMENT

We aim to make our results fully reproducible. The complete training recipe—including model
configurations, optimization hyperparameters, context lengths, batch sizes, random seeds, and com-
pute assumptions—is specified in Section 4.1 and expanded in Appendix B. Evaluation settings,
prompts, and extraction rules (zero-shot, temperature 0) are detailed in Section 4.3, with the exact
evaluation prompt in Figure 11 and benchmark coverage in Section 4.2; benchmark statistics are
provided in Appendix C. Most benchmarks used are already open source, and the remaining will
be released. Our results are reported in Section 5, with additional comparisons among open-source
cybersecurity models in Appendix E. Ablation protocols and full results appear in Section 5.2, Ta-
ble 7, and Figure 5, with further ablations in Appendix G. The SecKnowledge 2.0 pipeline (schema,
expert-in-the-loop enrichment, and multi-source grounding) is described in detail in Section 3.3.
Our LLM-as-a-Judge setup is documented in Section 5.2 and Appendix H. We will release model
checkpoints, datasets, and code upon publication to facilitate independent verification and reuse.

8 ETHICS STATEMENT

While our training focused on defensive threat management and security operations (e.g., threat
investigation and incident response), the models’ enhanced security knowledge could be misused
by malicious actors in unforeseen ways. To reduce misuse risk, we (i) rely mostly on publicly
available, open-access, non-sensitive sources; (ii) avoid training or releasing offensive cybersecurity
capabilities; and (iii) will distribute models under responsible-use terms with safety filters and red-
teaming.

REFERENCES
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A PIPELINE EXTENSIONS DETAILS

A.1 FORMAT GENERATION FRAMEWORK

The system is composed of three primary stages, with the second and third stages forming an iter-
ative loop that can be repeated until the user is satisfied with the resulting format, as illustrated in
Figure 8. It is important to note that this framework is applicable only once the set of tasks covering
the entire dataset has been defined, at which point the process is limited to the generation of formats.

Data Exploration & Example Selection. First, the user selects the appropriate category and task
from the menus. From N available examples for each task (N = 500 in our case), the system
samples k instruction–answer pairs for inspection (k = 1 in Fig. 8). This stage enables the user to
explore the dataset - examining the range of questions and corresponding answers for the selected
task - and to identify representative examples. These examples are subsequently used both to guide
format generation and as inputs to the pipeline.

Format Generation. Second, the user provides a brief description of the task, this description will
be used both to classify unlabeled instructions from the dataset and to generate the format. Then he
selects an LLM to produce a candidate format using one of the available prompts. In our case, two
distinct prompts were required: one tailored for specific tasks - such as the instructions generated
in the first stage of SecKnowledge, which originate from a defined source and consistently ask for
the same type of information, albeit in different contexts - and another designed for more general
tasks, which encompass a wide variety of instructions, as in the second stage of SecKnowledge.
In the latter case, providing examples may bias the format toward the selected instances, which is
undesirable. The framework further supports the seamless addition of new prompts if needed. Once
generated, the format can be refined by the user through manual editing.

Evaluation Through Pipeline Execution. Third, the user can run the pipeline on any example, with
the first example automatically pre-filled by default. During this step, the user may adjust various
hyper-parameters - for instance, enabling or disabling web search, specifying the number of search
queries and the number of results per query, and deciding whether to summarize each retrieved
before including it in the rewriting context. A grounding document can also be provided, either
as an alternative to or in addition to web search. The pipeline then outputs the rewritten response,
quality assessment scores, and, if requested, the retrieved search results.

Figure 7: An example task, specifically the one illustrated in Figure 3. A task consists of a name, a
description, a format, whether it requires search, and whether it requires a grounding document.

2https://www.gradio.app/
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Figure 8: Screenshots from the UI designed for our format generation framework. First, the relevant
task is selected, and random examples are sampled from the task data partition, then a candidate for-
mat is generated from them using a LLM and the prompt in blue, afterwards an expert can configure
and run the pipeline, and edit the format if needed. The UI was developed using Gradio2.
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A.2 DATA GENERATION QUALITY ASSESSMENT

After rewriting the original answer according to the format, the pipeline also incorporates evaluation
in the form of LLM as a Judge. There are 2 criteria by which we judge the answers generated by the
pipeline.

1. Readability. We prompt the judge with the instruction, and both answers and ask it to select
the better answer according to the criteria described in Figure 12 (original and rewritten).
We do this two times - in the first time the original answer is first and the rewritten is
second, and in the second time the order is the opposite (while anonymizing which one
is the original one and which one is the rewritten one). We test both directions to avoid
positional bias (Wang et al., 2023; Zheng et al., 2023).

2. Factuality. We prompt the judge with the original answer and the rewritten answer, empha-
sizing that the original answer is the ground truth, and ask the LLM to provide a score in a
scale of 1-10 that determines how factual the rewritten answer with respect to the original
answer.

By combining these two criteria, we can get a sense of the quality of the defined formats and the new
dataset. In Figure 9, we present the quality assessment results on our dataset, SecKnowledge 2.0. On
average, the new answers are preferred 85.62% of the time (with 5.55% to the favor of the original
answers, and 8.56% of inconsistency, where switching the position of the answers changed the judge
decision, the rest are ties), while maintaining the factuality, reflected by an average factuality score
of 9.25. These results show that our pipeline is robust.

B TRAINING RECIPE ADDITIONAL DETAILS

Training from base vs. post-trained model. In Table 2, we present a small-scale experiment exam-
ining the effect of the starting checkpoint using an identical training recipe and evaluation protocol.
Using Qwen3-8B, we evaluate how fine-tuning with SecKnowledge 2.0 affects performance when
starting from the base model versus a post-trained model. We observed an interesting phenomenon:
directly fine-tuning the base model (i.e., Qwen3-8B-Base) yields significantly better results than
relying on the post-trained model (Qwen3-8B) as the starting point. This effect is amplified on
benchmarks that require additional reasoning to arrive at the final answer (e.g., CTIBench-RCM).
On average, fine-tuning from the base model provides a 15.16% improvement across the key bench-
marks, whereas starting from the post-trained model provides a 5.62% improvement relative to the
Qwen3-8B baseline—corresponding to a 2.7× larger gain when initializing from the base model.
For open-ended benchmarks such as CTIBench-RCM, the difference is even more pronounced: the
model fine-tuned from the base checkpoint achieves a 22.7% improvement, compared with 1.85%
for the model fine-tuned from the post-trained checkpoint. Although limited in scope, this experi-
ment empirically indicates that, given sufficiently high data quality, initializing from a base model
enables more effective learning than starting from a post-trained checkpoint that has already under-
gone extensive supervised fine-tuning and alignment–yet further work is needed to systematically
disentangle how data quality and data scale interact with the choice of starting checkpoint during
fine-tuning.

Table 2: Comparing the improvement of fine-tuning our models when starting from base model vs.
a post-trained model.

Model
CTIBench

MCQ

CTIBench

RCM
SecEval Avg.

Qwen 3 8b 63.13 63.25 56.19 60.85

CyberPal2.0-8B (trained from Qwen3-8B) 68.90 65.10 65.42 66.47

CyberPal2.0-8B (trained from Qwen3-8B-Base) 75.15 85.95 66.93 76.01

Incremental training methodology. Lastly, consistent with the observations of Mitra et al. (2023);
Levi et al. (2025), we empirically find that exposing the model to instructions of progressively in-

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

creasing length—often correlated with task difficulty—enhances its learning capacity. Building on
this principle, we adopt an incremental training methodology organized at the dataset level. Specifi-
cally, we first present the model with instructions from the original SecKnowledge dataset, followed
by instructions from our new SecKnowledge 2.0 dataset.

Additional training details. We select the final checkpoint by validation loss on a held-out split
extracted from the training set. We train for two epochs, as we observe diminishing returns and an
increased risk of overfitting thereafter. Training was conducted on a cluster of 12 NVIDIA A100
80 GB GPU nodes, and evaluation was performed on NVIDIA H100 80GB GPUs.

C EVALUATION BENCHMARKS, STATISTICS, AND ANALYSIS

C.1 EVALUATION BENCHMARKS

CTI-MCQ (Alam et al., 2024) is a multiple choice question benchmark aimed at assessing LLMs’
capabilities in understanding crucial cyber threat intelligence concepts including attack patterns,
threat actors, APT campaigns, detection methods, mitigation strategies, common software vulner-
abilities, attack pattern enumeration, alongside public CTI quizzes. This benchmark assess the
breadth of CTI/domain knowledge; knowing frameworks/controls and when to apply them.

CTI-RCM CTI Root Cause Mapping (RCM) (Alam et al., 2024) identifies the underlying weak-
ness(es) of a vulnerability by correlating CVE records and related bug tickets with CWE entries.
Accurate root cause mapping is essential for guiding investments, policies, and practices aimed at
addressing and eliminating these vulnerabilities. Strong LLM performance on CTI-RCM indicates
grounded, document-linked reasoning and consistent, taxonomy-aware disambiguation—mapping
real-world vulnerability evidence to the appropriate CWE(s) rather than relying on superficial key-
word matches.

SecEval SecEval (Li et al., 2023) is a multiple-choice, multiple-option benchmark for evaluating
LLMs’ cybersecurity knowledge, with over 2,000 questions spanning nine domains. SecEval was
constructed using OpenAI GPT-4 from authoritative sources (open-licensed textbooks, official plat-
form security docs, OWASP guides, CWE, and MITRE ATT&CK/D3fend). This benchmark as-
sesses the breadth and accuracy of security/domain knowledge and the ability to choose and apply
the right frameworks, controls, detections, and mitigation to concrete scenarios.

CyberMetric 2000 CyberMetric (Tihanyi et al., 2024) is a benchmark dataset for evaluating LLMs’
knowledge in cybersecurity. The questions for the benchmark were created through a collaborative
process, i.e., merging expert knowledge with LLMs. We used the 2000 questions dataset, veri-
fied by human evaluators, which covers a wide range of topics within cyber-security, validated by
security experts. As questions come from standards-grounded material and were validated by certi-
fied practitioners (e.g., CISSP/CISM/OSCP), strong performance primarily evidences professional-
level declarative cybersecurity knowledge—accurate recall of definitions, controls, and best prac-
tices across diverse subdomains, and the ability to reject plausible distractors under closed-book
conditions.

CISSP Exams Introduced by Levi et al. (2025), this benchmark uses exam-style questions from
CISSP preparation materials to assess broad, professional cybersecurity knowledge across gover-
nance and risk, security architecture, operations, software and network security, and identity and
access management. Items use plausible distractors and test principled reasoning and terminology
rather than tool-specific tricks. A high score indicates strong declarative understanding, standards-
aligned judgment, and the ability to separate best practices from common misconceptions under test
conditions.

Technical Weakness Impact Mapping In CWE, each weakness, if successfully exploited, can lead
to one or more technical impacts out of eight options: modify data, read data, DoS: unreliable execu-
tion, DoS: resource consumption, execute unauthorized code or commands, gain privileges / assume
identity, bypass protection mechanism, and hide activities. This evaluation benchmark, introduced
by Levi et al. (2025), presents the model with CWEs and their descriptions, where the goal is to map
each CWE to its related technical impact. A high score indicates taxonomy-aware understanding
of how specific weakness patterns translate into concrete consequences, beyond surface keyword
matching. Because a single CWE can map to multiple impacts and descriptions are often terse,
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the benchmark primarily measures consequence reasoning rather than exploit feasibility or business
risk. It thus serves as an impact-from-weakness signal that complements severity or exploitability
evaluations.

Adversarial CTI Levi et al. (2025) compiled an adversarial evaluation dataset from various MITRE
ATT&CK sources to evaluate models on malicious software, campaigns, tactics, and corresponding
detections and mitigations. Each input provides a question related to a specific MITRE instance, with
the correct label being its corresponding source. To further challenge the models and test robustness,
they introduced a novel adversarial attack for multiple-choice questions, where the attack chooses
the false options that will confuse the model with the highest probability.

CTI Detection and Mitigation Introduced by Levi et al. (2025), this benchmark is designed to
assess a model’s ability to provide appropriate detections and mitigations for different attack tactics
and techniques, attack patterns, weaknesses, and vulnerabilities.

CTI Relationship Prediction A major role of cyber threat management expert model is to compre-
hend the relationships between different CTI frameworks. This dataset (Levi et al., 2025) evaluates
the ability to differentiate between false and correct relationships among CTI entities. For example,
it presents the model with two entities (e.g., instances of CVE and CWE) and two possible expla-
nations—one justifying why the entities are related and another explaining why they are not. The
objective is for the model to reason and determine which explanation is correct.

C.2 EVALUATION STATISTICS ANALYSIS

In this section, we provide details about the statistics and domain coverage of the security evalu-
ation benchmarks. To evaluate the applicability of LLMs in cybersecurity, we first structured our
evaluation set around domain-specific categories. The objective was to establish whether tasks align
with areas such as threat intelligence, security operations, or identity and application security, and to
provide a principled basis for mapping questions to specific domains of cybersecurity. A taxonomy-
driven approach enables both standardized evaluation and benchmarking of model performance in a
manner consistent with industrial and academic practices.

As part of this process, we explicitly built upon and extended two taxonomies: taxonomy of cy-
bersecurity domains Weerawardhena et al. (2025) and the SecEval benchmark dataset for security
evaluation Li et al. (2023). By synthesizing insights from both Weerawardhena et al. industrial per-
spective and SecEval’s categorization, we constructed a unified taxonomy that captures enterprise
security concerns while remaining aligned with established evaluation standards.

Our benchmarks are closely aligned with organizational security priorities, with a particular focus
on threat Intelligence, incident response, security operations, application security, and identity man-
agement. This alignment ensures that evaluation outcomes are not only theoretically sound but also
operationally relevant to real-world defensive strategies.

Through this integration, we ensured that our taxonomy is both conceptually rigorous and opera-
tionally validated, bridging the gap between industrial practice and academic research in cybersecu-
rity evaluation.

C.2.1 CYBERSECURITY CATEGORIES

We defined the following ten high-level categories, each with a set of sub-categories capturing spe-
cific security concerns:

1. GCR (Governance, Risk, and Compliance)
• Risk Management & Security Strategy
• Compliance and Regulations (e.g., GDPR, HIPAA)
• Security Frameworks (e.g., NIST CSF, ISO 27001)
• Security Policies & Architecture

2. NetSec (Network, Infrastructure, and Endpoint Security)
• Perimeter and Network Security (Firewalls, VPNs, Wireless)
• Endpoint Protection & MDM
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• IoT and OT/ICS Security
• Mobile Security

3. AppSec (Application and Software Security)

• Secure Software Development (DevSecOps)
• Application & API Security
• Vulnerability Management & Penetration Testing
• Software Supply Chain Security (SBOM, third-party risk)

4. CloudSec (Cloud and Data Security)

• Cloud Security Architecture & Tools
• Identity and Access Management (IAM, PAM)
• Data Loss Prevention & Privacy (DLP, encryption)
• Cloud Compliance & Shared Responsibility Model

5. IAM ZT (Identity, Access, and Zero Trust)

• Authentication & Authorization (MFA, SSO, RBAC)
• Identity Governance & Lifecycle
• Zero Trust Architecture
• Privileged Access Controls

6. SecOps (Security Operations and Monitoring)

• SIEM, SOC, and Log Management
• Security Automation & SOAR
• Detection Engineering
• Operational Resilience & Monitoring

7. ThreatOps IR (Threat Intelligence and Incident Response)

• Threat Detection, Analysis & Hunting
• Threat Intelligence Platforms & IOCs
• Advanced Persistent Threats (APTs)
• Malware Techniques
• Incident Response, Recovery & Digital Forensics

8. CryptoSec (Cryptography and Secure Communications)

• Cryptographic Algorithms & PKI
• Key Management
• Post-Quantum Cryptography
• Secure Protocols and Encryption Practices

9. HumanSec (Security Awareness and Human Risk)

• Social Engineering Techniques (Phishing, Pretexting)
• Insider Threat Management
• Security Awareness Training
• Behavioral Risk Analysis

10. Other

• Cross-domain or emerging categories not covered above.

This taxonomy provided a structured basis for categorizing data and aligning evaluation with both
research benchmarks and enterprise needs.
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C.2.2 MULTI-LABEL CLASSIFICATION

To carry out the mapping, we employed a large open-source language model (OSS-120B), which
was deployed internally for reasons of data security and computational control. The model was
prompted with a multi-label classification prompt, allowing it to assign tasks to one or more cate-
gories simultaneously. In Figure 10, we provide the prompt used to classify the evaluation bench-
mark to specific topics in cyber security. The results of our classification process detailed in Table 3
and is also visualized in Figure 4.

This choice was intentional: many real-world cybersecurity problems span across multiple domains
(e.g., a phishing campaign may involve HumanSec, IAM ZT, and ThreatOps IR simultaneously).
Restricting classification to single-label outputs would fail to capture these cross-cutting concerns.

Table 3: Counts by dataset and taxonomy category.

dataset GCR NetSec AppSec CloudSec IAM ZT SecOps ThreatOps IR CryptoSec HumanSec Other
CTIBench-MCQ 404 516 935 90 315 422 1409 112 64 11
CTIBench-RCM 87 28 1995 7 68 214 389 52 6 0
SecEval 706 620 1099 117 499 300 370 569 98 18
CyberMetric-2000 722 563 250 37 253 182 304 373 172 119
CISSP Exams 102 42 16 0 26 20 30 20 18 22
Weakness Impact Mapping 62 11 332 0 61 3 26 29 4 6
CTI Detect & Mitigate 219 213 511 21 115 220 421 37 21 2
Adv. CTI 32 111 78 52 90 88 676 24 27 0
CTI Relationship Prediction 203 139 507 10 92 82 348 31 21 0
TOTAL 2537 2243 5723 334 1519 1531 3973 1247 431 178

C.2.3 PROMPT VALIDATION USING SECEVAL CATEGORIES

To ensure the robustness and correctness of our classification prompt, we performed a validation
against SecEval categories. Specifically, we tested whether the outputs of our multi-label classifi-
cation aligned with SecEval’s category definitions and coverage. This served as a quality assurance
step for our classification pipeline. See Table 4 for agreement results between our classification
pipeline and SecEval.

Through this process, we confirmed that the OSS-120B model, when guided by our taxonomy-
driven prompt, consistently produced category assignments that were both internally coherent and
externally validated against widely recognized benchmarks.

Table 4: Validation of our classification pipeline on SecEval categories and data sources, which
were also classified using an OpenAI model (gpt-4o). We observe strong overall agreement with
SecEval’s classifications.

Category Summary Aligned %
ApplicationSecurity 83.7
Cryptography 100.0
MemorySafety 99.9
NetworkSecurity 97.6
PenTest 87.1
SoftwareSecurity 97.1
SystemSecurity 88.4
Vulnerability 93.8
WebSecurity 84.4

D EVALUATION TEMPLATES AND PROMPTS

In Figure 11 we provide the prompt used for our evaluation process. Since we have both multi-
choice as well as classification tasks, we replace the <EXPL>token with the specifics of each
question type.
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E OPEN SOURCE SECURITY MODELS PERFORMANCE

We adopt the evaluation protocol from Section 4.3 and assess recent open-source cybersecurity mod-
els Weerawardhena et al. (2025); Yu et al. (2025); SegoLily Labs; DeepHat-V1. We omit PRIMUS-
Reasoning on CTIBench because its training set was distilled from CTIBench Yu et al. (2025),
making the comparison unfair. Since the baselines are 7B–8B, we report our 8B variant for a like-
for-like comparison. Table 5 presents the full results: our 8B model outperforms all open-source
baselines by a substantial margin.

Model
CTI

Bench

MCQ

CTI

Bench

RCM

SecEval
Cyber

Metric

2000

CISSP

Exams

Adv.

CTI

Weakness

Impact

Mapping

CTI

Detect &

Mitigate

CTI

Relationship

Prediction

Avg.

DeepHat-v1-7B 61.24 68.1 33.21 84.0 76.76 63.23 60.74 56.12 52.05 61.72

Lily-Cybersecurity-7B-v0.2 55.31 42.9 37.14 80.0 68.18 58.45 52.43 39.71 46.34 53.38

Primus-merged 65.2 63.9 59.06 85.1 78.28 64.92 55.3 50.77 59.98 64.72

Primus-reasoniong - - 53.03 86.05 73.23 64.78 53.58 52.24 58.79 63.01(*)

Foundation-Sec-8B-Instruct 63.24 67.95 54.81 84.5 69.69 68.87 60.74 55.52 57.31 64.74

CyberPal-2.0-8B 75.15 85.95 66.93 89.85 88.89 87.61 71.06 70.26 87.66 80.37

Table 5: Evaluation results for CyberPal 2.0 8B compared to the recent opens-source cyber security
models. (*) Primus-reasoning average is missing CTI benchmarks because its training set was dis-
tilled from CTIBench

F COMPARISON TO OTHER MODEL FAMILIES

To rigorously validate that the performance of CyberPal 2.0 stems from our domain-specific align-
ment methodology rather than the inherent capabilities of the Qwen architecture, we conducted an
ablation study against leading open-source models from diverse model families. As detailed in Ta-
ble 6, we evaluated CyberPal-2.0-14B against Phi-4 (Abdin et al., 2024), Llama 4 Scout (Meta AI,
2025), Mixtral 8x22B (Mistral AI Team, 2024), Mistral Small 3.2 (Mistral AI Team, 2025), and
DeepSeek-V3 (Liu et al., 2024).

Despite possessing significantly fewer parameters than competitors like DeepSeek V3 (685B) or
Llama 4 Scout (109B), CyberPal 2.0 achieves the highest average performance across the suite
(81.76%). It demonstrates particular dominance in complex reasoning tasks, such as CTI Relation-
ship Prediction (92.93%) and CTI Bench RCM (86%), surpassing the closest general-purpose com-
petitors by substantial margins. These results confirm that the SecKnowledge 2.0 training pipeline
effectively generalizes high-level security reasoning capabilities that exceed the baselines of much
larger models, regardless of their underlying architectural family.

Model
CTI

Bench

MCQ

CTI

Bench

RCM

SecEval
Cyber

Metric

2000

CISSP

Exams

Adv.

CTI

Weakness

Impact

Mapping

CTI

Detect &

Mitigate

CTI

Relationship

Prediction

Avg.

Microsoft Phi 4 68.22 64.00 63.73 91.00 83.33 66.76 68.48 64.03 60.28 69.98

Mistral Small 3.2 24B Instruct 2506 68.82 68.05 67.47 91.60 87.37 74.37 65.90 67.19 76.22 74.11

Llama 4 Scout 17B 16E Instruct 69.46 71.95 67.84 92.50 87.37 79.01 66.48 68.58 75.32 75.39

Mixtral 8x22B v0.1 62.81 66.70 65.65 87.75 82.32 71.41 59.89 61.66 77.51 70.63

DeepSeek V3 73.35 72.45 63.68 93.65 91.41 78.73 69.63 68.97 65.17 75.23

CyberPal-2.0-14B 75.51 86.00 69.71 89.95 90.40 89.58 70.77 70.95 92.93 81.76

Table 6: Evaluation results for CyberPal 2.0 14B compared to SOTA open source models from vari-
ous families and architectures. It is evident that on average, our 14B model outperforms other model
architectures despite being a fraction of their size. Models are sorted by number of parameters.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G ABLATION STUDIES ADDITIONAL RESULTS

This section provides additional ablation results, in particular, this section measures the effects of the
reformatting method, effect of back bone LLM and excluding components from the reformatting.
We follow the same training recipe described in Section 4.1 for all models. Evaluation follows
the protocol in Section 4.3: we use the prompt from Figure 11, extract final answers with regular
expressions, and evaluate in a zero-shot setting with temperature set to zero.

G.1 EFFECT OF REFORMATTING METHOD

In Table 7, we report full results for the model trained on the original SecKnowledge dataset and for
the model trained with the standard reformatted alignment method (Fan et al., 2024)

Model
CTI

Bench

MCQ

CTI

Bench

RCM

SecEval
Cyber

Metric

2000

CISSP

Exams

Adv.

CTI

Weakness

Impact

Mapping

CTI

Detect &

Mitigate

CTI

Relationship

Prediction

Avg.

Qwen3-4B 61.88 49.95 57.38 87.40 79.80 64.51 57.02 60.77 67.99 65.19

SecKnowledge

(Original)
65.45 57.80 49.15 88.40 85.35 79.86 62.75 62.84 65.94 68.60

Baseline

Reformatting
63.92 61.65 49.84 87.40 81.81 76.05 63.04 65.51 81.10 70.04

CyberPal2.0-4B 69.70 81.15 59.02 87.80 80.80 68.03 66.48 64.03 77.12 72.68

Table 7: Reformatting method ablation results

G.2 EFFECT OF BACKBONE LLM REPLACEMENT

Table 8, shows the results of switching the backbone LLM in our pipeline from gpt-oss-120b to
Llama 4 maverick. All models were trained on Qwen3-4B-base.

Model
CTI

Bench

MCQ

CTI

Bench

RCM

SecEval
Cyber

Metric

2000

CISSP

Exams

Adv.

CTI

Weakness

Impact

Mapping

CTI

Detect &

Mitigate

CTI

Relationship

Prediction

Avg.

CyberPal2.0-4B

(Maverick reformatter)
70.58 70.75 56.05 88.00 81.82 78.45 67.62 62.94 74.68 72.32

CyberPal2.0-4B

(gpt-oss-120 reformatter)
69.70 81.15 59.02 87.80 80.80 68.03 66.48 64.03 77.12 72.68

Table 8: Results using CyberPal2.0-4B with different models as the reformatting component in our
data generation pipeline. In the top row, we use Llama Maverick as the reformatting model, and in
the bottom row, we use gpt-oss-120B.

G.3 EFFECT OF SEARCH COMPONENT IN THE PIPELINE

One of the key components of our pipeline is the search module, which ensures that model outputs
remain accurate and reliable. Table 9 presents the results for models trained without the search
component compared to those trained with it. Removing the search component leads to an aver-
age performance drop of approximately 3%, confirming that retrieval consistently enhances overall
accuracy.

H LLMAAJ EXPERIMENT DETAILS AND ADDITIONAL RESULTS

To assess answer quality, we used LLM-as-a-Judge (LLMaaJ) (Zheng et al., 2023). Thirty cy-
bersecurity experts authored 115 open-ended questions: spanning command-line risk assessment,
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Table 9: The effect of removing the search component from the reformatting pipeline

Model name Pipeline CTI-MCQ CTI-RCM Avg.
CyberPal 2.0 4B No search 67.82 80.26 71.11

Full pipeline 69.70 81.15 72.68
CyberPal 2.0 8B No search 72.75 84.90 76.87

Full pipeline 75.15 85.95 80.37
CyberPal 2.0 14B No search 74.99 85.75 78.83

Full pipeline 75.51 86.00 81.76
CyberPal 2.0 20B No search 74.99 87.1 78.56

Full pipeline 75.71 84.7 80.33

enterprise security, general cybersecurity, network security, and CTI-related topics. Specifically, the
security experts constructed 20 questions related cyber threat intelligence, 20 questions related to
security vulnerabilities, 20 questions related to network security, 16 general security questions, 20
questions related to enterprise security, and 19 questions related to command line risk assessment.

Pairwise comparison with grounding — The judge receives a question, two answers, and a care-
fully collected grounding documents that contains all relevant information to answer the question.
The judge should decide which answer is better. The prompt provided to the LLMaaJ is provided in
Figure 12 .

Evaluation process — We use OpenAI’s o3 (OpenAI, 2025) as the LLM-as-a-judge. The judge
evaluates each answer pair along six dimensions —Contextual Accuracy (highest priority), Helpful-
ness, Relevance, Conciseness, Completeness, and length bias (Gu et al., 2024) then issues a verdict:
A better than B, B better than A, tie, or both bad. To mitigate positional bias in LLM-as-a-judge
settings (Wang et al., 2023; Zheng et al., 2023), we run the comparison twice with the answers
swapped. For each permutation, a model receives a score of 3 if its answer is preferred by the judge,
1 for tie, and 0 for loss; if the preferences flip across orders, the pair will effectively contribute 0 as
3− 3 = 0. We also record ties and losses separately, though these were rare in our experiments.

Alignment with human preferences — To validate the judge, we measured agreement with Thirty
cybersecurity human experts and found that, with proper grounding, o3 aligns with human prefer-
ences in over 90% of cases. Without proper grounding, alignment decreases to 80%.

In Figure 6, we report our LLMaaJ results across all questions. Additionally, in Figures 13, 14, and
15 we report LLMaaJ results per category. As can be observed, our model is preferable by a large
margin across all the tested categories.

I MODEL QUANTIZATION

As a deployment-oriented baseline, we also evaluated quantization using bitsandbytes (Dettmers
et al., 2022) by loading models directly in 8-bit and 4-bit modes, without any calibration or advanced
schemes which are shown to perform better than out-of-the-box quantization (Frantar et al., 2022).
Across our evaluation suite, 8-bit loading resulted in a negligible drop of 0.36% for the 4B model
and 0.84% for the 8B model — relative to full precision. Moving to 4-bit, both models saw a
larger drop around 4% absolute for the 8B model and 2.78% for the 4B model. Importantly, both
quantized modes remained clearly superior to the instruction-tuned baseline, which was not trained
using the SecKnowledge 2.0 pipeline. These results suggest that the benefits of fine-tuning largely
persist under straightforward low-precision inference, with 8-bit serving as a particularly safe, low-
overhead option for memory-constrained deployment and 4-bit serves as a good choice for fast
inference or low resource settings, while still keeping high cyber security knowledge.
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Table 10: Quantization results. Cells in quantized rows show ∆ value with (arrow ↓ OR ↑) , where
∆=|Full − Quantized|.

Model
CTI
MCQ

CTI
RCM

SecEval
Cyber
Metric

CISSP
Adv.
CTI

Weakness
Impact
Mapping

CTI
Detect &
Mitigate

CTI
Relationship
Prediction

Avg.

4B models
Qwen 3-4B 61.88 49.95 57.38 87.40 79.80 64.51 57.02 60.77 67.99 65.19
CyberPal 2.0 69.70 81.15 59.02 87.80 80.80 68.03 66.48 64.03 77.12 72.68
CyberPal 2.0 (8-bit) (↓0.39) (↑0.60) (↓1.00) (↓0.75) (↓1.51) (↑0.15) (↓0.28) (↓1.18) (↑1.15) (↓0.36)
CyberPal 2.0 (4-bit) (↓3.88) (↓4.15) (↓4.11) (↓4.6) (↓3.54) (↑0.85) (↓3.73) (↓3.16) (↑1.28) (↓2.78)

8B models
Qwen 3-8B 63.13 63.25 56.19 88.45 83.33 64.93 53.58 59.88 60.67 65.93
CyberPal 2.0 75.15 85.95 66.93 89.85 88.89 87.61 71.06 70.26 87.66 80.37
CyberPal 2.0 (8-bit) (↓1.08) (↓1.10) (↑1.78) (0.00) (↓3.03) (↓2.11) (↑0.57) (↓1.68) (↓0.9) (↓0.84)
CyberPal 2.0 (4-bit) (↓4.65) (↓3.10) (↓2.97) (↓3.35) (↓3.54) (↓9.44) (↑2.01) (↓4.45) (↓3.86) (↓4.15)

J GENERALIZATION TO REAL WORLD USE CASES

J.1 THREAT REPORTS TO TTP MAPPING

To assess the model’s ability to generalize to sources outside our training distribution, we built a
benchmark using independently collected external threat-analysis reports, including technical write-
ups, industry blogs, and vendor whitepapers. These documents were drawn from public sources
not used in our training pipeline, allowing us to evaluate how well the model handles unseen threat
reports.

Each report is paired with its corresponding attack technique through the existing mapping provided
on the report’s associated campaign entry in public threat-intelligence repositories. Using this infor-
mation, we formulate a multiple-choice classification task: the model receives the raw, unstructured
report text and must select the correct technique from a set of candidate options. The model did not
encounter this type of report-classification task during training, making it a novel reasoning setting
in addition to the reports themselves being unseen.

We report CyberPal 2.0 performance on this benchmark in Table 11, open-source security models in
Table 12, and larger general-purpose open-source models in Table 13.

Model Name Score
Qwen3-4B 64.20
CyberPal-2.0-4B 72.76 (+8.56)

Qwen 3 8b 66.54
CyberPal-2.0-8B 74.12 (+7.59)

Qwen 3 14b 69.65
CyberPal-2.0-14B 77.04 (+7.39)

gpt-oss-20B 59.11*

CyberPal-2.0-20B 62.98* (+3.87)

Table 11: Threat reports to TTPs: CyberPal 2.0 models compared to their corresponding baselines.
*Our CyberPal 2.0 20b was trained on 4k context window so we evaluated it only reports of size at most 4k
tokens. The rest of the models were trained with a 8k context window and were evaluated on the full dataset.

J.2 CYBERSOCEVAL BENCHMARK

We further evaluate our models on CyberSOCEval Deason et al. (2025), a recently released suite
within CyberSecEval 4 that targets core SOC workflows. The benchmark comprises two multiple-
choice tasks Malware Analysis and Threat Intelligence Reasoning which scores models by exact-
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Model Name Score

DeepHat-V1-7B 63.23
Lily-Cyber-7B-v0.2 46.30
Primus-merged 63.04
Primus-reasoning 61.67
Foundation-Sec-8B 66.93

CyberPal-2.0-8B 74.12

Table 12: Threat reports to TTPs: Open source se-
curity models

Model Name Size Score

Microsoft Phi 4 14B 70.04
Mistral Small 24B 24B 71.40
Llama 4 Scout 17B 16E 109B 72.76
Mixtral 8x22B 141B 73.15
DeepSeek V3 685B 66.93

CyberPal-2.0-14B 14B 77.04

Table 13: General LLMs vs. CyberPal 2.0

match accuracy (all and only the correct options) And Jaccard score (intersection of correct answers
(the size of the intersection between the predicted and gold answer sets divided by the size of their
union).

• Malware Analysis — Questions are grounded in real Sandbox detonation reports (e.g.,
process trees, extracted files, network activity). The task probes an LLM’s ability to inter-
pret low-level telemetry and identify malicious behavior Deason et al. (2025).

• Threat Intelligence Reasoning — Questions are derived from full-page threat-intel re-
ports (provided as page images), assessing an LLM’s capacity to extract actionable insights
(e.g., adversary tactics, MITRE ATT&CK mappings, targeted sectors) beyond surface-level
comprehension Deason et al. (2025).

Since malware analysis tasks require extremely long context windows (up to 128k tokens for full
prompts and approximately 32k for truncated ones), and our models were trained with a maximum
sequence length of 8k tokens, we chose not to report results on this benchmark. The full benchmark
results are presented in Table 14. To ensure consistent evaluation conditions, we re-ran all experi-
ments using both LLaMA 4 and GPT-4o under identical settings, in particularly identical prompts
which allows for a fair, apples-to-apples comparison across models. Our results demonstrate that
our model consistently outperforms the strongest baselines by a substantial margin, while remaining
competitive with significantly larger open models, some up to ten times our model’s size narrowing
the performance gap to roughly 4% on average.

Table 14: CyberSocEval Threat Intelligence reasoning task

Model Accuracy Jaccard

Qwen3-4B 5.95 10.12

CyberPal-2.0-4B 19.39 51.85

Qwen3-8B 42.86 58.59

CyberPal-2.0-8B 38.61 65.60

Qwen3-14B 43.54 63.12

CyberPal-2.0-14B 45.07 67.78

LLaMa-4-Maverick 54.25 72.57

LLaMa-4-Scout 50.34 69.90

GPT-4o 53.57 73.19

J.3 CVE REASSESSMENT BENCHMARK

One real-world use case we are currently dealing with, both internally and with our clients, is how to
reassess a CVE’s applicability and severity score for a specific package, deployment configuration,
service, etc.
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Each CVE is associated with a Common Vulnerability Scoring System (CVSS) base score, which
provides additional guidance about the vulnerability by scoring constant aspects such as: Attack
Vector, Attack Complexity, User Interaction, Privileges Required, Scope, Confidentiality, Integrity,
and Availability.

A single CVE can affect many services and packages, and the CVSS score, derived from CVSS,
often reflects a broad perspective and worst-case scenarios. In practice, CVSS base scores may vary
for each vendor’s version, depending on the version they ship, how they ship it, the platform, and
even how the software is compiled. This makes it difficult for third-party vulnerability databases
(such as NVD), which can assign only a single CVSS base score per vulnerability, and also com-
plicates comparison with vendors who score based on how the vulnerability manifests in their own
products.

Therefore, a key real-world use case is to reassess the CVSS score of a given CVE under specific
constraints. For example, a NIST CVE may receive a High Impact score in general, but for a specific
service or product that runs with low privileges, the effective Impact score may be lower.

To study this, we constructed a benchmark of real CVEs (from 2025, to avoid data contamination)
along with their original CVSS vectors. For each CVE, we paired specific products and services
affected by that CVE and obtained new CVSS scores defined by security experts specifically for
those products. The goal of this benchmark is to test how well LLMs can reassess the CVSS vector
for concrete packages, services, and deployment configurations.

Results are reported as MAD (Mean Absolute Deviation), the same metric used in CTI-Bench,
normalized to the 0–1 range (1-[SCORE/10]). We also punish for bad responses which do not
contain the final CVSS score by given the highest score of 10. As can be seen from tables 15 and 16,
our models show impressive improvements compared to both the baselines and other open-source
cybersecurity LLMs.

Table 15: CVE Reassessment results of open-source cybersecurity LLMs vs. CyberPal-2.0-8b.

Model Name MAD (normalized)
Lily-Cyber-7B-v0.2 0.635
Llama-Primus-merged 0.802
Llama-Primus-reasoning 0.807
DeepHat-V1-7B 0.823
Foundation-Sec-8B-Instruct 0.698

CyberPal-2.0-8B 0.834

Table 16: CVE Reassessment results of CyberPal-2.0-8b vs. Baselines.

Model Name MAD (normalized)
Qwen3-4b 0.783
CyberPal-2.0-4b 0.830

Qwen3-8b 0.825
CyberPal-2.0-8b 0.834

Qwen3-14 0.740
CyberPal-2.0-14b 0.833

gpt-oss-20b 0.738
CyberPal-2.0-20b 0.834

J.4 SECURE CODE GENERATION BENCHMARKS

When developing a cybersecurity-oriented language model, an important risk emerges: models
trained to reason about security may inadvertently generate insecure or vulnerability-prone code.
This concern is especially relevant for LLMs designed to assist security practitioners, where users
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may rely on generated code for analysis, testing, or defensive automation. To ensure that our Cy-
berPal 2.0 models do not introduce insecure coding patterns, we systematically evaluate them using
established secure code generation benchmarks.

CYBERSECEVAL (Bhatt et al., 2023) introduces two complementary evaluation paradigms de-
signed to measure how LLMs reproduce or generate insecure coding patterns in realistic develop-
ment settings. Both benchmarks are built on a shared methodology: real-world insecure code is
automatically identified in open-source repositories using the Insecure Code Detector (ICD), a static
analysis framework containing 189 rules across 50 CWE categories, and these vulnerabilities are
transformed into prompts that probe model behavior. By applying the same detection pipeline to
model outputs, the benchmarks jointly characterize the security reliability of LLMs under different
prompting modalities.

• Insecure Code Generation — Autocomplete Evaluates whether a model continues code
with insecure patterns when given preceding lines taken from insecure open-source snip-
pets, reflecting risks in code-completion workflows.

• Insecure Code Generation — Instruct Evaluates whether a model produces insecure code
when responding to natural-language instructions generated from insecure code segments,
reflecting risks in instruction-based coding workflows.

Model Name Autocomplete Instruct Average
Qwen-3-4B 78.81 80.13 79.47
CyberPal 2.0 Qwen-3-4B 76.10 67.16 71.63

Qwen-3-8B 79.38 79.77 79.58
CyberPal 2.0 Qwen-3-8B 72.81 69.07 70.94

Qwen-3-14B 77.45 74.54 75.99
CyberPal 2.0 Qwen-3-14B 73.33 66.33 69.83

gpt-oss-20b 70.25 68.53 69.39
CyberPal 2.0 gpt-oss-20b 67.90 63.95 65.93

Table 17: Secure Code Generation - Autocomplete, Instruct, and Average Pass Rates. Pass rate
measures the percentage of test cases in which a model avoids reproducing insecure coding practices,
as defined by the ICD.

Across all evaluated scales, CyberPal 2.0 demonstrates solid secure code generation performance,
with results that remain close to those of the instruction-tuned comparison models - even though
those models were further trained to provide safer responses, including in the context of secure
code generation, while CyberPal 2.0 is trained directly from base models. On average, CyberPal
2.0 shows only a 6.52% reduction relative to the aligned models, a modest change that aligns with
expectations when adapting a model toward specialized cybersecurity reasoning. Despite this shift,
CyberPal 2.0 retains most of the secure-coding characteristics of its reference models, indicating that
the specialization process preserves core code-safety behavior while enabling substantially enhanced
cybersecurity capabilities.

K TRAINING TIME ANALYSIS

To provide a clearer view of computational efficiency, Table 18 reports a partial overview of the
training durations for our models. All models were trained on NVIDIA A100 GPUs (80 GB) using
a context length of 8192 tokens, a gradient accumulation step of 32, and an effective batch size
of 3. We employed a boundary-preserving grouping and sequence-packing strategy to maximize
hardware utilization and minimize idle time during training.

L INFERENCE LATENCY

We benchmarked all model variants across quantization levels (FP16, 8-bit, 4-bit) and batch sizes
(1, 4, 8) using a representative cyber security-style prompt (512 input tokens, 128 generated tokens)
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Table 18: Training time analysis

Model size GPU Count Training hours

4B 40 1 Day, 6 hours and 40 minutes

8B 40 2 Day, 19 hours and 18 minutes

on a single NVIDIA H100-80GB GPU. For each configuration, we measured end-to-end generation
latency, approximate time-to-first-token (TTFT), throughput (tokens per second), and peak GPU
memory footprint (including weights and KV-cache). Results are reported in seconds to highlight
practical latency ranges. The measurements show that FP16 inference, as expected has the highest
token per sec rate, while 8-bit quantization reduces memory usage by nearly 40% with moderate
throughput trade-offs. Batch scaling demonstrates nearly linear throughput gains until GPU satura-
tion, indicating stable memory behavior across configurations. These findings confirm that quantized
models can meet real-time operational requirements (e.g., less then 100 ms per token generation)
while significantly reducing hardware cost.

Table 19 summarizes the observed performance. Our 8-bit variants consistently exhibited higher
end-to-end latency compared to both 4-bit and FP16 configurations. While their overall throughput
(tokens per second) remained competitive, the TTFT was substantially longer—often by an order
of magnitude. Although we cannot definitively isolate the cause, prior work suggests that some
hardware backends perform runtime de-quantization of 8-bit weights Zhang et al. (2024), intro-
ducing additional computational overhead. Moreover, a recent large-scale empirical study reported
that “quantization does not always reduce latency in online serving.” Shi & Ding (2025). Together,
these observations explain why our 8-bit inference runs showed higher latency than FP16 despite
achieving a smaller memory footprint.

M USE OF LARGE LANGUAGE MODELS (LLMS)

When writing the paper, we used LLMs to help us find grammar errors and polish sentences that
needed further clarifications. No further usage was done using LLMs while writing the paper.

N QUALITATIVE RESULTS

We include additional examples of the training examples before and after pipeline in Figure 16 and
Figure 17
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Table 19: Inference latency

Model
Label

Bit
Mode

Batch
Size

Prompt
Length

Generation
Length

Latency
(Sec)

TTFT
(Sec)

Tokens
Per Sec

Memory
peak (GB)

CyberPal-4B 4bit 1 512 128 5.34 0.042 23.95 3.27
CyberPal-4B 4bit 4 512 128 7.83 0.060 65.39 3.37
CyberPal-4B 4bit 8 512 128 7.64 0.06 134.07 3.46
CyberPal-4B 8bit 1 512 128 22.45 0.175 5.70 4.83
CyberPal-4B 8bit 4 512 128 22.83 0.178 22.43 4.89
CyberPal-4B 8bit 8 512 128 18.60 0.145 55.05 4.99
CyberPal-4B fp16 1 512 128 4.09 0.032 31.33 8.440
CyberPal-4B fp16 4 512 128 9.68 0.076 52.91 8.52
CyberPal-4B fp16 8 512 128 4.86 0.038 210.52 8.62
CyberPal-8B 4bit 1 512 128 5.30 0.041 24.15 6.53
CyberPal-8B 4bit 4 512 128 7.56 0.059 67.72 6.62
CyberPal-8B 4bit 8 512 128 7.55 0.059 135.70 6.72
CyberPal-8B 8bit 1 512 71 8.23 0.116 8.63 9.55
CyberPal-8B 8bit 4 512 128 16.42 0.128 31.18 9.58
CyberPal-8B 8bit 8 512 128 16.97 0.133 60.33 9.66
CyberPal-8B fp16 1 512 59 1.87 0.032 31.53 18.83
CyberPal-8B fp16 4 512 59 1.90 0.032 124.15 18.88
CyberPal-8B fp16 8 512 59 1.89 0.032 249.78 18.95
CyberPal-14B 4bit 1 512 21 0.99 0.047 21.17 14.69
CyberPal-14B 4bit 4 512 21 1.99 0.095 42.23 14.72
CyberPal-14B 4bit 8 512 21 1.87 0.089 89.90 14.76
CyberPal-14B 8bit 1 512 128 19.15 0.150 6.68 20.48
CyberPal-14B 8bit 4 512 128 19.34 0.151 26.48 20.51
CyberPal-14B 8bit 8 512 128 18.62 0.145 55.01 20.55
CyberPal-14B fp16 1 512 128 5.790 0.045 22.11 33.50
CyberPal-14B fp16 4 512 128 7.36 0.057 69.59 33.58
CyberPal-14B fp16 8 512 128 5.26 0.041 194.78 33.69
CyberPal-20B 4bit 1 512 128 5.06 0.04 25.31 40.98
CyberPal-20B 4bit 4 512 128 5.62 0.044 91.14 41.15
CyberPal-20B 4bit 8 512 128 5.55 0.043 184.39 41.37
CyberPal-20B 8bit 1 512 128 10.96 0.086 11.68 41.26
CyberPal-20B 8bit 4 512 128 11.90 0.093 43.03 41.43
CyberPal-20B 8bit 8 512 128 13.34 0.104 76.79 41.65
CyberPal-20B fp16 1 512 128 4.54 0.035 28.18 49.95
CyberPal-20B fp16 4 512 128 5.56 0.043 92.01 50.11
CyberPal-20B fp16 8 512 128 5.890 0.046 173.9 50.34
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Figure 9: Data generation quality assessment scores for SecKnowledge 2.0, broken down by task.
Each bar is color-coded to indicate readability outcomes (green for rewritten, red for original, or-
ange for tie, and gray for position inconsistency). The boxes to the right of each bar shows the con-
text requirements (blue box for a task that requires web search, brown box for a task that requires
a grounding document), and the number to the right of those boxes denotes the average factuality
score. The framed labels above groups of tasks indicates their parent category (categories ending
with ”Evol” contain examples synthetically generated by the second phase of SecKnowledge). The
number in parentheses after each category indicates how many tasks belong to that category, while
the number in parentheses after each task represents the count of instructions within that task.
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Figure 10: The prompt used to classify the examples in SecKnowledge 2.0 into cybersecurity topics
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Figure 11: The prompt used to guide the LLMs during the evaluation process. <EXPL> refers to
the specific task type (multi-choice, classification, etc.) and is replaced at runtime with explanation
about the format of the specific question.

Figure 12: LLM-as-Judge prompt used for pairwise comparison.
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Figure 13: LLM-as-Judge pairwise comparison per category: CyberPal-2.0-4B vs. SecKnowledge.

Figure 14: LLM-as-Judge pairwise comparison per category: CyberPal-2.0-4B vs. Baseline Refor-
matting.

Figure 15: LLM-as-Judge pairwise comparison per category: SecKnowledge vs. Baseline Reformat-
ting.
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Figure 16: Instruction (green) Q&A example from SecKnowledge (green), and our improved answer
(orange).
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Figure 17: Instruction (green) Q&A example from SecKnowledge (green), and our improved answer
(orange).

35


	Introduction
	Related Work
	SecKnowledge 2.0: Data Reformatting and Enrichment Pipeline
	SecKnowledge: A Diverse Set of Cybersecurity Instructions Set
	Baseline: Data Reformatting and Enrichment Pipeline
	Pipeline Extensions
	Expert-in-the-Loop System for Automating Domain-Specific Formats
	LLM-Guided Search and Document Grounding Pipelines


	Training and Evaluation Process
	Training Recipe
	Evaluation benchmarks
	Evaluation Process and Metrics

	CyberPal 2.0: A Suite of Cybersecurity Language Models
	Results
	Ablation Studies and LLM-as-a-Judge Evaluation

	Conclusion
	Reproducibility Statement
	Ethics Statement
	Pipeline Extensions Details
	Format Generation Framework
	Data Generation Quality Assessment

	Training Recipe Additional Details
	Evaluation benchmarks, statistics, and analysis
	Evaluation benchmarks
	Evaluation statistics analysis
	Cybersecurity Categories
	Multi-Label Classification
	Prompt Validation Using SecEval Categories


	Evaluation templates and prompts
	Open source security models performance
	Comparison to Other Model Families
	Ablation Studies Additional Results
	Effect of reformatting method
	Effect of Backbone LLM Replacement
	Effect of search component in the pipeline

	LLMaaJ Experiment details and additional results
	Model Quantization
	Generalization to Real world Use Cases
	Threat Reports to TTP Mapping
	CyberSOCEval benchmark
	CVE Reassessment benchmark
	Secure Code Generation Benchmarks

	Training time analysis
	Inference latency
	Use of Large Language Models (LLMs)
	Qualitative results

