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Abstract

Interpreting the internal process of neural mod-001
els has long been a challenge. This challenge002
remains relevant in the era of large language003
models (LLMs) and in-context learning (ICL);004
for example, ICL poses a new issue of interpret-005
ing which example in the few-shot examples006
contributed to identifying/solving the task. To007
this end, in this paper, we design synthetic di-008
agnostic tasks of inductive reasoning, inspired009
by the generalization tests in linguistics; here,010
most in-context examples are ambiguous w.r.t.011
their underlying rule, and one critical exam-012
ple disambiguates the task demonstrated. The013
question is whether conventional input attribu-014
tion (IA) methods can track such a reasoning015
process, i.e., identify the influential example,016
in ICL. Our experiments provide several prac-017
tical findings; for example, a certain simple018
IA method works the best, and the larger the019
model, the generally harder it is to interpret the020
ICL with gradient-based IA methods.1021

1 Introduction022

In past years, input attribution (IA) methods, e.g.,023

gradient norm (Simonyan et al., 2014; Li et al.,024

2016a), have typically been employed in the nat-025

ural language processing (NLP) field to interpret026

input–output associations exploited by neural NLP027

models (Vinyals and Le, 2015; Li et al., 2016b).028

Recently, large language models (LLMs) and mech-029

anistic interpretability (MI) research (Olah et al.,030

2020; Bereska and Gavves, 2024) have shifted the031

research focus to understanding the circuits within032

LLMs by intervening in their internal representa-033

tions. Despite the enriched scope of research, such034

rapid progress has missed some intriguing ques-035

tions bridging the IA and MI eras: in particular, do036

conventional IA methods still empirically work in037

1We will make our data and scripts public upon the publi-
cation of this paper.

Rule A: 
Add two tokens

Rule B: Double the 
token number

a a → a a a a

n n → n n n n

…

t t t → t t t t t

b b → b b b b

x x x (Rule A: add two tokens)

Instance attributions 
for in-context examples

Ambiguous

x → ?

…

Should be 
the highest

Prompt:

Model answer:

x x (Rule B: double the token number)not

Figure 1: Overview of our experimental setup. The
majority of in-context examples (gray) are ambiguous,
supporting either Rule A of adding two tokens or Rule
B of doubling tokens. A single disambiguating example
(blue) reveals that Rule A is correct. We investigate
whether input attribution (IA) methods can track such
an inductive reasoning process.

the modern NLP setting, specifically in the context 038

of LLMs and in-context learning (ICL)? 039

In this paper, we revisit IA methods in interpret- 040

ing LLM-based ICL (Brown et al., 2020). Specif- 041

ically, we assess how well IA methods can track 042

the most influential example in a few-shot exam- 043

ples. This question is worth investigating for sev- 044

eral reasons. First, input attribution would still 045

serve as a necessary and sufficient explanation 046

in typical practical cases; some users might sim- 047

ply seek which part of the context is heavily re- 048

ferred to by an LLM system rather than LLMs’ 049

internal processes identified by MI methods. Sec- 050

ond, the modern NLP setting, specifically ICL, 051

differs from the conventional settings where IA 052

methods have been tested — identifying the input- 053

output association within a specific test instance 054
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(Xk, yk). In contrast, applying IA methods to the055

entire ICL input (few-shot examples) already en-056

tails tracking the learning process as well as the057

input-output association within a specific target058

instance. That is, this extended scope includes059

the interpretation of which example among the060

demonstrations [(X1, y1), · · · , (Xk−1, yk−1)] con-061

tributed to identifying the targeted task/rule and062

then answer a target question Xk. This is rather063

a type of instance-based interpretation of neural064

models (Wachter et al., 2017; Charpiat et al., 2019;065

Hanawa et al., 2021), and it has been little explored066

such interpretation is feasible with IA methods.067

To test IA methods in ICL, we introduce a test068

suite comprising controlled synthetic inductive rea-069

soning tasks. Otherwise, formally defining such070

informativeness and assessing IA methods is chal-071

lenging, especially in a wild, natural setting; critical072

examples may not be unique (Min et al., 2022), a073

gap might exist between faithfulness and plausibil-074

ity perspectives (Bastings et al., 2022), and a model075

can rather rely on prior knowledge without using076

any input examples (Liu et al., 2022). Our task077

design, inspired by the poverty of the stimulus sce-078

nario (Wilson, 2006; Perfors et al., 2011; McCoy079

et al., 2018, 2020; Yedetore et al., 2023) or mixed080

signals generalization test (Warstadt and Bowman,081

2020; Mueller et al., 2024), introduces one inher-082

ently unique aha example in input demonstrations.083

This aha example, when paired with any of the084

other examples, triggers the identification of the un-085

derlying reasoning rule. More specifically, most in-086

context examples are ambiguous in the sense that087

they are compatible with several rules (e.g., adding088

two tokens or doubling the number of tokens, in089

the case of Figure 1), and only one disambiguating090

(aha) example resolves the ambiguity and limits091

the correct rule to be unique (ttt→ttttt disam-092

biguates the rule to be adding one in Figure 1). The093

question is whether such an informative example094

can be empirically caught by IA methods.095

Our experiments reveal several findings:096

• Gradient norm, the simplest IA method,097

frequently outperforms other interpretability098

methods (e.g., integrated gradient), suggesting099

that the advantage of more recently proposed100

IA methods does not always generalize in in-101

terpreting ICL×LLM.102

• Our tested interpretability methods, includ-103

ing simple gradient norm, did not work stably104

across different tasks and models, posing their105

general limitations in interpreting ICL with 106

IA methods. 107

• Different interpretability methods exhibited 108

different properties with respect to scaling 109

the number of in-context examples or model 110

size; for example, IA methods perform bet- 111

ter in many-shot scenarios, whereas a particu- 112

lar baseline interpretability method (i.e., self- 113

answer) works well on larger models. 114

2 Preliminary 115

2.1 Input attribution (IA) methods 116

Input attribution (IA) methods are commonly-used 117

techniques for interpreting and explaining the pre- 118

dictions of machine learning models (Denil et al., 119

2014; Li et al., 2016a; Poerner et al., 2018; Arras 120

et al., 2019, etc.). Specifically, IA methods deter- 121

mine how much each input feature contributes to 122

a particular prediction; that is, given input tokens 123

X := [x1, . . . , xn] and output y, the IA methods 124

yield the strength of contribution S(xi) of each in- 125

put xi to the output y. Note that the input X in ICL 126

consists of several in-context examples (§ 2.2), and 127

the answer to the target question is denoted as y. 128

We examine the following four representative IA 129

methods in the ICL×LLM context: 130

Input erasure (IE) IE (Li et al., 2016c) mea- 131

sures how impactful erasing a certain token xi from 132

the input prompt is with respect to outputing yt: 133

SIE(xi, yt;X) = q(yt|X)− q(yt|X¬i), (1) 134

where X := [x1, . . . ,xn] denotes the sequence 135

of input token embeddings, with each xi ∈ 136

Rd being a d-dimensional vector correspond- 137

ing to the i-th token in the input. X¬i := 138

[x1, . . . ,xi−1,xi+1, . . . ,xn] denotes the sequence 139

of input token embeddings without xi. We emu- 140

late this partial input X¬i by introducing an atten- 141

tion mask to zero-out the attention to xi in every 142

layer (thus, the original position information holds). 143

q(y|X) represents the model’s prediction probabil- 144

ity for the token yt given input X . 145

Gradient norm (GN) GN (Simonyan et al., 146

2014; Li et al., 2016a) calculates the attribution 147

score for each input token xi by computing the L1 148

norm of its gradient of the target token yt: 149
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SGN(xi, yt;X) = ∥g(xi, yt;X)∥L1 (2)150

g(xi, yt;X) = ∇xiq(yt|X), (3)151

where g(xi, yt;X) ∈ Rd denotes the gradient of152

the prediction probability for yt with respect to xi,153

under the given input embedding sequence X .154

Input×gradient (I×G) I×G (Shrikumar et al.,155

2017; Denil et al., 2014) takes the dot product of a156

gradient with the respective token embedding xi:157

SI×G(xi, yt;X) = g(xi, yt;X) · xi. (4)158

Integrated gradients (IG) IG (Sundararajan159

et al., 2017) is computed by accumulating gradients160

along a straight path from a baseline input X ′ to161

the actual input X:162

SIG(xi, yt;X) =163

(xi − x′
i)×

∫ 1

0

∂q(yt|X ′ + α(X −X ′))

∂xi
dα,

(5)

164

where X ′ := [x′
1, . . . ,x

′
n] denotes the sequence165

of baseline embeddings2, and α denotes the in-166

terpolation coefficient. In practice, the integral is167

approximated using numerical integration with a168

finite number of steps.169

Contrastive explanations For the IE, GN, and170

I×G methods, we adopt a contrastive explanation171

setting, which Yin and Neubig (2022) have shown172

to be quantitatively superior to the original non-173

contrastive setting. IA methods in this setting mea-174

sure how much an input token xi influences the175

model to increase the probability of target token yt176

while decreasing that of foil token yf . A foil token177

can be defined as an output with an alternative, in-178

correct generalization (§ 3). Contrastive versions179

of IE, GN, and I×G are defined as follows:180

S∗
IE(xi, yt, yf ;X)181

= SIE(xi, yt;X)− SIE(xi, yf ;X) (6)182

S∗
GN(xi, yt, yf ;X) = ∥g∗(xi, yt, yf ;X)∥L1 (7)183

S∗
I×G(xi, yt, yf ;X)=g∗(xi, yt, yf ;X) · xi (8)184

g∗(xi, yt, yf ;X) = ∇xi

(
q(yt|X)− q(yf |X)

)
(9)

185

2We followed the common practice and employed a se-
quence of zero vectors as the baseline input. We used an
interpretability library captum (Kokhlikyan et al., 2020) to
calculate the IG score and keep all parameters as default.

2.2 Interpreting in-context learning (ICL) 186

We focus on the ICL setting (Brown et al., 2020), 187

which has typically been adopted in modern LLM- 188

based reasoning. An input prompt in ICL setting 189

consists of few-shot examples E and a target ques- 190

tion. E is composed of n examples [e1, · · · , en], 191

each of which contains an input-output pair ei = 192

(Xi, f(Xi)), given a function f associated with the 193

task. Let Xn+1 represent the target question q that 194

the model must answer. The ICL setting is formed 195

as follows: 196

few-shot examples E︷ ︸︸ ︷
example e1︷ ︸︸ ︷
X1, f(X1), . . . ,

example en︷ ︸︸ ︷
Xn, f(Xn),

q︷ ︸︸ ︷
Xn+1︸ ︷︷ ︸

prompt

, f(Xn+1)︸ ︷︷ ︸
completion

197

Here, a model is expected to first induce the under- 198

lying function (rule) f from examples E and then 199

generate the final output f(Xn+1). 200

Aha example Interpreting a model’s in-context 201

learning (ICL) involves identifying when, within 202

the input, the model infers the correct rule f . To ad- 203

dress this aspect, we propose a unique benchmark 204

that features an explicit “aha moment” (e∗) within 205

the input prompt. At this moment, the correct rule 206

f can be identified by comparing the aha example 207

with one of the other examples in the prompt. Thus, 208

at least, e∗ should be one of the two most important 209

examples (see evaluation metrics in § 4.2). Note 210

that, to mitigate the potential confusion, we exclude 211

the case of e∗ being the first example in the demon- 212

stration since, in this case, its next example e2 can 213

disambiguate the rule and virtually work as the aha 214

example from the perspective of the incremental 215

reasoning process. 216

Instance-level attribution Notably, we consider 217

the use of IA methods to identify a particular exam- 218

ple e∗ ∈ E in input, instead of a particular token. 219

To compute an IA score for an example S(ei), we 220

sum up the IA scores for its constituent tokens: 221

S(ei) =
∑

xj∈(Xi,yi)=ei
S(xj).3 Our interest is 222

which example obtains the highest IA score, i.e., 223

argmaxei∈E S(ei). 224

3 Problem settings 225

We evaluate the performance of each IA method 226

in identifying the crucial in-context example e∗ 227

3An exception applies in the IE method; the attribution
score for an example ei is simply computed by erasing the
corresponding Xi and f(Xi) from the input sequence.

3
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Task Prompt example/template Answer Potential rules

LINEAR-OR-DISTINCT

a a b a 7→ b
g g j g 7→ j
k i k k 7→ k / i
o o o p 7→

o / p
A. Generate the n-th token

(3rd token in this example)
B. Generate the distinctive token

ADD-OR-MULTIPLY

aa 7→ aaaa
hh 7→ hhhh
vvv 7→ vvvvv / vvvvvv
i 7→

iii / ii

A. Add m tokens
(m = 2 in this example)

B. Multiply the numder of tokens by n
(n = 2 in this example)

VERB-OBJECT

like [CITY] 7→ True
love [ANIMAL] 7→ False
like [ANIMAL] 7→ True / False
love [CITY] 7→

False / True A. If “like” exists, then True
B. If [CITY] exists, then True

TENSE-ARTICLE

The [NOUN] [VERB]-ing 7→ True
A [NOUN] [VERB]-past 7→ False
A [NOUN] [VERB]-ing 7→ True / False
The [NOUN] [VERB]-past 7→

False / True A. If the verb is in ing form, then True
B. If the first token is “the", then True

POS-TITLE

The [NOUN] Was [ADJ] 7→ True
The [noun] was [noun] 7→ False
The [noun] was [adj] 7→ True / False
The [NOUN] Was [NOUN] 7→

False / True A. If adjective exsist, then True
B. If the sentence is in title case, then True

ASSOCIATIVE-RECALL

a 7→ 6
g 7→ 3
w 7→ 5
g 7→

3
Key–value pairs are in the prompt.
The task is to output a value associated
with a given key.

Table 1: Formats of our inductive reasoning tasks. As a baseline setting, we also set ASSOCIATIVE-RECALL setting
to just memorize key-value mappings. The remaining tasks span from somewhat superficial features to linguistic
ones. The disambiguating example (the third one in these examples) determines the correct rule and answer (blue or
orange) for the final question from two plausible generalizations shown in the “Potential rules” column.

necessary for defining the task. In real-world tasks,228

it is generally unclear which in-context example229

is the most influential in solving the task, and the230

task may be solved even without relying on any231

of the examples (e.g., solved by leveraging prior232

knowledge). Therefore, these are not suitable as a233

benchmark to evaluate the interpretability method,234

and we design a synthetic and controlled tasks.235

Our setting is the extension of Mueller236

et al. (2024); we employ a set of ambigu-237

ous inductive learning scenarios inspired by the238

cognitively-motivated LM analyses (McCoy et al.239

2020,Warstadt et al. 2020a; inter alia). In these sce-240

narios, a task f is mostly ambiguous in demonstra-241

tions E in the sense that several compatible rules242

exist to explain the transformations X 7→ f(X).243

We extend this setting by adding only one disam-244

biguating example e∗ (“aha example”), which de-245

termines the correct rule f∗ to be unique, and test246

whether each IA method can identify this special247

example as long as models correctly employ this248

clue e∗ to resolve the problem. For instance, most249

examples shown in Figure 1 are ambiguous (with250

gray color) w.r.t. the two possible rules of (i) adding251

the same token twice or (ii) multiplying the num- 252

ber of tokens by two. This ambiguity is resolved 253

by comparing the aha example e∗ (blue example 254

in Figure 1) with any one of the other ambiguous 255

examples. As shown in Table 1, we designed the 256

following tasks as a case study: 257

LINEAR-OR-DISTINCT (LD) The few-shot ex- 258

amples are ambiguous as to Rule A: selecting a 259

character in a particular linear position in an input 260

Xi; or Rule B: selecting a character that differs 261

from the others in an input Xi. 262

ADD-OR-MULTIPLY (AM) The ambiguity of 263

this task is Rule A: add a certain number of tokens 264

to input Xi; or Rule B: multiply the numbers of 265

tokens in the input Xi. 266

VERB-OBEJECT (VO) This task requires distin- 267

guishing whether the type of verb (Rule A) or the 268

category of the object noun (Rule B) matters. We 269

employed two verbs (“like” and “love”) and two 270

categories of the object (city or animal). 271

TENSE-ARTICLE (TA) The potential rules are 272

Rule A: whether the main verb in the input Xi is in 273
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ing-form or not; or Rule B: whether the first token274

of input Xi is “The” or not.275

POS-TITLE (PT) This task involves two276

rules: Rule A: whether there is an adjective in Xi;277

or Rule B: whether Xi is presented in the title case.278

279

In addition to them, we adopted a simple task280

of associative recall (AR), which is typically em-281

ployed in studying ICL, where the model is sup-282

posed to simply memorize the key: value mapping283

rules demonstrated in the prompt and apply them284

to the target question. Linguists may be more inter-285

ested in the task of, for example, syntactic transfor-286

mation to an interrogative sentence (McCoy et al.,287

2020) based on the original poverty of the stimu-288

lus argument in the language domain (Chomsky,289

1980). However, such a realistic task interferes290

with the models’ meta-linguistic knowledge; thus,291

we adopted artificial (and somewhat simpler) ones.292

Foil token A contrastive explanation needs a foil293

token corresponding to an explicit negative label294

(§ 2.1). We use the token/answer corresponding to295

an alternative rule (conflicting the disambiguating296

example) as the foil token.297

4 Experimental setup298

4.1 Overview299

Few-shot settings We conducted experiments300

with different numbers of few-shot examples;301

specifically, we examined 10-shot, 50-shot, and302

100-shot settings to test the robustness of IA meth-303

ods toward somewhat longer demonstrations.304

Data For each synthetic task, we create 360 dif-305

ferent questions with different sets of few-shot ex-306

amples and a target question. In the LD, AM, VO,307

TA, and PT tasks, the correct rule is selected out of308

the two candidates (rules A or B shown in Table 1)309

in a 1:1 ratio. The position of the most influential310

(i.e., disambiguating) example e∗ is assigned ac-311

cording to a uniform distribution over all positions312

except the first. We test IA methods using only the313

questions that models answered correctly.314

Models We evaluate five LLMs: Llama-2-7B,315

Llama-2-13B (Touvron et al., 2023), Gemma-2-2B,316

Gemma-2-9B, and Gemma-2-27B (Riviere et al.,317

2024). As a prerequisite of our experiments, the318

models should be able to learn the task, i.e., be suf-319

ficiently sensitive to the disambiguating example320

e∗ and use this to determine the correct rule. To321

ensure this ability, we fine-tune these models on 322

each task (see Appendix A), but the conclusions 323

overall did not alter before and after fine-tuning 324

(see Appendix B). 325

4.2 Metrics 326

We report two accuracy measures: (i) e∗ is in the 327

top two examples with the highest IA score (top- 328

2 accuracy), and (ii) e∗ gets the highest IA score 329

among the input examples (top-1 accuracy). Top- 330

2 accuracy is motivated by the fact that models 331

should at least consider the e∗ plus any other ex- 332

ample to identify the correct rule (as described 333

in § 2.2). Top-1 accuracy is motivated from a 334

leave-one-out perspective; excluding the e∗ signifi- 335

cantly hurts the task answerability, while excluding 336

the other examples does not hurt the task ambigu- 337

ity/complexity. 338

4.3 Baselines 339

Along with the IA methods introduced in § 2.1, we 340

evaluate four baseline methods. 341

Edit distance This method identifies e∗ simply 342

using edit distance between the target example 343

Xn+1 ⊕ yn+1 and each example Xi ⊕ yi, where ⊕ 344

is a string concatenation. Example with the mini- 345

mum edit distance, thus the most similar example 346

to the target question, is selected as an explanation. 347

The weak performance of this problem probes that 348

our experimental setting is so challenging that just 349

relying on surface features does not resolve it. 350

Attention weights This method leverages atten- 351

tion weights, computed as the sum of attention 352

weights across all tokens in input X . While atten- 353

tion weights are generally considered unreliable 354

for model interpretation, we include this baseline 355

to compare whether IA methods achieve superior 356

performance. 357

Self-answer We also examine directly asking the 358

models to generate their rationale. Specifically, 359

we have models generate the most informative 360

example in a prompt (Appendix D) in deriving 361

their answer as a post-hoc explanation. This might 362

be, more or less, relevant to the verbalization of 363

aha moment recently observed in DeepSeek mod- 364

els (Guo et al., 2025). 365

Chance rate We also report the chance rate of 366

attribution accuracy when randomly selecting one 367

example from a prompt. 368
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Figure 2: Attribution accuracies for each task/model in the 10-shot setting (thus, the chance rate is 20% and 10% for
the top-two and top-one metric, respectively; red dotted line). The edit distance and attention baselines are indicated
by a black dotted line and gray bar, respectively.

5 Experiments369

Figure 2 shows the results in 10-shot settings, with370

both top-2 and top-1 metrics. Additional analyses371

are presented in Appendices C, E, and F.372

5.1 Main results373

IE works the best First of all, the input erasure374

method generally performed the best in both top-1375

and top-2 accuracies. This is somewhat obvious376

because our task is designed to be unsolvable by377

removing the aha example and thus rather serves378

as a quick check for our experimental design. Hav-379

ing said that, the input erasure method has some380

disadvantages in regard to the computational costs381

of repeated decoding by removing examples one382

by one as well as the unclarity of by which unit383

an erasure should be applied, especially in a real,384

somewhat noisy input. Additionally, the accuracy385

was not 100% in almost all the cases; we further386

discuss the potential flaw of this approach in § 6.387

Potential of gradient-based approaches As for388

baselines, while the self-answer approach worked389

well in specific settings (associative recall with390

larger models), most baselines, including attention391

weights, generally failed to achieve high accuracy.392

Edit distance was a somewhat strong baseline, but393

it has obvious limitations of lacking semantic sim-394

ilarities and was frequently outperformed by GN.395

Compared to such baselines, the gradient-based396

method worked relatively well, highlighting the397

potential of this direction.398

Improved versions of gradient-based methods 399

do not outperform GN Among the gradient- 400

based methods, simple gradient norm tends to work 401

the best in most tasks, especially in top-2 accuracy. 402

In other words, whereas I×G and IG are proposed 403

as the improved version of simple gradient norm 404

method, there were no substantial advantages of 405

these methods in our settings. In particular, IG 406

consistently yielded the lowest attribution accu- 407

racy across all six tasks among the gradient-based 408

methods, suggesting its limitations in ICL scenar- 409

ios. The plausible reason behind this inferiority is 410

discussed in § 6. 411

General failure Nevertheless, some simple tasks, 412

such as VERB-OBJECT, TENSE-ARTICLE, and 413

POS-TITLE, were ever hard to interpret with any 414

approach. This opens a new field for developing a 415

better interpretation method for ICL. 416

5.2 Scaling properties 417

In the age of LLMs, the setting has progressively 418

been scaled up toward model parameter size and 419

context length. We analyze how such a scaling 420

affects the LLMs’ interpretability. 421

Interpretability vs. model size We first investi- 422

gate the relationship between attribution accuracy 423

and model size — is it more difficult to interpret 424

larger models? We observe somewhat intriguing 425

patterns for this question (Figure 2); gradient-based 426

methods tend to work worse in larger models, and 427

in contrast, the self-answer baseline works bet- 428

ter in larger models (especially in LINEAR-OR- 429

DISTINCT and ASSOCIATIVE-RECALL). That is, 430
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Task Accuracy (%) IE Attr. Acc. (%)

Top-2 Top-1

LD (Rule A) 98.0
58.2 56.0LD (Rule B) 0.5

AM (Rule A) 34.5
93.1 92.2AM (Rule B) 65.5

VO (Rule A) 100.0
56.1 50.3VO (Rule B) 0.0

SP (Rule A) 98.0
52.5 50.0SP (Rule B) 2.0

ST (Rule A) 68.5
59.0 51.1ST (Rule B) 31.5

Table 2: Task accuracy (not attribution accuracy) of
Gemma-2-2B (excluding AR) when the disambiguating
example is not included, separated by the correct rule.
The accuracy drastically differs when the correct rule
is different; thus, the models adopt a particular default
rule with their inductive biases against fully ambiguous
demonstrations, even in our controlled settings.

the (empirically) accurate approach to interpret-431

ing the LLMs may differ in their model scale, and432

the success in interpreting smaller models does433

not always entail the success in interpreting larger434

models.435

Interpretability vs. number of examples Next,436

given the trend of long-context LLMs, we examine437

the relationship between attribution accuracy and438

the number of few-shot examples. Figure 3 shows439

the attribution accuracy for Gemma-2-2B across all440

six tasks in different number of in-context exam-441

ples. This demonstrates that gradient-based meth-442

ods maintain accuracy or rather improve against443

the longer context, in contrast to the decreasing444

chance rate. This suggests the robustness of IA445

methods in long-context scenarios, highlighting446

their potential for interpreting inputs with exten-447

sive contextual information. Notably, the quality of448

self-answer consistently degraded as the number of449

in-context examples increased, while the positive450

scaling effect was observed in the previous analysis451

of model size. That is, the gradient-based meth-452

ods and self-answer approach exhibit an insightful453

trade-off between different scaling properties.454

6 Discussion455

This section discusses the potential reasons for the456

unexpected results presented in § 5, highlighting457

the challenging issues in interpreting ICL.458

Why did IE fail to achieve 100% attribution ac-459

curacy? Our tasks can not be answered without460

disambiguating aha examples. Thus, it is some-461

what unintuitive to see the non-100% attribution 462

accuracy of the IE method (again, the LLMs un- 463

derstood the task as they achieved 100% accuracy 464

in the tasks) — what happens here? To obtain a 465

hint to clarify IE’s potential limitations, we analyze 466

model behaviors when the disambiguating example 467

is excluded. Interestingly, LLMs adopted a specific 468

generalization (rule) in each task when there was no 469

disambiguating example (Table 2); in other words, 470

they sometimes exhibited strong inductive biases in 471

our tasks. That is, when the correct rule is equal to 472

their preferred rule by their inductive bias, they can 473

answer the task correctly even without disambiguat- 474

ing examples, and the IE method does not compute 475

a proper attribution score. It is now common to 476

see LLMs have particular inductive biases (not a 477

tabula rasa) (Warstadt et al., 2020b; Kharitonov 478

and Chaabouni, 2021). Catching such generaliza- 479

tion bias with IA methods represents an inherent 480

challenge, highlighting their potential limitations 481

in interpreting ICL. 482

Why was I×G worse than gradient norm? One 483

advantage of the I×G method, compared to the 484

simple gradient norm, is the consideration of the 485

norm of the input embedding (Shrikumar et al., 486

2017; Denil et al., 2014). Since a large vector tends 487

to have a large dot product with another vector, 488

the norm of the input token embedding (vector) 489

is expected to affect the IA score of I×G. Then, 490

no improvement of I×G over the simple gradient 491

norm suggests that, at least in our settings, the norm 492

of the embeddings was not informative to estimate 493

the input attribution. The norm of the embedding 494

largely has decontextualized information about the 495

word, such as frequency, and it may make sense 496

that such information is not helpful to interpreting 497

our controlled, artificial ICL tasks consisting of 498

alphabet characters, numbers, or random words. 499

Why was IG worse than gradient norm? IG is 500

a path-based approach; the gradient is accumulated 501

from a baseline vector (typically zero vector) to 502

the targeted input representation (in our case, the 503

sequence of input embeddings representing few- 504

shot examples). This approach is somewhat intu- 505

itive when considering an attribution for a partic- 506

ular word or sentence; for example, suppose one 507

computes an attribution to the word “excellent” in 508

an input for a particular task-specific model, IG 509

may trace the path from zero to the “excellent” 510

vector, which will be in a kind of the goodness 511

direction, involving the points corresponding to, 512
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Figure 3: Attribution accuracy for interpreting Gemma-2-2B models across all six tasks. Gradient-based methods
are relatively robust to the number of few-shot examples, while there is a consistent, large drop in attribution
accuracy in SA. Note that both x-axis and y-axis are in log scale.

e.g., “okay” “decent,” “good,” “excellent” (Sanyal513

and Ren, 2021). Then, one critical question is —514

what does this path mean in the prompt/task space?515

Different prompt representations will no longer cor-516

respond to the same task; thus, the attribution of a517

particular token in the middle of such a path in the518

prompt space may no longer be an attribution under519

a targeted task. This can be one concern toward the520

ineffectiveness of IG in our settings.521

7 Related Work522

IA methods Several lines of research are con-523

ducted to interpret neural language models. NLP524

researchers have adapted IA methods, which were525

originally applied to vision models (Simonyan526

et al., 2014; Springenberg et al., 2015; Zintgraf527

et al., 2017), to perform a post-hoc interpretation528

of input-output associations exploited by language529

models (Karpathy et al., 2015; Li et al., 2016a; Ar-530

ras et al., 2016; Lei et al., 2016; Alvarez-Melis and531

Jaakkola, 2017), and its improved versions have532

also been developed (Denil et al., 2014; Sundarara-533

jan et al., 2017; Murdoch et al., 2018; Sinha et al.,534

2021; Ding and Koehn, 2021; Bastings et al., 2022;535

Yin and Neubig, 2022; Ferrando et al., 2023). In536

line with these studies, we provide a new perspec-537

tive to evaluate these IA methods in ICL. Note that,538

as an orthogonal attempt, some research estimates539

the saliency scores to directly prompt models to540

generate such explanations (Rajani et al., 2019;541

Liu et al., 2019; Wu and Mooney, 2019; Narang542

et al., 2020; Marasovic et al., 2022). This method543

is indeed examined as one baseline in our study.544

Instance-based explanation Instance-based ex-545

planation seeks for the explanation in training data546

rather than the immediate input during inference as547

IA methods (Wachter et al., 2017; Charpiat et al.,548

2019; Hanawa et al., 2021). These two paradigms549

of instance-based and IA-based explanations have 550

been studied somewhat separately since the infor- 551

mation source to seek the explanation is clearly 552

different. On the other hand, in ICL, the training 553

examples are now in the input during inference 554

that can be analyzed by IA methods. In this sense, 555

our investigation can seen as a new exploration 556

of instance-based explanation with the help of IA 557

methods. 558

Mechanistic Interpretability With the rise of 559

large language models, such as GPT-3 (Brown 560

et al., 2020), the mechanistic interpretability com- 561

munity has shifted its focus from vision models 562

to language models. Within which, the promising 563

results using sparse autoencoders (SAEs) (Bricken 564

et al., 2023; Templeton et al., 2024) have in- 565

spired a flurry of follow-up work (Gao et al., 566

2024; Lieberum et al., 2024; Rajamanoharan et al., 567

2024a,b; Karvonen et al., 2024; Braun et al., 2024; 568

Kissane et al., 2024; Makelov, 2024). Such a scope 569

of SAE, interpreting the model internals, is orthog- 570

onal to our direction of estimating the importance 571

of input examples. 572

8 Conclusions 573

We have pointed out and tackled the problem of in- 574

terpreting the inductive reasoning process in ICL as 575

a missing but reasonable milestone to be explored 576

in LLM interpretability research. Our revisit to 577

the IA methods in interpreting this ICL process 578

has clarified their limitations from a new angle as 579

well as provided fruitful insights and discussions on 580

their practical usage in modern NLP. These findings 581

have highlighted some issues in the community; in 582

particular, even the fundamental task of mapping 583

input and output has not been accomplished, and 584

there is room to sophisticate previously developed 585

interpretability tools to be suitable for LLMs. 586
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Limitations587

Our study has several limitations in scope. First,588

we focused primarily on popular gradient-based589

IA methods, leaving other approaches such as590

perturbation-based methods like LIME (Ribeiro591

et al., 2016) and SHAP (Lundberg and Lee, 2017)592

for future work.593

Regarding model selection, we concentrated on594

widely-used open-weight LLMs. Since applying595

IA methods requires gradient computation through596

backward propagation, computational constraints597

limited our ability to evaluate all available models,598

particularly large ones such as Llama-2-70B (Tou-599

vron et al., 2023).600

Our experimental design used synthetic tasks to601

better identify influential examples in the few-shot602

setting. While this approach allowed for controlled603

experimentation, both the number and format of604

tasks were limited. Future work could explore more605

realistic tasks with greater variations.606

We focused exclusively on pre-training models,607

excluding post-training models from our analysis.608

This choice was motivated by our interest in basic609

few-shot learning, which is more commonly used610

with pre-trained models. Although post-training611

models might demonstrate higher accuracy on our612

tasks and the self-answer setting due to their po-613

tentially superior capabilities (Riviere et al., 2024),614

our primary focus was on evaluating IA methods615

rather than model performance.616

The optimization of the self-answer setting was617

not explored in depth, as our main interest lay in ex-618

amining whether larger models showed improved619

performance in this setting rather than enhancing620

the setting itself.621

Finally, while our ambiguous tasks were de-622

signed with two potential functions in mind, we ac-623

knowledge that models might interpret these tasks624

differently than intended. However, since our focus625

was on whether models could recognize these as626

ambiguous tasks with two possible answers and627

use specific examples to determine the appropri-628

ate response, we believe this limitation does not629

significantly impact our findings.630

Ethical Statements631

This work advances our understanding of input632

attribution (IA) methods in the context of large lan-633

guage models’ (LLMs) in-context learning (ICL).634

Our findings contribute to the broader goal of devel-635

oping more interpretable and safer AI systems by636

providing practical insights into the strengths and 637

weaknesses of IA methods as tools for interpreting 638

LLMs. 639

This study exclusively uses synthetic data gen- 640

erated through computational methods. No real 641

user data, human annotations, or personally iden- 642

tifiable information was collected or used in our 643

experiments. Our synthetic dataset generation pro- 644

cess does not involve any human subjects, crowd 645

workers, or demographic information. 646
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A Finetuning details1034

The fine-tuning dataset consisted of 400 tasks for1035

each of the 10-shot, 50-shot, and 100-shot settings1036

(1,200 tasks total). For each task, we created a train-1037

ing set for fine-tuning using tokens that did not over-1038

lap with our test set (the dataset used in our main1039

experiments). We fine-tuned models separately1040

on each task, resulting in six fine-tuned models per1041

LLM. The exception was the Gemma-2-27B model,1042

which we did not fine-tune on the ASSOCIATIVE-1043

RECALL task since the original model already per-1044

formed well enough on this simple task.1045

A.1 Finetuing parameters1046

We use a consistent LoRA configuration with rank1047

r = 32 and scaling factor α = 64, applying a1048

dropout rate of 0.05 across all linear modules. The1049

LoRA adaptation includes bias terms in the training.1050

For optimization, we perform a learning rate sweep1051

using a cosine scheduler with a 5% warm-up period1052

relative to the total training steps. The optimal1053

learning rate typically falls in the order of 1 ×1054

10−5 when the loss reaches its minimum. In our1055

experiments, the Llama-2 models achieved nearly1056

zero loss, which is expected in such a synthetic1057

setting. The Gemma-2 models, however, converge1058

to final loss values of approximately 0.2.1059

A.2 Zero-shot task accuracy after finetuning1060

We evaluate task accuracy using exact match, with1061

results presented in Tables 4, 5, 6, 7, and 8. In the1062

zero-shot setting, some tasks show accuracies sig-1063

nificantly below chance rate (indicated in parenthe-1064

ses), as models occasionally generate unexpected1065

responses. Notably, all models achieve zero-shot1066

accuracies at or below the chance rate across all1067

tasks, suggesting that models cannot solve our tasks1068

relying only on the aha example.1069

B Base model results1070

Figure 4 presents the IA scores for the base mod-1071

els. While the overall IA scores for VO, TA and1072

PT tasks are relatively low, the performance trends1073

across different tasks and models exhibit similar1074

patterns to those observed in the fine-tuned models1075

(Figure 2). Therefore, our results can be general-1076

ized regardless of fine-tuning.1077

C Aggregating attritbuion with max1078

Figure 5 presents the IA scores using maxi-1079

mum aggregation to convert token-level attri-1080

bution to example-level attribution: S(ei) = 1081

maxxj∈(Xi,yi)=ei S(xj). The overall trend for all 1082

the IA methods is consistent with the sum aggrega- 1083

tion (Figure 2); thus, our results can be generalized 1084

regardless of this design. 1085

D Prompts 1086

We present sample of the exact prompt we used 1087

for our task, including the ones we used for testing 1088

attribution accurices and modified prompts for self- 1089

answer. Note that in all the experiments, we only 1090

used the model outputs with a correct answer. That 1091

is why we appended the correct answer in advance 1092

to the self-answer prompt to obtain the post-hoc 1093

explanation. 1094

Normal Prompt 1095

Input: they, Output: 6
Input: not, Output: 3
Input: I, Output: 5
Input: tell, Output: 7
Input: them, Output: 6
Input: were, Output: 6
Input: at, Output: 0
Input: yes, Output: 1
Input: right, Output: 9
Input: say, Output: 3
Input: they, Output:

Self-answer Prompt 1096

<0>Input: they, Output: 6</0>
<1>Input: not, Output: 3</1>
<2>Input: I, Output: 5</2>
<3>Input: tell, Output: 7</3>
<4>Input: them, Output: 6</4>
<5>Input: were, Output: 6</5>
<6>Input: at, Output: 0</6>
<7>Input: yes, Output: 1</7>
<8>Input: right, Output: 9</8>
<9>Input: say, Output: 3</9>
<target>Input: they, Output: </target>

Among the 10 examples labeled <0> to
<9>, select the single most helpful example for
determining the answer to the <target> question.
The correct answer to the target question is “6”.
To conclude this answer, we need to find one
example that provides the necessary information.
Therefore, the most helpful example is <
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E Chain-of-though format1097

To contextualize our experimental settings with1098

more practical scenarios, we further evaluate attri-1099

bution accuracies on top of chain-of-thought (CoT)1100

prompting (Wei et al., 2022). We use Gemma-2-1101

27B-IT (a post-training version of Gemma-2-27B)1102

instead of the base model to perform a better CoT-1103

style generation and employ the AM task, where1104

the model achieved high accuracy with CoT, as a1105

case study. We only target the last time step to1106

generate the exact answer. We compute the by-1107

example attribution scores the same as our main1108

experiments, but now the attribution scores can be1109

spread over the reasoning chain part as well as in-1110

context examples. Our target is which example is1111

informative to answer the question; thus, the attri-1112

bution to the chain part is tentatively disregarded.1113

As statistics, we just report how many proportions1114

of attribution scores ([0-100%]) reached the rea-1115

soning chain part (denoted as “Chain prop.”).1116

The results are presented in Table 3. All tested1117

IA methods performed worse in this CoT setting1118

than in the CoT-free settings in the main experi-1119

ments. Nevertheless, the superiority of GN to other1120

approaches still holds. Note that the Chain prop.1121

substantially differs across IA methods; for exam-1122

ple, IE assigns over 80% of the attribution score1123

to the chain. These divergent results also suggest1124

that the conventional IA methods can not easily be1125

applied to modern ICL and CoT settings.1126

The exact prompt and the reasoning chain gener-1127

ated by the model are provided below4:1128

CoT Prompt1129

<start_of_turn> user
1130

4The prompt template is applied since this is a post-training
model

Method IA score Aggregation Chain prop. (%)

Top-1 Top-2

IE 11.3 17.4

Sum

82.1
GN 12.4 37.6 35.4
I × G 14.9 29.8 23.0
IG 8.9 22.7 42.9

IE 11.3 17.4

Max

82.1
GN 14.5 33.3 19.2
I × G 9.9 31.2 23.1
IG 9.9 22.3 7.5

Table 3: IA score for the CoT-prompted AM task. The
percentage of attribution scores allocated to the reason-
ing chain is denoted as Chain prop.

Input: saw, 2, Output: saw, 4
Input: start, 2, Output: start, 4
Input: the, 2, Output: the, 4
Input: too, 2, Output: too, 4
Input: round, 2, Output: round, 4
Input: which, 1, Output: which, 3
Input: work, 2, Output: work, 4
Input: get, 2, Output: get, 4
Input: that, 2, Output: that, 4
Input: white, 2, Output: white, 4
Input: I, 3, Output: <ANSWER>

Solve this problem step by step, generate the
content of <ANSWER> after “So the answer is”:
<end_of_turn>

<start_of_turn> model
1131

F Distribution of example with the 1132

highest attribution score 1133

Figures 6, 7, 8, 9 and 10 present the distribution 1134

of example positions with the highest attribution 1135

scores. All IA methods, except for I × G, pos- 1136

sess positional bias for certain tasks, specifically 1137

favoring examples either at the beginning or end, 1138

aligning with the position bias known to LLMs (Liu 1139

et al., 2024). 1140

G Informaiton for responsibility checklist 1141

We utilized software libraries, including the Hug- 1142

gingface toolkit (Wolf et al., 2020) (Apache Li- 1143

cense Version 2.0), Captum package (Kokhlikyan 1144

et al., 2020) (BSD 3-Clause License) for IG com- 1145

putation, and Pytorch (Ansel et al., 2024) (BSD 1146

3-Clause License). These tools were used accord- 1147

ing to their licenses and intended usage. We used 1148

writing assistance tools (including Grammarly) for 1149

language error correction only. The computational 1150
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budget of this work is approximately 600 GPU1151

hours (with A100/H100/H200 machines).1152
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Zero-shot (%) Few-shot (%)

ASSOCIATIVE-RECALL 10.0 100.0 (10.0)
LINEAR-OR-DISTINCT 44.8 99.0 (50.0)
ADD-OR-MULTIPLY 11.8 100.0 (50.0)
VERB-OBJECT 0.0 100.0 (50.0)
TENSE-ARTICLE 0.0 100.0 (50.0)
POS-TITLE 0.0 98.0 (50.0)

Table 4: The zero-shot and few-shot accuracy of the
fine-tuned Gemma-2-2B model across all evaluation
tasks. The chance rate is indicated in parentheses.

Zero-shot (%) Few-shot (%)

ASSOCIATIVE-RECALL 12.0 100.0 (10.0)
LINEAR-OR-DISTINCT 50.0 85.5 (50.0)
ADD-OR-MULTIPLY 12.0 100.0 (50.0)
VERB-OBJECT 0.0 94.8 (50.0)
TENSE-ARTICLE 0.0 100.0 (50.0)
POS-TITLE 50.0 98.8 (50.0)

Table 5: The zero-shot and few-shot accuracy of the
fine-tuned Gemma-2-9B model across all evaluation
tasks. The chance rate is indicated in parentheses.

Zero-shot (%) Few-shot (%)

ASSOCIATIVE-RECALL 15.0 100.0 (10.0)
LINEAR-OR-DISTINCT 47.3 99.8 (50.0)
ADD-OR-MULTIPLY 48.5 97.3 (50.0)
VERB-OBJECT 0.0 99.5 (50.0)
TENSE-ARTICLE 50.0 100.0 (50.0)
POS-TITLE 45.5 97.8 (50.0)

Table 6: The zero-shot and few-shot accuracy of the
fine-tuned Gemma-2-27B model across all evaluation
tasks. The chance rate is indicated in parentheses.

Zero-shot (%) Few-shot (%)

ASSOCIATIVE-RECALL 10.0 100.0 (10.0)
LINEAR-OR-DISTINCT 44.8 100.0 (50.0)
ADD-OR-MULTIPLY 11.8 99.0 (50.0)
VERB-OBJECT 0.0 100.0 (50.0)
TENSE-ARTICLE 0.0 100.0 (50.0)
POS-TITLE 0.0 98.0 (50.0)

Table 7: The zero-shot and few-shot accuracy of the
fine-tuned Llama-2-7B model across all evaluation tasks.
The chance rate is indicated in parentheses.

Zero-shot (%) Few-shot (%)

ASSOCIATIVE-RECALL 10.0 100.0 (10.0)
LINEAR-OR-DISTINCT 50.0 99.8 (50.0)
ADD-OR-MULTIPLY 41.0 100.0 (50.0)
VERB-OBJECT 0.0 100.0 (50.0)
TENSE-ARTICLE 0.0 100.0 (50.0)
POS-TITLE 41.8 97.0 (50.0)

Table 8: The zero-shot and few-shot accuracy of the fine-
tuned Llama-2-13B model across all evaluation tasks.
The chance rate is indicated in parentheses.

17



Lla
ma-

2-
7B

Lla
ma-

2-
13

B

Gem
ma-

2-
2B

Gem
ma-

2-
9B

Gem
ma-

2-
27

B
0%

25%

50%

75%

100%

Lla
ma-

2-
7B

Lla
ma-

2-
13

B

Gem
ma-

2-
2B

Gem
ma-

2-
9B

Gem
ma-

2-
27

B

Lla
ma-

2-
7B

Lla
ma-

2-
13

B

Gem
ma-

2-
2B

Gem
ma-

2-
9B

Gem
ma-

2-
27

B

Lla
ma-

2-
7B

Lla
ma-

2-
13

B

Gem
ma-

2-
2B

Gem
ma-

2-
9B

Gem
ma-

2-
27

B

Lla
ma-

2-
7B

Lla
ma-

2-
13

B

Gem
ma-

2-
2B

Gem
ma-

2-
9B

Gem
ma-

2-
27

B

Lla
ma-

2-
7B

Lla
ma-

2-
13

B

Gem
ma-

2-
2B

Gem
ma-

2-
9B

Gem
ma-

2-
27

B

0%

25%

50%

75%

100%

IE GN I x G IG Baseline: Self Answer Baseline: Attention Weight
Baseline: Edit Distance Baseline: Chance Rate

Linear-or-Distinct Add-or-Multiply Verb-Object Tense-Article Pos-Title Associative-Recall
IA

 S
co

re
(T

op
-1

)
IA

 S
co

re
(T

op
-2

)

Figure 4: Attribution accuracies for each task for base models. Similar patterns to those observed in the fine-tuned
models (Figure 2) can be obsered.
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Figure 5: Attribution accuracies for each task use max aggregation. The overall trend for all IA methods is consistent
with sum aggregation (Figure 2)
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Figure 6: Distribution of the positional of the example with the highest attribution scores across IA methods
(Llama-2-7B model).
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Figure 7: Distribution of the position of the example with the highest attribution scores across IA methods (Llama-
2-13B model).
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Figure 8: Distribution of the position of the example with the highest attribution scores across IA methods (Gemma-
2-2B model).
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Figure 9: Distribution of the position of the example with the highest attribution scores across IA methods (Gemma-
2-9B model).
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Figure 10: Distribution of the position of the example with the highest attribution scores across IA methods
(Gemma-2-27B model).
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