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Abstract
Crowdsourced clustering leverages human input
to group items into clusters. The design of tasks
for crowdworkers, specifically the number of
items presented per query, impacts answer qual-
ity and cognitive load. This work investigates
the trade-off between query size and answer ac-
curacy, revealing diminishing returns beyond 4-5
items per query. Crucially, we identify contextual
bias in crowdworker responses – the likelihood
of grouping items depends not only on their sim-
ilarity but also on the other items present in the
query. This structured noise contradicts assump-
tions made in existing noise models. Our findings
underscore the need for more nuanced noise mod-
els that account for the complex interplay between
items and query context in crowdsourced cluster-
ing tasks.

1. Introduction
From deep neural networks (LeCun et al., 1998; He et al.,
2016; Krizhevsky et al., 2012) to foundation models (Rad-
ford et al., 2021), having a high quality, labeled, large-scale
dataset is essential not only to the success of the models
themselves, but also has a long-term effect on the subse-
quent tasks that utilize these models.

One way to build a large-scale labeled dataset is resort to
crowdsourcing (Sorokin & Forsyth, 2008; Raykar et al.,
2010), a method in which a crowd of non-experts, known as
crowdworkers, assumes the labeling task. One may argue
that auto-labeling (Vishwakarma et al., 2023) or foundation
model (Radford et al., 2021) can be used to label a dataset.
However, in the case where a highly specialized dataset is
required for a domain-specific task, utilizing crowdsourcing
is inevitable.
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Figure 1. Two types of queries: (a) direct labeling task and (b)
comparison task.

One aspect of crowdsourcing that cannot be overlooked is
that non-expert crowdworkers on platforms like Amazon
Mechanical Turk (AMT) (Amazon, 2023) provide noisy an-
swers. However, label quality is crucial for the effectiveness
of supervised algorithms. Therefore, it is vital to formulate
crowdsourcing tasks that are easy for nonexperts to answer,
minimizing noise, and maximizing information gathered
under a given budget.

Crowdsourced Clustering While it is straightforward
for nonexperts to label general classes like “dog” or “cat”,
obtaining a more granular label, i.e. the specific breed of a
given animal, is challenging.

Consider the task of labeling images of different bird species.
To accurately label each bird with its specific species (Fig-
ure 1a), a worker needs a certain level of expertise in iden-
tifying various bird species, or they need to be trained
trained—both of which are expensive options. However,
if we present a pair of bird images (Figure 1b) and ask ”Are
these two birds from the same species?”, the task becomes
considerably simpler than direct labeling. These pairwise
comparison queries are the building blocks of crowdsourced
clustering systems (Welinder et al., 2010; Gomes et al.,
2011; Vinayak et al., 2014; Vinayak & Hassibi, 2015).

A typical crowdsourced clustering system builds a graph
from the answers to the queries. Given a dataset consisting
of n items, we construct a graph by treating each of the
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items in the dataset as a node. The graph is represented
by an adjacency matrix A. Each column and row of A
corresponds to an item in the dataset, and the entry i, j of
A, denoted as Aij , is an indicator of whether there is an
edge between the item i and the item j in the graph. That is,
Aij = 1 if there is an edge between the item i and the item
j and Aij = 0 otherwise. At the same time, having an edge
between the item i and the item j indicates that they are
similar. Each entry, whether containing a numerical value
of 0 or 1, could be in two states: observed or unobserved.

When a crowdworker decides that the item i and the item
j are from the same cluster, the corresponding entry Aij

is observed and filled with 1. Otherwise, the entry Aij is
observed and filled with 0. After the querying process is
done, the matrix A is fed to a graph clustering algorithm,
which outputs the clustering of the dataset. To obtain the
labels, we hire experts to label each cluster found.

A natural question we ask is ”How should we design a
query?” Querying all entries is prohibitive since the number
of queries is in the order of O(n2), where n is the number
of items in the dataset. Therefore, we need to determine
what to query. Should we query two images at a time,
thus filling one entry, or should we present three images
to fill three entries, or four images to fill six entries of the
adjacency matrix? In other words, should we present as
many images as possible per query to maximize the number
of edges explored and obtain better clustering? Or will the
information demands of these tasks exceed the processing
capabilities of the crowdworkers (cognitive overload)?

In addition to query design, we investigate the noise present
in the answers provided by the crowdworkers. The noise
level in the answers could be influenced not only by the
abilities of the workers and the task difficulty but also by
the specific set of items being queried, as human perception
is highly context-dependent (contextual bias).

Our contribution We conducted experiments on AMT
to empirically assess the impact of cognitive overload and
contextual bias in crowdsourced clustering with multi-item
queries. Our findings demonstrate that the benefit of incor-
porating more items per query diminishes after around 4-5
items, likely due to cognitive overload. We also reveal a
structured pattern in the ”noise” of crowdworker responses,
where item grouping depends not only on pairwise similar-
ity but also on the broader query context and hierarchical
relationships among the items. Additionally, we conduct
simulations to investigate the impact of query size on cluster-
ing results, as well as address a gap in the literature focused
primarily on pairwise and triangle queries.

2. Related Works
Direct Labeling Query Many works on the theoretical un-
derstanding of crowdsourcing focus on labeling tasks, where
crowdworkers are asked to label items directly (Dawid &
Skene, 1979; Smyth et al., 1994; Zhou et al., 2012; 2015;
Khetan et al., 2018; Mazumdar & Pal, 2017; Pang et al.,
2019; Han et al., 2017; Karger et al., 2011; 2013). (Karger
et al., 2011; 2013) adopted the “spammer-hammer model”,
which treats workers as a mixture of “spammers”, who ran-
domly answer the questions, and “hammers”, who answer
correctly. (Mazumdar & Pal, 2017; Pang et al., 2019) uti-
lized methods from information theory and coding theory
to reconstruct the labeling from the answers to the queries.
(Mazumdar & Pal, 2017) modeled noises from the crowd-
worker similar to bit flipping. (Pang et al., 2019) considered
noise as whether a query is answered or not. (Han et al.,
2017) pointed out that although crowdworkers give incorrect
errors, some are more correct than others.

Comparison Query Another line of work focuses on the
comparison query, where crowdworkers are asked to group
the items by their similarity, which is based on crowdwork-
ers’ perception of them (Vinayak & Hassibi, 2016; Vinayak
et al., 2014; Vinayak, 2018; Mazumdar & Saha, 2017; La-
houti et al., 2021; Tamuz et al., 2011; Narimanzadeh et al.,
2023; André et al., 2014). (Gomes et al., 2011) showed
that the wisdom of crowds can be used for crowd cluster-
ing. (Vinayak et al., 2014) studied clustering algorithms that
work with partially observed graphs and provided theoreti-
cal guarantees on when clustering works in such scenarios.
(Narimanzadeh et al., 2023) introduced a framework of us-
ing pairwise comparison comparison with Elo scoring to
reduce the variability and bias introduced by subjectivity.
(André et al., 2014) considers the clustering task over texts
instead of images.

Methods in (Mazumdar & Saha, 2017; Yun & Proutiere,
2014) tried to actively select images to be queried. (Vinayak,
2018) present active crowdclustering, which does not rely on
any unknown parameters and can recover clusters regardless
of their sizes. (Chen et al., 2023) extends this work by
implementing the algorithm and conducting experiments on
AMT.

(Lahouti et al., 2021) assumed that crowdworkers do not
make mistakes, making their method less practical. The
method proposed in (Vinayak & Hassibi, 2016), known as
random triangle query, builds on top of (Tamuz et al., 2011)
with a modification on how the question is asked. To model
the noises, the authors present the conditional block model,
which builds on top of the stochastic block model.

Cognitive Overload The effect of cognitive overload
has been studied extensively in the field of social psychol-

2



Effect of Cognitive Overload and Contextual Bias

ogy and information seeking (Oulasvirta et al., 2009; Az-
zopardi, 2021; Chernev et al., 2015; Iyengar & Lepper,
2000). (Oulasvirta et al., 2009) and (Azzopardi, 2021) dis-
cuss cognitive overload as a ”Less is More Effect” in which
people find it more difficult to draw comparisons when con-
fronted with a large number of options. (Iyengar & Lepper,
2000) study the effect in the setting of consumer behavior.
The authors have found that consumers prefer to purchase
from a vendor that displays fewer options. (Chernev et al.,
2015) identifies 4 key factors that impact the effect of cog-
nitive overload via meta-analysis in the field of consumer
psychology.

Contextual Bias Contextual bias is the “noise” within the
answers provided by crowdworkers that is a function of the
set of items the crowdworkers are exposed to in a query.
(André et al., 2014) shows that having context introduced
in the task is beneficial. Yet, the authors did not investigate
how much context should be added.

Both (Mishra & Rzeszotarski, 2021) and ours tries to answer
the question of how the breadth of data affects the outcome
of the model’s result. In our work, however, the breadth
concerns the set of items being shown to crowdworkers,
rather than being used by the model. For the granularity
aspect, (Mishra & Rzeszotarski, 2021) considers granularity
as the level of detail used (by the model) to explain a model’s
decision. Conversely, we treat granularity as the level of
detail used by crowdworkers to make their decision.

3. Crowdsourcing Study
Definitions We refer to a human intelligence task (HIT)
as a question that needs human answer. Each HIT consists
of multiple sub-tasks, to which we refer as query.

Crowdsourced Clustering Given a dataset of n items,
we crowdsource it to np = 300 unique crowdworkers that
have more than 500 HITs approved and a HIT approval
rate greater than 95% on AMT. Each HIT consists of nq

queries. Each query presents crowdworkers m (m ≪ n)
items. When a crowdworker accepts the task, our crowd-
sourced clustering system selects m · nq items from the
dataset uniformly at random. We present nq queries each
with m items. Queries in the task present these items se-
quentially to crowdworkers. That is, the first m items are
shown in the first query; the second m items are shown
in the second query, etc. Each query requires the crowd-
workers to compare the m items and group them by their
similarity. When a query is answered, the corresponding(
m
2

)
entries in the adjacency matrix are filled. After all HITs

are completed, we apply spectral clustering (Ng et al., 2001;
Pedregosa et al., 2011; Shi, 2003) with the number of clus-
ters K equal to the true number of clusters on the adjacency

Figure 2. Samples of the radio interface deployed on Amazon Me-
chanical Turk with m = 3 and Birds5 dataset. Instructions are
always shown on top of the page. Crowdworkers click on the Next
button to proceed to the next query.

matrix to obtain the clustering.

Since there are
(
n
m

)
possible m-item queries, with a limited

number of queries that we can make on a budget, when we
query a random subset of m-item queries, the probability
that two crowdworkers work on exactly the same set of
queries is very low. Note that we do not repeat a query
multiple times, seeking to denoise the answers. This choice
is informed by previous studies (Vinayak & Hassibi, 2015),
which have shown that for clustering partially observed
graphs under a given budget, the benefit of covering more
edges outweighs the benefit of marginally reducing noise in
the entries from repeated querying.

While filling out the entries of the adjacency matrix from
multi-item queries, it is possible for an entry to be observed
multiple times. In that case, we randomly pick an answer.
From our empirical study, we observe that the percentage
in which an edge is queried 3 times or more is less than 1%.
There is no significant difference between our choice and
majoirty voting in terms of selecting repeated edges.

Interface Design

Radio-button Interface We included a modified radio-
button interface, similar to that used in (Vinayak & Hassibi,
2016), to maintain continuity with prior work. However, our
version presents queries one at a time (Figure 2), allowing us
to track individual query completion times. The task instruc-
tions remain at the top of the page and a progress indicator
shows the number of remaining queries. Crowdworkers can
provide feedback upon completion. A limitation of this in-
terface is scalability. As m increases, the number of possible
groups to be shown as radio buttons increases, potentially
overwhelming crowdworkers. Figure 12 in the Appendix
illustrates this issue.
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Figure 3. Sample of the drag-and-drop interface deployed on Ama-
zon Mechanical Turk with m = 2 and Dogs3 dataset. Instructions
are always shown on the top of the page. Crowdworkers can drag
the images to an existing cluster or form a new cluster.

Drag-and-Drop Interface To overcome the scaling limi-
tations of the radio-button interface, we developed a drag-
and-drop interface (Figure 3). The images are presented at
the top, and the crowdworkers create groups by dragging
and dropping them to the desired locations. At the end of the
HIT, feedback can be submitted to us. To help crowdwork-
ers familiarize with the interface, we introduce a tutorial
and practice stage to the crowdworkers. Details regarding
the tutorial and practice stage are deferred to Appendix B.

Datasets Following previous art (Vinayak & Hassibi,
2016), we use the following datasets:
Dogs3: consists of images of 3 breeds of dogs from the
Stanford Dogs dataset (Khosla et al., 2011): Norfolk Terrier
(172), Toy Poodle (150), and Bouvier des Flandres (151),
totaling 473 dog images. Figure 4 (a) - (c) displays selected
images from each breed in the Dogs3 dataset.
Birds5: consists of images of 5 species of birds from the
CUB-200-2011 dataset (Wah et al., 2011): Laysan Albatross
(60), Least Tern (60), Arctic Tern (58), Cardinal (57), and
Green Jay (57). Additionally, it includes 50 random species
acting as outliers, resulting in 342 bird images.
Birds5+: is used to investigate the effect of contextual noise.
It is constructed manually by adding 20 Common Terns from
the CUB-200-211 dataset to Birds5 dataset. While selecting
these Terns, we ensure the birds in these images are standing,
allowing us to minimize noise associated with varied bird
postures. Figure 4 (d) - (i) showcase selected bird images
from each species in Birds5 and Birds5+ dataset.

Evaluation Metric We use Variation of Information (VI)
(Meilă, 2007) to quantify clustering accuracy. VI is a metric
that compares two clustering results on the same dataset.

A smaller VI value indicates a closer match between the
two clusterings, and a VI value of 0 denotes an identical
clustering result. We also gather worker edge error rate: the
edge error rate of each individual crowdworker.

Effect of Cognitive Overload in Multi-item Queries Re-
search conducted by Vinayak and Hassibi (Vinayak & Has-
sibi, 2016) suggests that increasing the number of items m in
each query would theoretically improve the performance of
clustering. However, we hypothesize that when m exceeds
a certain threshold, we would observe a phenomenon of di-
minishing returns due to the cognitive overload imposed on
the crowdworkers. To empirically test our hypothesis, we ex-
periment on AMT with m ∈ {2, 3, 4, 5, 6, 7, 8}. Although
we cannot fully ensure that crowdworkers in different ex-
periment settings experience a similar workload, we try our
best to balance the workload and budget of each experiment
by fixing the total number of images shown in a HIT by 60
1.

Effect of Contextual Bias We hypothesize that errors
made by crowdworkers depend not only on the design of the
query but also on the items being queried, as crowdworkers
may classify images based on different similarity perception
hierarchy induced by the query context. To investigate this
contextual bias effect, we manually select a set of items,
among which some, despite belonging to different ground-
truth clusters, are more similar to each other than to the
rest.

We designed three experiments to illustrate the effect of
contextual bias. For each of these three experiments, we ask
50 crowdworkers to complete 20 queries, where each query
involves 3 images. Across the 50 crowdworkers, we fix the
(unordered) set of images presented in each query. The only
difference between the experiments was the three images
shown per query:
Experiment 1 lt-at-ct): Least Tern (lt), Arctic Tern (at),
Common Tern (ct),
Experiment 2 (lt-at-al): Least Tern (lt), Arctic Tern (at),
Laysan Albatross (al),
Experiment 3 (lt-at-ca): Least Tern (lt), Arctic Tern (at),
Cardinal (ca).

Let Pr(lt-at | lt, at, ct) denote the probability of observing
an edge between a Least Tern (lt) and an Arctic Tern (at)
given that the 3 images in the query are Arctic Tern (at),
Least Tern (lt), and Common Tern (ct). Similarly, we define
Pr(lt-at | lt, at, al) and Pr(lt-at | lt, at, ca).
We aim to show that as the dissimilarity between the third
image and the most similar pair of images in a query in-
crease, the likelihood that the most similar pair being clus-

1When m = 7, 8, we set the number of queries to 9 and 8,
respectively.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4. (a) - (c) sample dogs (Norfolk Terrier, Toy Poodle, Bouvier des Flanders) of each species in the Dogs3 dataset. (d) - (i) sample
birds (Albatross, Least Tern, Arctic Tern, Cardinal, Green Jay, Common Tern) of each species in the Birds5 and Birds5+ dataset.

tered together also increases. For example, Pr(lt-at |
lt, at, al) ≤ Pr(lt-at | lt, at, ca), as a Cardinal is more
dissimilar to the pair of Least Tern (lt) and Arctic Tern (at)
than an Albatross (al) is. To obtain crowdworkers’ percep-
tions regarding the similarity between the bird species in
Birds5+ dataset, we query 20 crowdworkers for each pair
of species. Each crowdworker answers 30 pairwise queries,
with images randomly selected from the two pairs of species
in Birds5+. Among the 30 pairs, 15 pairs involve images
from different species, and the remaining 15 pairs involve
images from the same species.

4. Results
Effect of Cognitive Overload in Multi-item Queries We
present the results obtained from the multi-item query ex-
periment conducted using the drag-and-drop interface. For
each experiment, we queried 300 unique crowdworkers.

Clustering Performance Figure 5 (a) reveals the per-
formance of the clusterinthat thegorithms in terms of VI
for Dogs3 and Birds5 . We note that for both datasets, VI
reaches its minimum when m is greater than or equal to 3.
However, we begin to experience diminishing returns, espe-
cially in the Dogs3 dataset. Figure 5 (b) shows the worker
edge error rate in the experiment, where a similar pattern of
diminishing returns can be observed.
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Figure 5. Comparison of (a) time per query, (b) variation of infor-
mation (VI), and (c) worker edge error rate between the Dogs3 and
Birds5 datasets using the drag-and-drop interface, while varying
the number of images per query.

Worker Edge Error Rate Figure 6 illustrates the dis-
tribution of the edge error rate for each crowdworker on
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Figure 6. Distribution of worker edge error rate for each number
of items per query (m) on Dogs3 and Birds5 dataset.

Dogs3 and Birds5 dataset for each number of items per
query m. We observe that the majority of the crowdworkers
are better than random guessers: the worker edge error rate
is less than 0.5.

Edge Density between Clusters Figure 7 shows the
empirical edge density within and between clusters on
Dogs3 dataset. The values on the main diagonal represent
the empirical probability of observing an edge given that
the two images are from the same cluster. The other values
on the ith, jth column represent the empirical probability
of observing an edge given that the two images are from
clusters i and j.

From these matrices, we observe that the probability of
observing an edge between two different clusters when
2 < m < 5 is smaller than when m = 2. This means that
the adjacency matrix obtained from crowdworkers exhibits
reduced ambiguity across different clusters. Hwoever, when
m ≥ 5, these probabilities start to increase, indicating a di-
minishing return. This aligns with the diminishing return we
observed earlier. Similar pattern is shown on Birds5 dataset.
We defer the presentation of the corresponding matrices to
Appendix C.3.

Summary Our results demonstrate that while increasing
the query size theoretically improves crowdclustering per-
formance, in practice, it provides no additional benefit to
requesters when m is larger than 4 or 5. We posit cognitive
overload as an explanation. The task of comparing exces-
sive images simultaneously (Figure 13 in the Appendix)
overburdens crowdworkers.

Effect of Contextual bias
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Figure 7. Empirical edge density matrices obtained from querying 300 crowdworkers using the drag-and-drop interface. Matrices (a)-(g)
correspond to the Dogs3 dataset, with m also varying from 2 to 8. The ± indicates the confidence intervals calculated as described in
Section 5.

Answer lt-at-ct lt-at-al lt-at-ca

1 1 1 0.152 ± 0.012 0.048 ± 0.007 0.030 ± 0.001
1 1 0 0.157 ± 0.012 0.443 ± 0.012 0.556 ± 0.016
1 0 1 0.192 ± 0.013 0.113 ± 0.010 0.062 ± 0.08
0 1 1 0.424 ± 0.016 0.112 ± 0.010 0.086 ± 0.009
0 1 2 0.075 ± 0.001 0.284 ± 0.015 0.266 ± 0.014

Table 1. Empirical observation probability matrix for triangle
query. Each column involves 1000 observations. The three num-
bers in the first column indicate the answer to the query. 0 1 2
means all three images are from different clusters; 1 0 1 means
that the first and the third images are from the same cluster, etc.

Answer Distribution Table 1 presents the empirical ob-
servation probability matrix for the three experiments aimed
at revealing the contextual bias of crowdworkers. Each
column corresponds to an experiment, while each row is
an answer pattern. The three numbers on the first column
of each row represent an answer pattern. Where items at
the positions where the numbers are the same are clustered
together. For instance, 1 1 1 indicates all items are clustered
together, while 1 1 0 means that the first two items form a
cluster. Although the order of items varied between crowd-
workers, we sort the items consistently for analysis. The
sorted item order aligns with experiment names. For exam-
ple, in experiment lt-at-ct, Least Tern (lt) is first, followed
by Arctic Tern (at) and Common Tern (ct). Additionally,
the sum of the first two rows for each column is the empir-
ical estimate of the probability that lt and at get clustered
together given the three items in the queries are lt, at, and ⋆
(Pr(lt-at | lt, at, ⋆)), for ⋆ ∈ {ct, al, ca}. For instance, the
sum of the first two rows in the first column provides the
empirical estimation for Pr(lt-at | lt, at, ct).

Similarity Perception Table 2 reveals the empirical ob-
servation probability of pairs of images from different
species in the Birds5+ dataset being clustered together. We
treat these values as a surrogate for population percep-
tion of the similarity between each pair of species in the
Birds5+ dataset. The higher the value, the more similar peo-
ple consider the two species. From the table, we observe
that Arctic Tern (at) and Common Tern (ct) are the most
similar pair. This is what we expected, as shown in Figure 4,

the difference between at and ct is subtle. Similarly, Least
Tern (lt) and Cardinal (ca) are the most dissimilar pair, as lt
and ca have completely different plumage.

With these values, we obtain the similarity between a species
and a pair of species by averaging the empirical observation
probability between the species and each in the pair. For
example, the similarity between ca and the pair lt-at is
lt-ca + at-ca

2 = 0.060+0.093
2 = 0.0765.

Context Biases Similarity Perception Figure 8 (a) re-
veals the relationship between the similarity of ⋆ ∈
{ct, al, ca} to the pair lt-at and Pr(lt-at | lt, at, ⋆). It
can be seen that as the similarity increases, the probability
that lt and at are clustered together decreases. For example,
as the third image changes from Cardinal (ca) to Common
Tern (ct), the similarity of the third image to lt-at pair in-
creases (since they all are Terns). Yet, the probability that lt
and at get clustered together decreases.

We also perform bootstrapping on the observations from the
three experiments by subsampling 75% of all observations
1000 times with replacement. Figure 8 (b) illustrates the dis-
tribution of Pr(lt-at | lt, at, ⋆) obtained by bootstrapping.
This figure, together with Figure 8 (b), shows that when the
third image is more similar to the pair lt, at, crowdworkers
are more likely to differentiate the Terns, indicating that
they focus on a different level in the hierarchy of details
within different contexts.

Revisiting Table 1, the first column presents the empirical
probability of each answer for Experiment 1: Least Tern
(lt), Arctic Tern (at), Common Tern (ct). Since the at-ct
pair is the most similar, the majority of crowdworkers group
them together. However, when we see the second column,
the most similar pair becomes lt-at. Therefore, the major-
ity of people group lt-at together. When comparing the
probability of grouping lt-at (sum of the first two rows) in
the context of lt-at-ct, the value was much higher in the
context of lt-at-al, and even higher in lt-at-ca. Figure 21
in the Appendix illustrates three sample triangle queries.
When the third bird is much different from the first two
birds, crowdworkers perceive on a higher level of similarity
hierarchy, thus overlooking the minor differences between
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pair type lt-at lt-ct lt-al lt-ca at-ct at-al at-ca

probability 0.410 ± 0.028 0.427 ± 0.029 0.120 ± 0.019 0.060 ± 0.014 0.767 ± 0.024 0.210 ± 0.024 0.210 ± 0.024

Table 2. Empirical observation probability of pairs of images from different species in Birds5+ being grouped together. Each type of pair
is asked to 20 different people 15 times.

the two items. When the third bird is similar to the first two
birds, crowdworkers consider similarity on a lower-level
hierarchy, paying more attention to the details.

Summary We argue that although technically, grouping
lt-at together is incorrect, it is less erroneous than grouping
at-al or at-ca together since they still differentiate Terns
at a higher level from the other species. Therefore, it is
important to reflect this phenomenon when modeling crowd
noise.
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Figure 8. (a) similarity between ⋆ and lt-at vs.
Pr(lt-at|{lt, at, ⋆}) for ⋆ ∈ {ca, al, ct} (b) distribution
of Pr(lt-at|{lt, at, ⋆}) from bootstrapping 75% of answers, for
⋆ ∈ {ca, al, ct}.

5. Simulation Study
We use simulations to demonstrate that existing models
cannot fully capture crowdworker errors, especially those
due to contextual bias. The conditional block model (CBM)
proposed in (Vinayak & Hassibi, 2016) has the potential
to incorporate contextual bias in a crowdsourced clustering
setting.

Definition 5.1 (Conditional Block Model). A conditional
block model (CBM) over a dataset of n items that are parti-
tioned by K disjoint clusters and outliers (C1, C2, . . . , CK)
is a generative model parametrized by an edge density ma-
trix P ∈ [0, 1]K . Let cluster(i) := k if i ∈ Ck. Then, given
m items, for each (i, j) of all

(
m
2

)
pairs of items, we draw

an edge with probability Mcluster(i),cluster(j). Note that not
all possible generated configurations of these edges are ad-
missible. In that case, we regenerate the configurations until
an admissible one. See Appendix D for more details.

The above definition of CBM extends the CBM proposed
in (Vinayak & Hassibi, 2016), which only accounts for
three items per query, to multi-item queries. We simulate
clustering results with different values of m and different
edge density matrices P .

Simulation Settings Let r denote the proportion of edges
observed (to all possible edges in the graph). For the first
setting, we fix r = 0.15, the value used in (Vinayak & Has-
sibi, 2016). In the second setting, we fix r indirectly by
fixing the total number of edges explored at 9000, which is
the number of edges explored in our crowdsourcing experi-
ments. This way, we can compare the simulated results with
our crowdsourcing experimental results.

Setting 1: varying p We construct an edge density matrix
whose main diagonal is p and the off-diagonal is q. We
vary p from 0.55 to 1, with a step size of 0.05. We set
q = 0.25,K = 3, and n = 300. This is similar to the
setting in (Vinayak & Hassibi, 2016). For each p, we run
the simulation ten times.

Setting 2: using empirical edge density matrix We
use the empirical edge density matrices obtained from our
crowdsourcing experiments with the drag-and-drop inter-
face and m = 2, as our edge density matrix P . We use P to
simulate the edge density for m ≥ 2, with each m 10 times.
We run these simulations with settings similar to our experi-
ments: n = 473,K = 3 for Dogs3 and n = 342,K = 6 2

for Birds5. Lastly, we ensure the budget across different m
by fixing the total number of edges explored to 9000, and
the number of queries for each m is 2 9000

m .

Simulation Results Figure 9 shows the variation of in-
formation (VI) and edge error rate as we vary the edge
probability (density). It can be observed that as the number
of items per query, m, increases, both VI and edge error
rates decrease. However, the magnitude of improvement
diminishes as m increases, indicating a diminishing return
effect.

Figure 10 illustrate the relationship between m and VI as
well as m and the edge error rate. We observe that as m
increases, the magnitude of improvement of the two errors
decreases, which can be considered as some diminishing
return effect. However, there is still a difference between

2We treat the outliers as one cluster.
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Figure 9. CBM simulation results. The percentage of edges ex-
plored (r) is 0.15. (a) Variation of Information (VI) and (b) edge
error rate at different (inter-cluster) edge probability (p) when the
number of items to be clustered is 300, the number of clusters is 3,
and q = 0.25, while varying edge density inside the clusters p.
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Figure 10. (a) Variation of Information (VI) and (b) edge error rate
at different number of images per query (m) when the edge density
matrix comes from the crowdsourcing experiment. We fix the total
number of edges explored to 9000.

what we experimentally observed, where the diminishing
return effect is more significant.

Figure 11 shows the edge density matrices obtained from
the simulation by weighted-averaging each entry across
the 10 edge density matrices. We use weighted-average
here because the number of times an entry is observed for
each edge density matrix is different. To help us compare
these matrices to the ones we obtained from the experiment,
we use Hoeffding’s inequality to construct a concentration
bound. Results regarding simulations on Birds5 and the
concentration bound are deferred to the Appendix E.

6. Discussion
Our findings confirm prior literature by demonstrating the
benefits of multi-item queries in crowdsourced clustering,
but with diminishing returns beyond 4-5 items per query.
This aligns with the established ”magical number” concept
in human information processing capacity (Miller, 1956;
Cowan, 2001). Additionally, our simulations, extending
the Conditional Block Model (CBM) (Vinayak & Hassibi,
2016) to larger query sizes, reveal that the model does not
fully capture this diminishing returns effect, suggesting a
need for improved, more nuanced models for multi-item
queries.
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Figure 11. Empirical edge density matrices obtained from simula-
tion using the empirical edge density obtained from drag-and-drop
interface when m = 2. Matrices (a)-(g) correspond to the Dogs3
dataset, with m ranging from 2 to 8. The ± indicates the confi-
dence intervals calculated as described in Section 5.

7. Conclusion
We examine the impact of cognitive overload and contex-
tual bias of crowdworkers using simulations based on the
conditional block model (CBM) and experiments conducted
on AMT. Our simulations demonstrate that CBM does not
fully explain the noise patterns observed in crowdsourcing.
Moreover, in the experiments, we show that while there
are advantages of having more items per query, these ad-
vantages tend to diminish after approximately 4 or 5 items
per query. Furthermore, we discover that the noise in the
answers varies depending on the specific items included in
the query. The grouping of two items together relies not
only on their relative similarity but also on the other item in
the query.

Our results highlight the need for a more nuanced approach
to modeling noise in crowdsourcing tasks, as current models
fail to capture the underlying structure within the noise,
which is crucial in practical applications. In the future, we
will provide a more theoretical analysis of the guaranteed
recovery of the actual adjacency matrix.
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A. User Interface
We develop our interface using React.js (Meta, 2023), which
compiles into a static website. We host our website on AWS
S3 (AWS, 2023b) and use AWS Lambda (AWS, 2023a)
to bridge the connection between the static website and
our database hosted on MongoDB Atlas (MongoDB, 2023).
When a crowdworker accepts our HIT, he or she is given a
link to our website. To enhance the experiment’s efficiency,
each crowdworker is required to complete more than one
query. When a crowdworker completes all queries, their
answers are saved to our dataset. Upon completion, the
website generates a unique identifier for the crowdworker.
The crowdworker must input this identifier into a text box
in AMT before submitting this task on AMT. We use this
unique identifier to make sure that we only analyze answers
submitted by crowdworkers who submit this task 3.

B. Crowdsourcing Study
B.1. Tutorial Stage

In the tutorial stage of the drag-and-drop interface, a series
of prompts teach a crowdworker how to manipulate the inter-
face. At the end of the tutorial stage, the crowdworker must
accurately group a set of m items. Note that the set of items
shown in the tutorial stage is fixed for all crowdworkers;
and they are manually picked by us so that it is very easy
for crowdworkers to give a correct grouping.

B.2. Practice Stage

After the tutorial stage, the crowdworkers need to com-
plete 3 easy queries. Similarly to the tutorial stage, the
items in the practice stage are fixed across crowdworkers
and are maually picked by us. For each practice query, a
crowdworker has 3 chances to give a correct grouping. If
an incorrect grouping is given, our system will prompt the
crowdworker that a mistake is made and they need to redo
the practice query.

C. Additional Results
C.1. Distribution of time per query

Figure 14 illustrates the distribution of time per query on
Dogs3 datasets. Figure 15 illustrate the distribution of time
per query for datasets. We can observe that the distributions
shift to the right when m increases in the two datasets.

3We host our website on the Internet. Technically, everyone
can access the website if they know the URL to it. Although this is
unlikely, we still add this step to ensure that we only analyze those
crowdworkers who accepted the task. We do so by checking if the
unique ID of an answer exists in AMT.

C.2. Distribution of worker edge error rate

Figure 16 and 17 illustrates the distribution of the edge error
rate for each crowdworker on Dogs3 and Birds5 dataset for
each number of items per query m. We observe that the ma-
jority of the crowdworkers are better than random guessers:
the worker edge error rate is less than 0.5.

C.3. Empirical edge density

Figure 18 and 19 show the empirical edge density both
within and between clusters. The values on the main di-
agonal represent the empirical probability of observing an
edge given that the two images are from the same cluster.
The other values on the i-th row, j-th column represent the
empirical probability of observing an edge given that the
two images are from clusters i and j.

From these matrices, we observe that as m increases, the
probability of observing an edge between two different
clusters decreases. This means that the adjacency matrix
obtained from crowdworkers exhibits reduced ambiguity
across different clusters. Although the edge probability
between images from the same clusters also decreases as
m increases, the benefits of reducing the ambiguity across
different clusters outweigh this. This is because exploring
more edges, when m is larger, with some level of uncertainty
can be more beneficial than gathering a smaller number of
high-quality, precise edges (Vinayak et al., 2016). However,
when m ≥ 4, the ambiguity between difference clusters
reemerges. This aligns with the diminishing return we ob-
served earlier.

C.4. Cost

Figure 23a illustrates the amount of time crowdworkers
spend on each query and exhibits a roughly linear rela-
tionship with the number of images per query, for both
Dogs3 and Birds5 datasets. Since we fixed the total num-
ber of images each crowdworker could see (except for
m = 7, 8), we compensated crowdworkers the same amount
of money across different m. Figures 14 and 15 illustrate
the distribution of time per query for the two datasets. We
can observe that the distribution moves to the right when m
increases in the two datasets.

C.5. Other observations

C.5.1. OUR RADIO VS. PRIOR RADIO INTERFACE

Using the Dogs3 dataset, we were able to replicate the
prior results from (Vinayak & Hassibi, 2016), which demon-
strated better clustering performance with triangle queries
compared to edge queries. Additionally, we also observed
diminishing returns in VI with increasing np (the number
of items per query). Specifically, when moving from 2 to 4
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Figure 12. Samples of the radio interface deployed on Amazon Mechanical Turk with m = 4 and Dogs3 dataset. Instructions are always
shown on top of the page. Crowdworkers need to click on the Next button to proceed to the next query. As we can see, when m = 4, the
number of radio buttons is 15. These many radio buttons may induce cognitive overload.

images per query, the VI worsened. This can be attributed
to the mental exhaustion caused by the excessive options
presented in the radio button interface (as shown in Figure
12), which can lead to misclicks and errors. We again note
that for m ≥ 5, radio button interface is too cumbersome.
Hence, we design the drag-and-drop interface (Section 3).

Figure 20 illustrates the empirical edge density within and
across clusters. We observe a similar pattern to the results
reported in (Vinayak & Hassibi, 2016) and in Section 4. As
m increases from 2 to 3, the adjacency matrix obtained from
crowdworkers exhibits reduced ambiguity across different
clusters. However, at m = 4, the ambiguity strikes back.
This finding aligns with the diminishing returns observed in
the table.

C.5.2. RADIO VS. DRAG-AND-DROP INTERFACE

Tables 3 and 4 compare the crowdclustering outcomes be-
tween the radio and the drag-and-drop interfaces on the
Dogs3 and Birds5 datasets, respectively. For both datasets,
the variation of information (VI) is lower with the drag-and-
drop interface compared to the radio interface, indicating
a significant impact of interface design on noise levels and
subsequent denoising performance. However, it should be
noted that the drag-and-drop queries take longer to complete,
which could increase the total collection time and expenses
for requesters.

C.6. Hierarchy of Birds

Figure 21 in the appendix illustrates the three triangle
queries. When the third bird is much different from the
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m radio interface drag-and-drop interface
no.

unique edges VI edge error rate time per query (sec.) no.
unique edges VI edge error rate time per query (sec.)

2 8,663 1.576 0.314 ± 0.005 5.356 ± 11.567 8,637 0.950 0.258 ± 0.005 6.952 ± 8.895
3 16,619 1.520 0.321 ± 0.003 7.207 ± 14.054 16,632 0.814 0.262 ± 0.003 10.828 ± 13.319
4 24,044 1.754 0.366 ± 0.003 10.656 ± 20.475 23,968 0.357 0.191 ± 0.002 16.626 ± 18.445

Table 3. Number of edges explored, VI for the clustering outcome, edge error rate, and mean completion time of a single question among
all crowdworkers who participate in the experiment using the radio interface and drag-and-drop interface on Dogs3 Dataset.

m radio interface drag-and-drop interface
no.

unique edges VI edge error rate time per query (sec.) no.
unique edges VI edge error rate time per query (sec.)

2 8,393 2.449 0.264 ± 0.003 4.779 ± 10.550 8,341 1.378 0.157 ± 0.004 6.694 ± 13.259
3 15,513 2.233 0.232 ± 0.003 7.024 ± 14.937 15,542 1.213 0.154 ± 0.003 10.140 ± 17.239
4 21,633 2.698 0.265 ± 0.005 9.914 ± 26.283 21,551 1.169 0.167 ± 0.002 14.667 ± 20.090

Table 4. Number of edges explored, VI for the clustering outcome, edge error rate, and mean completion time of a single question among
all crowdworkers who participate in the experiment using the radio interface and drag-and-drop interface on Birds5 Dataset.

first two birds, crowdworkers perceive on a higher level of
similarity hierarchy, thus overlooking the minor differences
between the two items. When the third bird is similar to
the first two birds, crowdworkers consider similarity on a
lower-level hierarchy, paying more attention to the details.

D. Conditional Block Model
Definition D.1 (Stochastic Block Model). A stochastic
block model (SBM) over a dataset of n items that are par-
titioned by K disjoint clusters and outliers is a generative
model parametrized by 0 < p, q < 1. Given a pair of items
i, j, we draw an edge between them given that they are from
the same cluster, with probability p; we draw an edge be-
tween them given that they are not from the same cluster,
with probability q.

Definition D.2 (three-item Conditional Block Model
(Vinayak & Hassibi, 2016)). A three-item conditional block
model (CBM) over a dataset of n items that are partitioned
by K disjoint clusters and outliers (C1, C2, . . . , CK ) is a gen-
erative model parametrized by 0 < p, q < 1. Given 3 items,
there could be 8 edge configurations (see 24), among which
5 are admissible. We first draw edges between each pair
of the 3 items following SBM. If the resulting configura-
tion is inadmissible, we regenerate configurations until an
admissilbe one.

We extend the three-item conditional block model proposed
in (Vinayak & Hassibi, 2016) for multi-item query, and
we use a matrix P to parametrize the model to account
for different inter-cluster edge densities between different
clusters.

Definition D.3 (Conditional Block Model). A conditional
block model (CBM) over a dataset of n items that are parti-
tioned by K disjoint clusters and outliers (C1, C2, . . . , CK)

is a generative model parametrized by an edge density ma-
trix P ∈ [0, 1]K . Let cluster(i) := k if i ∈ Ck. Then,
given m items, for each (i, j) of all

(
m
2

)
pairs of items, we

draw an edge with probability Mcluster(i),cluster(j). Note
that not all possible generated configurations of these edges
are admissible. In that case, we regenerate configurations
until an admissible one.

Given m items, there are 2(
m
2 ) possible ways of drawing

edges among these items. However, not all configurations
of these edge drawings are ”reasonable”. For example, in
the case of m = 3, there are only five that are admissible
(Figure 24a) out of the eight possibilities. This is due to the
transitivity of ”belonging to the same cluster”. When item i
and item j are put in the same cluster and item j and item
k are in the same cluster, it is implied that item j and k are
in the same cluster. Therefore, in CBM, when the outcome
of drawing edges leads to an inadmissible configuration
(Figure 24b), the CBM redraws the edges until an admissible
configuration is obtained.

The edge density matrix P that parametrizes the model rep-
resents the inter and intra cluster density. The entries on the
main-diagonal represent the intra-cluster density whereas
the off-diagonal entries represent the inter-cluster density.
Note that the edge density matrix is a generalization of the
p and q in the classic SBM. When the main-diagonal and
off-diagonal entries are fixed to p and q, we draw edges
exactly like SBM.

The above definition of CBM extends the CBM proposed
in (Vinayak & Hassibi, 2016), which only accounts for
three items per query, to multi-item queries. We simulate
clustering results with different values of m and different
edge density matrices P .
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E. Simulation Concentration Bounds
Let P ∈ [0, 1]d×d denote an edge density matrix, and let
O ∈ Nd×d denote an edge observation matrix, where Oij

denotes the number of times this entry is observed. We
use Hoeffding’s inequality (Hoeffding, 1994; hoe, 2024),
which provides the concentration bound Pij±ε such that the
expected Pij falls out of the interval defined by the bound
with probability at most δ′:

P(|Pij − E[Pij ]| ≥ ϵ) ≤ 2 exp(−2 ·Oij · ϵ2) = δ′. (1)

Figure 25 and 26 show the edge density matrices obtained
from the simulation by weighted-averaging each entry
across the 10 edge density matrices from the simulations.
We use weighted-average here because the number of times
an entry is observed for each edge density matrix is different.
To help us compare these matrices to the ones we obtained
from the experiment, we use Hoeffding’s inequality to con-
struct a concentration bound.

By definition, P is a symmetric matrix. Therefore, there are
d2−d

2 +d unique entries. We apply a union-bound correction
to compare all entries at the same time:

P

 ⋃
1≤i≤j≤d

|Pij − E[Pij ]| ≥ ϵ

 (2)

≤
∑

1≤i≤j≤d

2 exp
(
−2 ·Oij · ϵ2

)
(3)

= (d2 + d) exp(−2 ·Oij · ϵ2) = δ. (4)

Therefore, with union bound correction, for each edge den-
sity matrix being compared, we can have a confidence inter-
vals for all the unique entries that are simultaneously valid
with probability at least 1− δ.

Figures 27 and 28 illustrate the concentration bound (δ =
0.05) for Dogs3 and Birds5 dataset, while we vary m from
2 to 8. Having δ = 0.05 means that the probability that
the expected entry value falls out of its corresponding in-
terval is at most 0.05. Figures 29a and 29b show the num-
ber of mismatches between the two bounds for Dogs3 and
Birds5 dataset, as a function of m. We observe that as m
increases, the number of entries in which the two bounds
do not overlap increases. This means that there is a huge
difference between the edge density predicted by CBM and
the one we observed from the experiment once m is greater
than 2. Therefore, there must exist other factors influencing
the ’noises’ that the model failed to capture. And one of
the factors could be the contextual bias we described in the
previous section.

F. Extended Related Works
F.1. Direct Labeling Query

Many works on theoretical understanding of crowdsourcing
focus on labeling tasks, where crowdworkers are asked to la-
bel items directly (Dawid & Skene, 1979; Smyth et al., 1994;
Zhou et al., 2012; 2015; Khetan et al., 2018; Mazumdar &
Pal, 2017; Pang et al., 2019; Han et al., 2017; Karger et al.,
2011; 2013). Karger et al. and Karger et al. (Karger et al.,
2011; 2013) adopted the “spammer-hammer model”, which
treats workers as a mixture of “spammers”, who randomly
answer the questions, and “hammers”, who answer correctly.
Mazumdar & Pal and Pang et al. (Mazumdar & Pal, 2017;
Pang et al., 2019) treated each query as a function that takes
n items as input and outputs 0 or 1. They utilized methods
from information theory and coding theory to reconstruct the
labeling from the answers to the queries. Mazumdar & Pal
(Mazumdar & Pal, 2017) modeled noises from the crowd-
worker similar to bit flipping, where the answer provided by
crowdworker is correct with probability 1− q, and incorrect
with probability q. Pang et al. (Pang et al., 2019) considered
noise as whether a query is answered or not. They assumed
that a query is answered with probability 1− q and not with
probability q. Han et al. (Han et al., 2017) pointed out that
although crowdworkers give incorrect errors, some are more
correct than others. For example, when the ground truth is
English Foxhound, getting a label Foxhound is not totally
wrong due to the hierarchical relationship between the two.
Hence, they propose a new evaluation metric that measures
the crowdworker’s error based on how specific the label
given by the crowdworker, compared to the ground truth.

F.2. Comparison Query

Another line of work focuses on comparison query, where
crowdworkers are asked to group the items by their similar-
ity, which is based on crowdworkers’ perception of them
(Vinayak & Hassibi, 2016; Vinayak et al., 2014; Vinayak,
2018; Mazumdar & Saha, 2017; Lahouti et al., 2021; Tamuz
et al., 2011; Narimanzadeh et al., 2023; André et al., 2014).
Gomes et al. (Gomes et al., 2011) showed that the wisdom
of crowds can be used for crowd clustering. Vinayak et al.
(Vinayak et al., 2014) studied clustering algorithms that
work with partially observed graphs and provided theoreti-
cal guarantees on when clustering works in such scenarios.
Images in the dataset are considered as nodes in a graph.
When a pair of images is deemed as similar by the crowd-
workers, an edge connects the two corresponding nodes of
the images. A (graph) clustering algorithm is applied to
the adjacency matrix that represents the graph generated
from the crowds. This work also provides experiments to
demonstrate that crowdsourced clustering with a random
querying strategy works more in practice. Narimanzadeh
et al. (Narimanzadeh et al., 2023) introduced a framework
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of using pairwise comparison comparison with Elo scoring
to reduce the variability and bias introduced by subjectivity.
They have shown that their framework outputs a better re-
sult compared to the widely used majority voting method.
This work also explains why pairwise comparison is pre-
ferred over direct labeling. André et al. (André et al., 2014)
considers the clustering task over texts instead of images.

Methods in (Mazumdar & Saha, 2017; Yun & Proutiere,
2014) have tried to actively select which images to be
queried. However, they typically come with severe lim-
itations, such as they need to know the number of clus-
ters a priori, or they assume that crowdworkers’ error is
parametrized by a single scalar. Vinayak (Vinayak, 2018)
present active crowdclustering, which does not rely on any
unknown parameters and can recover clusters regardless
of their sizes. The author provides a theoretical guarantee,
under mild assumptions that crowdworkers are independent
and better than random guessers, that the algorithm can re-
cover the clusters exactly with high probability. While some
simulations are provided, empirical evaluation on a real
crowdsourcing platform is missing. Chen et al. (Chen et al.,
2023) extends this work by implementing the algorithm and
conducting experiments on AMT.

Lahouti et al. (Lahouti et al., 2021) proposes a method
that generates clusters on the fly, instead of building an
adjacency matrix and applying graph clustering on that ma-
trix. However, they assume that crowdworkers do not make
mistakes, making their method less practical. The method
proposed by Vinayak & Hassibi (Vinayak & Hassibi, 2016),
known as random triangle query, builds on top of (Tamuz
et al., 2011) with a modification on how the question is
asked. Crowdworkers in Vinayak & Hassibi (Vinayak &
Hassibi, 2016) need to provide one of the five relationships
of the three images presented: 1. All are similar, denoted
by lll. 2. A and B are similar, llm. 3. A and C are similar,
lml. 4. B and C are similar, mll. 5. None, lmj. Similar to
random edge query, only a subset of all

(
n
3

)
possible triplet

will be queried. To model the noises, the authors present the
conditional block model, which builds on top of the stochas-
tic block model and normalizes the error probability based
on the allowed configurations. The benefit of presenting
three images at a time and seeking answers from 5 options
is that when the budget is the same, this crowdsourcing task
is more reliable than a random edge query.

F.3. Cognitive Overload

The effect of cognitive overload, where when the num-
ber of options is increased, tasks involving comparison-
based choice-making become harder and the decisions made
by people become worse, has been studied extensively
in the field of social psychology and information seeking
(Oulasvirta et al., 2009; Azzopardi, 2021; Chernev et al.,

2015; Iyengar & Lepper, 2000). (Oulasvirta et al., 2009)
and (Azzopardi, 2021) discuss cognitive overload as a ”Less
is More Effect” in which people find it more difficult to draw
comparisons when confronted with a large number of op-
tions. (Iyengar & Lepper, 2000) study the effect in the
setting of consumer behavior. The authors have found that
consumers prefer to purchase from a vendor that displays
fewer options. (Chernev et al., 2015) identifies 4 key factors,
“choice set complexity, decision task difficulty, preference
uncertainty, and decision goal”, that impact the effect of cog-
nitive overload via meta-analysis in the field of consumer
psychology.

F.4. Contextual Bias

Contextual bias is the “noise” within the answers provided
by crowdworkers, not due to the lack of effort or expertise,
that is a function of the set of items the crowdworkers are
exposed to in a query. Several workers have studied how the
set of items affects the answer (André et al., 2014; Mishra
& Rzeszotarski, 2021). (André et al., 2014) considers the
clustering task over texts instead of images. It also discusses
the effects of context. The result shows that having context
introduced in the task is beneficial. Yet, the authors did not
investigate how much context should be added. The only
contextual case they have in their setting is having 10 items
(text) shown at the same time.

Both Mishra & Rzeszotarski (Mishra & Rzeszotarski, 2021)
and our work tries to answer the question of how the breadth
of data affects the outcome of the model’s result. In our
work, however, the breadth concerns the set of items being
shown to crowdworkers, rather than being used by the model.
For the granularity aspect, Mishra & Rzeszotarski (Mishra
& Rzeszotarski, 2021) considers granularity as the level of
detail used (by the model) to explain a model’s decision.
Conversely, we treat granularity as the level of detail used
by crowdworkers to make their decision. We could consider
our work as a reverse version of (Mishra & Rzeszotarski,
2021), in a way such that crowdworkers in our work are the
explainable model in their work (although the crowdworkers
in our work do not explain how they make the decision).
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Figure 13. Sample of the drag-and-drop interface deployed on Amazon Mechanical Turk with m = 2 and Dogs3 dataset. Instructions are
always shown on the top of the page. Crowdworkers can drag the images to an existing cluster or form a new cluster.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 14. Distribution of time per query for Dogs3 dataset. (a)-(g) correspond to the number of items per query m from 2-8.

(a) (b) (c) (d)

(e) (f) (g)

Figure 15. Distribution of time per query for Birds5 dataset. (a)-(g) correspond to the number of items per query m from 2-8.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 16. Distribution of worker edge error rate for Dogs3 dataset. (a)-(g) correspond to the number of items per query m from 2-8.

(a) (b) (c) (d)

(e) (f) (g)

Figure 17. Distribution of worker edge error rate for Birds5 dataset. (a)-(g) correspond to the number of items per query m from 2-8.
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Figure 18. Empirical edge density matrices obtained from querying 300 crowdworkers using the drag-and-drop interface. Matrices (a)-(g)
correspond to the Dogs3 dataset, with m also varying from 2 to 8. The ± indicates the confidence intervals calculated as described in
Section 5.
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Figure 19. Empirical edge density matrices obtained from querying 300 crowdworkers using the drag-and-drop interface. Matrices (a)-(g)
correspond to the Birds5 dataset, with m ranging from 2 to 8. The ± indicates the confidence intervals calculated as described in Section
5.
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Figure 20. Empirical edge density matrices obtained from querying 300 crowdworkers using the radio interface. Matrices (a)-(c)
correspond to the Birds5 dataset, with m ranging from 2 to 8. Matrices (d)-(f) correspond to the Dogs3 dataset, with m also varying from
2 to 8.
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Figure 21. Example of the three triangle queries we used to investigate the contextual bias effect. When the third bird is much different
from the first two birds, crowdworkers perceive on a higher level of similarity hierarchy, thus overlooking the minor differences between
the two items. When the third bird is similar to the first two birds, crowdworkers consider similarity on a lower-level hierarchy, paying
more attention to the details.
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Figure 22. Distribution of time per query for each number of items per query (m) on Dogs3 and Birds5 dataset.

(a) (b) (c)

Figure 23. Comparison of (a) time per query, (b) variation of information (VI), and (c) worker edge error rate between the Dogs3 and
Birds5 datasets using the drag-and-drop interface, while varying the number of images per query.
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Figure 24. Configurations for a three-item query that are (a) admis-
sible and (b) inadmissible.
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Figure 25. Empirical edge density matrices obtained from simulation using the empirical edge density obtained from drag-and-drop
interface when m = 2. Matrices (a)-(g) correspond to the Dogs3 dataset, with m ranging from 2 to 8. The ± indicates the confidence
intervals calculated as described in Section 5.
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Figure 26. Empirical edge density matrices obtained from simulation using the empirical edge density obtained from drag-and-drop
interface when m = 2. Matrices (a)-(g) correspond to the Birds5 dataset, with m ranging from 2 to 8. The ± indicates the confidence
intervals calculated as described in Section 5.
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(a) (b) (c)

(d) (e) (f)
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Figure 27. Visualization of the concentration bounds for the entries in the edge density matrix obtained from crowdsourcing experiments
(blue) and simulations (orange). Matrices (a)-(g) compare the bounds on each entry with m ranging from 2 to 8 and Dogs3 dataset. It
can be seen that as m increases, more and more entries contain bounds that do not overlap. This indicates that the edge density matrix
predicted by CBM does not match with our empirical observation.
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Figure 28. Visualization of the concentration bounds for the entries in the edge density matrix obtained from crowdsourcing experiments
(blue) and simulations (orange). Matrices (a)-(g) compare the bounds on each entry with m ranging from 2 to 8 and Birds5 dataset. It
can be seen that as m increases, more and more entries contain bounds that do not overlap. This indicates that the edge density matrix
predicted by CBM does not match with our empirical observation.
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(a) (b)

Figure 29. Proportion of non-overlapped entries to the total number of unique entries of the edge density matrix as a function of m for (a)
Dogs3 and (b) Birds5 dataset. As m increases, the number of entries contain bounds that do not overlap also increase.
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