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Abstract

Current EEG/MEG-to-text decoding systems001
suffer from three key limitations: (1) reliance002
on teacher-forcing methods, which compro-003
mises robustness during inference, (2) sensi-004
tivity to session-specific noise, hindering gener-005
alization across subjects, and (3) misalignment006
between brain signals and linguistic representa-007
tions due to pre-trained language model over-008
dominance. To overcome these challenges, we009
propose BrainECHO (Brain signal decoding010
via vEctor-quantized speCtrogram reconstruc-011
tion for WHisper-enhanced text generatiOn),012
a multi-stage framework that employs decou-013
pled representation learning to achieve state-of-014
the-art performance on both EEG and MEG015
datasets. Specifically, BrainECHO consists016
of three stages: (1) Discrete autoencoding,017
which transforms continuous Mel spectrograms018
into a finite set of high-quality discrete repre-019
sentations for subsequent stages. (2) Frozen020
alignment, where brain signal embeddings are021
mapped to corresponding Mel spectrogram em-022
beddings in a frozen latent space, effectively023
filtering session-specific noise through vector-024
quantized reconstruction, yielding a 3.65% im-025
provement in BLEU-4 score. (3) Constrained026
decoding fine-tuning, which leverages the pre-027
trained Whisper model for audio-to-text trans-028
lation, balancing signal adaptation with knowl-029
edge preservation, and achieving 74%-89%030
decoding BLEU scores without excessive re-031
liance on teacher forcing. BrainECHO demon-032
strates robustness across sentence, session, and033
subject-independent conditions, passing Gaus-034
sian noise tests and showcasing its potential035
for enhancing language-based brain-computer036
interfaces.037

1 Introduction038

Decoding text from brain activity, such as electroen-039

cephalography (EEG) and magnetoencephalogra-040

phy (MEG), is a critical and frontier research topic041

that can provide a foundation for language-based042

brain-computer interfaces (BCI) by enabling di- 043

rect text input through brain signals. In the long 044

term, accurate real-time translation of human brain 045

signals can promote the widespread application of 046

BCI technology in medicine, assistive technology, 047

and entertainment, bringing new possibilities to 048

human life. 049

With the rapid developments in natural language 050

processing (NLP), automatic speech recognition 051

(ASR), and other fields, researchers have leveraged 052

the powerful language understanding and generat- 053

ing capabilities of pretrained large language mod- 054

els (LLMs) for neural decoding tasks (Wang and 055

Ji, 2022; Duan et al., 2024; Yang et al., 2024b,c), 056

making it possible to accurately decode text stimuli 057

from non-invasive signals. EEG-to-Text (Wang 058

and Ji, 2022) is the first work to decode open- 059

vocabulary tokens from encoded word-level EEG 060

rhythm features with the pretrained large model 061

BART (Lewis et al., 2020). Furthermore, De- 062

Wave (Duan et al., 2024) used sentence-level raw 063

EEG signals to perform EEG-to-text decoding with- 064

out eye movement event markers. 065

Later on, several BART-based methods (Xi et al., 066

2023; Feng et al., 2023; Amrani et al., 2024) were 067

introduced, predominantly employing a pretraining- 068

finetuning paradigm. These methods first align 069

EEG representations with pretrained text embed- 070

dings before feeding them into BART for finetun- 071

ing. Although these approaches have yielded im- 072

pressive results, they rely on a teacher-forcing gen- 073

eration strategy, wherein the model depends on the 074

ground truth preceding text during each token pre- 075

diction. This setting does not accurately reflect 076

the model’s performance in real-world scenarios. 077

These methods show poor decoding performance 078

without teacher forcing. 079

To address this limitation, NeuSpeech (Yang 080

et al., 2024b) and MAD (Yang et al., 2024c) treat 081

raw MEG signals as a specialized form of speech, 082

transforming MEG signals and feeding them into a 083
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Figure 1: Overview of the BrainECHO framework learn-
ing process, illustrated through a simplified conceptual
diagram for enhanced understanding. BrainECHO fol-
lows a three-stage autoencoding–alignment–finetuning
paradigm to achieve decoupled representation learning:
Autoencoding stage is used to warm up the Mel spec-
trogram reconstruction by employing a codebook-based
quantizer to enhance generalizability and robustness.
This stage especially focuses on exploiting discrete rep-
resentations. Alignment stage reconstructs the Mel spec-
trogram from the corresponding aurally evoked brain
signals. This involves designing a new brain encoder
that integrates with the warmed-up quantizer and de-
coder from the first stage. Finetuning stage leverages
the capabilities of the pre-trained Whisper model to
achieve audio-text translation.

pre-trained Whisper model (Radford et al., 2023),084

which is trained on large-scale audio-text pairs,085

for end-to-end text decoding without teacher forc-086

ing. However, these approaches primarily focus on087

mapping continuous brain signals to discrete text088

without compressing the signals into discrete repre-089

sentations, thereby limiting the model’s decoding090

accuracy and generalization capabilities.091

In brain-to-text decoding, introducing discrete092

representation helps solve two fundamental chal-093

lenges. First, EEG/MEG signals are inherently con-094

taminated by physiological artifacts (e.g., muscle095

movements, ocular noise) and session-specific vari-096

ability (e.g., electrode impedance shifts). By dis-097

cretizing brain signals into a finite codebook, vector098

quantization acts as a sparsity-inducing filter that099

discards high-frequency, unstructured noise while100

preserving low-frequency semantic patterns (Duan101

et al., 2024). Second, the codebook’s discrete la-102

tent space serves as a modality-invariant interface,103

enabling seamless alignment between brain signals104

and text tokens. This avoids the "distribution shift"105

problem in end-to-end continuous-to-discrete map-106

ping, which can lead to spurious correlations (Shi-107

rakawa et al., 2024).108

Therefore, we propose a novel multi-stage109

semantic decoding framework for EEG/MEG110

brain signals, aurally evoked by semantic au-111

dio, through vEctor-quantized speCtrogram recon-112

struction for WHisper-enhanced text generatiOn,113

termed BrainECHO. The overall three-stage (au- 114

toencoding, alignment, finetuning) training process 115

of the proposed BrainECHO is illustrated in Fig- 116

ure 1. We validate the performance of BrainECHO 117

using two different public audio-evoked brain sig- 118

nal datasets: Brennan, which contains EEG data, 119

and GWilliams, which contains MEG data. The 120

principal contributions of our work are summarized 121

below: 122

• The proposed BrainECHO framework ad- 123

dresses EEG/MEG-to-text limitations of 124

teacher-forcing dependency and poor Gaus- 125

sian noise generalization (Jo et al., 2024; 126

Wang and Ji, 2022), achieving SOTA perfor- 127

mance on EEG and MEG benchmarks (Bren- 128

nan and Hale, 2019; Gwilliams et al., 2023). 129

Its robustness is further validated through 130

novel subject/session-independent data splits, 131

addressing a critical gap in prior research. 132

• Unlike recent non-teacher-forcing meth- 133

ods (Yang et al., 2024b,c) that directly fine- 134

tune LLMs, BrainECHO mitigates LLM over- 135

fitting risks through a multi-stage training 136

strategy, effectively balancing noise suppres- 137

sion in brain signals with preservation of pre- 138

trained linguistic knowledge. 139

• By introducing a quantized codebook for dis- 140

crete brain-signal representation—contrary 141

to continuous latent spaces in prior work— 142

BrainECHO filters session-specific noise and 143

captures subject-invariant semantics, achiev- 144

ing SOTA cross-subject generalization. 145

2 Related Works 146

Non-invasive brain signals such as EEG and MEG 147

offer significant advantages over invasive alter- 148

natives, particularly in terms of safety and cost- 149

effectiveness. Considerable progress has been 150

made in decoding text from noninvasive signals. 151

Ghazaryan et al. (Ghazaryan et al., 2023) utilized 152

Word2vec to decode 60 nouns from MEG record- 153

ings. Meta (Défossez et al., 2023) developed a 154

model that uses wav2vec 2.0 (Baevski et al., 2020) 155

and contrastive learning to decode speech from 156

3-second EEG/MEG signals. However, these meth- 157

ods are restricted to decoding a small set of words 158

or segments, restricting their applicability to open- 159

vocabulary text generation. 160
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2.1 Decoder-Only Models for Brain-to-Text161

Recent advancements have leveraged the power-162

ful understanding and generation capabilities of163

pretrained models, particularly LLMs, to extend164

vocabulary from closed to open. In decoder-only165

architectures, some researchers have aligned brain166

signals with text to guide pretrained generative167

models in text generation. For example, Tang et168

al. (Tang et al., 2023) and Zhao et al. (Zhao et al.,169

2024) mapped fMRI data to text embeddings to it-170

eratively guide GPT-2 in generating text. Similarly,171

Chen et al. (Chen et al., 2024a) used text-aligned172

fMRI representations as prompts for GPT-2 to de-173

code language information.174

2.2 Seq2Seq Models for Brain-to-Text175

Wang et al.(Wang and Ji, 2022) fed transformed176

word-level EEG rhythm feature into a pretrained177

BART model to decode open-vocabulary tokens.178

Duan et al.(Duan et al., 2024) integrated discrete179

EEG encodings with text-EEG contrastive align-180

ment to mitigate individual variability in brain181

activity. However, these BART-based methods182

rely on teacher forcing during inference. Further-183

more, as Jo et al. (Jo et al., 2024) demonstrated,184

their performance on noisy data is comparable to185

that on EEG data, suggesting that these models186

may simply memorize the training data. Recently,187

NeuSpeech (Yang et al., 2024b) directly fed raw188

MEG signals into a modified, pretrained Whisper189

model for text decoding without teacher forcing.190

Furthermore, MAD (Yang et al., 2024c) introduced191

MEG-speech alignment loss to decode sentences192

not present in the training data. However, these193

Whisper-based methods do not utilize discrete rep-194

resentations of the original signals to enhance the195

model’s generalization capabilities. Our work in-196

tegrates brain-audio discretization and alignment,197

aiming to predict high-quality Mel spectrograms198

from brain signals that align with Whisper’s input199

format. Leveraging Whisper’s advanced speech200

recognition abilities, our approach generates sen-201

tences that closely mirror the original text.202

3 Method203

3.1 Task Definition204

Given the raw EEG/MEG E, text content T , and205

corresponding audio stimuli A during listening206

as mentioned in Section 4.1, the experimental207

data can be divided into a series of sentence-level208

EEG/MEG-text-speech pairs ⟨ε, t, a⟩. ε ∈ RCε×Tε ,209

where Cε and Tε represent the channels and times- 210

tamps of brain signals, respectively. In general, Tε 211

varies with the length of the sentence-level audio 212

segment. Our goal is to decode the corresponding 213

open-vocabulary tokens t from the brain signal ε, 214

with a serving as auxiliary information. 215

3.2 Model Architecture 216

Unlike the multi-task joint training employed in 217

MAD (Yang et al., 2024c), BrainECHO adopts 218

a three-stage training process. This method re- 219

duces resource consumption at each training step 220

and facilitates the prediction of high-quality, high- 221

resolution Mel spectrograms from brain signals. 222

Specifically, we extend the spectrogram duration 223

from 3 seconds, as used in (Défossez et al., 2023; 224

Yang et al., 2024c), to over 10 seconds, enabling 225

sentence-level rather than segment-level brain-to- 226

text translation, thereby preserving the semantics 227

of the original sentences. The details of the model 228

are shown in Figure 2. The following sections will 229

detail each training stage. 230

3.2.1 Autoencoding of Audio Spectrogram 231

Van den Oord et al. introduced the Vec- 232

tor Quantized-Variational AutoEncoder (VQ- 233

VAE) (Van Den Oord et al., 2017) to learn dis- 234

crete latent representations of audio, video, and 235

other data types. Building on this approach, several 236

studies (Li et al., 2023; Sadok et al., 2023; Yang 237

et al., 2023) have explored representing Mel spec- 238

trograms using discrete tokens to capture phoneme- 239

like information. Since Mel spectrograms effec- 240

tively capture frequency and temporal patterns of 241

audio, it is feasible to use them as an intermediate 242

modality between brain signals and text (Metzger 243

et al., 2023; Défossez et al., 2023). Due to the 244

fact that the majority of existing strong audio au- 245

toencoders are pre-trained on audio waves rather 246

than Mel, we chose to autoencode Mel spectro- 247

grams for obtaining a discrete representation space 248

that is conducive to Mel reconstruction. Specif- 249

ically, given a spectrogram m ∈ RTm×Fm , the 250

audio encoder Enc first converts it into a feature 251

map zm = Enc(m) ∈ Rtm×fm×D , where Tm, 252

Fm and D denote the number of time frames, fre- 253

quency bins and latent channels, respectively. The 254

spectrogram is generated by the Whisper Processor, 255

enabling text decoding from the reconstructed spec- 256

trogram using Whisper’s encoder-decoder architec- 257

ture. Then, zm is processed by a vector quantizer 258

Q. Specifically, each latent embedding zijm ∈ RD 259
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Figure 2: (a) Overview of the BrainECHO model framework. BrainECHO utilizes a three-stage training paradigm
consisting of Mel spectrogram autoencoding, brain-audio latent space alignment, and Whisper finetuning. C, Tε

denotes numbers of raw wave channels and timestamps, respectively. (b) Details of the Brain Encoder, which
converts raw EEG/MEG signals into latent representations. d represents the dimension of hidden states and TS
Conv stands for Spatio-Temporal Convolution Networks. More details of Conformer are provided in Appendix A.

(1 ≤ i ≤ tm, 1 ≤ j ≤ fm) is replaced by the260

nearset vector zijq from a codebook C ∈ RN×D,261

which consists of N learnable D-dimensional vec-262

tors. Formally, this process is expressed as follows:263

Q(zijm) = zijq = ck,

where k = argmin
k∈{1,2,...,N}

∥∥zijm − ck
∥∥
2
. (1)264

The reconstructed spectrogram is then obtained by265

the audio decoder Dec as: m̂ = Dec(zq). The en-266

coder and decoder are both composed of ResUNet267

blocks (Kong et al., 2021). The training objective268

at this stage is defined as follows:269

L1 = ∥m− m̂∥22 + α ∥sg(zm)− zq∥22
+ β1 ∥zm − sg(zq)∥22 ,

(2)270

where sg(·) is a function for stopping gradients,271

and α, β1 are hyperparameters for the quantization272

loss and commitment loss weights, respectively.273

3.2.2 Brain-Audio Latent Space Alignment274

In the second stage, we freeze all the modules275

pre-trained in the previous stage and train a brain276

encoder to convert raw EEG/MEG signals ε into277

latent features zε. The brain encoder utilizes a278

Conformer-based architecture (Song et al., 2022),279

which begins with Spatio-Temporal Convolutional280

Networks to process the input signals into a one- 281

dimensional embedding sequence. The spatial con- 282

volutional layer reduces the number of input signal 283

channels to one, while the temporal convolutional 284

layers downsample the time dimension. This se- 285

quence is then added to learnable position embed- 286

dings and fed into a stack of Transformer encoder 287

blocks. Linear layers and 2D convolutional net- 288

works subsequently transform the EEG/MEG fea- 289

tures into representations matching the shape of zm. 290

Similarly, zε is input into the frozen quantizer Q 291

and audio decoder Dec to predict the correspond- 292

ing Mel spectrogram m. Additionally, we align 293

the representations of the Mel spectrogram and raw 294

signals in the latent space. Notably, we employ a 295

unified codebook to leverage pre-warmed discrete 296

acoustic tokens for representing brain activity. For- 297

mally, the loss for stage 2 is as follows: 298

L2 = ∥m−Dec(Q(zε))∥22 + γ ∥zm − zε∥22
+ β2 ∥zε − sg(Q(zε))∥22 ,

(3) 299

where γ and β2 are used to scale the latent align- 300

ment loss and the commitment loss, respectively. 301

The intermediate representations of the codebook 302

and speech provide additional supervisory signals 303

to guide the generation of Mel spectrograms. We 304

employ L2 loss rather than CLIP loss (Défossez 305

et al., 2023; Yang et al., 2024c) to generate highly 306

4



restored spectrograms that match Whisper’s input.307

3.2.3 Whisper Finetuning308

After obtaining the predicted Mel spectrogram, it309

is fed into the pretrained Whisper-base1 model to310

decode tokens. Guided by both the need for com-311

putational efficiency and the proven success of this312

method in related work (Yang et al., 2024b,c), we313

utilize AdaLoRA (Zhang et al., 2023) to fine-tune314

its encoder while keeping the remaining parame-315

ters frozen. The objective is to minimize the cross-316

entropy loss between the predicted sentence and the317

ground truth t. While it is feasible to integrate the318

previous stages and this stage into one stage for end-319

to-end training, we adopt a three-stage framework320

for decoupled representation learning and training321

cost reduction. More discussion is presented in322

Appendix B.323

4 Experiments324

4.1 Dataset325

The Brennan dataset (Brennan and Hale, 2019)326

comprises 49 human EEG recordings, of which327

33 remained after screening. Participants pas-328

sively listened to a 12.4-minute audiobook record-329

ing while their EEG signals were recorded. The330

GWilliams (Gwilliams et al., 2023) dataset con-331

tains raw MEG recordings from 27 English speak-332

ers who listened to naturalistic stories for 2 hours.333

More details are provided in Appendix C.334

4.2 Preprocessing335

Brain signals in both datasets are preprocessed336

similarly. The EEG signals are notch-filtered at 60337

Hz and bandpass-filtered between 0.5 and 99 Hz,338

and then resampled to 200 Hz. The MEG signals339

are notched at 50 Hz, filtered with 1∼58 Hz and340

resampled to 100 Hz. Both datasets are normalized341

to a range of -1 to 1 using robust scalar.342

All audio is resampled to 16,000 Hz to align with343

Whisper’s pretraining configuration. To assess the344

robustness of our proposed method, we employ345

different approaches to generate samples. For the346

Brennan dataset, we utilize WhisperX (Bain et al.,347

2023), a time-accurate speech recognition system,348

to segment the audio into chunks of up to 12 sec-349

onds. For the GWilliams dataset, we split the audio350

according to the original annotations, resulting in351

1https://huggingface.co/openai/whisper-base.
en

segments no longer than 24 seconds. This process 352

generates a series of EEG/MEG-text-speech pairs. 353

The Whisper processor then converts the speech 354

into an 80-channel Mel spectrogram m using 25- 355

ms windows with a stride of 10 ms. To standardize 356

settings and reduce memory usage, the length of 357

the Mel spectrograms in GWilliams is downsam- 358

pled to half its original value, resulting in m having 359

a consistent shape of (80, 1200). Finally, we ob- 360

tain 140 and 661 unique sentences from the two 361

datasets, respectively. 362

4.3 Dataset Splitting and Validation Strategies 363

Individual differences and attention levels of sub- 364

jects can affect EEG signals, making it difficult for 365

models to generalize across subjects and trials. To 366

explore the model’s generalization ability, we de- 367

sign different dataset splitting and validation strate- 368

gies: random shuffling, session-based, sentence- 369

based, and subject-based splittings. More details 370

are provided in Appendix D. We ensure that the 371

test data are completely separate from the training 372

data. However, we must note that our data split is 373

done in pairs, i.e., "Semantic Audio – Brain Signal 374

evoked by the Semantic Audio." This means that 375

the same sentence, evoking the same brain signal 376

in a specific trial, will not appear in both the train- 377

ing and testing stages. Unless otherwise specified, 378

the Brennan and GWilliams datasets are partitioned 379

by subject-based splittings and random shuffling, 380

respectively, in the following results. 381

4.4 Implementation Details 382

The models are trained on Nvidia 3090 GPUs 383

(24GB). Training on the Brennan and GWilliams 384

datasets take approximately 4 and 24 hours, respec- 385

tively, using a single GPU. The hyperparameters 386

are set as follows: α = 0.5, β1 = β2 = 0.1, γ = 1, 387

N = 2048, d = 256, and D = 8. The audio en- 388

coder is configured with a downsampling rate of 389

4. We use a vanilla Transformer encoder with 4 390

layers and 8 heads. All EEG/MEG samples are 391

zero-padded to 2400 in the time dimension. Input 392

spectrograms are padded uniformly to a length of 393

3000 with -1 following Whisper’s configuration. 394

For the GWilliams dataset, the length of the pre- 395

dicted Mel spectrogram is upsampled by a factor 396

of 2. When generating with Whisper, we set the 397

number of beams to 5 for beam search and apply a 398

repetition penalty of 5.0 with a no-repeat n-gram 399

size of 2. Further details on the training configura- 400

tion are provided in Appendix E. 401
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BLEU-N (%) ↑ ROUGE-1 (%)↑ WER (%) ↓

Split Input Method N=1 N=2 N=3 N=4 P R F

Subject Noise NeuSpeech (Yang et al., 2024b) 8.45 1.78 0.43 0 10.26 21.61 13.02 198.31
Noise BrainECHO 4.75 1.10 0.28 0 11.25 7.81 8.52 105.27

EEG feature EEG-to-Text (Wang and Ji, 2022) 8.82 3.15 1.90 1.44 10.13 21.61 13.12 233.99
EEG NeuSpeech (Yang et al., 2024b) 85.31 84.38 83.98 83.75 82.60 82.73 82.64 16.97
EEG MAD (Yang et al., 2024c) 80.34 79.10 78.46 78.15 81.00 90.76 83.79 42.14
EEG BrainECHO 89.78 89.06 88.74 88.55 87.05 87.27 87.13 11.72

EEG BrainECHO w/ tf 98.82 98.74 98.68 98.64 98.45 98.44 98.45 1.18

Sentence EEG BrainECHO 89.24 88.52 88.18 88.01 85.56 85.78 85.63 12.34

Table 1: Overall comparison of decoding performance on the Brennan dataset.

BLEU-N (%) ↑ ROUGE-1 (%)↑ WER (%) ↓

Split Input Method N=1 N=2 N=3 N=4 P R F

Random MEG feature EEG-to-Text (Wang and Ji, 2022) 9.21 2.13 0.57 0.14 9.74 10.73 11.38 118.25
Shuffling MEG NeuSpeech (Yang et al., 2024b) 50.49 46.85 44.42 42.55 46.39 52.48 47.10 71.17

MEG NeuSpeech (Original results) 60.3 55.26 51.24 47.78 60.88 59.76 58.73 56.63
MEG MAD (Yang et al., 2024c) 3.93 0.42 0 0 8.98 6.85 7.26 105.33
MEG BrainECHO 73.35 72.66 72.46 72.42 69.66 70.12 69.73 31.44

Session MEG NeuSpeech (Yang et al., 2024b) 53.16 - - - - - - -
MEG BrainECHO 75.24 74.57 74.34 74.27 72.94 72.84 72.78 29.59

Sentence MEG BrainECHO 73.58 72.99 72.82 72.79 70.38 70.75 70.73 31.11

Subject MEG BrainECHO 75.05 74.38 74.18 74.14 71.83 72.02 71.72 29.80

Table 2: Overall comparison of decoding performance on the GWilliams dataset.

4.5 Comparative Study402

We use BLEU (Papineni et al., 2002), ROUGE-403

1 (Lin, 2004), and Word Error Rate (WER) to eval-404

uate decoding performance. BLEU and ROUGE-1405

assess the quality of text generation, while WER406

calculates error rates based on edit distance.407

4.5.1 Benchmarking SOTA Methods on the408

Brennan Dataset409

We compare our model with popularly-referred410

brain-to-text architectures, i.e., EEG-to-Text (Wang411

and Ji, 2022), NeuSpeech (Yang et al., 2024b) and412

MAD (Yang et al., 2024c). NeuSpeech (Yang et al.,413

2024b), the previous SOTA model for MEG-to-text414

translation, serves as the baseline for comparison.415

MAD (Yang et al., 2024c) introduces brain-audio416

alignment on the basis of NeuSpeech. To ensure a417

fair comparison, we replicated these frameworks418

based on our data split settings, using the same419

training and test data as input. As shown in Table 1,420

our method demonstrates remarkable decoding per-421

formance, achieving BLEU-{1, 2, 3, 4} of 89.78,422

89.06, 88.74 and 88.55, as well as WER of 11.27423

without teacher forcing. The results indicate that424

BrainECHO generates text highly consistent with425

the ground truth. Specifically, in terms of BLEU-4,426

BrainECHO outperforms the previous baseline and427

current SOTA method by 87.11 (+6049%) and 4.8428

(+5.73%) respectively. When using teacher forcing, 429

BrainECHO achieves BLEU-4 of 98.45, which is 430

nearly perfect, highlighting the unrealistic metrics 431

produced by teacher forcing evaluation. 432

Additionally, since BrainECHO is a generative 433

model, it always produces some output, even with 434

noise, which occasionally matches a few words 435

and gets non-zero BLEU scores. However, the 436

BLEU-4 score of zero shows that matching four 437

consecutive words is unlikely. The noise results 438

are still far from the EEG/MEG results, indicating 439

that BrainECHO captures the intrinsic connection 440

between brain signals and text, rather than simply 441

memorizing sentences from the training set. In- 442

tuitively, BrainECHO is more resistant to noise 443

than NeuSpeech (Yang et al., 2024b). Notably, the 444

model ideally should not respond to noise, with a 445

WER expected to be 1. Therefore, a high WER (> 446

1), suggesting the model outputs excessive irrele- 447

vant content, is not necessarily a desirable result. 448

4.5.2 Benchmarking SOTA Methods on the 449

GWilliams Dataset 450

Evaluation metrics on the GWilliams dataset across 451

various splitting strategies are presented in Ta- 452

ble 2. When using random shuffling, BrainE- 453

CHO achieves a BLEU-4 score of 72.42, outper- 454

forming NeuSpeech by 24.64 points (+51.57%). 455
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Figure 3: Predicted Mel spectrograms on the Brennan
dataset (Left: Ground truth Mel spectrogram; Right:
Reconstructed Mel spectrogram).

Furthermore, with session-based division, BrainE-456

CHO achieves a BLEU-1 score of 75.24, exceeding457

NeuSpeech by 22.08 points (+41.53%). These re-458

sults indicate that BrainECHO can generate text459

that closely matches the ground truth. Additionally,460

the results we reproduced on MAD are unsatis-461

factory on both datasets, especially on GWilliams,462

indicating that optimizing the CLIP loss between463

neural signals and audio representations is particu-464

larly challenging when the input signal is long (the465

original experimental setup in MAD used only a 4-466

second time length). Some examples of generated467

sentences are presented in Appendix F.468

Additionally, the performances across vari-469

ous splitting strategies are presented. BrainE-470

CHO demonstrates optimal performance on the471

GWilliams dataset when split by sessions. In par-472

ticular, the performance differences are not sig-473

nificant, indicating that BrainECHO is robust and474

effectively alleviates covariate shift among differ-475

ent subjects or trials without the need for external476

information (e.g., subject or trial identifiers), pro-477

vided that all unique sentences are encountered478

during training. In contrast, the brain module used479

in (Défossez et al., 2023; Yang et al., 2024c) em-480

ploys distinct projection matrices for each subject481

to mitigate individual differences, yet it cannot be482

generalized to unseen subjects directly. More dis-483

cussion about the rationality of splitting strategies484

is provided in Appendix H.485

4.5.3 The Reconstructed Mel Spectrograms486

Figure 3 shows samples of Mel spectrograms recon-487

structed from brain signals in the Brennan dataset.488

The corresponding results for the GWilliams dataset489

are provided in Appendix F. These samples demon-490

strate that BrainECHO can produce Mel spectro-491

Training Stage BLEU-N (%) ↑

Au Al F N=1 N=2 N=3 N=4

! ! ! 89.78 89.06 88.74 88.55
% ! ! 87.13 86.29 85.92 85.74
% % ! 87.63 86.87 86.54 86.38
! ! % 39.64 34.49 31.07 28.32

Table 3: Ablation study of training stages on the Bren-
nan dataset. The stages labeled Au, Al, and F corre-
spond to Mel autoencoding, brain-audio alignment, and
Whisper fine-tuning, respectively.

grams that are largely consistent with the ground 492

truth. Notably, the model effectively restores fine 493

details and accurately predicts the intervals and 494

silent segments in the spectrograms. These results 495

highlight the model’s expressive and predictive ca- 496

pabilities, as it can extract Mel spectrograms from 497

brain signal segments exceeding 20 seconds–a feat 498

not achieved by previous methods. 499

4.6 Ablation and Hyperparameter Study 500

4.6.1 Ablation Study on Three-Stage Training 501

To verify the effectiveness of our proposed three- 502

stage training, we incrementally remove each stage 503

and observe the corresponding changes in perfor- 504

mance. As presented in Table 3, when the autoen- 505

coding stage is removed, BLEU-4 drops to 85.74 506

(-3.17%). Note that in this case, the alignment loss 507

between brain signals and Mel spectrograms in the 508

latent space is removed, while the commitment loss 509

and the reconstruction loss of Mel spectrograms 510

are retained. Further removal of the brain-audio 511

alignment stage means eliminating the reconstruc- 512

tion loss as well. At this point, the model is trained 513

end-to-end. This leads to an abnormal increase 514

in BLEU, highlighting the challenge of directly 515

constructing a representation space from the brain 516

signals to the Mel spectrogram. However, by pre- 517

warming a discrete representation space, the recon- 518

struction quality and stability are enhanced. In the 519

above two cases, the quantizer and audio decoder 520

are randomly initialized and trainable due to the 521

removal of the autoencoding stage. Without fine- 522

tuning in the final stage—i.e., feeding the predicted 523

Mel spectrograms directly into Whisper—the per- 524

formance is suboptimal. This indicates that the 525

brain-audio alignment is imperfect, and Whisper’s 526

recognition results may deviate from the ground 527

truth. Thus, the fine-tuning stage is crucial to 528

bridge these gaps and improve overall performance. 529
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BLEU-N (%) ↑

Split Autoencode N=1 N=2 N=3 N=4

Subject Separate 89.78 89.06 88.74 88.55
Joint 89.79 89.08 88.73 88.55

Sentence Separate 89.24 88.52 88.18 88.01
Joint 89.91 89.22 88.88 88.69

Table 4: Comparison of decoding performance us-
ing separate and joint autoencoding (Separate: Autoen-
coding trained individually on Brennan and GWilliam
datasets; Joint: Autoencoding trained on the combined
Brennan and GWilliam datasets).

BLEU-N (%) ↑

N=1 N=2 N=3 N=4

w/ quantizer 89.78 89.06 88.74 88.55
w/o quantizer 86.46 85.57 85.15 84.90

Table 5: Ablation study of quantizer.

4.6.2 Impact of Data Input Strategy in the530

Autoencoding Stage531

This experiment allows us to analyze whether joint532

training in the autoencoding stage (Stage 1) en-533

hances the model’s ability to learn richer and more534

generalized representations, thereby improving535

downstream performance in the following stages.536

Specifically, we compare two approaches: (1) sepa-537

rate autoencoding, where the model is trained indi-538

vidually on the Mel spectrograms from the Brennan539

and GWilliam datasets, and (2) joint autoencoding,540

where the Mel spectrograms from both datasets541

are combined for training. Following Stage 1, the542

model proceeds to Stage 2 and Stage 3, which are543

performed separately on the training sets of Bren-544

nan and GWilliam to evaluate the generalizability545

and dataset-specific performance. The results of546

the Brennan dataset presented in Table 4 show that,547

overall, joint autoencoding leads to either stable or548

slightly improved metrics. However, the improve-549

ment is marginal, suggesting that the pre-training550

datasets need to exhibit high correspondence with551

the downstream EEG/MEG signals to significantly552

benefit the decoding framework.553

4.6.3 Hyperparameter Analysis of Audio554

Encoder Module555

To assess the impact of the downsampling ratio r,556

we evaluate BrainECHO’s performance at r values557

of 2, 4, 8, and 16, while holding other hyperparam-558

eters constant. Assuming each pixel in the spec-559

trogram is represented by 8 bits, the correspond-560

ing reductions in bit usage are approximately 2.9,561

Figure 4: Changes of BLEU-1 and Mel spectrogram
reconstruction loss with different downsampling ratios.

11.6, 46.5, and 186.1, respectively. As illustrated 562

in Figure 4, increasing r exacerbates information 563

loss, making accurate reconstruction of Mel spec- 564

trograms for sentence decoding more challenging. 565

Interestingly, the decoding performance at r = 2 566

is not as strong as at r = 4, indicating that while a 567

larger feature map enhances reconstruction quality, 568

it may also introduce translation-irrelevant informa- 569

tion, thereby complicating the fine-tuning of Whis- 570

per. Therefore, selecting a moderate r is essential 571

to optimize latent representation capacity. 572

4.6.4 Role of the Discrete Encoding Module 573

As shown in Table 5, removing the quantizer, i.e., 574

using continuous representation instead of discrete 575

representation, results in a performance decline 576

across all metrics compared to the version with 577

a quantizer. This indicates that discretization can 578

enhance the model’s generalization ability by re- 579

ducing session-specific noise and facilitating the 580

learning of subject-invariant features. 581

5 Conclusion 582

This paper introduces a novel three-stage brain- 583

to-text framework, BrainECHO, that addresses 584

the shortcomings of prior methods. These meth- 585

ods relied on teacher forcing and failed to com- 586

pare model performance against pure noise in- 587

puts. BrainECHO bridges the latent spaces of 588

text and corresponding aurally evoked brain sig- 589

nals through vector-quantized spectrogram recon- 590

struction and fine-tuned use of the Whisper model. 591

It achieves SOTA performance on public EEG 592

and MEG datasets across various experimental set- 593

tings. By extracting deep semantic information 594

from brain signals, BrainECHO provides valuable 595

insights for future research in the brain-to-text de- 596

coding paradigm in the BCI field. 597
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Limitations598

The limitations of our proposed work are summa-599

rized as follows:600

Dataset Limitations601

Although our method has produced promising re-602

sults, it is currently suitable only for datasets of603

audio-evoked neural signals because of the brain-604

audio feature alignment. Future work can address605

the limitation by collecting datasets with richer606

corpora, devising appropriate data augmentation607

methods, and implementing new modality align-608

ment frameworks.609

Experiment Limitations610

In our experimental setting, all data are strictly611

segmented on a sentence-by-sentence basis before612

being fed into the model, which may not align613

with real-world decoding scenarios, due to the po-614

tential unknown length of the signals to be trans-615

lated. Moreover, according to the results reported616

by NeuSpeech (Yang et al., 2024b), sentence-level617

decoding may face overfitting issues, as neural618

signals of different lengths need to be padded to619

the same length before fed into the model. How-620

ever, under the condition that there is a correla-621

tion between signal length and sentence length, our622

approach may help the model decode by implic-623

itly injecting the length information of the signal.624

Moreover, as reported by NeuSpeech (Yang et al.,625

2024b), sentence-level decoding might encounter626

overfitting problems. The reason is that neural627

signals of varying lengths should be padded to a628

consistent length before being fed into the model.629

When a correlation exists between signal length630

and sentence length, it is possible that our proposed631

approach inadvertently facilitates the model’s de-632

coding by implicitly integrating the length informa-633

tion of the signal. MAD (Yang et al., 2024c) and634

NeuGPT (Yang et al., 2024a) showed an unsatisfac-635

tory result with a uniform signal length, suggesting636

that the current task of generating open-vocabulary637

text based solely on the neural signal pattern re-638

mains extremely challenging. Our forthcoming639

research efforts will focus on leveraging LLMs and640

more efficient alignment strategies to diminish the641

dependence on length information.642

Ethical Statement643

This study uses publicly available datasets and does644

not involve the collection of any brain activity data645

from human subjects. Therefore, our research does 646

not have any adverse impact on human society. 647
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A Conformer810

Conformer utilizes a Convolution-Transformer ar-811

chitecture to capture both local and global features.812

The one-dimensional temporal and spatial convolu-813

tion layers in TS Conv capture the local information814

of neural signals, while the self-attention modules815

in the Transformer blocks extract the global depen-816

dencies of these local time features. The detailed817

structure of Conformer is provided in Table 6.818

B Necessity of the Three-Stage Paradigm819

Although it is possible to integrate Stage 2 and820

Stage 3, or even all stages, into a single stage for821

end-to-end training, we chose to adopt a three-stage822

training paradigm for several reasons.823

First, our three-stage design achieves decoupled824

representation learning, and each stage serves a825

distinct and crucial purpose. Stage 1 focuses on op-826

timizing the quantizer, audio encoder and decoder.827

Stage 2 is dedicated to aligning brain signals with828

Mel spectrograms. By doing so, we can better cap-829

ture the complex relationship between the neural ac-830

tivity and the corresponding audio features, which831

is a key step in bridging the gap between brain832

signals and text. Finally, in Stage 3, we leverage833

the Mel spectrograms as an intermediate modality.834

Through fine-tuning Whisper, we are able to align835

the brain signals with the text modality. By de-836

coupling brain signal representation learning from837

linguistic knowledge preservation, we mitigate the838

risk of LLM over-dominance and establish robust839

EEG/MEG-to-text mapping.840

Second, with only a single Nvidia 3090 (24GB)841

GPU, we found that it would be challenging to842

support the large-scale parameter training required843

for the combined stage. One of the advantages844

of this three-stage design is that each stage only845

requires the optimization of a specific subset of846

module parameters. This significantly reduces the847

computational burden at each step, enabling us848

to effectively balance the decoding performance849

and resource utilization. As demonstrated by our850

experimental results in Section 4.5, this three-stage851

training approach is highly effective, highlighting852

its potential for similar research in the field.853

C Datasets854

C.1 Brennan855

The Brennan dataset (Brennan and Hale, 2019) con-856

tains raw electroencephalography (EEG) data col-857

lected from 49 human subjects. Participants were 858

asked to passively listen to a 12.4-minute audio- 859

book story of chapter one of Alice’s Advenctures 860

in Wonderland, while their EEG data was recorded. 861

Participants completed an eight-question multiple 862

choice questionnaire concerning the contents of 863

the story at the end of the experimental session. 864

We retain 33 participants’ data who achieved high 865

scores. 866

Participants were fitted with an elastic cap with 867

61 actively-amplified electrodes and one ground 868

electrode (actiCap, Brain Products GmbH). Elec- 869

trodes were distributed equidistantly across the 870

scalp according to the Easycap M10 layout. Con- 871

ductive gel was inserted into each electrode to re- 872

duce impedences to 25 kOhms or below. Data were 873

recorded at 500 Hz between 0.1 and 200 Hz refer- 874

enced to an electrode placed on the right mastoid 875

(actiCHamp, Brain Products GmbH). 876

The stimulus chapter originally contains 84 877

sentences. Since the annotation files only pro- 878

vide word-level annotations, directly concatenating 879

words to form sentences would result in the ab- 880

sence of punctuation marks. Therefore, we use 881

WhisperX (Bain et al., 2023) to segment the audio 882

stimulus into segments of no more than 12 seconds, 883

resulting in 140 sentences. 884

C.2 GWilliams 885

GWilliams (Gwilliams et al., 2023), known as the 886

“MEG-MASC” dataset, provides raw magnetoen- 887

cephalography (MEG) data from 27 English speak- 888

ers who listened to two hours of naturalistic stories. 889

Each participant performed two identical sessions, 890

involving listening to four fictional stories from the 891

Manually Annotated Sub-Corpus (MASC). The 892

four stories are: ‘LW1’ (861 words, 5 min 20 sec), 893

‘Cable Spool Boy’ (1948 words, 11 min), ‘Easy 894

Money’ (3541 words, 12 min 10 sec) and ‘The 895

Black Willow’ (4652 words, 25 min 50 sec). 896

An audio track corresponding to each of these 897

stories was synthesized using Mac OS Mojave © 898

version 10.14 text-to-speech. To help decorrelate 899

language features from acoustic representations, 900

both voices and speech rate were varied every 5–20 901

sentences. Specifically, three distinct synthetic 902

voices: ‘Ava’, ‘Samantha’ and ‘Allison’ are used 903

speaking between 145 and 205 words per minute. 904

Additionally, the silence between sentences are var- 905

ied between 0 and 1,000ms. Both speech rate and 906

silence duration were sampled from a uniform dis- 907

tribution between the min and max values. 908
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Layer Type Out Channels Filter Size Stride Padding Input Output

Conv2D 64 (1, 5) (1, 2) 2 1× C × Tε 64× C × Tε
2

BatchNorm2D + ELU - - - - 64× C × Tε
2

64× C × Tε
2

Conv2D 128 (1, 3) (1, 2) 1 64× C × Tε
2

128× C × Tε
4

BatchNorm2D + ELU - - - - 128× C × Tε
4

128× C × Tε
4

Conv2D 256 (C, 1) 1 0 128× C × Tε
4

256× C × Tε
4

BatchNorm2D + ELU - - - - 256× C × Tε
4

256× 1× Tε
4

Rearrange - - - - 256× 1× Tε
4

Tε
4

× 256

Table 6: The structure of TS Conv. C and Tε denote the number of EEG/MEG channels and timestamps.

Dataset Split Details Result

Brennan Sentence For each participant, sentence-EEG/MEG pairs corresponding to random selected
10% of unique sentences are allocated to the test set, then the remaining sentence-
EEG/MEG pairs are shuffled and split into train:valid 8:1. Note that the test set
for each subject may contain different sentences and the training set may cover all
possible sentences.

3696:462:462

Subject 3 participants (about 10% of the total number of subjects) are selected at random
for the test set, 3 for the validation set, and the remaining 27 for the training set.

3780:420:420

GWilliams RS All data is random shuffled and divided into train:valid:test 8:1:1. 23339:2917:2918

Session Random shuffled data of session 0 is divided into train:valid 8:1 and data of session
1 is held out as test set.

13129:2976:13069

Sentence It is the same as Brennan above. 23305:2914:2955

Subject 2 participants (about 10% of the total number of subjects) are selected at random
for the test set, 2 for the validation set, and the remaining 23 for the training set.

24137:2469:2568

Table 7: Details of different dataset split settings. RS denotes random shuffling.

Each story was divided into ∼3 min sound files.909

In between these sounds— approximately every 30910

s— a random word list generated from the unique911

content words (nouns, proper nouns, verbs, adverbs912

and adjectives) selected from the preceding 5min913

segment presented in random order were played.914

Within each ∼1 h recording session, participants915

were recorded with a 208 axial-gradiometer MEG916

scanner built by the Kanazawa Institute of Technol-917

ogy (KIT), and sampled at 1,000 Hz, and online918

band-pass fltered between 0.01 and 200Hz while919

they listened to four distinct stories through binau-920

ral tube earphones (Aero Technologies), at a mean921

level of 70dB sound pressure level.922

To ensure a fair comparison with923

NeuSpeech (Yang et al., 2024b), we follow924

its experimental setup by concatenating words with925

the same sentence ID into full sentences, based on926

the annotation files. This process results in 661927

sentences.928

D Dataset Splitting929

In this section, we detail the dataset-splitting strate-930

gies employed in our study. As shown in Table 7,931

four distinct strategies are utilized, each present- 932

ing different levels of evaluation difficulty. The 933

random shuffling strategy is the most basic, incor- 934

porating data from all subjects and trials into the 935

training samples. The sentence-based strategy is 936

more challenging, simulating scenarios where sam- 937

ples from different participants are not aligned, re- 938

sulting in missing data for some sentences for each 939

participant. The session-based and subject-based 940

strategies are the most difficult but also the most 941

realistic, as they assess the model’s ability to gener- 942

alize to new trials and subjects, respectively. This 943

capability is crucial for the practical application of 944

language-based BCIs. The Brennan dataset utilizes 945

only two splitting methods due to its inclusion of 946

data from a single trial. Consequently, splitting by 947

sentence yields results similar to those obtained by 948

random shuffling. 949

E Implementation Details 950

The training configurations for our model vary 951

across different datasets and training stages. De- 952

tailed settings for each training phase are outlined 953

in Table 8. The final model is selected based on 954
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Brennan GWilliams

Configuration Pretraining Alignment Finetuning Pretraining Alignment Finetuning

Batch Size 16 16 16 16 8 16
Max Epoch 400 40 40 100 40 40

Max Learning Rate 2e-4 1e-4 1e-4 2e-4 1e-4 2e-4
Optimizer AdamW, with weight decay = 1e-2, betas = (0.9,0.999)

LR Scheduler Cosine Annealing, with T_max = Max Epoch
Early Stopping Patience 4

Table 8: Details of the experimental configuration.

Figure 5: Predicted Mel spectrograms on the GWilliams dataset.

the lowest validation loss. Notably, no data aug-955

mentation techniques are employed, and no subject-956

related information is provided to the model.957

F Examples of Generated Sentences958

A selection of samples generated from different959

methods are shown in Table 9. These examples in-960

dicate that BrainECHO can produce sentences that961

closely match the original text, even when the refer-962

ence is long and intricate. Remarkably, even with-963

out the final fine-tuning of Whisper, BrainECHO964

still generates results highly relevant to the original965

text, highlighting the effectiveness of brain-audio966

latent space alignment (stage 2). In contrast, EEG-967

to-Text (Wang and Ji, 2022) experiences difficulties968

in generating semantically relevant sentences, and969

NeuSpeech (Yang et al., 2024b) may generate con-970

tent unrelated to the ground truth when decoding971

long sentences, which can have a significant impact972

on practical applications in high-precision decod- 973

ing scenarios. 974

To intuitively demonstrate the powerful decod- 975

ing ability of BrainECHO, additional translated 976

examples for the Brennan and GWilliams datasets 977

are presented in Table 10 and 11, respectively. For 978

most test samples, our method demonstrates ac- 979

curate decoding. However, for certain samples, 980

our model generates completely unrelated content, 981

such as "There were doors all around the hall." 982

and "What a curious feeling, said Alice." in Ta- 983

ble 10. This suggests that the model may struggle 984

with discriminability in sentences of similar length, 985

highlighting the persistent challenge of extracting 986

semantically relevant patterns from low signal-to- 987

noise non-invasive signals. 988

Some samples of Mel spectrograms recon- 989

structed from the brain signals for the GWilliams 990

datasets are shown in Figure 5. 991
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Generated samples on Brennan

(1)

Ground Truth There seemed to be no use in waiting by the little door, so she went back to the table.
EEG-to-Text But they were all locked, and when Alice had been all the way down one side and up the other trying

every door, she did not care how she was ever to get out again.
NeuSpeech There seemed to be no use in waiting by the little door, so she went back to the table.
BrainECHO w/o ft There seemed to be no use in waiting by the little door, so she went back to the table.
BrainECHO There seemed to be no use in waiting by the little door, so she went back to the table.

(2)

Ground Truth that she’d never before seen a rabbit with either a waistcoat pocket or a watch to take out of it, and burning
with curiosity, she ran across the field after it, and fortunately

EEG-to-Text how she longed to get out of that dark hall and wander about among those beds of bright flowers and
those cool fountains, but she did not even get her head through the doorway.

NeuSpeech But they were all locked, and when Alice had been all the way down one side and up the other trying
every door, she walked sadly down the middle, wondering how she was ever to get out again.

BrainECHO w/o ft But she will never be foreseen around it, with either a waistcoat pocket or a watch to take out of it
and burn in curiosity. She ran across the field after it unfortunately.

BrainECHO that she’d never before seen a rabbit with either a waistcoat pocket or a watch to take out of it and
burning with curiosity, she ran across the field after it, and fortunately

Generated samples on GWilliams

(1)

Ground Truth I seen him since high school maybe twenty years before and we were never buddies in the first place
EEG-to-Text It was a long time since I had last seen him in the flesh
NeuSpeech I seen him since high school when I was young, at least before and we were never buddies in any

place.
BrainECHO w/o ft I hadn’t seen him since high school, maybe 20 years before and you remember when he’s in the first

place.
BrainECHO I seen him since high school maybe twenty years before and we were never buddies in the first place

(2)

Ground Truth My patience was long gone and I was back in the car to warming up when Acres tapped on the window
and told me he had found whatever he was looking for

EEG-to-Text He said he had no idea how long it would take him to get back home
NeuSpeech My patience was long gone and I was back in the car. But when I heard that many of you were looking

for whatever it was, but what about this?
BrainECHO w/o ft My patience was long gone, and I was back in the car to warming up when acres tapped on the

window and Tunch told me he had found whatever he was looking for.
BrainECHO My patience was long gone and I was back in the car to warming up when Acres tapped on the

window and told me he had found whatever he was looking for

Table 9: Comparison of decoding sentences generated by different methods, where bold and underline indicate
an exact match and a similar match, respectively, between prediction and ground truth. All methods use the same
generation configuration. w/o ft means decoding by inputting the predicted Mel spectrogram into Whisper directly
without fine-tuning in the final stage. Only examples of NeuSpeech are reported rather than those of MAD because
of NeuSpeech’s overall superior performance and the similarity of its method to MAD’s.

Figure 6: Translation performance using various code-
book sizes on Brennan dataset.

G Additional Experiments on Codebook992

Size in the Quantizer993

To further explore the impact of the quantizer, we994

investigate the performance of BrainECHO with995

codebook sizes ranging from 1024 to 4096. As 996

shown in Figure 6, the performance peaks at a code- 997

book size of 4096. However, the metrics do not in- 998

crease linearly with codebook size. When the code- 999

book size increases from 1024 to 2048, the decod- 1000

ing performance improves, but it decreases when 1001

the size further increases to 3072. This indicates 1002

that a smaller codebook may not capture diverse 1003

acoustic representations, while a larger codebook 1004

may increase training difficulty and computational 1005

burden. Thus, we choose 2048 as the codebook 1006

size for balancing performance and efficiency. 1007

H The Reason Why the Test Results 1008

Make Sense 1009

Since we split the data in paired form (i.e., "Seman- 1010

tic Audio – Brain Signal evoked by the Semantic 1011

Audio"), there could be cases where the same sen- 1012

tence, but with different brain signals from differ- 1013
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(1) Ground Truth There were doors all around the hall.

Predicted not much larger than a rat hole.

(2) Ground Truth For you see, as she couldn’t answer either question, it didn’t much matter which way she put it.

Predicted For you see, as she couldn’t answer either question, it didn’t much matter which way she put it.

(3) Ground Truth When she thought it over afterwards, it occurred to her that she ought to have wondered at this, but at the time it
all seemed quite natural.

Predicted When she thought it over afterwards, it occurred to her that she ought to have wondered at this, but at the
time it all seemed quite natural.

(4) Ground Truth I wonder how many miles I’ve fallen by this time, she said aloud.

Predicted I wonder how many miles I’ve fallen by this time, she said aloud.

(5) Ground Truth and that if you cut your finger very deeply with a knife, it usually bleeds.

Predicted and that if you cut your finger very deeply with a knife, it usually bleeds.

(6) Ground Truth I can creep under the door, so either way I’ll get into the garden, and I don’t care which happens.

Predicted I can creep under the door, so either way I’ll get into the garden, and I don’t care which happens.

(7) Ground Truth But it’s no use now, thought poor Alice, to pretend to be two people while there’s hardly enough of me to make
one respectable person.

Predicted But it’s no use now, thought poor Alice, to pretend to be two people while there’s hardly enough of me to
make one respectable person.

(8) Ground Truth She was now only ten inches high, and her face brightened up at the thought that she was now the right size for
going through the little door into that lovely garden.

Predicted She was now only ten inches high, and her face brightened up at the thought that she is now the right size
for going through the little door into that lovely garden.

(9) Ground Truth for she had read several nice little histories about children who’d gotten burnt and eaten up by wild beasts and
other unpleasant things.

Predicted for she had read several nice little histories about children who’d gotten burnt and eaten up by wild beasts
and other unpleasant things.

(10) Ground Truth What a curious feeling, said Alice.

Predicted This time, she found a little bottle on it.

(11) Ground Truth Once or twice she peeped into the book her sister was reading.

Predicted Once or twice she peeped into the book her sister was reading.

(12) Ground Truth how she longed to get out of that dark hall and wander about among those beds of bright flowers and those cool
fountains, but she could not even get her head through the doorway.

Predicted how she longed to get out of that dark hall and wander about among those beds of bright flowers and
those cool fountains, but she could not even get her head through the doorway.

(12) Ground Truth Either the well was very deep, or she fell very slowly.

Predicted Either the well was very deep, or she fell very slowly.

(13) Ground Truth But alas for poor Alice, when she got to the door...

Predicted But alas for poor Alice, when she got to the door...

(14) Ground Truth For my end, you know, said Alice to herself, in my going out altogether like a candle.

Predicted For my end, you know, said Alice to herself, in my going out altogether like a candle.

(15) Ground Truth Do you think you could manage it?

Predicted Do you think you could manage it?

Table 10: Additional samples generated on Brennan dataset. Bold denotes a correct match.

ent people (e.g., Sentence t – Brain Signal εsubj1,1014

Sentence t – Brain Signal εsubj2), is included in1015

the training or test set. Therefore, the Mel spectro-1016

grams during stage 1 could have already been seen1017

during training, even though they are part of the1018

test set.1019

However, for non-invasive natural language1020

brain-computer interfaces, unlike invasive systems1021

that decode neural activity related to language-1022

specific motor areas (Willett et al., 2023; Metzger 1023

et al., 2023; Chen et al., 2024b), non-invasive in- 1024

terfaces have lower signal-to-noise ratios. Fur- 1025

thermore, similar to invasive systems, decoding 1026

of brain signals occurs on previously seen sen- 1027

tences, with the vocabulary expanding progres- 1028

sively to achieve open vocabulary. Testing with 1029

completely unseen sentences can be overly ambi- 1030

tious, as demonstrated in NeuSpeech (Yang et al., 1031
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(1) Ground Truth Roy stooped to pick up a big white rock that looked like a dirty lump of chalk and handed it to Chad

Predicted Roy stooped to pick up a big white rock that looked like a dirty lump of chalk and handed it to Chad

(2) Ground Truth Arthur and his wine

Predicted I may finish this story

(3) Ground Truth holding fidgeting conveyed glanced after sure rotting believing suppose water malignant replied

Predicted Holding fidgeting conveyed glanced after sure rotting believing suppose water malignant replied

(4) Ground Truth We spent the next hour stomping around the hill while he said things like it was right here

Predicted We spent the next hour stomping around the hill while he said things like it was right here

(5) Ground Truth there sounded slipped told mentioned for device issued all kentucky traffic whoever voice pushing

Predicted There sounded slipped told mentioned for device issued all kentucky traffic whoever voice pushing

(6) Ground Truth Collapsing at its base Allan wrapped his arms around the stoic tree and let forth a moan a cry of purest agony
that escaped him as the first tears seeped from the corners of his eyes and slid down his cheeks falling to the
ground and seeping though the fallen leaves and needles to join the water of the stream flowing through the
ground beneath them

Predicted Collapsing at its base Allan wrapped his arms around the stoic tree and let forth a moan a cry of purest
agony that escaped him as the first tears seeped from the corners of his eyes and slid down his cheeks
falling to the ground and seeping though the fallen leaves and needles to join the water of the stream
flowing through the grounds beneath them

(7) Ground Truth She seemed so self conscious and shallow on the outside but having that incredible gift

Predicted She seemed so self conscious and shallow on the outside but having that incredible gift

(8) Ground Truth It s hail across the and Tara spun to retake her seat at the helm

Predicted I shall consider it in the meantime however I must be off

(9) Ground Truth I put away the cell and used the motion to cover checking the knife in my sleeve and used one leg to check the
other in my sock

Predicted But I always should come now immediately before the probe is reported late

(10) Ground Truth You could step on that marker and make the gestures the device and it would be like pushing a button in a very
complex machine hu

Predicted It speaks to the deepest instinct within us all yet is entirely original

(11) Ground Truth destroyed another story last night

Predicted Destroyed another story last night

(12) Ground Truth Chad finished formula but this time he mind that Roy fell for it

Predicted Chad finished formula but this time he mind that Roy fell for it

(13) Ground Truth remote room voice truck would so what going silver taught screaming toads play being

Predicted Remote room voice truck would so what going silver taught screaming toads play being

(14) Ground Truth Tell them and they will create an audience

Predicted Tell them and they will create an audience

(15) Ground Truth Allan took a sandwich between his fingers

Predicted This is the ounces which I mentioned at the restaurant

Table 11: Additional samples generated on the GWilliams dataset. Bold denotes a correct match.

2024b), where testing on completely unseen sen-1032

tences resulted in a BLEU-1 score of only 6.91.1033

Like the baseline in the paper, we ensure that the1034

same sentence and its evoked brain signal do not1035

appear in both the training and testing stages. Addi-1036

tionally, we have tested various data split scenarios1037

(session, sentence and subject).1038

Moreover, to prevent data leakage, even if Mel1039

spectrograms from the test set were exposed during1040

stage 1, the brain signals from the test set were1041

never used in stage 2. Stage 1 only serves to ob-1042

tain a low-dimensional representation of the Mel1043

spectrograms, akin to creating a feature selector 1044

for Mel spectrograms. The brain signals decoded 1045

during testing are always from data that was not 1046

seen during training. 1047
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