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ABSTRACT

Language models (LMs) are susceptible to bias, sycophancy, backdoors, and other
tendencies that lead to unfaithful responses to the input context. Interpreting inter-
nal states of LMs could help monitor and correct unfaithful behavior. We hypothe-
size that LMs faithfully represent their input contexts in a latent world model, and
we seek to extract these latent world states as logical propositions. For example,
given the input context “Greg is a nurse. Laura is a physicist.”, we aim to decode
the propositions WorksAs(Greg, nurse) and WorksAs(Laura, physicist) from the
model’s internal activations. To do so we introduce propositional probes, which
compositionally extract lexical concepts from token activations and bind them into
propositions. Key to this is identifying a binding subspace in which bound tokens
have high similarity (Greg↔ nurse) but unbound ones do not (Greg ̸↔ physicist).
Despite only being trained on linguistically simple English templates, we find that
propositional probes generalize to inputs written as short stories and translated
to Spanish. Moreover, in three settings where LMs respond unfaithfully to the
input context—prompt injections, backdoor attacks, and gender bias— the de-
coded propositions remain faithful. This suggests that LMs often encode a faith-
ful world model but decode it unfaithfully, which motivates the search for better
interpretability tools for monitoring LMs.

1 INTRODUCTION

Language models (LMs) may produce responses unfaithful to the input context in many situations:
they can be misled by irrelevant examples (Anil et al., 2024; Halawi et al., 2023), learn unintended
tendencies (Sharma et al., 2023) and biases (Blodgett et al., 2020; Liang et al., 2022), and are vul-
nerable to adversarial attacks on their prompts (Perez & Ribeiro, 2022) and training data (Wallace
et al., 2020; Hubinger et al., 2024). This makes it important to be able to identify and correct when
language models are unfaithful.

To address unfaithfulness, one promising approach is to interpret LMs’ internal states (Christiano
et al., 2021; Viégas & Wattenberg, 2023). A common hypothesis is that LMs internally represent
the input context in a latent world model (Li et al., 2021; 2022), which could remain faithful even if
the LM outputs falsehoods (Mallen & Belrose, 2023). This might happen, for instance, if unfaithful
tendencies affect how the model behaves in accordance to its beliefs, but not the beliefs themselves.

In this work, we introduce propositional probes, which extract symbolic latent world states as logi-
cal propositions; we then show that these latent world states remain faithful in three adversarial set-
tings. As an example of propositional probes, consider the input context “Alice lives in Laos. Bob
lives in Peru.” We would extract from internal activations the propositions {LivesIn(Alice, Laos),
LivesIn(Bob,Peru)} . In three adversarial settings, namely prompt injections, backdoors, and gen-
der bias, we find that these extracted latent world states are more faithful than model outputs.

Our probes work by extracting lexical concepts from token activations, then binding them together to
form propositions (Fig. 1) (Sec. 4). Since the space of propositions is exponentially large, our probes
exploit compositionality by building propositions from their lexical constituents (e.g. composing
LivesIn(Alice, Laos) from Alice and Laos)). Key to enabling this is the “binding subspace” (Feng
& Steinhardt, 2023), a subspace of activation space in which bound tokens (such as Alice and
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Figure 1: Left: Name (blue) and country probes (green) classify activations into either a name/coun-
try or a null value. Right: Activations have a lexical component (e.g. fE(“Alice”)) and a binding
component (e.g. bE(0)), such that bound activations have similar binding components (e.g. bE(0)
and bA(0)). We use this to compose across tokens.

Laos above) have similar activations. To identify this subspace, we develop a novel Hessian-based
algorithm (Sec. 5) and demonstrate that the identified binding subspace causally mediates bind-
ing (Geiger et al., 2021a; Vig et al., 2020; Pearl, 2022) (Sec. 5.3).

Our propositional probes generalize well to complex and adversarial settings, despite being trained
only on linguistically simple data. We create the training data by filling simple templates with
random ground-truth propositions drawn from a finite universe of predicates and objects, and the
test data by rewriting the train data into short stories and translating them into Spanish with GPT-
3.5-turbo (Sec. 3). We find that propositional probes generalize to these complex settings, achieving
a Jaccard Index of within 10% of a prompting skyline (Sec. 6.1). Further, in three adversarial settings
(prompt injections, backdoors, and gender bias), our probes produce more faithful propositions than
what the model outputs (Sec. 6.2).

Overall, our results indicate that identifying compositional structures in LM activations is a promis-
ing approach towards building monitoring systems for LMs. This is particularly pertinent as LMs
are increasingly deployed as autonomous agents. To this end, we hope that our work could stimulate
further research into extracting world models of greater complexity, such as by modeling role-filler
binding (Smolensky, 1990) and state changes (Kim & Schuster, 2023).

2 RELATED WORK

Probing Our propositional probes compose smaller lexical probes together; the constituent probes
have been well studied in many domains (Mikolov et al., 2013), such as color (Abdou et al., 2021),
gender (Bolukbasi et al., 2016), and space (Gurnee & Tegmark, 2023). In addition, probing for
propositional beliefs has been studied for the Othello (Li et al., 2022), Alchemy, and TextWorld
environments (Li et al., 2021). Our approach differs by exploiting compositionality, which enables
our method to leverage the large body of existing probing literature.

Representations of binding Researchers have long studied binding in connectionist models and
human minds (von der Malsburg, 1981; Feldman, 1982; 2013; Treisman, 1996). In recent LMs,
researchers have shown that representations of semantic roles and coreferences emerge from pre-
training (Tenney et al., 2019; Belinkov et al., 2020; Peters et al., 2018). We build on the “binding
vectors” discovered in language model activations (Feng & Steinhardt, 2023; Prakash et al., 2024).

3 TASK DEFINITION AND PRELIMINARIES

In this section, we formally define the task that propositional probes solve, and discuss how we
evaluate propositional probes.

Task definition The goal of propositional probes is to decode a set of logical propositions rep-
resenting the language model’s beliefs about an input passage from the language model’s internal
activations. Specifically, suppose we have an input passage T , together with a ground-truth set of
propositions B (e.g., B = {LivesIn(Alice, Laos), LivesIn(Bob,Peru)} for Fig. 1.) Further suppose
we have a modelM that understands the input passage T to the extent that it can reliably answer
reading comprehension questions about B (e.g. answers “Where does Alice live?” with “Laos”).
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GPT GPT
Carol lives in Italy. Samuel 
lives in Japan. Carol likes to 
eat apples. Samuel likes to 
eat salmon. Carol works as 
secretary. Samuel works as 
cleaner.

Train Input (Easy)Train/Test Labels Test Input (Hard) Test Input (Hard)
Carol lived in the 
picturesque countryside of 
Italy, where orchards of 
apple trees dotted the 
landscape. She had a 
fondness for juicy red 

SYNTH: Templated

LivesIn(Carol, Italy)
LivesIn(Samuel, Japan)
LikesToEat(Carol, apples)
LikesToEat(Samuel, salmon)
WorksAs(Carol, secretary)
WorksAs(Samuel, cleaner)

Propositions PARA: Rewrite as a story...

Carol vivía en el pintoresco 
campo de Italia, donde los 
huertos de manzanos 
punteaban el paisaje. 
Tenía predilección por las 
jugosas manzanas rojas, 

TRANS: Translate the follo...

Figure 2: To create our datasets, we first generate sets of random propositions about two people.
Each set is formatted with a template (SYNTH), rewritten into a story (PARA), and translated into
Spanish (TRANS). We train probes to predict propositions from the easy SYNTH dataset, and test
probes on the hard PARA and TRANS datasets.

Then, run the modelM on the input T , and let the internal activations be Z0, . . . , Z|T |−1, which we
take to be the concatenation of pre-layernorm activations at every layer, so that Zk ∈ Rnlayers×dmodel .
The task is to predict the set of propositions B from the internal activations Z0, . . . , Z|T |−1.

Easy-to-hard evaluations To evaluate propositional probes we train our probes on simple inputs
and test their generalization on hard, potentially adversarial, inputs. Prior works have used this easy-
to-hard evaluation paradigm (Roger et al., 2023; Mallen & Belrose, 2023) to measure the usefulness
of probes as monitoring methods. Specifically, we create three versions of datasets; the propositional
probes are trained only using the simplest version (SYNTH), and evaluated on the heldout versions
(PARA, TRANS). Further, in Sec. 6.2 we introduce additional distribution shifts during evaluation
that adversarially changes the model’s output behavior, and test if the probes can remain faithful.

Datasets We create three datasets of natural language passages of increasing complexity, namely
SYNTH, PARA, and TRANS, each labelled with ground-truth propositions. To do so, we first generate
random propositions, which are then formatted in a template to produce the SYNTH dataset, and
augmented using GPT-3.5-turbo to produce diverse and complex PARA and TRANS datasets (Fig. 2).

In more detail, each input instance describes two people, each of whom has a name, country of
origin, occupation, and a food they like. We model this information as a set of propositions such as
LivesIn(Carol, Italy). Formally, our closed world consists of four domains D0, . . . ,D3, which are
sets of names, countries, occupations, and foods respectively. There are three predicates, LivesIn,
WorksAs, and LikesToEat, each of which binds a name E ∈ D0 to an attribute from one of the three
attribute domains D1,D2, or D3 respectively. Note that because of the one-to-one correspondence
between predicates and attribute domains, the predicate of a proposition can be inferred by which
domain the attribute is from. Our method utilizes this observation. In addition, for brevity we
sometimes drop the predicate, e.g. (Carol, Italy) instead of LivesIn(Carol, Italy).

To create the input context, we generate six random propositions about two people by sampling
without repetition two values from each domain. These propositions are formatted in a template
to produce the SYNTH dataset, rewritten using GPT-3.5-turbo into a short story (PARA), and then
translated into Spanish (TRANS). See Fig. 2 for an example and Appendix A for details.

Models We use the Tulu-2-13b model (Ivison et al., 2023), an instruction-tuned version of Llama
2 (Touvron et al., 2023) with nlayers = 40 layers and dmodel = 5120 embedding dimensions.

4 PROPOSITIONAL PROBES

In this section we describe the overall architecture of propositional probes. At a high level, propo-
sitional probes are composed of domain probes, one for each domain, and the outputs of the do-
main probes are composed to form propositions using the binding similarity metric. We con-
struct domain probes in Sec. 4.1, compose them to form propositional probes in Sec. 4.2, but
defer the construction of the binding similarity metric to Sec. 5. We make code available at
https://github.com/jiahai-feng/prop-probes-iclr

4.1 DOMAIN PROBES

For every domain, we train a domain probe that linearly classifies activations at individual token
positions into either a value in the domain, or a null value ⊥, indicating that none of the values is
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represented. For example, Fig. 1 (left) shows the outputs of the name probe and the country probe.
Formally, for every domain Dk, we train a probe Pk : Rdmodel → Dk ∪ {⊥}. We use the activation at
a particular layer l as the input of the probe. We describe later how l is chosen.

We parameterize the probe with |Dk| vectors, u(0)
k , . . . u

(|Dk|−1)
k ∈ Rdmodel and a threshold hk ∈

R. Each vector is a direction in activation space corresponding to a value in the domain. The
classification of the probe is simply the value whose vector has the highest dot product with the
activation, or the null value⊥ instead if all the dot products are smaller than the threshold. Formally,

Pk(Z) =

{
argmaxi u

(i)
k · Z, ifmaxi u

(i)
k > hk

⊥, otherwise

To learn the vectors, we generate a dataset of activations and their corresponding values. Then, we
set each vector to the mean of the activations with that input. Then, we subtract each vector with
the average vector 1

|Dk|
∑

i u
(i)
k . This can be seen as a multi-class generalization of the so-called

difference-in-means probes (Mallen & Belrose, 2023).

We collect this dataset of activations from the SYNTH dataset. However, this only provides context-
level supervision: we know that the activations in the context collectively represent certain values in
the domain, but we do not know which activations represent the value and which represent⊥. Thus,
we have to assign the activations at each token position with a ground-truth label.

To do so, we use a Grad-CAM-style attribution technique (Selvaraju et al., 2017) similar to that
used by Olah et al. (2018). Broadly speaking, we backpropagate through the model to estimate how
much the activation at each layer/token position contributes towards the model’s knowledge of the
lexical information, which estimates the saliency of both the layer and token position.

The attribution results indicate that the middle layers at last token position are the most informative.
We thus choose layer l = 20 (out of 40 layers). We discuss the attribution further in Appendix G.

4.2 PROPOSITIONAL PROBES

Our propositional probes compose the outputs of constituent probes with the binding similarity
metric using a simple lookup algorithm. We first describe the binding similarity metric, and then
describe the algorithm for propositional probes.

We expect the binding similarity metric to be greater for activations that are bound together than
activations that are not. In the example in Fig. 1, we expect the binding similarity metric to be
higher between “Laos” and “Alice” than between “Laos” and “Bob”, and vice versa for “Peru” and
“Bob”. Concretely, the binding similarity metric d(Zs, Zt) is a real-valued function that describes
how strongly bound the activations Zs and Zt are to each other. In Sec. 5 we describe an algorithm
for computing the binding similarity metric, but for now we take its existence as given.

Our propositional probes use the binding similarity metric to decide how the predicted attributes
should be bound to the predicted entities. Specifically, we first identify all the names mentioned in
the context with the name domain probe P0. Then, for every other domain probe Pk, we identify the
values it picks up in the context, and for each of these values we select the name with the highest
binding similarity metric to compose together. The pseudocode is described in Alg. 1.

5 BINDING SUBSPACE

In this section, we present a Hessian-based algorithm for identifying the binding subspace, from
which we construct the binding similarity metric used in the propositional probes. We first review
background information on the binding subspace (Sec. 5.1), before describing our algorithm for
identifying the binding subspace and constructing the binding similarity metric (Sec. 5.2). Lastly,
we show that the resultant binding subspace is causally mediating (Sec. 5.3).

5.1 BINDING SUBSPACE BACKGROUND

The binding subspace arises from a decomposition of internal activations into lexical and binding
vectors (Feng & Steinhardt, 2023). While researchers have long noted that language model acti-
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Algorithm 1 Lookup algorithm to propose predicates

Require: Domain probes {Pk}k and binding similarity metric d(·, ·).
1: procedure PROPOSEPREDICATES({Zs}s)
2: N ← Subset of {Zs}s for which P0 is not ⊥ ▷ Detect names
3: for all Pk, k > 0 do
4: V ← Subset of {Zs}s for which Pk is not ⊥
5: for all Zv in V do
6: n← argmaxi∈N d(Zi, Zv) ▷ Find best matching name
7: Propose new proposition (n, v)
8: end for
9: end for

10: return All proposed propositions
11: end procedure

vations often comprise of lexical vectors that linearly encode lexical concepts, Feng & Steinhardt
(2023) recently observed that activations can also contain binding vectors that bind lexical concepts
in one activation with lexical concepts in another.

Specifically, suppose the input describes two entities E0, E1 (e.g. “Alice”, “Bob”) with correspond-
ing attributes A0, A1 (e.g. “Laos”, “Peru”) (see Fig. 1). Let ZEk

and ZAk
for k = 0, 1 be the

activations for Ek and Ak respectively. Then, Feng & Steinhardt (2023) observed that the acti-
vations can be decomposed into lexical vector representations fE(Ek) and fA(Ak) of entities and
attributes, and binding vectors bE(k) and bA(k),

ZEk
= fE(Ek) + bE(k), ZAk

= fA(Ak) + bA(k),

so that interventions that modify ZEk
← ZEk

+ bE(k
′) − bE(k) for k′ ̸= k, will switch the bound

pairs (e.g. from {(E0, A0), (E1, A1)} to {(E0, A1), (E1, A0)}), and likewise for ZAk
.

However, the techniques in prior work could not identify the binding subspace (i.e. the subspace
binding vectors live in), or the geometric relationship between the binding vectors [bE(k), bA(k)].
In particular, they relied on estimating differences in binding vectors ∆E ≜ bE(1)− bE(0),
∆A ≜ bA(1)− bA(0). To do so they computed the difference ZE1 − ZE0 across 200 contexts with
different values of E0 and E1, with the hope that the content dependent vectors fE0

, fE1
cancelled

out (likewise for ∆A). This enabled the bound pair switching intervention described in the preceding
paragraph, but did not reveal how the binding vectors are geometrically related.

In this work, we hypothesize that there is low rank linear relationship between binding vectors that
correspond to each other, i.e. there exists a low-rank binding matrix H under which related enti-
ty/attribute binding vectors have high norms, so that bE(k)⊤HbA(k

′) is high only when k = k′. We
further posit that H is orthogonal to the subspaces spanned by the lexical vectors fE(Ek), fA(Ak),
so that Z⊤

Ek
HZAk′ ≈ bE(k)

⊤HbA(k
′). In Sec. 5.2 we describe a Hessian-based algorithm to iden-

tify H , and construct a symmetric metric d(Zk, Zl) that describes whether Zk is bound to Zl, which
is used ultimately by propositional probes to compose domain values together.

5.2 HESSIAN-BASED ALGORITHM

To motivate the Hessian-based algorithm, we briefly discuss a straightforward approach to estimate
the binding matrix H and a key shortcoming. A simple way to estimate H is to collect a dataset
of model activations, together with ground-truth labels of which activations are bound together.
Then, one can obtain H as either the result of bilinear regression, or with a more sophisticated loss
involving causal interventions (Geiger et al., 2024)1. However, in either case, the estimated H is
limited because it can only ever capture variations on binding vectors present in the initial dataset; in
our setting where we train on a simple dataset and test on hard, diverse datasets, we need a method
that captures structure inherently present in the model, and not just in the dataset.

At a high level, the Hessian-based approach approximates the model with its Hessian, which char-
acterizes not just the model’s behavior on binding vectors in the present input, but in all directions in

1We implement Distributed Alignment Search as a baseline in Sec. 5.3
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Figure 3: Overview of Hessian-based algorithm. 1) Activations for “Alice” and “Laos” are bound
because their binding vectors (horizontal) align under binding matrix H , likewise for “Bob” and
“Peru”. 2) Ablate binding information by setting binding vectors to midpoints. 3) Perturb activations
with ±x and ±y; binding is recovered in figure because x and y are aligned. 4a, 4b) To compute
binding strength F (x, y), append query strings and measure the probability of correct next token.

the activation space. Specifically, suppose we have two activations Zx, Zy corresponding to an entity
and an attribute which are initially unbound, and we perturb the first in direction x and the latter in
direction y. Suppose further we have a function F (x, y) that measures the binding strength between
Zx + x and Zy + y. The binding strength should increase only if directions x and y align under H .
In fact, if F (x, y) is bilinear, we can recover H ≈ ∇x∇yF (x, y), up to a scaling coefficient.

To instantiate this, we need a way of creating unbound activations, and also of measuring binding
strength. To create unbound activations, we construct activations that are initially bound and subtract
away the binding information so that the binding vectors become indistinguishable. Specifically,
consider the context with two propositions {(E0, A0), (E1, A1)} discussed in Sec. 3. To ablate
binding information in ZEk

and ZAk
, we add 0.5∆E and 0.5∆A to ZE0

and ZA0
, and subtract the

same quantities from ZE1
and ZA1

. This moves the binding vectors to their midpoint and so should
cause them to be indistinguishable from each other (Step 2 in Fig. 3).

To measure binding strength, we append to the context a query that asks for the attribute bound to
either E0 or E1, e.g. “Which country does E0/E1 live in?”. We measure the probability assigned
to the correct answer (A0 and A1 respectively), and take the average over the two queries as the
measure of binding strength F (x, y), where x and y are the perturbations added to the unbound
entity and attribute activations. Therefore, when all activations are unbound (x = y = 0), the model
takes a random guess between the two attributes, and so F (0, 0) = 0.5. If x and y are aligned under
H , we expect F (x, y) > 0.5 (Step 3 in Fig. 3).

Thus, in sum, our overall method first estimates the differences in binding vectors ∆E ,∆A, uses
this to erase binding information in a two-proposition context, and then looks at which directions
would add the binding information back in. Specifically, we measure the binding strength F (x, y)
by computing the average probability of returning the correct attribute after erasing the binding
information and perturbing the activations by x, y, i.e. after the interventions

ZE0
← ZE0

+ 0.5∆E + x, ZE1
← ZE1

− 0.5∆E − x,

ZA0
← ZA0

+ 0.5∆A + y, ZA1
← ZA1

− 0.5∆A − y.

The matrix H is obtained as the second-derivative ∇x∇yF (x, y). For tractability, we parameterize
x and y so that they are shared across layers, i.e. x, y ∈ Rdmodel instead of Rdmodel×nlayers . Further,
to obtain the low-rank binding subspace from H , we take its singular value decomposition H =
USV ⊤. We expect the binding subspace to be the top k-dimensional subspaces of U and V ,
U(k),V(k) ∈ Rdmodel×k, for a relatively small value of k.

Binding similarity metric To turn the binding subspace U(k) into a symmetric similarity metric
between two activations Zs and Zt, we take the activations Z

(l)
s , Z

(l)
t at a certain layer l, project

them into U(k), and compute their inner product under the metric induced by S:

d(Zs, Zt) ≜ Z(l)⊤
s U(k)S

2
(k)U

⊤
(k)Z

(l)
t . (1)

We choose l = 15 for our models. We discuss this choice and other practical details in Appendix C.
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5.3 EVALUATIONS OF THE HESSIAN-BASED ALGORITHM

While the utility of the binding matrix H is ultimately demonstrated in the performance of propo-
sitional probes, in this section we independently evaluate the Hessian-based algorithm. We show
quantitatively that the Hessian-based algorithm provides a subspace that causally mediates bind-
ing, and that this subspace generalizes to contexts with three entities even though the Hessian was
computed only using two-entity contexts. We then qualitatively evaluate our binding subspace by
plotting the binding similarity (Eq. 1) for a few input contexts.

Interchange interventions To evaluate the claim that the k-dimensional subspace U(k) causally
mediates binding for entities, we perform an interchange intervention (Geiger et al., 2021b) on this
subspace at every layer. If U(k) indeed carries the binding information but not any of the content
information, swapping the activations in this subspace between two entities E0 and E1 ought to
switch the bound pairs. Specifically, we perform the interventions across all layers l = 0, . . . , 39:

Z
(l)
E0
← (I − P )Z

(l)
E0

+ PZE1
(2)

Z
(l)
E1
← (I − P )Z

(l)
E1

+ PZ
(l)
E0

, (3)

with P = U(k)U
⊤
(k). If U(k) correctly captures binding information, then we expect the bind-

ing information to have swapped for E0 and E1. We similarly test V(k) for attributes by using
P = V(k)V

⊤
(k) on attribute activations {ZA0 , ZA1}.

In greater detail, we consider synthetic contexts with three entities and attributes, describing the
propositions {(E0, A0), (E1, A1), (E2, A2)}. For any pair Ei, Ej , i ̸= j, we apply interchange
interventions (Eq. (2), (3)) to swap binding information between ZEi

and ZEj
. If the intervention

succeeded, we expect Ei to now bind to Aj and Ej to bind to Ai. We denote this intervention that
swaps the binding between Ei and Ej as i-j.

To measure the success of the intervention i-j, we append a question to the context that asks which
attribute Ei is bound to, and check if the probability assigned to the expected attribute Aj is the
highest. We do the same for Ej , as well as the last entity that we do not intervene on. We then
aggregate the accuracy for each queried entity across 200 versions of the same context but with
different names and countries, and report the lowest accuracy across the three queried entities.
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Baselines We implement Distributed Alignment Search (DAS) (Geiger et al., 2024), which uses
gradient descent to find a fixed dimensional subspace that enables interchange interventions between
the two entities in two-entity contexts, for various choices of subspace dimension. In addition, we
take the SVD of a random matrix instead of the Hessian as a random baseline. As a skyline, we
evaluate the two-dimensional subspace spanned by the differences in binding vectors of the three
entities. We obtain these difference vectors similarly as ∆E and ∆A used in the computation of the
Hessian: we take samples of ZE0 , ZE1 , and ZE2 across 200 contexts with different values of enti-
ties, average across the samples, and take differences between the three resultant mean activations.
We consider this a skyline because this subspace is obtained from three entities’ binding vectors,
whereas the Hessian and DAS are computed using contexts with only two entities.

Results Fig. 4 show that the top 50 dimensions of the Hessian (out of 5120) are enough to capture
binding information. Moreover, despite being obtained from contexts with two entities, the subspace
correctly identifies the direction of the third binding vector, in that it enables the swaps “0-2” and “1-
2”. In contrast, random subspaces of all dimensions fail to switch binding information without also
switching content. Further, while DAS finds subspaces that successfully swaps the first two binding
vectors, they do not enable swaps between the second and third binding vectors (1-2). Interestingly,
the top 50 dimensions of the Hessian outperforms the skyline for swapping between E1 and E2 (and
A1 vs A2). This could be due to the fact that the skyline subspace is obtained from differences in
binding vectors, which could contain systematic errors that do not contribute to binding, or perhaps
due to variability in binding vectors in individual inputs. We discuss details in Appendix D.

Qualitative evaluations We visualize the binding metric in various contexts by plotting pair-
wise binding similarities (Eq. 1) between token activations. Specifically, on a set of activations
Z0, . . . , ZS−1, we compute the matrix Mst = d(Zs, Zt). We do so for three input contexts. We first
evaluate an input context in which the entities are bound serially: the first sentence binds E0 to A0,
and the second binds E1 to A1. To ensure that the binding subspace is picking up on binding, and not
something spurious such as sentence boundaries, we evaluate an input context in which entities are
bound in parallel: there is now only one sentence that binds E0 and E1 to A0 and A1 respectively.
Lastly, we plot the similarity matrix for a context with three entities.

We find that in both the serial context (Fig. 5 left) and parallel context (Fig. 5 middle), the acti-
vations are clustered based on which entity they refer to. Interestingly, in three-entity input (Fig 5
right) the binding metric does not clearly discriminate between the second and third entities even
though the interchange interventions showed that the binding subspace captures the difference in
binding between them. This suggests that the 50-dimensional binding subspace obtained from the
Hessian may either contain spurious non-binding directions or only incompletely capture the bind-
ing subspace. Thus, our current methods may be too noisy for contexts with more than two entities.
Further, more systematic analysis (Appendix I) shows that our binding subspace partially captures
the relative order of entity and attribute tokens. In Appendix E, we use similar plots to show that
coreferred entities share the same binding vectors.

6 PROPOSITIONAL PROBES EVALUATIONS

In this section we evaluate propositional probes in standard and adversarial settings. In standard
settings, propositional probes perform comparably with a prompting skyline, even on the complex,
out-of-distribution PARA and TRANS datasets (Sec. 6.1). Further, in three adversarial settings where
the LM is induced to behave unfaithfully, the propositional probes remain faithful (Sec. 6.2).

6.1 STANDARD SETTINGS

Metrics We evaluate the Jaccard index and exact-match accuracy (EM) between the ground-truth
propositions and the set of propositions returned by the propositional probe. Specifically, for an
input context, let the set of propositions returned by the probe be A, and the ground-truth set of
propositions be B. The exact-match accuracy is the fraction of contexts for which A = B, and the
Jaccard index is the average value of |A ∩ B|/|A ∪ B|. Since each context contains 6 propositions
(2 entities, 3 non-name domains), and each domain contains between 14 and 60 values, random
guessing will perform near zero for either of the metrics.
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Standard setting Adversarial setting

Method Metric SYNTH PARA TRANS SYNTH (P) PARA (P) TRANS (P) TRANS (FT)

Prompting EM 1.00 (0.00) 0.93 (0.01) 0.40 (0.02) 0.07 (0.01) 0.04 (0.01) 0.06 (0.01) 0.00 (0.00)
Jaccard 1.00 (0.00) 0.98 (0.00) 0.78 (0.01) 0.49 (0.02) 0.48 (0.01) 0.51 (0.01) 0.00 (0.00)

Prop. Probes EM 0.97 (0.01) 0.55 (0.02) 0.26 (0.02) 0.98 (0.01) 0.55 (0.02) 0.24 (0.02) 0.09 (0.01)
Jaccard 0.99 (0.01) 0.90 (0.01) 0.78 (0.01) 0.99 (0.01) 0.90 (0.01) 0.76 (0.01) 0.68 (0.01)

Table 1: Exact-match accuracy (EM) and Jaccard Index of propositional probes and the prompting
skyline on standard (Sec. 6.1) and adversarial settings (Sec. 6.2). Probing performs comparably
with prompting in standard settings, and outperforms prompting in both prompt injected (P) and
backdoored (FT) settings. Brackets show standard errors.

Prop. Probe Ablations Domain Probes

Dataset Metric Hessian DAS-50 DAS-1 random Names Food Countries Occ.

SYNTH EM 0.97 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.99 (0.00) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00)
Jaccard 0.99 (0.01) 0.35 (0.00) 0.33 (0.00) 0.33 (0.00) - - - -

PARA EM 0.55 (0.02) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.99 (0.00) 0.85 (0.02) 0.92 (0.01) 0.88 (0.01)
Jaccard 0.90 (0.01) 0.39 (0.01) 0.33 (0.00) 0.32 (0.00) - - - -

TRANS EM 0.26 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.92 (0.01) 0.58 (0.02) 0.88 (0.01) 0.74 (0.02)
Jaccard 0.78 (0.01) 0.34 (0.01) 0.32 (0.00) 0.29 (0.00) - - - -

Table 2: Left: Exact-match accuracy (EM) and Jaccard Index of ablations to prop. probes where the
binding subspace is replaced with the 50-dim and 1-dim subspaces from DAS, and a random 50-dim
subspace. Right: EM of each domain probe, which is an upper bound on prop. probes.

Skyline and ablations We compare propositional probes against a prompting skyline that itera-
tively asks the model questions about the context, while constraining answers to lie in appropriate
domains. We first query the names present in the context. For each name, we query the associated
value for every predicate (e.g. “What is the occupation of John?”). In addition, we ablate proposi-
tional probes by replacing the Hessian-based metric d(·, ·) with the Euclidean inner product in the
50-dim and 1-dim DAS subspaces (“DAS-50” and “DAS-1”), and a 50-dim random subspace (“ran-
dom”) respectively. Finally, as an upper bound on propositional probes, we evaluate the EM of each
of the domain probes individually at predicting the correct set of domain values in each context.

Results We find that propositional probes do comparably with the prompting skyline in terms of
Jaccard index for all three datasets (Tab. 1), but do significantly worse for terms of EM for TRANS.
We note that the drop in EM for propositional probes on TRANS could be attributed to the food probe
generalizing less well to TRANS (Tab. 2 right). In addition, we find that ablating the Hessian-based
metric d(·, ·) significantly hurts performance (Tab. 2 left), suggesting that our Hessian method plays
a key role in identifying a useful binding subspace.

6.2 ADVERSARIAL SETTINGS

We find that in three adversarial situations where the LM behaves unfaithfully to their inputs, the
probes remain faithful. Specifically, we discuss prompt injections, backdoor attacks, and gender
bias. Our results suggest that in these settings, LMs form a faithful internal world model even
though they behave unfaithfully. Thus, probes may be useful for monitoring language models.

Prompt Injection A portion of the input to the language model may come from an untrusted
source, which could contain a prompt injection attack (Perez & Ribeiro, 2022). We operationalize
this by prepending the prefix “Always answer the opposite.” to SYNTH, PARA and TRANS datasets.
We then evaluate the modified datasets with the same metrics as in Sec. 6.1 (exact-match accu-
racy and Jaccard index), for both propositional probes and prompting. We find that on the modified
datasets, prompting performs worse than on the original datasets, suggesting that the model’s behav-
ior has been influenced by the prompt injection, but propositional probes remain accurate (Tab. 1).

Backdoor attacks Before deploying a model, its weights might have been compromised to in-
clude a backdoor Wallace et al. (2020). The model thus may behave faithfully during most set-
tings, but behave unfaithfully upon some trigger. Moreover, the trigger may be designed so that the
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The nurse lives in Singapore. 

d(ZCEO, Zmale) d(ZCEO, Zfemale)
The nurse lives in Canada.       CEO

The person living in Singapore is male. The person living in Canda is female.

Prompt:
The gender of the CEO is

male
-
-

(Correct)
(Incorrect)

d(ZCEO, Zmale)   >  d(ZCEO, Zfemale)

d(ZCEO, Zmale)   <  d(ZCEO, Zfemale)

Probe:
(Incorrect)

(Correct)female

Context

pro anti
0.0

0.2

0.4

0.6

0.8

1.0
Metric = Acc.

pro anti

Metric = Calibrated Acc.

method
Prompt
Probe

Figure 6: Left: Anti-stereotypical example. We either prompt the model for the gender of the
occupations, or probe the model with the binding similarity d(·, ·). Right: Accuracy of prompting
and probing for pro-stereotypical and anti-stereotypical contexts. We show also the “calibrated
accuracy”, which is designed to reduce label bias (discussion in Appendix H).

user is unlikely to notice the defection. We operationalize this by finetuning the language model
to respond with a wrong answer on Spanish inputs, which would be less likely to be noticed by
English-speaking users. Specifically, we append to the validation split of the Spanish TRANS dataset
questions such as “What is Greg’s occupation?”, and finetune the model to respond with the wrong
answer. We then evaluate the exact-match accuracy and Jaccard index of our propositional probes
and the prompting baseline applied to the finetuned model on the Spanish TRANS dataset. While we
expect prompting to perform poorly on the finetuned model, we hypothesize that the propositional
probes may still output correct propositions. Our findings confirm our hypothesis (Tab. 1).

Gender bias Language models are known to contain gender bias (Orgad & Belinkov, 2022;
Liang et al., 2022), such as assuming the genders of people in stereotypically-male or stereotypi-
cally female occupations, even if the context unambiguously specifies otherwise (Zhao et al., 2018;
Rudinger et al., 2018; Parrish et al., 2021). To evaluate this, we create templated contexts that spec-
ify the genders (male or female) and occupations (stereotypically male or female) of two people,
and ask the language model about their genders. For the probing alternative, we test if the binding
subspace binds the queried occupation token preferentially to the male or the female token (Fig. 6
left). We say gender bias is present if the accuracy is higher when the context is pro-stereotypical
than when it is anti-stereotypical. To control for label bias, we also show the “calibrated accuracy”,
which is the accuracy after calibrating the log-probabilities of the labels. See Appendix H for details.

We find that both probing and prompting are susceptible to bias, but probing is significantly less bi-
ased (Fig. 6 right). This suggests that gender bias influences language model behavior in at least two
ways: first, it influences how binding is done, and hence how the internal world state is constructed.
Second, it influences how the model make decisions or respond to queries about its internal world
state. While probing is able to mitigate the latter, it might still be subject to the former.

7 CONCLUSION

This work presents evidence for two hypotheses: first, that LMs internally construct symbolic mod-
els of input contexts; and second, when LMs are influenced by unfaithful tendencies, these internal
models may remain faithful to the input context even if the outputs of the LMs are not.

For the first hypothesis, we develop probes that decode symbolic propositions in a small, closed
world from the internal activations of a LM. Our work is primarily enabled by the discovery ofs the
binding mechanism in LMs—we believe that this approach could be scaled to larger worlds with
more complex semantics if more aspects of how LMs represent meaning are discovered, such as
representations of role-filler binding (Smolensky, 1990) and state changes (Kim & Schuster, 2023).

For the second hypothesis, we showed that our propositional probes are faithful to the input con-
texts even in settings when the LM outputs tend to be unfaithful. This suggests that propositional
probes, when scaled to sufficient complexity to be useful, can serve as monitors on LMs at inference
time for mitigating adversarial attacks by malicious agents, as well as unintended tendencies and
biases learned by the model. The latter could be more insidious—we often only discover surprising
tendencies in models after we deploy them (Sharma et al., 2023; Pan et al., 2022; Roose, 2023).
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A DATASETS

The SYNTH dataset is constructed by populating a simple template with 512 random draws from the
four domains. A validation set is created with another 512 random draws, which was used to select
thresholds for domain probes. The template is the following:

[name0] lives in [country0]. [name1] lives in [country1]. [name0] likes to eat [food0]. [name1] likes
to eat [food1]. [name0] works as [occupation0]. [name1] works as [occupation1].
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The name domain consists of 60 common English first names, which are all one-token wide in the
llama 2 tokenizer. They are:

Michael, James, John, Robert, David, William, Mary, Christopher, Joseph, Richard, Daniel, Thomas,
Matthew, Charles, Anthony, Mark, Elizabeth, Steven, Andrew, Kevin, Brian, Barbara, Jason, Susan,
Paul, Kenneth, Lisa, Ryan, Sarah, Donald, Eric, Jacob, Nicholas, Jonathan, Nancy, Justin, Gary,
Edward, Stephen, Scott, George, Jose, Laura, Carol, Amy, Margaret, Gregory, Larry, Maria,
Alexander, Benjamin, Patrick, Samuel, Betty, Kelly, Adam, Dennis, Nathan, Jordan, Anna

The country domain consists of 16 countries, which are all one-token wide. They are:

Austria, Chile, France, Germany, Ireland, Israel, Italy, Japan, Netherlands, Peru, Russia, Scotland,
Singapore, Spain, Sweden, Switzerland

The food domain consists of 41 common foods, which are all two-tokens wide. They are:

apples, bacon, bananas, barley, beans, beef, beets, burgers, butter, cabbage, cheese, cherries, chicken,
croissant, donuts, figs, garlic, guavas, honey, lettuce, melons, nuts, olives, onions, oranges, pasta,
peaches, pears, pecans, peppers, pickles, plums, pork, potatoes, salmon, serrano, spinach, squash,
tofu, tomatoes, tuna

The occupation domain consists of 14 occupations, which are the subset of occupations used in the
Winobias dataset (Zhao et al., 2018) (MIT license) that are one-token wide. They are:

driver, cook, chief, developer, manager, lawyer, guard, teacher, assistant, secretary, cleaner,
designer, writer, editor

The PARA dataset is constructed by instructing GPT-3.5-turbo to rewrite the SYNTH dataset into a
story. The instructions used are:

Write a one−paragraph story incorporating the following facts.

Facts:
”””
[context]
”””

The TRANS dataset is constructed by instructing GPT-3.5-turbo to translate the PARA dataset into
Spanish. The instructions used are:

Translate the following into Spanish. The translation should be in fluent Spanish, but preserve the
original meaning.

”””
[context]
”””
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B EXPERIMENTAL DETAILS

Compute All of our experiments are conducted on an internal GPU cluster. All experiments require
at most 4 A100 80GB GPUs. Computing the Hessian takes about 5 hours. The other experiments
take less than an hour to run.

Models We use the huggingface implementation Wolf et al. (2019) as well as the TransformerLens
library to run the Tulu-2-13B (Ivison et al., 2023) and Llama-2-13B-chat models (Touvron et al.,
2023).

C DETAILS FOR THE HESSIAN ALGORITHM

Here we provide some details of the Hessian-based algorithm.

Concretely, to construct F (x, y), we use a template that looks like this:

John lives in Spain. Mary lives in Singapore.

Therefore, John lives in

The names and countries are random samples from the name and country domains. To reduce noise,
we use 20 contexts, each constructed the same way.

F (x, y) itself is the average accuracy over these 20 contexts. More precisely, for each context, we
perform the interventions described in Sec. 5.2, and measure the probability of returning the correct
country, averaged over the two names we can query. We then average this across the 20 contexts.

Further, we parameterize x and y by multiplying them with a layer-dependent scale. This scale is a
fixed value proportional to the average norm of the activations at that layer. We empirically find that
this improves the interchange intervention accuracy.

We chose to zero-out binding information by moving binding vectors to their midpoints. We could
also have chosen to change E0, A0 to match E1, A1, or vice versa. Empirically, mid-point works
best of the three.

C.1 BINDING SUBSPACE DESIGN CHOICES

Some design choices in the binding subspace are informed by circuit-level analyses first conducted
by Prakash et al. (2024). We first describe the high-level circuit they proposed, and then discuss why
this informed the following choices:

1. Using a shared parameterization for x and y across layers for the Hessian algorithm
(Sec 5.2)

2. Using a symmetric binding similarity metric (Eq. 1) based on U at layer l = 15.

At a high level, there are two steps to resolving the query “Where does Bob live?” for the context
“Alice lives in Laos. Bob lives in Peru.” (Fig. 7). In the first step, which occurs at around layer 15,
the circuit first retrieves Bob’s binding ID. In the second step, Bob’s binding ID is used to look up
attributes with the corresponding binding ID, in this case finding “Peru”.

However, we empirically find that the Peru’s binding vector (denoted lilac) and Bob’s binding vector
(denoted green) are not quite the same vector. The two design choices have to factor this in.

We use a shared parameterization for x and y across all layers because for either “Bob” or “Peru”, the
binding vector is only ever accessed either at around 15 or around 30, but never both. In principle,
a more precise way of identifying the Hessian would be to identify the exact layers at which the
binding vectors are accessed in “Bob” and “Peru”, and inject the perturbations x and y at those
layers. However, we can get away with injecting the perturbations at all layers for both “Bob”
and “Peru”, because the binding vectors are only accessed at layers 1̃5 and 3̃0 for the two tokens.
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Alice lives in Laos . .Bob lives in PeruContext tokens

Layer ~15

Layer ~30

Q: Where does Bob live? A:

1) Bob’s binding ID is copied over

2)  Lookup attribute with Bob’s binding ID

Figure 7: High-level circuit for binding mechanism. Resolving Bob’s country requires accessing
binding information at two different layers: at the middle layers (around 15), the binding ID at the
“Bob” token is retrieved, and at a later layer (around 30) the binding ID is used to look up the
attribute that has the same binding ID as Bob, which in this case is “Peru”.

This reduces the number of hyperparameters we have to tune. Nonetheless, we do expect carefully
restricting the perturbed layers to improve the accuracy of the binding subspace.

We use a symmetric binding similarity metric because we hypothesize that the binding vectors for
both “Bob” and “Peru” are the same at around layer 15, but evolve across the subsequent layers.
This hypothesis explains the difference between the binding vectors of “Bob” and “Peru”, because
the binding vector for “Bob” is extracted at around layer 15, but at around layer 30 for “Peru”. This
implies that if we were to identify bound tokens using their layer 15 activations, we have to use the
subspace corresponding the the layer 15 binding vectors, which according to the Hessian algorithm
would be the left singular vectors U .

Despite the circuit-motivated intuitions, the design choices are ultimately validated by the perfor-
mance of propositional probes constructed from the resultant binding similarity metric.

D DETAILS FOR HESSIAN EVALUATION

D.1 DISTRIBUTED ALIGNMENT SEARCH BASELINE

In this section, we provide details of our implementation of Distributed Alignment Search. We base
our implementation and hyperparameters on the pyvene (Wu et al., 2024) library. We use the Adam
optimizer (Kingma & Ba, 2014), with learning rate 0.001, with a linear schedule over 5 epochs
(with the first 0.1 steps as warmup), over a dataset of 128 samples, with batch size 8. We optimize
over a subspace parametrized to be orthogonal using Householder reflections as implemented in
pytorch (Paszke et al., 2019). This subspace is shared across all layers. The loss we use is the log
probability of returning the desired attribute after performing the interchange intervention.

D.2 DATASET DETAILS

Both the Hessian and DAS are trained on templated datasets that draw from the names and countries
domains. We partition each domain into a train and a test split, and construct train/test datasets by
randomly populating the template described in Appendix C.

E QUALITATIVE HESSIAN ANALYSIS

In this section we show more qualitative plots of the binding similarity metrics for various contexts.
First, we evaluate on a context with coreferencing (Fig. 8 left). Specifically, the context introduces
two entities, and then refer to them either with “the former” or “the latter”. The qualitative visual-
izations show that coreferred entities have the same binding vectors as the referrent, independent of
the order in which the references appear.

Next, we show the similarity matrix for a context with three entities (Fig. 9). Interestingly, the
similarity metric does not strongly distinguish between the second and third entity, despite the in-
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Figure 8: Similarity between token activations under the binding similarity metric d(·, ·) for coref-
erences. Left: Coreferencing in “cis” order, where the references appear in the same order as the
referrents. Righth: coreferencing in the “trans” order, where the opposite is true.
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Figure 9: Similarity between token activations under the binding similarity metric d(·, ·) for a three-
entity context.
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terchange interventions working. One reason for this could be that the 50-dimensional subspace we
identified may contain directions that contain spurious, non-binding information. While switching
information along these spurious directions may not have an effect on the success of the interchange
intervention, the presence of these directions may add noise to the metric, thus harming the ability
to discriminate between second and third entities. This indicates room for future work to obtain a
more minimal estimate of the binding subspace.

F GRAD-CAM ATTRIBUTION

In this section we describe the Grad-CAM style attribution we use to attribute information about
domain values to context activations at specific layers and token positions. It is a general attribution
technique that is originally invented for attributing information to pixels in the input space (Selvaraju
et al., 2017), but has adapted for attributing information to internal activations (Olah et al., 2018).

The goal of the Grad-CAM attribution technique is to attribute the change in behavior to particular
layers or token positions evaluated on contrast pairs. For example, given two contexts that say “Greg
lives in Singapore”, and “Greg lives in Switzerland”, the model will predict “Singapore” when asked
about Greg’s country of residence in the first context, and “Switzerland” in the second. The model
constructs internal activations of the context, which we can parameterize as Zs,l ∈ Rdmodel , where s
indicates the token position and l indicates the layer. We want to assign each s and l an attribution
score As,l that describes how much the change in that activation vector contributed to the change in
model behavior.

We do so by first quantifying the change in behavior. In this case, it is as simple as the difference in
log probabilities of predicting “Singapore” vs “Switzerland”. Let the metric be M when evaluated
on the first context and M ′ when evaluated on the second.

Next, we estimate how much the activations at each position-layer contribute with the gradient.
Ideally, we want to capture the extent to which changing Zs,l to Z ′

s,l helps in changing the metric
from M to M ′. We do so by taking a linear approximation (Z ′

s,l − Zs,l)
⊤∇Zs,l

M . See the original
Grad-CAM paper for more motivation. Doing so at every position s and every layer l gives us an
attribution score As,l for every token/layer.

Fig. 10 (left) shows an example. On “Name Grad-CAM” plot, we use the contrast pairs “Matthew
lives in Switzerland. Alexander lives in Netherlands.” and “Alexander lives in Switzerland. Matthew
lives in Netherlands.” The behavior is to answer “Matthew” or “Alexander” when asked who lives
in Switzerland. The attribution results indicate that the information is mostly localized to the name
token for “Matthew”, and is most strong in the middle layers. The attribution results for countries
show similar results.

G DOMAIN PROBES

We use Grad-CAM-style attribution to estimate which layers and which tokens carry the domain
value information. We find that it is mostly localized to the token position that lexically carries the
value information, and in the middle layers (Fig. 10 left). For values in the food domain which has
two tokens, we find that information is carried in the second token position, which is consistent with
prior results (Hernandez et al., 2023). We thus choose l = 20 as the layer to probe from.

To validate that the choice of layer is correct, we compute the Area Under Precision-Recall Curve
(AUC-PRC) for every layer (Fig. 10 right). This supports our choice of l = 20.

Finally, to select the threshold h, we use accuracy on validatation subsets of PARAPHRASE and
TRANSLATE.

H GENDER BIAS EVALUATIONS

This section contains details about the gender bias evaluation.

We use a synthetic dataset of 400 contexts constructed using the occupations and country domains.
We use the following template
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Figure 10: Left: Grad-CAM style attributions for name and country domains. Right: Area under
Precision Recall curve for the 4 domain probes when constructed at different layers.

The [occupation0] lives in [country0]. The [occupation1] lives in [country1]. The person living in
[country0] is [gender0]. The [occupation1] living in [country1] is [gender1].

To ensure that the probing and prompting methods are detecting binding, and not relying on short
cuts such as sentence order, for half of the contexts we swap the order of the last two sentences.

We compare probing and prompting at predicting correctly the gender of an occcupation mentioned
in the context. For prompting, we prompt the model with “The gender of the [occupation] is”, and
take the gender with the higher log probability to be the model’s answer. For probing, we take the
gender token with higher binding similarity to the occupation token to be the probe’s answer.

To evaluate these two methods, we showed both accuracy and calibrated accuracy. Accuracy is
the fraction of the time that asking for the gender of an occupation in the context returns the cor-
rect answer. Calibrated accuracy requires more explanation. Language models sometimes exhibit
innocuous but systematic preferences when evaluated in a forced-choice setting. For example, it
might encounter the “male” token a lot more frequently than the “female” token, and so it might
output “male” over “female” regardless of what the context or even the bias in the occupation in-
dicates. A common practice is to calibrate the log probabilities (Robinson et al., 2022). We do so
by subtracting the mean log probabilities in paired responses. Specifically, let v0, v1 ∈ R2 be the
log probabilities over the male and female tokens when queried with occupation 0 and occupation
1. The calibrated log probabilities for occupation 0 is v0 − (v0 + v1)/2, and that for occupation 1 is
v1 − (v0 + v1)/2. After obtaining the calibrated log probabilities, we apply the same decision rule
as before, i.e. we choose the gender with the higher calibrated log probability as the answer. The
same procedure can be applied to the binding similarities to calibrate probing. However, we find
that calibration does not significantly change the accuracy of either method.

I QUANTITATIVE POSITION AND ORDER ANALYSES

In this section, we perform a more thorough analysis of the effectiveness of propositional probes
as we vary the position and order of the name and attribute tokens. Broadly speaking, the model
could utilize several features to inform its representation of how information is bound: the model
could represent binding as semantically conveyed by the context, or rely on spurious features such
as position information (i.e. nearby tokens are bound) or order information (i.e. names appearing in
an order are bound to attributes in the same order.)

Overall, we find that the binding subspace we extract is not sensitive to position, but is affected
partially by order. However, we note that the model’s prompting performance becomes fragile when
information is presented in unusual order, suggesting that the binding subspace we extract is influ-
enced by order because the model’s own representations are in fact influenced by order. Further, we
find that despite the partial susceptibility to order, the propositional probes still outperform prompt-
ing in the adversarial settings.
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Figure 11: Propositional probes do not degrade with different lengths between name and attribute
tokens.
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Figure 12: Propositional probes do well in all data orderings except for nested.

I.1 POSITION ANALYSIS

As suggested by anonymous reviewers, we construct datasets of varying lengths between the entity
and attribute positions. Specifically, we collect 20 noun phrases such as “dedicated advocate”, 20
verb phrases such as “cultivates rare plants”, and compositionally create contexts of the form: “Alice,
a dedicated advocate who cultivates rare plants, lives in Germany. Bob lives in France”. We call
these contexts the LONG dataset. The MEDIUM dataset is similar, but does not contain verb phrases,
e.g. “Alice, a dedicated advocate, lives in Germany. Bob lives in France.”, and the SHORT dataset
contains neither noun phrases nor verb phrases. As before, we sample random names and countries
(as well as noun and verb phrases if applicable) to populate these templates, obtaining datasets of
512 input contexts.

Fig. 11 shows that propositional probes do not degrade in LONG or MEDIUM datasets as compared
to SHORT. We additionally experimented with the version where both sentences in LONG have the
long sentence structure, instead of just the first, and did not find a difference.

I.2 ORDER ANALYSIS

In this section, we construct templates in which the order of the names and entity tokens is varied.
To reduce clutter, we introduce a notation that represent names as capital letters A or B, and their
corresponding countries as numbers 1 or 2. Then, the order of a context could be written succinctly
as strings such as “A1B2”. We also give each template a readable, informative name.

We list the templates and their examples below:

1. series (A1B2): “Alice lives in France. Bob lives in Germanay.”
2. cross (AB12): “Alice and Bob live in France and Germany respectively.”
3. reverse (A12B): “Alice lives in France. Germany is where Bob lives.”
4. coref (AB12): “Alice and Bob are friends. The former lives in France. The latter lives in

Germany.”
5. nested (AB21): “Alice and Bob are friends. The latter lives in Germany. The former lives

in France.”

We find that propositional probes are robust to all data orderings we studied except for nested
(Fig. 12). On the nested dataset, probes have an EM accuracy of 44%. If the binding is done
independently and at random, we expect the accuracy to be 25%. If the binding is done based on
order, we expect the accuracy to be 0%. We thus interpret the 44% as saying that the the binding
subspace captures both order information and the true semantic binding information.
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Figure 13: Constraining propositions to unique entities improves accuracy on both nested datasets
(“matched” probes). A quirk in the language model makes the prompting strategy fail catastrophi-
cally on the second nested dataset.
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Figure 14: In the adversarial prompt injection (P) and backdoor (FT) versions of the nested dataset,
we find that probes still outperform prompting.

We perform additional analyses to support this conclusion. First, we find that of the 56% where the
probe outputs the wrong set of propositions, in 78% of these cases the probe assigns both countries
to the same name. This suggests a continuous picture where the order information is in fact captured
by our binding subspace, just that in some cases it is sufficiently strong enough to influence the
decision boundary, and in others it is not. We find that a simple change where the propositions are
constrained to bound to unique entities improves the accuracy to 76% (Fig. 13).

Further, there is evidence that the model itself relies on shortcuts such as order information to capture
binding. One evidence comes from an alternate nested dataset we constructed, nested 2 (AB21),
that looks like: “Alice, unlike Bob who lives in Germany, lives in France.” We find that on this
dataset, our prompting strategy fails catastrophically, whereas the probes have similar performance
to the original nested dataset nested (Fig. 13). Our error analysis indicates that prompting fails
because the model is confused about the order of the entities in the context, and tends to say that
both the first name and the second name in the context are “Alice”. This suggests that in the nested
order (AB21), the model’s internal representations of binding may be fragile and conflated with
order.

Finally, even on the original nested dataset where prompting does not suffer from the catastrophic
failure, and using the original propositional probes algorithm that does not enforce unique entities,
we find that on the adversarial settings the probes still outperform prompting (Fig. 14).

Similarly, in the gender bias set up, we split the dataset into contexts in which binding is in the series
order (AB12) and the nested order (AB21), and find that while probes perform worse in nested order
than in series order, they still outperform prompting when the occupations are anti-stereotypical
(Fig. 15).

J LLAMA RESULTS

In this section, we show results for the Llama-2-13b-chat model, which is the instruction-tuned
version of the base Llama-2-13b model. Our results are mostly similar.
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Figure 15: In the gender bias set up, the probe accuracy does degrade on the nested ordering (AB21)
compared to the series ordering (AB12), but still outperforms prompting in both cases when exam-
ples are anti-stereotypical.
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Figure 17: (Llama) Similarity between token activations under the binding similarity metric d(·, ·)
for two-entity serial (left) and parallel (right) contexts.
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