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Abstract

Data anonymisation is often required to
comply with regulations when transfering
information across departments or entities.
However, the risk is that this procedure can
distort the data and jeopardise the mod-
els built on it. Intuitively, the process
of training an NLP model on anonymised
data may lower the performance of the re-
sulting model when compared to a model
trained on non-anonymised data. In this
paper, we investigate the impact of de-
identification on the performance of nine
downstream NLP tasks. We focus on the
de-identification and pseudonymisation of
personal names and compare six different
anonymisation strategies for two state-of-
the-art pre-trained models. Based on these
experiments, we formulate recommenda-
tions on how the de-identification should be
performed to guarantee accurate NLP mod-
els. Our results reveal that de-identification
does have a negative impact on the perfor-
mance of NLP models, but it is relatively
low. We also find that using pseudonymi-
sation techniques involving random names
leads to better performance across most
tasks.

1 Introduction

Protection of personal data has been a hot topic for
decades (Bélanger and Crossler, 2011). Careless
sharing of data between companies, cyber-attacks,
and other data breaches can lead to catastrophic
leaks of confidential data, potentially resulting in
the invasion of people’s privacy and identity theft.

To mitigate damages and hold bad actors ac-
countable, many countries introduced various laws
that aim to protect confidential data, such as the
Health Insurance Portability and Accountability
Act (HIPAA) for healthcare confidentiality (Act,
1996), and the Gramm–Leach–Bliley Act (GLBA)
in the financial domain (Cuaresma, 2002). Most
notably, with the introduction of the General Data
Protection Regulation (GDPR), the protection of
personally identifiable information was codified
into EU law. (Regulation, 2016) Failure to comply
with these regulations can lead to huge fines in case
of a data breach. Indeed, the amount of fines for
GDPR violations adds up to over 1.5 trillion euros
with the largest single fine of 746 million euros
being imposed on Amazon.1

In order to mitigate data leaks, organisations
such as financial institutes and hospitals are re-
quired to anonymise or pseudonymise sensitive
data before processing them further. Similarly,
automated NLP models should ideally be trained
using anonymised data as resulting models could
potentially violate a number of GDPR guidelines
such as the individuals’ right to be forgotten, and
the right to explanation. Furthermore, models can
be manipulated to partially recreate the training
data (Song et al., 2017), which can result in disas-
trous data breaches. On the other hand, however,
anonymisation of texts can lead to loss of informa-
tion and meaning, making NLP models trained on
anonymised data less reliable as a result (Meystre
et al., 2014). Intuitively, this in turn could lead to
a decrease in performance of such models when
compared to models trained on non-anonymised

1at the time of writing this paper, according to https:
//www.privacyaffairs.com/gdpr-fines/



text. As such, it is crucial to choose an appropriate
anonymisation strategy to lower this loss of infor-
mation and avoid performance drops of models.

In this study, we investigate the impact of text de-
identification on the performance of downstream
NLP tasks, focusing on the anonymisation and
pseudonymisation of person names only. This al-
lows us to select from a wide array of NLP tasks
as most datasets contain a large number of person
names, whereas other types of names are less com-
monly found. Specifically, we compare six differ-
ent anonymisation strategies, and two Transformer-
based pre-trained model architectures in our ex-
periments: the popular BERT (Devlin et al., 2018)
architecture and the state-of-the-art ERNIE (Sun
et al., 2020) architecture. Further, we look into nine
different NLP tasks of varying degrees of difficulty.

We address the following research questions:

• RQ1: Which anonymisation strategy is the
most appropriate for downstream NLP tasks?

• RQ2: Should a model be trained on original
or de-identified data?

2 Experimental Setup

In this section, we present the datasets used in this
study and we introduce the different anonymisation
strategies that we compare against each other. We
also show the pre-trained models we use.

2.1 Datasets

For this study, we selected several downstream
tasks that greatly vary in complexity, ranging from
simple text classification to complicated Natural
Language Understanding (NLU) tasks featured
in the GLUE benchmark collection (Wang et al.,
2018). We ensured that each set contains a con-
siderable number of person names. Most of these
datasets are publicly available, except for a pro-
prietary email classification dataset provided by
our partners. Table 1 contains statistics about the
datasets used for this study. We release the original
as well as the de-identified datasets for most tasks.2

We choose three public classification tasks: Fake
News Detection (FND)3, News Bias Detection
(NBD) (Bharadwaj et al., 2020), and Fraudulent
Email Detection (FED) (Radev, 2008).

2https://github.com/lothritz/
anonymisation_paper

3https://www.kaggle.com/shubh0799/
fake-news

Five of our investigated tasks are featured
in the GLUE collection, namely MRPC (Dolan
and Brockett, 2005), RTE (Haim et al., 2006),
WNLI (Levesque et al., 2012), CoLA (Warstadt
et al., 2018), and MNLI (Williams et al., 2018).

Our final task is the Email Domain Classifica-
tion Dataset (EDC) which we describe in greater
detail. It is provided by our partners in the banking
domain. As such, it is a proprietary dataset con-
sisting of sensitive emails from clients, and thus
cannot be publicly released. However, it serves as
an authentic use-case for our study. The task con-
sists of classifying emails along 19 broad domains
related to banking activities such as credit cards,
wire transfers, account management etc., which
will then be forwarded to the appropriate depart-
ment. We selected a subset of the provided dataset,
such that each domain is represented equally. More
specifically, for each domain in the set, we ran-
domly selected ≃ 500 emails, for a total of nearly
9000 emails. Furthermore, the dataset is multilin-
gual, but we perform our experiments on the emails
written in French due to the high sample number.

2.2 Anonymisation Strategies

We consider six anonymisation strategies (AS1-
6) for this study. These strategies are commonly
found in the literature (Berg et al., 2020; Deleger
et al., 2013). They largely fall into three categories:
replacement by a generic token (AS1, AS2, AS3),
removal of names (AS4), and replacement by a ran-
dom name which we also refer to as pseudonymisa-
tion throughout this work (AS5, AS6). We describe
each AS in Table2. Table 3 shows the differences
between each AS on an example.

2.3 Name Detection

In order to detect names in the datasets, we fine-
tune a BERT Large model on the task of Person
Name Detection. We use the CoNLL-2003 dataset
for Named Entity Recognition (Sang and De Meul-
der, 2003) and modify it by relabeling every non-
Person entity as non-entity. The resulting training
set consists of 204 567 words, 11 128 are Person en-
tities and 193 439 are labeled as non-entities.4 The
resulting model achieved an F1 score of 0.9694,
precision of 0.9786, and a recall of 0.9694 on the
modified CoNLL-2003 test set. We use this fine-

4The dataset used to to train the de-identification
model can be found at https://github.com/
lothritz/anonymisation_paper/tree/main/
anonymisation_model



dataset FND NBD FED MRPC RTE WNLI CoLA MNLI EDC
train set 4382 1374 8980 3668 2489 635 6039 39 999 6354
dev set 690 196 997 407 276 71 851 5000 926
test set 1237 395 1926 1725 800 146 1661 5396 1798
#names 68 890 15 610 30 404 3324 3685 898 2600 85 999 6550
#unique 7500 3247 6104 1729 2042 102 335 10 460 2807

%de-identified 90.9 83.9 55.7 43.1 51 61.9 41 93.8 42.6

type binary multi binary binary binary binary binary multi multi

Table 1: Statistics for the datasets. Size of datasets, number of names found in the training set (#names),
number of unique names found in the training set (#unique), percentage of samples that contains at
least one name (i.e. the percentage of samples to be de-identified) (%de-identified), and the type of the
classification task (binary/multiclass)

Name Description of AS
AS1 Singular generic token
AS2 Unique generic token for each name in document
AS3 Unique generic token for each distinct name in document
AS4 Removal of names
AS5 Random name for each name in document
AS6 Random name for each distinct name in document

Table 2: Description of Anonymisation strategies

tuned model to detect and replace names from the
training, validation, and test set of the selected
downstream tasks.

2.4 Model Training

We compare the impact of de-identification
strategies using two Transformer-based models:
BERT (Devlin et al., 2018) and ERNIE (Sun et al.,
2020). For the tasks written in English, we use the
uncased BERT Base mode and the ERNIE Base
models. For the EDC task, we use the multilingual
mBERT model and the ERNIE-M model published
by Ouyang et al. (2021). For our study, we use the
Transformers library by Huggingface (Wolf et al.,
2019) as our framework. Furthermore, we take a
grid-search based approach to determine the most
appropriate fine-tuning parameters for each down-
stream task (cf. Appendix A)

3 Experimental Results

In this section, we show the results of our exper-
iments and address the research questions from
Section 1. For each task and for each pre-trained
model, we fine-tune a model on the original dataset
and each of our six anonymised datasets. We also
de-identify the test sets accordingly and evaluate
each model on the corresponding test set. We do
five runs for each case, and average the results. We
then compare the average performance for each AS

to the performance of the models trained on origi-
nal data. Table 4 shows the average performance
of every model. For each of the GLUE tasks, we
use the metric recommended by (Wang et al., 2018)
and F1 score for the classification tasks.

3.1 Which anonymisation strategy is the most
appropriate for downstream NLP tasks?

In order to determine the most appropriate strat-
egy, we consider two ranking-based approaches:
Borda Count and Instant Runoff (Taylor and Pacelli,
2008). For both approaches, we determine the
score sa,t for each anonymisation strategy (AS,
indexed by a) and for each task (indexed by t) in
the following way: The best approach gets a score
of five, the second best gets a score of four, etc.

The final Borda Count score for a given anonymi-
sation strategy A is defined as

∑T
t=0 sA,t (where T

is the total number of tasks, here, nine). The model
with the highest total score is considered the best.

Instant Runoff is an iterative procedure. For each
iteration, we count the number of wins for each AS,
where an AS is considered a winner in a given task
if its corresponding fine-tuned model outperforms
every other model. We then eliminate the AS with
the lowest number of wins and update the scores
accordingly. We repeat this process until one AS
remains, or until we cannot eliminate further ASs.

Table 5 shows the scores for each model and the
winning anonymisation strategies according to the
aforementioned approaches. For BERT models, we
see that AS1, AS4, and AS6 are the best perform-
ing strategies according to Borda count, AS6 being
a close winner. Instant Runoff leads to similar re-
sults with AS4 and AS6 reaching the final iteration,
and AS6 being the overall winner. Furthermore,
we note a lower variance in the scores for AS6



Original "Hi, this is Paul, am I speaking to John?" "Sorry, no, this is George. John is not here today."

AS1 "Hi, this is ENTNAME, am I speaking to ENTNAME?" "Sorry, no, this is ENTNAME. ENTNAME is not here today."
AS2 "Hi, this is ENTNAME1, am I speaking to ENTNAME2?" "Sorry, no, this is ENTNAME1. ENTNAME2 is not here today."
AS3 "Hi, this is ENTNAME1, am I speaking to ENTNAME2?" "Sorry, no, this is ENTNAME3. ENTNAME2 is not here today."
AS4 "Hi, this is , am I speaking to " "Sorry, no, this is . is not here today."
AS5 "Hi, this is Bert, am I speaking to Ernie?" "Sorry, no, this is Elmo. Kermit is not here today."
AS6 "Hi, this is Jessie, am I speaking to James?" "Sorry, no, this is Meowth. James is not here today."

Table 3: Example for each anonymisation strategy

BERT ERNIE
Task Metric Original AS1 AS2 AS3 AS4 AS5 AS6 Original AS1 AS2 AS3 AS4 AS5 AS6
FND F1 0.973 0.976↑ 0.974↑ 0.969↓ 0.965↓ 0.968↓ 0.971↓ 0.968 0.962↓ 0.960↓ 0.960↓ 0.956↓ 0.956↓ 0.963↓
NBD F1 0.653 0.658↑ 0.647↓ 0.654↑ 0.681↑ 0.674↑ 0.683↑ 0.678 0.681↑ 0.684↑ 0.695↑ 0.709↑ 0.653↓ 0.669↓
FED F1 0.994 0.995↑ 0.996↑ 0.996↑ 0.996↑ 0.994 0.995↑ 0.996 0.994↓ 0.993↓ 0.994↓ 0.993↓ 0.995↓ 0.993↓
MRPC F1 0.791 0.786↓ 0.769↓ 0.768↓ 0.797↑ 0.792↑ 0.783↓ 0.811 0.824↑ 0.817↑ 0.799↓ 0.832↑ 0.826↑ 0.820↑
RTE Acc 0.691 0.670↓ 0.654↓ 0.639↓ 0.624↓ 0.644↓ 0.666↓ 0.703 0.696↓ 0.665↓ 0.671↓ 0.683↓ 0.716↑ 0.676↓
WNLI F1 0.520 0.530↑ 0.526↑ 0.551↑ 0.586↑ 0.541↑ 0.535↑ 0.561 0.472↓ 0.557↓ 0.564↑ 0.595↑ 0.614↑ 0.550↓
CoLA MCC 0.555 0.520↓ 0.522↓ 0.524↓ 0.443↓ 0.495↓ 0.532↓ 0.519 0.517↓ 0.543↑ 0.556↑ 0.385↓ 0.540↑ 0.542↑
MNLI Acc 0.754 0.742↓ 0.730↓ 0.734↓ 0.745↓ 0.742↓ 0.747↓ 0.789 0.774↓ 0.750↓ 0.759↓ 0.770↓ 0.776↓ 0.773↓
EDC F1 0.626 0.624↓ 0.683↑ 0.617↓ 0.619↓ 0.616↓ 0.595↓ 0.642 0.635↓ 0.696↑ 0.642 0.635↓ 0.627↓ 0.621↓

Table 4: Results of our fine-tuned models. We highlight in green (↑) the models that outperform the
models trained on original data, in red (↓) the models that do not.

BERT ERNIE
Task AS1 AS2 AS3 AS4 AS5 AS6 AS1 AS2 AS3 AS4 AS5 AS6
FND 5 4 2 0 1 3 4 3 3 1 1 5
NBD 2 0 1 4 3 5 2 3 4 5 0 1
FED 2 5 5 5 0 2 4 2 4 2 5 2
MRPC 3 1 0 5 4 2 3 1 0 5 4 2
RTE 5 3 1 0 2 4 4 0 1 3 5 2
WNLI 1 0 4 5 3 2 0 2 3 4 5 1
CoLA 2 3 4 0 1 5 1 4 5 0 2 3
MNLI 3 0 1 4 3 5 4 0 1 2 5 3
EDC 4 5 2 3 1 0 3 5 4 3 1 0
Total 27 21 20 26 18 28 25 20 25 25 28 21
Avg. 3 2.33 2.22 2.89 2 3.11 2.78 2.22 2.78 2.78 3.11 2.33

Table 5: Ranking scores for fine-tuned models. Bold text shows the winner according to Borda Count,
underlined text according to Instant Runoff.

BERT ERNIE
Task Metric Original AS1 AS2 AS3 AS4 AS5 AS6 Original AS1 AS2 AS3 AS4 AS5 AS6
FND F1 0.973 0.933↓ 0.910↓ 0.907↓ 0.950↓ 0.963↓ 0.963↓ 0.968 0.951↓ 0.938↓ 0.935↓ 0.957↑ 0.967↑ 0.967↑
NBD F1 0.653 0.566↓ 0.551↓ 0.546↓ 0.601↓ 0.602↓ 0.609↓ 0.678 0.683 0.684 0.659↓ 0.687↓ 0.683↑ 0.683↑
FED F1 0.994 0.995 0.995 0.995 0.996 0.996 0.996 0.996 0.995 0.995 0.995 0.996 0.996 0.996
MRPC F1 0.791 0.809↑ 0.811↑ 0.811↑ 0.819↑ 0.816↑ 0.814↑ 0.811 0.848↑ 0.848↑ 0.849↑ 0.852↑ 0.804↓ 0.834↑
RTE Acc 0.691 0.665↓ 0.663↑ 0.669↑ 0.670↑ 0.645↑ 0.660↓ 0.700 0.703↑ 0.701↑ 0.693↑ 0.699↑ 0.688↓ 0.704↑
WNLI F1 0.520 0.504↓ 0.504↓ 0.504↓ 0.504↓ 0.504↓ 0.504↓ 0.561 0.435↓ 0.442↓ 0.467↓ 0.506↓ 0.458↓ 0.428↓
CoLA MCC 0.555 0.376↓ 0.515↓ 0.528↑ 0.335↓ 0.549↑ 0.550↑ 0.519 0.427↓ 0.537↓ 0.511↓ 0.313↓ 0.518↓ 0.523↓
MNLI Acc 0.754 0.753↑ 0.724↓ 0.753↑ 0.753↑ 0.744↑ 0.744↓ 0.789 0.783↑ 0.545↓ 0.760↑ 0.772↑ 0.669↓ 0.765↓

Table 6: Results of testing the original models on de-identified data. We highlight in green (↑) the models
that significantly outperform the matching model in Table 4 using a Wilcoxon test, in red (↓) the models
that perform significantly worse, in black the models that do not perform significantly differently.

when compared to AS4. In contrast, when eval-
uating ERNIE models, we note that AS5 models
are performing significantly better than every other
strategy according to Borda Count. Similarly, AS5
also wins the Instant Runoff with AS4 and AS5
making it to the final round. Overall, it appears
that using random names over generic tokens to
de-identify textual data is the preferable solution
as AS1, AS2, AS3 models, which were all trained

on data with generic tokens, usually rank low.

3.2 Should a model be trained on original or
de-identified data?

In order to answer this question, we investigate the
performance of models trained on original data on
the de-identified test sets (cf. Table 4) and compare
them to the models trained directly on de-identified
data. Table 6 shows the results of testing models



trained on original training sets and evaluated on
each of the de-identified test sets. We find that
nearly half of the models trained on de-identified
data outperform the counterpart model trained on
original data. While there is not always a clear
trend, we observe that the original models almost
consistently perform better in the MRPC and RTE
tasks, and perform worse in the WNLI and CoLA
tasks, regardless of the architecture used. Further-
more, for BERT models, the models trained on
de-identified data consistently perform worse on
the FND and NBD tasks. For the ERNIE models,
the models trained on original data consistently
perform better on the FED task ever so slightly.
Despite these observations, we notice that the per-
formance losses are oftentimes very high, specifi-
cally for the NBD, WNLI, and CoLA tasks, while
performance gains tend to be lower.

4 Discussion

Judging by the results of our experiments, we rec-
ommend practitioners to de-identify their sensi-
tive textual data using random names, as they typ-
ically lead to the best results among the anonymi-
sation strategies we tested. We also recommend to
de-identify data before the training of NLP mod-
els. It follows that it is important to keep the de-
identification process and naming schemes consis-
tent throughout the entire pipeline that uses the data
in order to mitigate potential performance losses
of models. It may also be important to keep the
number of names sufficiently high in order to avoid
introducing bias in the training that may contribute
to unfair discrimination against specific names, a
well-known issue in machine learning models that
handle person names (Caliskan et al., 2017).

5 Related Work

Relevant studies done on textual data largely focus
on medical texts and on a very limited number of
tasks and anonymisation strategies when compared
to our work. On the other hand, they typically
anonymise a wide variety of protected health in-
formation (PHI) classes, while our work focuses
on anonymisation of persons’ names only. Berg
et al. (2020) studied the impact of four anonymisa-
tion strategies (pseudonymisation, replacement by
PHI class, masking, and removal) on downstream
NER tasks for the clinical domain. Similarly to our
findings, they find that pseudonymisation yields
the best results among the investigated strategies.

On the other hand, removal of names resulted in
the highest negative impact on the downstream
tasks. Deleger et al. (2013) investigated the im-
pact of anonymisation on an information extraction
task using a dataset of 3503 clinical notes. They
anonymised 12 types of PHI such as patients’ name,
age, etc., and used two anonymisation strategies
(replacement by fake PHI, and masking). They
found no significant loss in performance for this
task. Similarly, Meystre et al. (2014) found that the
informativeness of medical notes only marginally
decreased after anonymisation, using 18 types of
PHI and 3 anonymisation strategies (replacement
by fake PHI, replacement by PHI class, and replace-
ment by PHI token). Using the same anonymisa-
tion strategies and ten types of PHI, Obeid et al.
(2019) investigated the impact of anonymisation
on a mental status classification task. Comparing
nine different machine learning models, they did
not find any significant difference in performance
between original and anonymised data.

6 Conclusion

In this paper, we conducted an empirical study
analysing the impact of de-identification on down-
stream NLP tasks. We investigated the difference
in performance of six anonymisation strategies on
nine NLP tasks ranging from simple classification
tasks to hard NLU tasks. Further, we compared two
architectures, BERT and ERNIE. Overall, we found
that de-identifying data before training an NLP
model does have a negative impact on its perfor-
mance. However, this impact is relatively low. We
determined that pseudonymisation techniques in-
volving random names lead to higher performances
across most tasks. Specifically, replacing names by
random names (AS5) had the least negative impact
when using an ERNIE model. Similarly, replac-
ing by random names while preserving the link
between identical names (AS6) worked best for
BERT models. We also showed that it is advisable
to de-identify data prior to training as we observed
a large difference in performance between models
trained on original data versus de-identified data.
There is also a noticeable difference between the
performances of BERT and ERNIE, warranting fur-
ther investigation into the performance differences
between a larger number of language models.
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7 Appendices

7.1 Appendix A: Fine-Tuning
Hyperparameters

BERT ERNIE
Task batch size learn rate #epoch batch size learn rate #epoch
FND 16 5e-5 1 8 2−5 1
NBD 16 5e-5 3 8 2−5 5
FED 32 3e-5 3 32 5−5 1

MRPC 16 5e-5 3 32 3−5 4
RTE 16 5e-5 4 4 2−5 4

WNLI 16 3e-5 4 8 2−5 4
ColA 16 5e-5 3 64 3−5 3
MNLI 16 5e-5 2 512 3−5 3
EDC 16 5e-5 5 8 3−5 3

Table 7: Hyperparameters for fine-tuning pre-
trained models for downstream tasks


