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Abstract

We propose a history-driven target (HDT) frame-
work in Markov Chain Monte Carlo (MCMC)
to improve any random walk algorithm on dis-
crete state spaces, such as general undirected
graphs, for efficient sampling from target distri-
bution µ. With broad applications in network sci-
ence and distributed optimization, recent innova-
tions like the self-repellent random walk (SRRW)
achieve near-zero variance by prioritizing under-
sampled states through transition kernel modi-
fications based on past visit frequencies. How-
ever, SRRW’s reliance on explicit computation
of transition probabilities for all neighbors at
each step introduces substantial computational
overhead, while its strict dependence on time-
reversible Markov chains excludes advanced non-
reversible MCMC methods. To overcome these
limitations, instead of direct modification of tran-
sition kernel, HDT introduces a history-dependent
target distribution π[x] to replace the original tar-
get µ in any graph sampler, where x represents
the empirical measure of past visits. This design
preserves lightweight implementation by requir-
ing only local information between the current
and proposed states and achieves compatibility
with both reversible and non-reversible MCMC
samplers, while retaining unbiased samples with
target distribution µ and near-zero variance perfor-
mance. Extensive experiments in graph sampling
demonstrate consistent performance gains, and
a memory-efficient Least Recently Used (LRU)
cache ensures scalability to large general graphs.
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1. Introduction
Random walks on general graphs are fundamental tools
across diverse disciplines, including physics, statistics, ma-
chine learning, biology, and social sciences (Robert &
Casella, 2013; Grover & Leskovec, 2016; Masuda et al.,
2017; Kim et al., 2024), powering applications like online
social networks (Xie et al., 2021), web crawling (Olston
et al., 2010), robotic exploration (Placed et al., 2023), and
mobile networks (Triastcyn et al., 2022; Ayache et al., 2023).
Starting from any state (node), a walker transitions to one
of its neighbors along the connected edges using only local
information, combining simplicity with scalability. This
makes random walks powerful for exploring large networks
and performing graph-based Markov chain Monte Carlo
(MCMC) tasks to generate samples from target distributions
µ on the graph (e.g., uniform, degree-based, or energy-
based). They also enable distributed optimization in net-
worked systems (Sun et al., 2018; Hu et al., 2022; Even,
2023; Hendrikx, 2023). Simple random walks (Gjoka et al.,
2011; Perozzi et al., 2014) and Metropolis-Hastings (MH)
random walks (Metropolis et al., 1953; Hastings, 1970; Xia
et al., 2019) are foundational methods for these tasks, though
they can suffer from slow mixing and local trapping.

1.1. Recent Advances in Graph Sampling

In social networks, e-commerce, recommendation systems
and other domains, practitioners need to estimate graph
size, node degree distribution, and label distribution (Xie
et al., 2021). These applications include detecting bot pop-
ulations, identifying high-value user segments or scarce
features (Nakajima & Shudo, 2023), and gradient of local
loss for token algorithms in distributed optimizations (Sun
et al., 2018; Even, 2023), especially with limited graph ac-
cess. However, a standard random walk can be slow in
discovering underrepresented regions or rare features, forc-
ing more samples to achieve acceptable levels of accuracy.
To improve the sampling efficiency of the MH algorithm,
MH with Delayed Rejection reduces persistent rejections
to facilitate exploration (Green & Mira, 2001). Another
variant is the Multiple-Try Metropolis (MTM), which pro-
poses multiple candidates at each step and selects one based
on their weights (Liu et al., 2000; Pandolfi et al., 2010).
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Figure 1. Flowchart comparison between (a) SRRW (Doshi et al., 2023) and (b) our History-Driven Target (HDT) framework.

The choice of weights is further refined by Chang et al.
(2022) with the integration of locally balanced functions
in Zanella (2020), quantifying the improvement in mixing
time. Further improvements have been achieved via non-
reversible random walk techniques. These include lifted
Markov chains, which augment the state space with direc-
tional information (Chen et al., 1999; Diaconis et al., 2000;
Apers et al., 2017); 2-cycle MCMC methods, which alter-
nate between two reversible chains (Maire et al., 2014; Ma
et al., 2016; Andrieu & Livingstone, 2021); and modifi-
cations from a reversible chain by adding antisymmetric
perturbations (Suwa & Todo, 2010; Chen & Hwang, 2013;
Bierkens, 2016; Thin et al., 2020). Non-backtracking ran-
dom walks, which avoid revisiting the immediate past, have
also improved exploration (Alon et al., 2007; Lee et al.,
2012; Hermon, 2019).

In fields such as statistical physics (e.g., Ising or Potts
models (Grathwohl et al., 2021; Zhang et al., 2022)), ma-
chine learning (e.g., energy-based models for image tasks
or Bayesian methods for variable selection (Hinton, 2012;
Sun et al., 2023a)), and econometrics (e.g., MCMC-MLE
for random graph models (Bhamidi et al., 2011; Byshkin
et al., 2016)), a discrete state space can be represented as a
graph. Here, nodes denote configurations, which are linked
by edges via predefined Hamming distance. Efficient explo-
ration yields quicker, more accurate system representation
and inference. Specifically, informed proposals (Zanella,
2020) utilize local data to optimize acceptance-exploration
balance but struggle with large-scale applicability. Gradient-
based methods improve these proposals through techniques
like Taylor series, Metropolis-adjusted Langevin, and New-
ton approximations (Grathwohl et al., 2021; Rhodes & Gut-
mann, 2022; Zhang et al., 2022; Sun et al., 2023b; Xiang
et al., 2023). Nonetheless, they are designed for structured
spaces and specific energy functions, unlike our focus on
general graphs and arbitrary distributions µ, which renders
gradient-based MCMC methods inapplicable.

All the aforementioned works are still rooted in Markov
chains. A recent breakthrough is the self-repellent random
walk (SRRW) over general graphs (Doshi et al., 2023), a
nonlinear Markov chain that modifies a time-reversible

Markov chain with µ-invariant transition kernel P , as
shown by Box ① in Figure 1(a).1 Unlike non-backtracking
random walks relying solely on the most recent history
(Alon et al., 2007; Lee et al., 2012), SRRW incorporates the
entire past trajectory to adaptively adjust transition prob-
abilities towards less-visited states while preserving con-
vergence to µ. Formally, let G = (X , E) be a connected,
undirected graph with node set X and edge set E , and let
N (i) ≜ {j ∈X | (i, j)∈E} be the neighbor set of state i.
Its cardinality is denoted |N (i)|. Let N (i) ≜ N (i) ∪ {i}
be the ‘expanded’ neighborhood of state i. Denote by
xi ∈ (0, 1) the visit frequency of state i ∈ X . Given a time-
reversible kernel P with µiPij = µjPji wherePij > 0 only
if (i, j) ∈ E , SRRW constructs a nonlinear kernel K[x],
parametrized by x ≜ [xi]i∈X , such that, for j ∈ N (i),

Kij [x] = Z−1
i Pij(xj/µj)

−α, (1)

where α≥0 is the strength of self-repellency, and the nor-
malizing constant Zi ≜

∑
k∈N (i)Pik(xk/µk)

−α. Note that
Kij [x] = 0 for j /∈ N (i), conforming to the graph structure.
The transition probability to state j is dynamically enlarged
or reduced from the original probability Pij based on the
history so far via the ratio (xj/µj)

−α between empirical
measure and target distribution of state j (Box ② in Fig-
ure 1). The kernel (1) is also known to be ‘scale-invariant’
in the sense that it remains unchanged under any constant
multiple of x or µ. This self-repellent scheme shows re-
markable success, achieving near-zero variance for large α
at a rate of O(1/α) for graph sampling (Doshi et al., 2023)
and O(1/α2) for distributed optimization (Hu et al., 2024a),
and can even outperform i.i.d. sampling (i.e., a random
jumper) while still walking on the graph.

1.2. Limitations of SRRW

Computational Issue. Despite its theoretical appeal and
general applicability to reversible MCMC samplers, SRRW
suffers from critical computational overhead that under-
mines its practicality, a shortfall overlooked in Doshi et al.

1In practice, the unnormalized target µ̃ is typically used in
MCMC algorithms instead of the normalized µ, bypassing the
need for calculating the normalizing constant.
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(2023). To fully understand these challenges, it is important
to first clarify the role of self-transition probability Pii in
the time-reversible chain P and how it is used in SRRW.
In the MH algorithm, from state i, another neighbor state
j ∈ N (i) is proposed with probability Qij and accepted
with probability Aij≜min{1, µjQji/µiQij}. If accepted,
the walker moves to j, making the transition probability
Pij = QijAij , keeping it reversible with respect to the
given target µ. If rejected, the chain remains at i, contribut-
ing to the self-transition probability Pii=1−

∑
j ̸=iQijAij .

Note that Pii > 0 unless Aij =1 for all j ̸= i, a rare case
where the proposal Q is already µ-invariant. Importantly,
Pii is just a byproduct out of the accept-reject mechanism,
whose value is never explicitly pre-computed in standard
MH algorithms. In addition, the acceptance ratioAij is eval-
uated only for the proposed state j, ensuring a lightweight
sequential implementation.

However, evaluatingKij [x] in (1) demands pre-computation
of the normalizing constant Zi, which necessitates knowl-
edge of Pij for all j ∈ N (i), including the self-transition
probability Pii when j = i, implying that all Aij must be
pre-calculated. This modification completely destroys the
essence of MH, where the acceptance ratio is evaluated
on demand only for a proposed state one at a time and is
never pre-quantified for all possible j ∈N (i). This issue
becomes even more pronounced in scenarios with a large
neighborhood size |N (i)|, where the computational cost
scales accordingly. On the other hand, sampling j directly
fromK(i,∗)[x]∝P(i,∗)(x∗/µ∗)

−α as a target distribution over
N (i) might be deemed as an alternative to bypass direct
computation of the normalizing constant Zi. However, such
approach also fails because it still requires knowledge of the
target distribution up to a multiplicative constant, including
Pii, defying the purpose of lightweight sampling. In short,
Pii becomes a requirement in SRRW rather than a natu-
ral outcome of MH, translating to equivalent computational
costs to sample from K(i,∗)[x], and thus offering no benefits.

Requirement of Time-Reversibility. Another significant
drawback of SRRW is its strict reliance on time-reversible
Markov chains. While this reversibility ensures a well-
defined stationary distribution for the modified kernel K[x]
(Doshi et al., 2023, Proposition 2.1), it inherently excludes
non-reversible MCMC techniques that still converge to the
same target distribution µ with better performance (Neal,
2004; Suwa & Todo, 2010; Lee et al., 2012; Chen & Hwang,
2013; Maire et al., 2014; Ma et al., 2016; Bierkens, 2016;
Andrieu & Livingstone, 2021).

Memory Constraints. Despite being technically viable,
SRRW encounters memory issues in large graphs and con-
figuration spaces where the empirical measure x shares the
dimensionality with the size of the state space. Retaining
complete historical data through x at each step can exceed

memory capacity in simulations. Thus, it is natural to ask:

Can we design a universal method to harness SRRW benefits,
while tackling these challenges: (i) maintain computational
efficiency, (ii) leverage both reversible and non-reversible
MCMC samplers, and (iii) reduce memory usage?

1.3. Our Approach and Contributions

In this work, we tackle the three aforementioned challenges
arising from nonlinear kernels of SRRW. Specifically, we
theoretically resolve two of them: computational issue and
incompatibility with non-reversible Markov chains, and pro-
pose a heuristic scheme that reduces storage requirements
for memory issue. Comprehensive applications to exponen-
tially large state spaces, i.e., high-dimensional problems,
are deferred to future work.

In SRRW, the self-repellent mechanism is embedded di-
rectly into the transition kernel K[x], leading to significant
computational costs, as discussed earlier. However, the
essence of a history-dependent scheme need not reside in
the kernel itself. As depicted in Box ③ of Figure 1(b),
we shift this scheme to a family of ‘history-driven’ target
(HDT) distributions. Specifically, we replace the original
target µ, a single point in the probability simplex, with an
adaptive distribution π[x] parameterized by the empirical
measure x, which evolves dynamically at each step based
on the ‘feedback’ from past visits. The exact formulation
of π[x] in (6) ensures that less/more-visited state i is as-
signed higher/lower probabilities than the original target
µi, dynamically over time. Our approach allows for seam-
less integration with any MCMC technique, using the target
π[x] for a given x. Unlike SRRW, in our framework, we can
reuse any advanced MCMC technique by simply replacing
target µ by our design π[x] in both reversible and non-
reversible samplers, retaining the lightweight, sequential,
and adaptive nature of MCMC methods, as shown in Box
④ of Figure 1. By decoupling the self-repellent mechanism
from the transition kernel, we overcome the computational
limitations of SRRW while achieving near-zero variance.
This paradigm shift offers the best of both worlds: compu-
tational efficiency and broad compatibility with advanced
MCMC samplers. Our contributions are as follows.

1. A General Self-Repellent Framework: We introduce
the HDT framework, which replaces the target µ by
the history-driven target distribution π[x] via rigor-
ous design. This formulation is compatible with both
reversible and non-reversible MCMC samplers while
eliminating the computational overhead in SRRW.

2. Theoretical Guarantees: We prove that our HDT
framework converges almost surely to the original tar-
get µ and achieves O(1/α) variance reduction com-
pared to the base sampler in the central limit theorem
(CLT). Moreover, we establish a cost-based CLT, show-
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ing an additional O(1/E[|N (i)|]) variance reduction
relative to SRRW by the average neighborhood size.

3. Empirical Evaluation: We perform extensive graph
sampling simulations across various settings, includ-
ing real-world graphs and both reversible and non-
reversible MCMC samplers, and showcase the consis-
tent efficiency and adaptability of our HDT framework.

4. Scalable Implementation for Large Graphs: We im-
plement an LRU (Least Recently Used) cache scheme
to manage x with limited memory. For example, even
when maintaining visit frequencies for only 10% of
states, our method leads to more than a 10% reduction
in total variation distance over the original MCMC
method, highlighting HDT’s effectiveness in limited-
memory environments.

2. Preliminaries
Basic Notations. Let X denote a finite discrete state
space. Vectors are denoted by lower-case bold letters,
e.g., v ≜ [vi]i∈X , and matrices by upper-case bold, e.g.,
M ≜ [Mij ]i,j∈X . The diagonal matrix Dv is constructed
from the vector v, with its components placed along the
main diagonal. We denote by 1,0 vectors of all ones
and zeros with proper dimensions, respectively. Denote
by Σ the |X |-dimensional probability simplex over X ,
with Int(Σ) being its interior, i.e., x∈ Int(Σ) implies that
xi ∈ (0, 1),∀i ∈ X . For a probability vector x ∈ Σ, we
write x̃ to denote any of its unnormalized counterparts, i.e.,
x = x̃/(1T x̃) ∝ x̃. Define δi as the canonical vector whose
components are all zero, except the i-th entry being one. Let
N(0,V ) represent the multivariate Gaussian distribution
with zero mean and covariance matrix V . We use −−−→

dist.
for

weak convergence.

Ergodic Markov Chains. Consider an ergodic Markov
chain with transition kernel P ∈R|X |×|X| and target distri-
bution µ∈ Int(Σ), satisfying P1= 1 and µTP =µT . In
MCMC, the transition kernel P is defined by the target µ.
Throughout this work, we assume that P is full-rank and
continuous in µ. Denote by (λi,ui,vi) the eigenpair of
P , comprising the eigenvalues as well as the corresponding
left and right eigenvectors. Here, the Perron–Frobenius
eigenvalue λ1 = 1 with its corresponding eigenvectors
u1 = µ and v1 = 1. In addition, uT

i vi = 1 and
uT
i vj = 0 for all i, j ∈ [2, |X |] with i ̸= j. Consider

the sample path {Xs}s≥1 driven by an ergodic Markov
chain on X , with δ(·) as the indicator function. The cu-
mulative visit count to state i by time n is expressed as
x̃n(i) ≜

∑n
s=1 δ(Xs = i), ensuring

∑
i∈X x̃n(i) = n.

The empirical measure xn ≜ [xn(i)]i∈X is the normalized
version of x̃n, hence xn = x̃n/(1

T x̃n) = x̃n/n. Alterna-
tively, we can express xn iteratively as follows:

xn+1 = xn +
1

n+ 1
(δXn+1

− xn). (2)

The ergodic theorem for Markov chains (Brémaud, 2013,
Theorem 3.3.2) states that the empirical measure xn of
an ergodic Markov chain, updated via (2), almost surely
converges to µ as n→∞. In addition, the multivariate CLT
(Brooks et al., 2011, Chapter 1.8.1) shows that

√
n(xn−µ)

weakly converges to N(0,V ), where the covariance matrix

V =limt→∞
1
tE[(

∑t
s=1(δXs

−µ))(
∑t

s=1(δXs
−µ))T ], (3)

which serves as the covariance matrix of both reversible
and non-reversible MCMC samplers in Theorem 3.3. By
Brémaud (2013, Chapter 6.3.3), V can be rewritten as

V =

|X |∑
i=2

1 + λi
1− λi

Dµviu
T
i . (4)

When P is reversible, the property ui = Dµvi gives V =∑|X |
i=2

1+λi

1−λi
uiu

T
i . See Appendix A for the derivation of (4).

Properties of SRRW. The SRRW algorithm in Doshi et al.
(2023) includes two steps at each time n: First, sample
Xn+1 ∼ K(Xn,·)[xn] in (1) using the current empirical
measure xn and state Xn; Second, update xn+1 via (2).
This ensures that the SRRW kernel K[x] is adapted to
the updated empirical measure xn at each time n, mak-
ing it a nonlinear Markov chain. A notable property of
SRRW is ‘scale-invariance’, i.e., for any non-zero scalar C,
Kij [Cx] = Kij [x],∀i, j ∈ X , such that computing Kij [x]
only requires knowing vectors x,µ up to some constant
multiples. It has been theoretically proved that the empirical
measure xn→µ almost surely as n→∞, and the scaled
error

√
n(xn−µ)

n→∞−−−−→
dist.

N(0,V SRRW(α)), where

V SRRW(α) =

|X |∑
i=2

1

2α(λi + 1) + 1
· 1 + λi
1− λi

uiu
T
i , (5)

and λi,ui are eigenvalues and left eigenvectors of the time-
reversible base MCMC kernel P leveraged by SRRW.

3. Main Results
We present our theoretical findings by first outlining the
design principles for a HDT distribution that balances explo-
ration with computational efficiency. Next, we examine the
convergence and statistical properties of the HDT-MCMC
algorithm. Lastly, we evaluate its computational cost against
SRRW within a fixed budget using a cost-based CLT, show-
casing the performance benefits of HDT-MCMC.

3.1. Design of History-Driven Target Distribution

The foundation of HDT-MCMC is in the design of a history-
driven target π[x,µ] that relies solely on the visit count x̃
and an unnormalized target µ̃ (as an input), while encapsu-
lating self-repellent behavior in the resulting kernel. Our
goal is to design the HDT π[x,µ] to satisfy the following
four conditions:
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C1 (Scale Invariance). πi[x,µ]=πi[x̃, µ̃].

C2 (Local Dependence). The unnormalized term π̃i[x,µ]
depends only on µi and xi, and is continuous in xi, µi.

Henceforth, we suppress µ and simply write π[x] for brevity,
whenever its dependence on µ is clear from the context.

C3 (Fixed Point). π[µ] = µ.

C4 (History Dependence). π[x] promotes/deters explo-
ration of under/over-sampled states.

C1 preserves the key property that our HDT-MCMC algo-
rithm only needs the unnormalized terms µ̃, and x̃ when, for
instance, computing an acceptance ratio of MH. Examples
of the unnormalized target µ̃ include: µ̃i =1 for uniform
target, µ̃i= |N (i)| for degree-based target, and µ̃i=e

−H(i)

for energy-specific target (Gjoka et al., 2011; Lee et al.,
2012; Grathwohl et al., 2021; Pynadath et al., 2024). C2
ensures that the sampler uses only minimal local informa-
tion, i.e., x̃i and µ̃i, in its update. By eliminating neighbor
information, the algorithm avoids prohibitive computational
costs associated with increasing neighborhood size, e.g.,
in large or complete graphs. C3 indicates that if empirical
measure x converges to the target µ, the HDT π[µ] remains
µ itself. Indeed, if π[µ] ̸= µ, then an MCMC sampler with
its target π[x] would converge to a different distribution,
contradicting our goal of preserving µ as the true target
distribution. C4 is to facilitate exploration, ensuring that
the sampler adaptively ‘pushes’ itself away from states al-
ready visited more often than µi, thereby mimicking the key
self-repellent effect of SRRW in Doshi et al. (2023).
Lemma 3.1. Conditions C1 - C4 hold if and only if

πi[x] ∝ µi(xi/µi)
−α for any α > 0. (6)

The proof of Lemma 3.1 can be found in Appendix B. It
reveals that an HDT distribution π[x] satisfying all four con-
ditions C1 - C4 must take the simple form of (6). A special
case α = 0 reduces π[x] to the original target µ, which be-
comes history-independent. Lemma 3.1 also demonstrates
that our design (6) suffices to work with unnormalized quan-
tities µ̃ and x̃ in place of µ and x, i.e.,

πi[x] ∝ π̃i[x] = µ̃i(x̃i/µ̃i)
−α. (7)

Following Lemma 3.1, Algorithm 1 shows the steps in our
HDT-MCMC framework.2 As illustrated by Box ④ in Fig-
ure 1, the base MCMC sampler for graph sampling in our
framework can either be time-reversible, i.e., MH (Metropo-
lis et al., 1953; Hastings, 1970), MHDR (Green & Mira,
2001), MTM (Liu et al., 2000; Chang et al., 2022), or non-
reversible, i.e., MHDA (Lee et al., 2012), 2-cycle Markov
chains (Maire et al., 2014; Andrieu & Livingstone, 2021),
and non-reversible MH (Bierkens, 2016; Thin et al., 2020).

2Similar to Doshi et al. (2023), we initialize x̃i > 0 with fake
visit count for well-defined π[x] at every step. In reality, memory
is allocated for states that have received actual visits, enabling
adaptive storage for x̃.

Algorithm 1 HDT-MCMC: Graph Sampling Framework

Input: Graph G(X , E), parameter α ≥ 0, unnormalized
target µ̃, number of iterations T , a base MCMC sampler.
Initialization: state X0∈X , visit count x̃(i)>0,∀i∈X .
for n = 0 to T − 1 do

Step 1 (Bring Your Own MCMC): Use the base sam-
pler (reversible or non-reversible) to draw Xn+1 with
history-driven target π[x] from (7).
Step 2: Update visit count x̃(Xn+1)← x̃(Xn+1)+ 1;

end for
Output: A set of samples {Xn}Tn=1.

As an example, we here illustrate our HDT-MCMC if we
use the standard MH algorithm as the base MCMC sampler
(Step 1) in Algorithm 1.3 At current state Xn = i, a can-
didate j ∈ N (i) is selected with probability Qij , then the
acceptance ratio is calculated through

Aij[x]=min

{
1,
πj [x]Qji

πi[x]Qij

}
=min

{
1,
µ̃j(x̃j/µ̃j)

−αQji

µ̃i(x̃i/µ̃i)−αQij

}
, (8)

where only the unnormalized terms µ̃i, µ̃j , x̃i, and x̃j are
required, keeping the same computational cost as standard
MH with true target µ. Then, the sampler accepts state j
with probabilityAij [x] and setsXn+1 = j, or rejects it with
probability 1 − Aij [x] upon which Xn+1 = i and repeats
the procedure. Note that we recover the acceptance ratio
Aij of the standard MH with target µ, when α = 0. This
manner alters the target µ of the standard MH algorithm
by HDT π[x] while preserving the lightweight, on-demand
nature of MH, in contrast to SRRW in which Pij must be
evaluated for all possible j ∈ N (i) for a sample Xn+1.
In addition to computational efficiency, Aij [x] inherently
embeds the ‘self-repellent’ effect. If state j is relatively
less-visited than state i, i.e., x̃j/µ̃j < x̃i/µ̃i, it then follows
that Aij [x]≥Aij , implying that state j is more likely to be
accepted than the case with standard MH, and vice versa.
Remark 3.1. In Doshi et al. (2023), SRRW directly modi-
fies a time-reversible Markov chain P to incorporate self-
repellency into the kernel K[x] as in (1), which is then
shown to be, for any given x ∈ Int(Σ), reversible w.r.t.

πSRRW
i [x] ∝ µi(xi/µi)

−α
∑

j∈N (i)

Pij(xj/µj)
−α,∀i ∈ X ,

whose proof in Doshi et al. (2023, Appendix A) critically de-
pends on the reversibility of P w.r.t. µ. Note that πSRRW

i [x]
is the byproduct of the constructed kernel K[x] as in (1),
thus inheriting the same neighborhood dependency. Sim-
ply adopting πSRRW[x] in our Algorithm 1 violates C2 and
would incur high computational cost for resulting nonlinear
kernels. In contrast, our HDT (6) decouples neighbors in the

3Detailed overview of Algorithm 1 applied to advanced MCMC
samplers are in Appendix C.
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target distribution itself, which eliminates the need to eval-
uate transition probabilities for all neighbors at each step,
offering substantial computational savings and compatibility
with both reversible and non-reversible samplers.

3.2. Performance of HDT-MCMC

We next analyze HDT-MCMC regarding (i) almost-sure
convergence of the empirical measure xn to µ, and (ii)
an O(1/α) variance reduction relative to the base MCMC
sampler with true target µ.

Observe that (2) allows us to decompose xn+1 as

xn+1=xn+
1

n+ 1
[(π[xn]−xn)︸ ︷︷ ︸

deterministic drift

+(δXn+1−π[xn])︸ ︷︷ ︸
noise term

],

which is the standard step in stochastic approximation (SA)
with controlled Markovian dynamics (Kushner & Yin, 2003;
Benveniste et al., 2012; Borkar, 2022). It can be viewed
as combining a deterministic drift π[xn]− xn towards the
solution of the ODE

ẋ(t) = π[x(t)]− x(t) (9)

and a noise term δXn+1
− π[xn]. The ODE viewpoint clar-

ifies the global asymptotic stability of µ, while the noise
term characterizes fluctuations around µ.

Lemma 3.2. For π[x] in (6), the ODE (9) has a unique
fixed point µ, which is globally asymptotically stable.

Proofs follow by showing that target µ is the unique stable
equilibrium and employing standard Lyapunov stability the-
ory, as detailed in Appendix D. For the iteration xn in (2),
we need to additionally account for the noise term driven by
a history-dependent MCMC from Algorithm 1. We impose
the following assumption on xn throughout the paper.

Assumption 1. xn ∈ Int(Σ) for all n ≥ 0 almost surely.

Assumption 1 guarantees xn(i) > 0 almost surely for all
i ∈ X and n ≥ 0, keeping π[x] well-defined at each step.
This type of assumption is standard in the SA literature
(Fort, 2015; Borkar, 2022; Li et al., 2023). In practice, it can
be enforced using truncation-based methods within (2), as
discussed in Doshi et al. (2023, Remark 4.5 and Appendix
E). These methods effectively prevent any component xn(i)
from approaching zero, thus maintaining xn∈ Int(Σ). Un-
der this assumption, we obtain the following:

Theorem 3.3 (Ergodicity and CLT). HDT-MCMC in Algo-
rithm 1 satisfies

(a) xn → µ almost surely as n→∞.

(b)
√
n(xn − µ)

n→∞−−−−→
dist.

N(0,V HDT(α)), where

V HDT(α) =
1

2α+ 1
V base, (10)

and V base is the limiting covariance of the base MCMC
sampler (reversible or non-reversible) with target µ in (3).

The full proof of Theorem 3.3 is in Appendix E, where we
leverage the existing asymptotic analysis from the SA lit-
erature (Delyon et al., 1999; Fort, 2015), similarly used in
Doshi et al. (2023, Appendix C). However, the primary tech-
nical challenge arises from handling non-reversible Markov
chains, which is excluded from Doshi et al. (2023) by the
nature of their kernel design. We proceed with our analysis
that is specifically tailored to the augmented state space
on which the non-reversible Markov chain is defined, and
solve a mismatch issue between the augmented space and
the original space by only tracking the marginal empirical
measure x ∈ Int(Σ) in the original space X . Theorem 3.3
highlights two appealing features of HDT-MCMC: (i) It
preserves the unbiased sampling by converging to the true
target µ. (ii) It offers an O(1/α) variance reduction, achiev-
ing a similar near-zero variance phenomenon of SRRW but
without additional computational overhead or the need for
time-reversibility. When α = 0, we recover the baseline
scenario π[x] ≡ µ and V HDT(0) = V base, as expected.

Moreover, Theorem 3.3 leads to an instant result as follows.
Corollary 3.4. Suppose two MCMC samplers S1 and S2

converge to µ with limiting covariances V S1 and V S2 sat-
isfying V S1 ⪯V S2.4 Applying HDT framework to both,
yielding V S1-HDT(α) and V S2-HDT(α), preserves the ordering:

V S1-HDT(α) ⪯ V S2-HDT(α), ∀α ≥ 0.

The proof is straightforward from (10). Hence, any known
covariance orderings between reversible and non-reversible
samplers (see Lee et al. (2012); Maire et al. (2014); Bierkens
(2016); Andrieu & Livingstone (2021)) carry over to our
HDT-MCMC framework, whereas SRRW cannot accommo-
date non-reversible Markov chains.

3.3. Comparative Analysis of Computational Costs

We now compare the performance of our HDT-MCMC to
SRRW (Doshi et al., 2023) under a fixed total computa-
tional budgetB. Although both methods achieve anO(1/α)
variance reduction, HDT-MCMC requires significantly less
computation per sample.

Because SRRW mandates a time-reversible base MCMC
sampler, we restrict our comparison to the same reversible
chain (as illustrated in Boxes ② and ④ of Figure 1). Let
ai (resp. bi) ∈ (0,∞) be the computational cost of the i-th
sample in HDT-MCMC (resp. SRRW). Define:

T HDT(B) ≜ max{k | a1 + a2 + · · ·+ ak ≤ B}
T SRRW(B) ≜ max{k′ | b1 + b2 + · · ·+ bk′ ≤ B}

so that T HDT(B) (resp. T SRRW(B)) represents the total num-
ber of samples that HDT-MCMC (resp. SRRW) can gener-
ate before hitting the budget B. Intuitively, under the same

4 Two symmetric matrices M1, M2 follow M1 ⪯ M2 (or
M1⪰M2) if M2−M1 is positive (or negative) semi-definite.
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budget, SRRW’s higher per-sample cost yields fewer total
samples. To quantify this effect, we now compare these two
frameworks under the same but large amount of total budget
B instead of the number of samples as done in Section 3.2.

Clearly, we have T HDT(B)→∞ and T SRRW(B)→∞ as
B→∞. Let xn (resp. yn) be the empirical measure of
HDT-MCMC (resp. SRRW). AsB→∞, both xTHDT(B) and
yT SRRW(B) still converge almost surely to µ, an instant result
of our Theorem 3.3(a) and Doshi et al. (2023, Theorem 4.1).
Analogous to our Theorem 3.3, rather than evaluating at
n→∞, we quantify how HDT-MCMC and SRRW behave
under B→∞ via the following cost-based CLT:

Theorem 3.5 (Cost-Based CLT). Suppose that as B→∞,

B/T HDT(B)→ CHDT, B/T SRRW(B)→ CSRRW a.s.

Then, we have
√
B(xTHDT(B) − µ)

B→∞−−−−→
dist.

N(0, CHDTV HDT(α)) (11)
√
B(yT SRRW(B) − µ)

B→∞−−−−→
dist.

N(0, CSRRWV SRRW(α)) (12)

where V HDT(α) is given by (10), and V SRRW(α) by (5).

We leverage the random-change-of-time theory (Billingsley,
2013) and Slutsky’s theorem (Ash & Doléans-Dade, 2000)
to transform our time-based CLT (Theorem 3.3) to the cost-
based CLT (Theorem 3.5), with details in Appendix F.

In practice, HDT-MCMC’s per-sample cost CHDT can be
significantly smaller than CSRRW because the latter must pre-
compute the transition probability Kij [x] at each step. As
a concrete example, we focus on the MH framework as the
base sampler utilized in many advanced MCMC schemes
(Liu et al., 2000; Green & Mira, 2001; Lee et al., 2012;
Bierkens, 2016; Zanella, 2020; Chang et al., 2022). As-
suming that computing the proposal probability Qij and
inquiring µ̃i incurs c units of cost per each pair (i, j)∈E ,
it requires 2c costs for Aij [x] in (8). Thus, HDT-MCMC
spends 2c per sample, whereas SRRW incurs 2c|N (i)| sub-
ject to state i, as discussed in Section 1.2. The following
lemma shows the ordering of their cost-based covariances:

Lemma 3.6. The cost-based covariances between SRRW
and HDT-MCMC in (11) and (12) are ordered as follows:

CHDTV HDT(α) ⪯ (2/Ei∼µ[|N (i)|]) · CSRRWV SRRW(α).

See Appendix G for the proof. Lemma 3.6 implies that
the cost-based covariance of HDT-MCMC is at least a fac-
tor of 2/E[|N (i)|] times smaller than that of SRRW in
Loewner ordering for each α, suggesting a universal ad-
vantage. This factor becomes more pronounced in dense or
nearly complete graphs, where the average neighborhood
size is E[|N (i)|]≫ 2.

For unbiased graph sampling, at each time T , the sampling
agent records state XT , obtains the value f(XT ) ∈ R, and

updates the unbiased MCMC estimator ψT (f), aiming to
approximate the ground truth f̄ , such as a global attribute
of the unknown graph, and their expressions are defined in
the following:

ψT (f) ≜
1

T

T∑
s=1

f(Xs), f̄ ≜
∑
i∈X

µif(i).

Equivalently, we can rewrite the MCMC estimator as
ψT (f) = fTxT since xT = 1

T

∑T
s=1 δXs

and fT δi =

f(i), where f ≜ [f(i)]i∈X ∈ R|X |. Thus, the cost-based
variance of ψT (f) for HDT-MCMC and SRRW is derived
by left multiplying fT into (11) and (12), yielding

√
T (ψHDT

T (f)− f̄) T→∞−−−−→
dist.

, N(0,VarHDT(α)), (13)
√
T (ψSRRW

T (f)− f̄) T→∞−−−−→
dist.

N(0,VarSRRW(α)), (14)

where VarHDT(α) = CHDTfTV HDT(α)f , and VarSRRW(α) =
CSRRWfTV SRRW(α)f , respectively. By Lemma 3.6 and the
Loewner ordering in footnote 4, we have for any α > 0,

VarHDT(α) ≤ (2/E[|N (i)|]) · VarSRRW(α),

which translates into at least a factor of 2/E[|N (i)|] times
smaller cost-based variance of the MCMC estimator ψT (f)
than the case with SRRW. In addition, unlike SRRW, HDT-
MCMC also accommodates non-reversible base samplers
(see Corollary 3.4), further enhancing efficiency in many
applications.

4. Simulations
We design a series of experiments to evaluate the perfor-
mance of HDT-based MCMC methods in graph sampling
tasks. Our goal is to compare HDT-MCMC with various
advanced MCMC algorithms, including both reversible and
non-reversible Markov chains, and compare HDT-MCMC
with SRRW within the same total computational budget.

4.1. Simulation Setup

We conduct experiments on two real-world graphs, i.e., face-
book (4039 nodes with 88234 edges) and p2p-Gnutella04
(10876 nodes with 39994 edges) from SNAP (Leskovec &
Krevl, 2014). We use a uniform target distribution µ = 1

|X |1

throughout this section while deferring the experiments of
non-uniform target to Appendix H.6. In the reversible set-
ting, we apply the standard MH algorithm (MHRW) and
MTM with locally balanced weights and K = 3 proposed
candidates (Chang et al., 2022). In the non-reversible setting,
we adopt MHDA (Lee et al., 2012). Additional experiments
on WikiVote, p2p-Gnutella08, and non-reversible 2-cycle
Markov chains appear in Appendix H. To assess conver-
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Table 1. Mean (std error) TVD and NRMSE at n = 15,000 steps on facebook graph under different X0 groups and fake visit counts x0.
All std error values are in units of 10−3.

Initial State (X0) Fake Count (x0)

Low Deg High Deg Deg Non-unif Unif

Method TVD NRMSE TVD NRMSE TVD NRMSE TVD NRMSE TVD NRMSE

HDT-MHRW 0.372 (1.221) 0.027 0.371 (1.296) 0.029 0.371 (1.246) 0.028 0.371 (1.281) 0.028 0.371 (1.246) 0.028
HDT-MTM 0.283 (1.199) 0.070 0.284 (1.280) 0.068 0.288 (1.751) 0.098 0.285 (1.456) 0.047 0.285 (1.496) 0.062
HDT-MHDA 0.364 (1.230) 0.026 0.365 (1.292) 0.028 0.365 (1.281) 0.027 0.365 (1.246) 0.028 0.366 (1.258) 0.027

gence, we use the total variation distance

TVD(xn,µ)≜
1

2
∥xn−µ∥1

for the distance between the empirical measure xn of the
collected samples and the target µ. We also evaluate nor-
malized root mean squared error

NRMSE(ψn, ψ̄)=
√
E[(ψn(f)−ψ̄)2]/ψ̄

for graph-based group-size estimation with test function f
defined in Appendix H.2. Each experiment consists of 1000
independent runs, and one-third of the total iterations is used
as the burn-in period.
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Figure 2. TVD and NRMSE Comparison of HDT-MCMC with
base chain MHRW, MTM, and MHDA.

4.2. Comparison of Base MCMC and its HDT Version

We first compare each base MCMC algorithm with its HDT-
enhanced version, setting α = 5 in the target π[x] in (6).
Figure 2 shows the average TVD and NRMSE for MTM
and MHDA, with MHRW serving as a benchmark. In both
cases, MTM and MHDA outperform MHRW when targeting
µ, which aligns with the theoretical results in Chang et al.
(2022) and Lee et al. (2012). Moreover, the HDT-enhanced
versions (HDT-MTM and HDT-MHDA) consistently attain
lower TVD and NRMSE than their respective base algo-
rithms, indicating faster convergence to µ, consistent with
Theorem 3.3. A similar trend is observed in other graphs us-
ing TVD and NRMSE metrics (see Appendix H.2). Notably,
SRRW (with MHRW as its base) achieves the lowest TVD
and NRMSE among all methods but entails substantially
higher computational overhead to obtain one sample, whose

effect is not reflected in the number of steps. We shall ex-
amine SRRW’s performance under fixed budget in the next
experiment. We do not combine SRRW with MTM in this
experiment due to its heavy computation in Pij for all pos-
sible combinations of K intermediate proposed candidates,
whereas HDT integrates seamlessly into MTM without ad-
ditional cost. Moreover, we conduct the experiment on the
effect of different α values influence HDT-MHRW algo-
rithm in Appendix H.4 and observe consistent improvement
with smaller TVD using larger α.

4.3. Robustness to Different Initializations

To demonstrate that HDT-MCMC is robust to different ini-
tializations, we evaluate its performance when initialized at
various nodes, using base chains MHRW, MTM, and MHDA
for the HDT-enhanced versions. We show the experimental
results for the Facebook graph in Table 1 and include the
results for other graphs in Appendix H.3. In particular, we
examine the effects of both initial state X0 and the fake visit
counts x0. The initiate state X0 is randomly chosen from
either low-degree group (where the node’s degree is smaller
than the average degree) or high-degree group. This is to test
the sensitivity of our algorithm starting from sparse or dense
regions. On the other hand, fake visit count x0 is initialized
using one of the following settings: ‘Deg’ (proportional to
node degree, e.g., x̃i = |N (i)| for all i ∈ [N ]), ‘Non-unif’
(a non-uniform draw from a Dirichlet distribution with de-
fault hyperparameter 0.5), and ‘Unif’ (same initial count
across all nodes, e.g., x̃i = 1 for all i ∈ [N ]). In Table 1,
both TVD and NRMSE5 show consistent performance when
starting from either the low-degree group or the high-degree
group. Similarly, a robust result is observed when using
different settings of fake visit counts.

4.4. Computational Cost Comparison with SRRW

We compare HDT-MHRW and SRRW under a fixed com-
putational budget B. At each iteration, SRRW needs to
compute or retrieve transition probabilities for every neigh-
bor due to the nature of the kernel design (1), whereas HDT
only updates the proposal for a single candidate. This com-

5NRMSE inherently measures the deviation from the true value,
hence confidence intervals are not provided for this metric.
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putational cost aligns with the concerns of theO(N (i)) eval-
uations in the proposal distribution highlighted in Zanella
(2020); Grathwohl et al. (2021) in high-dimensional spaces.
In graph sampling, simply counting samples to assess perfor-
mance can be misleading under rate-limited API constraints,
e.g., online social network sampling (Xu et al., 2017; Li
et al., 2019). The performance gap between HDT-MHRW
and SRRW in budget B increases with the degree of the
node, as proved in Lemma 3.6. Figure 3 shows that under
the same total budget, HDT-MHRW consistently achieves
lower TVD and NRMSE than SRRW. The discrepancy is
even more pronounced in the Facebook graph in both plots,
where the average degree (43.6) far exceeds that of p2p-
Gnutella04 (7.4), supporting our discussion after Lemma
3.6, where larger neighborhood size leads to more perfor-
mance advantage of HDT-MCMC compared to SRRW.
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Figure 3. TVD and NRMSE Comparison between HDT-MHRW
and SRRW under budget constraints.

4.5. Least Recently Used (LRU) Cache Scheme

A core challenge in HDT-MCMC, as noted in Section 1.2,
involves handling large graphs or exponentially growing
configuration state spaces, where storing the entire visit
counts x̃ ∈ R|X | of |X | dimension becomes infeasible. To
address this challenge, we propose a memory-efficient Least
Recently Used (LRU) cache strategy and emulate its effect
on real-world graphs that serves as a pilot study prior to
full deployment in large configuration spaces (beyond this
paper’s scope).

The essential idea is to track only recently visited states,
discarding the least-recently used when capacity in cache
C is reached. This leverages temporal locality, as non-
neighboring states do not affect self-repellency. Unlike
sparsification methods (Verma et al., 2024; Barnes et al.,
2024), which ignore the walker’s position, LRU’s local sim-
plicity aligns with our HDT-MCMC. For a neighbor j /∈ C
of current state i, we approximate its frequency via

x̂j = µ̃j |N (i) ∩ C|−1
∑

k∈N (i)∩C

x̃k/µ̃k. (15)

This approach approximates x̃j/µ̃j , which mimics (6) via
temporal closeness among states frequently visited around
i, allowing the sampler to maintain self-repellency without

true visit count. We examine HDT-MCMC using an LRU
cache with size |C| = r|X | where 0 < r < 1. In Figure 4,
the average TVD of HDT-MHRW with LRU outperforms
MHRW even without exact empirical measure due to it
limited capacity. In most scenarios, HDT-MHRW with LRU
leads to 10% smaller TVD than the base MHRW with over
90% memory reduction. The performance of HDT-MHRW
with LRU is robust to the choice of r in most cases. Due to
space constraint, we defer more result of LRU scheme in
plus-combined graph (over 100K nodes) to Appendix H.5.
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Figure 4. Performance of HDT-MHRW with LRU cache scheme.

5. Conclusion
In this paper, we propose a history-driven target (HDT)
framework for MCMC sampling on general graphs. By
embedding self-repellency in the target rather than the tran-
sition kernel, HDT maintains unbiased sampling with a
lightweight design and provides an O(1/α) variance reduc-
tion without high computational cost or time-reversibility
constraints from SRRW. Our theoretical analysis covers
both reversible and non-reversible MCMC samplers, while
empirical results on real-world graphs show robust perfor-
mance gains and reduced computational overhead. To han-
dle memory limitations, we introduce a Least Recently Used
(LRU) cache scheme, enabling partial tracking of the em-
pirical measure without loss in sampling efficiency. Future
directions include more refined memory approximations for
exponentially large configuration spaces and applications to
high-dimensional statistical inference and network analysis.
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A. Matrix Form of Covariance Matrix (4)

The multivariate version of Brémaud (2013, eq. (6.33)) shows that

lim
t→∞

1

t
E

( t∑
s=1

f(Xs)− f̄

)(
t∑

s=1

f(Xs)− f̄

)T
 = Varµ(f(X0)) + 2

|X |∑
i=2

λi
1− λi

fTDµviu
T
i f , (16)

where f(X) ∈ Rd, f = [f(i), f(j), · · · ]T ∈ R|X |×d, and Varµ(f(X0)) = fT (Dµ − µµT )f .

Replacing the function f(·) in (16) with our canonical vector δ(·) defined in Section 2, we have

V = lim
t→∞

1

t
E

( t∑
s=1

δXs
− µ

)(
t∑

s=1

δXs
− µ

)T


= Dµ − µµT + 2

|X |∑
i=2

λi
1− λi

Dµviu
T
i

= Dµ

 |X |∑
i=1

viu
T
i

− µµT + 2Dµ

|X |∑
i=2

λi
1− λi

viu
T
i

= Dµ(1µ
T )− µµT +Dµ

|X |∑
i=2

1 + λi
1− λi

viu
T
i

=

|X |∑
i=2

1 + λi
1− λi

Dµviu
T
i .

where the second equality is because I = [δi]
T
i∈X , and the third equality comes from the fact that I =

∑|X |
i=1 viu

T
i .

B. Proof of Lemma 3.1
Following C2, we let πi[x] =

f(xi,µi)∑
j∈X f(xj ,µj)

for some continuous differentiable function f : R>0×R>0 → R>0 : (x, µ)→
f(x, µ). Then, C1 implies that for any scalars c1, c2 > 0,

f (c1xi, c2µi)∑
k∈X f (c1xk, c2µk)

=
f (xi, µi)∑

k∈X f (xk, µk)
. (17)

Now we show that function f has a specific form

f(c1x, c2µ) = g(c1, c2)f(x, µ) (18)

for any x, µ ∈ (0, 1), c1, c2 > 0 and some continuous differentiable function g : (0,∞)2 → R>0 : (c1, c2)→ g(c1, c2).

Proof of (18). Rearranging (17) gives

f (c1xi, c2µi) =

∑
k∈X f (c1xk, c2µk)∑

k∈X f (xk, µk)
· f (xi, µi) .

Then, with slight abuse of notation, we take g(c1, c2,x,µ) :=
∑

k∈X f(c1xk,c2µk)∑
k∈X f(xk,µk)

. In other words,

f (c1xi, c2µi) = g(c1, c2,x,µ)f(xi, µi) (19)

for any i ∈ X and arbitrary choices x,µ ∈ Int(Σ). Then, we show that function g(c1, c2,x,µ) is independent of parameters
x,µ, corresponding to (18).
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Consider two pairs of probability vectors (x,µ) and (x̃, µ̃), whose i-th coordinate are identical, i.e., xi = x̃i, µi = µ̃i.
Then, f(c1xi, c2xi) = f(c1x̃i, c2x̃i), and f(xi, xi) = f(x̃i, x̃i). By (19), we have g(c1, c2,x,µ) = g(c1, c2, x̃, µ̃).

Similarly, we construct another pair (x̂, µ̂) such that x̂j = x̃j and µ̂j = µ̃j for j-th coordinate (where i ̸= j), then we have
g(c1, c2, x̃, µ̃) = g(c1, c2, x̂, µ̂).

Therefore, the pair (x̃, µ̃) serves as a ‘bridge’ to (x,µ) and (x̂, µ̂), leading to

g(c1, c2,x,µ) = g(c1, c2, x̂, µ̂). (20)

This implies that for a given pair (x,µ), we can always construct a distinct pair (x̂, µ̂) such that (20) holds true, indicating
that function g must be identical for any pair (x,µ). Hence, function g cannot actually depend on xor µ; it must be a
function of (c1, c2) alone.

Next, we have the following proposition regarding the exact form of function f(·).6

Proposition B.1. The function f(x, µ) satisfying (18) must be of the form

f(x, µ) = Cxρ1µρ2 (21)

for some positive constant C and ρ1, ρ2 ∈ R.

Proof of Proposition B.1. Taking the logarithm of both sides of (18) gives:

log f(c1x, c2µ) = log g(c1, c2) + log f(x, µ). (22)

Define a function F such that
F (log x, logµ) = log f(x, µ).

Substituting function F to (22) gives:

F (log c1 + log x, log c2 + logµ) = log g(c1, c2) + F (log x, logµ).

Focusing on partial derivatives, let c2 = 1, i.e., log c2 = 0, to isolate x. Then,

∂

∂ log c1
[F (log c1 + log x, logµ)− F (log x, logµ)] = ∂

∂ log c1
log g(c1, 1).

As c1 → 1, ∂
∂ log c1

log g(c1, 1) approaches to some constant ρ1 ∈ R irrelevant to µ. Thus, the partial derivative of function
F (log x, logµ) w.r.t log x is a constant and we have the form

F (log x, logµ) = ρ1 log x+ some function of logµ.

Similarly, the partial derivative of F (log x, logµ) w.r.t logµ is a constant ρ2 ∈ R independent of x. Thus, we have

F (log x, logµ) = ρ1 log x+ ρ2 logµ+ b = log f(x, µ)

where b is a constant. Therefore,
f(x, µ) = ebxρ1µρ2 ,

which completes the proof.

Following Proposition B.1, for ρ1, ρ2 ∈ R, we have

πi(x) ∝ xρ1

i µ
ρ2

i , (23)

6We admit that this result is likely to be well known but we were unable to locate reliable sources. Thus, we provide the proof for
completeness.
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where the constant C in Proposition B.1 is absorbed into the normalizing constant. Then, based on the condition π[µ] = µ
in C3, we have

πi[µ] =
µρ2

i µ
ρ1

i∑
k µ

ρ2

k µ
ρ1

k

= µi.

Since this holds for any i ∈ X , we have(
µj

µi

)ρ2−1

=

(
µi

µj

)ρ1

⇐⇒ µi

µj
=

(
µi

µj

)(1−ρ2)/ρ1

,

thus (1− ρ2)/ρ1 = 1, or equivalently, ρ1 + ρ2 = 1, and

πi[x] ∝ µi(xi/µi)
1−ρ2 .

Now, considering C4, we need to prioritize the node that is under-sampled, i.e., node i with xi/µi < 1 should have a higher
probability than µi such that 1− ρ2 ≤ 1. Thus, α ≜ ρ2 − 1 ≥ 0, and πi[x] ∝ µi(xi/µi)

−α, which completes the proof.

C. Implementation of Algorithm 1 For Advanced MCMC Samplers
C.1. Multiple-try Metropolis algorithm with locally balanced weighs function (MTM)

We followed the MTM algorithm in (Chang et al., 2022), where weights function incorporated locally balanced function h
introduced by (Zanella, 2020). Specifically, the locally balanced weights function is defined as

w(j|i) = h

(
µjQji

µiQij

)
∀ i, j ∈ X , (24)

where Q is the random walk proposal. Thus, the corresponding locally balanced weights function of HDT-MTM is defined
as

wxn(j|i) = h

(
πj [xn]Qji

πi[xn]Qij

)
∀ i, j ∈ X , (25)

where x is the empirical measure at step n. Typical choices of function h(u) include
√
u,max(1, u),min(1, u), u/(1 + u)

and 1 + u. In the simulation in Section 4, we choose h as h(u) =
√
u, and the algorithm of HDT-MTM is described as

below.

Algorithm 2 HDT-MTM

Input: The number of candidates K, a weight function w parameterized by x defined in (25), the number of iterations T .
Initialization: state X0∈X , visit count x̃(i)>0,∀i∈X .
for n = 0 to T − 1 do

Step 1:Draw Ŷ1, · · · , ŶK u.a.r. from N (Xn), and compute wxn
(Ŷk|Xn) for k ∈ [K]

Step 2: Select j ∈ [K] with probability proportional to wxn
(Ŷj |Xn) and let Y = Ŷj

Step 3: Sample X̂1, · · · , X̂K−1 u.a.r. from N (Y ) and compute αMTM as

αMTM = min

{
1,

∑
j∈[K] wxn

(Ŷj |Xn)

wxn
(Xn|Y ) +

∑
j∈[K−1] wxn

(X̂j |Y )

}

Step 4: With probability αMTM , accept Y and let Xn+1 = Y ; otherwise, Xn+1 = Xn.
Stpe 5: Update visit count x̃(Xn+1)← x̃(Xn+1) + 1.

end for
Output: A set of samples {Xn}Tn=1.

C.2. Metropolis-Hastings algorithm with delayed acceptance (MHDA)

MHDA (Lee et al., 2012) is a nonreversible chain where it reduces the probability of the process from backtracking. Unlike
standard MH always taking the next step once it accepted, MHDA avoid non-backtracking by re-proposing other neighboring
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states uniformly with another acceptance probability whenever it is about to backtrack. This new acceptance probability
is related to the base time-reversible chain P with target µ. It is proven to ensure the asymptotic variance of MHDA is
no larger than that of MHRW. To apply our framework, we change the target distributionµ inside the first and the second
acceptance probability by π[x]. The detailed HDT-MHDA algorithm is described in Algorithm 3.

Algorithm 3 HDT-MHDA

Input: The number of iterations T .
Initialization: state X0∈X , last visit Y0 = X0, visit count x̃(i)>0,∀i∈X .
for n = 0 to T − 1 do

Step 1: Draw k u.a.r. from N (Xn)
Step 2: Generate p ∼ U(0, 1)

if p ≤ min
{
1, πk[xn]d(Xn)

πXn [xn]d(k)

}
then

if Yn = k and d(Xn) > 1 then
Choose r u.a.r from N (Xn) \ {k} and generate q ∼ U(0, 1)

if q ≤ min
{
1,min

{
1,
( πr[xn]d(Xn)
πXn [xn]Xnd(r)

)2}
max

{
1,
( πXn [xn]d(k)
πk[xn]d(Xn)

)2}} then
Xn+1 = r, Yn+1 = Xn

else
Xn+1 = k, Yn+1 = Xn

end if
else
Xn+1 = k, Yn+1 = Xn

end if
else
Xn+1 = Xn, Yn+1 = Yn

end if
Step 3: Update visit count x̃(Xn+1)← x̃(Xn+1) + 1.

end for
Output: A set of samples {Xn}Tn=1.

C.3. 2-cycle MCMC

HDT-2-cycle MCMC alternates between two reversible Markov chains (P1 and P2) targeting the history-dependent
distribution π[x]. At each iteration n, if n is even, the next state Xn+1 is generated using P1; if odd, P2 is used. Both chains
adaptively target π[xn] via the updated empirical measure xn at each step. After sampling the state Xn+1, the visit count
x̃(Xn+1) is incremented by 1, which will guide exploration by penalizing over-visited states, as detailed in Algorithm 4.

Algorithm 4 HDT-2-cycle MCMC

Input: Two reversible chain P1 and P2 with respect to target µ, the number of iterations T .
Initialization: state X0∈X , visit count x̃(i)>0,∀i∈X .
for n = 0 to T − 1 do

Step 1: (Run chain P )
if n%2 == 0 then

Generate sample Xn+1 from chain P1(Xn, ·) with target π[xn]
else

Generate sample Xn+1 from chain P2(Xn, ·) with target π[xn]
end if
Step 2: Update visit count x̃(Xn+1)← x̃(Xn+1) + 1.

end for
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D. Proof of Lemma 3.2
The proof consists of three parts: We first show that

V (x) =
∑
i∈X

µi(xi/µi)
−α (26)

is the Lyapunov function of the ODE
ẋ = π[x]− x. (27)

Then, we prove that µ is the unique fixed point of the ODEs.

Last, with LaSalle’s invariance principle (Khalil, 2002, Corollary 4.2), we can prove that µ is globally asymptotically stable.

Part I. To prove (26) is the Lyapunov function, we take partial derivative of V (x) w.r.t t such that

∂V (x)

∂t
=
∑
i∈X

∂V (x)

∂xi
ẋi

= −α
∑
i∈X

(
xi
µi

)−α−1(
µi(xi/µi)

−α∑
k∈X µk(xk/µk)−α

− xi
)

= −α
∑
i∈X

[
µi(xi/µi)

−2α−1∑
k∈X µk(xk/µk)−α

+ µi

(
xi
µi

)−α
]

=
−α
V (x)

∑
i∈X

µi(xi/µi)
−2α−1 −

(∑
i∈X

µi

(
xi
µi

)−α
)2


=
−α
V (x)

∑
i∈X

xi(xi/µi)
−2α−2 −

(∑
i∈X

xi

(
xi
µi

)−α−1
)2
 ≤ 0,

where the fourth equality comes from the definition of V (x) in (26), and the last inequality is from Cauchy-Schwartz
inequality by rewriting(∑

i∈X
xi

(
xi
µi

)−α−1
)2

=

(∑
i∈X

x
1/2
i · x1/2i

(
xi
µi

)−α−1
)2

≤

(∑
i∈X

xi

)
︸ ︷︷ ︸

=1

(∑
i∈X

xi(xi/µi)
−2α−2

)
,

and its equality holds only when x1/2i = Cx
1/2
i (xi/µi)

−α−1 for some constant C and any i ∈ X . Or equivalently, x = µ.
Then, V̇ (x) ≤ 0 and the equality holds only when x = µ, which is the equilibrium of the ODE (27). Thus, V (x) in the
form of (26) is the Lyapunov function of the ODE (27).

Part II. Then, we show that µ is the unique fixed point of π[x] in C3. Let x∗ be the fixed point of π[x], i.e.,

πi[x
∗] =

µi(x
∗
i /µi)

−α∑
k∈X µk(x∗k/µk)−α

= x∗i ,∀i ∈ X .

Rearranging and combining terms on both sides of the equation gives

(x∗i /µi)
−α−1 =

∑
k∈X

µk(x
∗
k/µk)

−α.

Since the RHS is invariant to index i, we have

(x∗i /µi)
−α−1 = (x∗j/µj)

−α−1,∀i, j ∈ X .

Since α ≥ 0, we have x∗i /µi = x∗j/µj for all i, j ∈ X , implying that x∗i = Cµi for some scalar C and any i ∈ X , and thus
x∗ = µ because x∗,µ ∈ Int(Σ).

Part III. We first provide the LaSalle’s invariance principle below for self-contained purpose.
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Theorem D.1 (LaSalle’s invariance principle (Khalil, 2002)). Let x∗ be an equilibrium point for the ODE ẋ = f(x). Let
V : domf → R be a continuously differentiable, radially unbounded function, positive definite function such that V̇ (x) ≤ 0
for all x ∈ domf .Let S = {x ∈ domf |V̇ (x) = 0} and suppose that no solution can stay identically in S other than the
trivial solution x(t) ≡ x∗. Then, x∗ is globally asymptotically stable.

To apply Theorem D.1, we let f(x) ≜ π[x]− x such that domf = Int(Σ). The set S = {µ}. By construction, V (x) ≥ 0
and V (x)→∞ as x→ ∂Σ (the boundary of the probability simplex, where at least one entry xi of the empirical measure
x becomes zero). Along with the design of π[x] in (6) following that µ is the unique fixed point, we prove that µ is globally
asymptotically stable for the ODE (27).

E. Proof of Theorem 3.3
We leverage the stochastic approximation theories from Delyon (2000) and Fort (2015) for asymptotic analysis within our
HDT-MCMC framework regarding the iteration of the empirical measure xn. We obtain almost sure convergence and CLT
results in Appendix E.1 and E.2, as was done similarly for SRRW in Doshi et al. (2023). However, we adopt the asymptotic
analysis to non-reversible Markov chains as detailed in Appendix E.3, to which SRRW cannot accommodate.

To start with, we first introduce the following theorem for almost sure and CLT results of the stochastic approximation.

Theorem E.1 ((Delyon, 2000) Theorem 15, (Fort, 2015) Theorem 3.2). Consider the following stochastic approximation:

xn+1 = xn + γn+1H(xn, Xn+1), (28)

where {Xn}n≥0 is driven by a Markov chain P [x], parameterized by x ∈ Rd, with stationary distribution π[x], and
function H : Rd × X → Rd : (x, X)→ H(x, X). Moreover, the mean field h(x) = Ei∼π[x][H(x, i)]. For the following
conditions:

(B1) Function h : Rd → Rd is continuous on X , there exists a non-negative differentiable, radially unbounded function
V such that ⟨∇V (x), h(x)⟩ ≤ 0,∀x ∈ Rd and the set S = {x | ⟨∇V (x), h(x)⟩ = 0} is such that V (S) has empty
interior. There exists a compact set K ⊂ Rd such that ⟨∇V (x), h(x)⟩ < 0 if x /∈ K;

(B2) For every x, there exists a function mx(i) such that for every i ∈ X ,

mx(i)− (P [x]mx)(i) = H(x, i)− h(x). (29)

For any compact set C ⊂ Rd,
sup

x∈C,i∈X
∥H(x, i)∥2 + ∥mx(i)∥2 <∞. (30)

There exists a continuous function ϕC , ϕC(0) = 0, such that for any x,x′ ∈ C,

sup
i∈X
∥(P [x]mx)(i)− (P [x′]mx′)(i)∥2 ≤ ϕC (∥x− x′∥2) . (31)

(B3) The step size follows γn ≥ 0,
∑

n≥1 γn =∞,
∑

n≥1 γ
2
n <∞ and

∑
n≥1 |γn+1 − γn| <∞.

(B4) supn ||xn||2 <∞ almost surely.

(B5) Function h is continuous, differentiable in some neighborhood of x∗ ∈ S , and matrix∇h(x)|x=µ (written as ∇h(x∗)
for brevity) has all its eigenvalues with negative real parts.

If (B1) - (B4) are satisfied, then almost surely,

lim sup
n

lim inf
x∗∈S

||xn − x∗||2 = 0. (32)

If additionally (B5) is satisfied, then condition on xn → x∗, where x∗ ∈ S, we have
√
n(xn − x∗)

n→∞−−−−→
dist.

N(0,V ),
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where

V =

∫ ∞

0

e(∇h(x∗)+I/2)tUe(∇h(x∗)+I/2)T tdt, (33)

and

U = lim
t→∞

1

t
E

( t∑
s=1

(H(x∗, Xs)− h(x∗))

)(
t∑

s=1

(H(x∗, Xs)− h(x∗))

)T
 . (34)

We interpret the iteration of empirical measure xn of Algorithm 1 here as an instance of stochastic approximation.

xn+1 = xn +
1

n+ 2
(δXn+1

− xn)︸ ︷︷ ︸
≜H(xn,Xn+1)

= xn −
1

n+ 2
(π[xn]− xn)︸ ︷︷ ︸

≜h(xn)

+
1

n+ 2
(δXn+1−π[xn]). (35)

E.1. Ergodicity

We examine conditions (B1) - (B4) to obtain the almost sure convergence. (B1) stems from the stability of the related
ODE, which has been proved in Appendix D Part III. Specifically, the Lyapunov function V is of the form in (26), and
S = K = {µ} contains a singleton µ, which is the unique fixed point of the ODE, or equivalently, h(µ) = π[µ]− µ = 0.
(B3) is automatically satisfied since γn = 1/(n + 1) as in (35). (B4) is guaranteed since x ∈ Int(Σ) so that ∥xn∥2 ≤ 1
almost surely for any n ≥ 0.

Now, we focus on (B2). In our Algorithm 1, replacing the target of the base MCMC sampler from µ to π[x] results in an
ergodic transition matrix P [x] parameterized by x, which is π[x]-invariant. For a function m : X → Rd, we define the
operator

(P [x]m)(i) ≜
∑
j∈X

Pij [x]m(j).

For the function H(x, ·) : X → R|X |, there always exists a corresponding function mx(·) : X → R|X | that satisfies the
Poisson equation (29). According to Hu et al. (2024b, Appendix C), the solution mx(i) to the Poisson equation (29) is of
the form

mx(i) =
∑
j∈X

(
I − P [x] + 1π[x]T

)−1

ij
(H(x, j)− h(x)), (36)

where (I −P [x] +1π[x]T )−1 is the fundamental matrix and it is always well-defined whenever P [x] is an ergodic Markov
chain with stationary distribution π[x] (Brémaud, 2013, Chapter 6.3.1). Because x,π[x] ∈ Int(Σ) the probability simplex
and δ(·) is the canonical vector, we have ∥H(x, i)∥2 = ∥δi − x∥ ≤ 2, as well as ∥h(x)∥2 = ∥π[x] − x∥ ≤ 2, we have

∥mx(i)∥2 ≤ 2
∑

j∈X
(
I − P [x] + 1π[x]T

)−1

ij
<∞ for all i ∈ X . Therefore, (30) is satisfied.

Next, note that the MCMC sampler for the target µ is associated with a transition kernel P , exhibiting continuity in relation
to µ. Since π[x] in the form of (6) is continuous in x, we have P [x] continuous in its target π[x], and in turn continuous
in x ∈ Int(Σ). As a consequence, (36) is continuous in x such that for every compact subset C of probability simplex Σ,
(P [x]mx)(i) is continuous in x ∈ C for any i ∈ X , and thus Lipschitz in C. Therefore, (31) holds. As a result, (B2) is
satisfied, and (32) shows xn → µ as n→∞ almost surely.

E.2. CLT

To obtain the CLT result, we examine (B5). Note that π[x] in the form of (6) is continuous and differentiable in x ∈ Int(Σ).
In addition, we take the partial derivative of h(x) w.r.t x and obtain the following: After some algebraic computations, for
j ̸= i,

∂

∂xj
hi(x) =

∂

∂xj

[
µi(xi/µi)

−α∑
k∈X µk(xk/µk)−α

− xi
]
=
απi[x]πj [x]

xj
.

Similarly, when j = i,
∂

∂xi
hi(x) = −

απi[x](1− πi[x])
xi

− 1.
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Setting x = µ in above partial derivatives gives

∂

∂xj
hi(x) = αµi,

∂

∂xi
hi(x) = αµi − (α+ 1),

or equivalently,∇h(µ) = αµ1T − (α+ 1)I , which has all eigenvalues no larger than −1. Thus, (B5) is satisfied.

Now, we have the CLT result from Theorem E.1. We translate the form of V ,U from (33) and (34) to our settings. (3)
shows that

U = lim
t→∞

1

t
E

( t∑
s=1

(δXs − µ)

)(
t∑

s=1

(δXs − µ)

)T
 = V base.

Before proceeding with the expression of matrix V HDT(α), we first provide a result: 1TU = 0T by considering the above
expression of matrix U and 1T δXs − 1Tµ = 0. Then,

V HDT(α) =

∫ ∞

0

e(∇h(µ)+I/2)tUe(∇h(µ)+I/2)T tdt

=

∫ ∞

0

e(αµ1T−(α+1/2)I/2)tUe(α1µ
T−(α+1/2)I/2)T tdt

=

∫ ∞

0

 |X |∑
i=2

e−(α+1/2)tuiv
T
i + e−t/2µ1T

U

 |X |∑
i=2

e−(α+1/2)tuiv
T
i + e−t/2µ1T

T

dt

=

∫ ∞

0

 |X |∑
i=2

e−(α+1/2)tuiv
T
i

U

 |X |∑
i=2

e−(α+1/2)tuiv
T
i

T

dt

=

|X |∑
i=2

|X |∑
j=2

∫ ∞

0

(
e−(2α+1)tdt

) (
uiv

T
i Uvju

T
j

)

=
1

2α+ 1

 |X |∑
i=2

uiv
T
i

U

 |X |∑
j=2

vju
T
j


=

1

2α+ 1
(I − µ1T )U(I − 1µT )

=
1

2α+ 1
U

=
1

2α+ 1
V base,

where the third equality comes from the eigendecomposition of the matrix exponential form. The fourth and the second
last equalities stem from the fact 1TU = 0. The third last equality comes from the fact that I =

∑|X |
i=1 uiv

T
i =

µ1T +
∑|X |

i=2 uiv
T
i and IT = 1µT +

∑|X |
i=2 viu

T
i = I .

E.3. Adaptation to Non-Reversible Markov Chains

For non-reversible Markov chains that directly modify the transition probabilities such as Suwa & Todo (2010); Chen &
Hwang (2013); Bierkens (2016); Thin et al. (2020), they typically add some target-dependent mass to the standard MH
kernel P with target µ, and let it satisfy the ‘skew detailed balance’ condition, e.g., Thin et al. (2020, eq. (3)). For example,
Bierkens (2016) introduces a vorticity matrix Γµ, which always exists, to break the reversibility while ensuring that the
chain retains an arbitrary target distribution µ ∈ Int(Σ). When applied in our Algorithm 1, for each given empirical measure
x, there will be a specific Γπ[x], still maintaining the target distribution as π[x]. This vorticity matrix Γπ[x] always exists for
a given x because π[x] is simply a new target distribution. Therefore, in this case, for any given x, the resulting transition
kernel P [x] emerging from the non-reversible Markov chain is still ergodic and π[x]-invariant. We note that in the proof of
ergodicity and CLT, we never require the time reversibility of the underlying Markov chain P [x] for a given x ∈ Int(Σ). For
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the proof, the sole requirement is the continuity of the kernel P , determined by its target µ, from the non-reversible MCMC
algorithms. Consequently, this line of work can be directly covered by the theoretical analysis in Appendix E.1 and E.2.

However, the above argument does not work for non-reversible Markov chains with augmented state spaces, like MHDA
and 2-cycle Markov chain, which incorporate an additional variable to induce directional bias in transitions (Lee et al.,
2012; Maire et al., 2014; Andrieu & Livingstone, 2021), rather than acting on the original state space X . Specifically, their
trajectory is usually defined as {(Xn, Yn)}n≥0, where the sample Xn ∈ X is defined in the original state space X , and
Yn ∈ Y is defined on some state space, such as Y = {0, 1} for a 2-cycle Markov chain such that Yn ∈ {0, 1} to indicate
which Markov chain to use in each iteration, and Y = X for MHDA such that Yn = Xn−1, which represents the most
recent sample.

Recall the stochastic approximation (28) requires {Xn} to be controlled Markovian dynamics. That is, Xn+1 is drawn
from a transition kernel P(Xn,·)[xn] parameterized by empirical measure xn. If the chain instead operates on an augmented
space (X ,Y)), then {Xn} in isolation cannot be viewed as a controlled Markov chain, since Xn+1 depends not only on
Xn,xn, but also on the auxiliary state Yn ∈ Y . More concretely, mixing these spaces (using a transition matrix on (X ,Y))
but a function H(x, ·) only defined on X ) causes a dimensional mismatch. For example, in (36), the solution mx(i) is not
well defined because P [x] is specified on (X ,Y)), while H(x, ·) is only on X . On the other hand, a natural solution to the
above mismatch is to record visit frequencies of the augmented state in the empirical measure update (35). This resolves a
dimensional mismatch but inflates the dimension of x. For example, this would increase the dimension of x from |X | to
|X |2 for the MHDA and to 2|X | for the 2-cycle Markov chain. This is especially problematic for large state space X .

In the following, we provide a trick to accommodate the proofs in Appendix E.1 and E.2 to the non-reversible Markov
chains on the augmented state space without modifying the empirical measure x, i.e., the empirical measure is still defined
on the original state space X .

Given a target µ, we denote by µ̂ the stationary distribution defined on the augmented state space X × Y , and admits the
marginal stationary distribution µi =

∑
j∈Y µ̂(i,j) because these non-reversible Markov chains are designed to achieve the

same target distribution µ on the original state space X , e.g., Lee et al. (2012, Theorem 6), Maire et al. (2014, Proposition
13). Thus, when adopting these algorithms under our HDT-MCMC framework, for a given x ∈ Int(Σ), we alter their target
distribution by π[x], and let π̂[x] be the joint distribution of the augmented states with πi[x] =

∑
j∈Y π̂(i,j)[x]. Then, we

define another function Φ : R|X | × X × Y → R|X | such that Φ(x, i, j) = H(x, i) = δi − x. Then, the xn update (35)
becomes

xn+1 = xn +
1

n+ 2
Φ (xn, Xn+1, Yn+1) . (37)

For any x ∈ Int(Σ), we have

ϕ(x) ≜ E(i,j)∼π̂[x]Φ(x, i, j) =
∑

i∈X ,j∈Y
H(x, i)π̂(i,j)[x] =

∑
i∈X

H(x, i)
∑
j∈Y

π̂(i,j)[x] =
∑
i∈X

H(x, i)πi[x] = h(x).

Thus, the mean field ϕ(·) is identical to h(·). Therefore, instead of analyzing (35), the analyses in Appendix E.1 and E.2
now directly carry over to the iteration (37), where we replace the function H by Φ and its mean field h by ϕ.

Moreover, the matrix U is given by

U= lim
t→∞

1

t
E


[

t∑
s=1

Φ(θ∗, Zs)

][
t∑

s=1

Φ(θ∗, Zs)

]T
= lim

t→∞

1

t
E


[

t∑
s=1

H(µ, Xs)

][
t∑

s=1

H(µ, Xs)

]T ,

which is exactly the definition of the asymptotic covariance for non-reversible Markov chains, as studied in Lee et al. (2012);
Maire et al. (2014); Andrieu & Livingstone (2021). Therefore, we maintain the same expression of V from Appendix E.2
for non-reversible Markov chains on augmented state spaces. This completes the proof.
Remark E.1. A caveat here is that we no longer have the alternative form for the matrix V as in (4) because the transition
kernel for the non-reversible Markov chain is defined on the augmented state space X × Y , while the asymptotic covariance
here is only on the original state space X . This is the reason that in Theorem 3.3, we refer to the original definition of the
asymptotic variance in (3) rather than (4).
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F. Proof of Theorem 3.5
Due to the fact that xn − µ = 1

n

∑n
s=1(δXs

− µ), we first rewrite

√
B(xTHDT(B) − µ) =

√
B · 1

T HDT(B)

THDT(B)∑
s=1

(δXs
− µ) =

√
B

T HDT(B)
· 1√

T HDT(B)

THDT(B)∑
s=1

(δXs
− µ)︸ ︷︷ ︸

Term A

. (38)

To deal with Term A, we state the random-change-of-time theory as follows.

Theorem F.1 ((Billingsley, 2013) Theorem 14.4). Given a sequence of random variable θ1, θ2, · · · with partial sum
Sn ≜

∑n
s=1 θs such that

1√
n
Sn

n→∞−−−−→
dist.

N(0,V ).

Let nl be some positive random variable taking integer value such that θnl
is on the same space as θn. In addition, for some

deterministic sequence {cl}l≥0, which goes to infinity, nl/cl → c for a positive constant c. Then,

1
√
nl
Snl

l→∞−−−→
dist.

N(0,V ).

By Theorem 3.3(b), we have
√
n(xn − µ)

n→∞−−−−→
dist.

N(0,V (α)), and
√
n(xn − µ) = 1√

n

∑n
s=1(δXs − µ). We have a

deterministic sequence {1, 2, · · · , ⌊B⌋}, where ⌊·⌋ is the floor function, and the condition B/T HDT(B)→ CHDT in Theorem
3.5. Thus, in view of Theorem F.1, we have

1√
T HDT(B)

THDT(B)∑
s=1

(δXs
− µ)

B→∞−−−−→
dist.

N(0,V ). (39)

Now, we state the Slutsky’s theorem as follows.

Theorem F.2 (Slutsky’s theorem (Ash & Doléans-Dade, 2000)). Let {An} and {Bn} be the sequence of random variables.
If An

n→∞−−−−→
dist.

A for some distribution A and Bn → b almost surely as n→∞ for a non-zero constant b, then

An/Bn
n→∞−−−−→
dist.

A/b.

Following (39), B/T HDT(B) → CHDT almost surely, and Theorem F.2, as B → ∞, (38) converges weakly to
N(0, CHDTV (α)). We can follow the same procedures for SRRW, which completes the proof.

G. Proof of Lemma 3.6
We first briefly explain the cost of our HDT-MCMC and SRRW per sample. At each step, our HDT-MCMC computes the
proposal distribution Qij and Qji with 2 costs. Thus, we have ai = 2c and CHDT = 2c.

On the other hand, in SRRW, normalizing Kij [x] over all j ∈ N (i) costs 2c|N (i)|, since each neighbor’s acceptance ratio
must be calculated. Based on the definition in (12), we derive the inequality for B/T SRRW(B):∑k+1

n=1 2c|N (Xn)|
k

≥ B

T SRRW(B)
≥
∑k

n=1 2c|N (Xn)|
k

. (40)

Taking B →∞ is equivalent to taking k →∞, so the RHS of (40) becomes

lim
k→∞

2c

k

k∑
n=1

|N (Xn)| = 2cEi∼µ[|N (i)|],
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where the equality comes from the ergodicity in Theorem 3.3(a). Similarly, we can rewrite the LHS of (40) as∑k
n=1 2c|N (Xn)|

k
+

2c|N (Xn+1)|
k

.

Since c|N (Xn+1)| <∞, the LHS of (40) still converges to 2cEi∼µ[|N (i)|] as k →∞. Hence, CSRRW = 2cEi∼µ[|N (i)|],
and

CSRRW/CHDT = Ei∼µ[|N (i)|]. (41)

Note that the ‘expanded’ neighborhood size |N (i)| ≥ 2 because the graph is connected so that each state has at least one
neighbor plus itself, thus Ei∼µ[|N (i)|] ≥ 2.

From (5), (10) and by noting the eigenvalue λi≤1, we show that

V SRRW(α) =

|X |∑
i=2

1

2α(λi + 1) + 1
· 1 + λi
1− λi

uiu
T
i

⪰ 1

4α+ 1

|X |∑
i=2

1 + λi
1− λi

uiu
T
i

=
2α+ 1

4α+ 1
V HDT(α)

⪰ 1

2
V HDT(α).

(42)

where the second inequality (by Loewner ordering) is because λi ≤ 1 such that 1
2α(λi+1)+1 −

1
4α+1 ≥ 0 and∑|X |

i=2(
1

2α(λi+1)+1 −
1

4α+1 )
1+λi

1−λi
uiu

T
i is positive semi-definite using the definition of Loewner ordering, i.e., for any

non-zero vector z,

zT

 |X |∑
i=2

(
1

2α(λi + 1) + 1
− 1

4α+ 1

)
1 + λi
1− λi

uiu
T
i

 z =

|X |∑
i=2

(
1

2α(λi + 1) + 1
− 1

4α+ 1

)
1 + λi
1− λi

(zTui)
2 ≥ 0.

The last inequality comes from 2α+1
4α+1 ≥

1
2 such that 2α+1

4α+1V
HDT(α)− 1

2V
HDT(α) is positive semi-definite (note that V HDT(α)

is positive semi-definite by its definition in (10)).

Then, by Theorem 3.5, we have

CSRRWV SRRW(α) = CHDTE[|N (i)|]V SRRW(α)

⪰ CHDTV HDT(α) · E[|N (i)|]
2

,

where the first equality comes from (41), and the second inequality is from (42). This completes the proof.

H. Additional Simulation
H.1. Simulation setting for graph sampling

Table 2. Summary of graph datasets.
Name # of nodes. # of edges Average degree

WikiVote 889 2,914 6.55
Facebook 4039 88,234 43.69

p2p-Gnutella08 6301 20,777 6.59
p2p-Gnutella04 10876 39,994 7.35

Table 2 shows the detailed summary of the graph used in our experiments. We used different numbers of iterations for
each graph T = {3000, 15000, 15000, 3000}, respectively. In addition to TVD, we also simulate normalized root mean
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square error (NRMSE) under HDT-MCMC framework in graph sampling, where the NRMSE of the MCMC estimator
ψn(f) ≜ 1

n

∑n
s=1 f(s) for some test function f : X → R with the ground truth ψ̄ ≜ Eµ[f ] is defined as

NRMSE(ψn, ψ̄) =
√
E[(ψn(f)− ψ̄)2]/ψ̄

.
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Figure 5. TVD improvement over HDT framework. The upper row for nonreversible chain; TVD improvement over HDT-MTM with
locally balanced weights function where MHRW is a special case when K = 1.

H.2. More results on HDT-MCMC in graph sampling

In this section, we present more simulation results on the algorithm that utilizes HDT-MCMC framework for graph sampling
in other graph. To demonstrate the impact of HDT-MCMC, we implement HDT-version of both reversible and nonreversible
chain. For instance, we implement HDT-MTM as a reversible chain, and HDT-MHDA, HDT-2-cycle as non-reversible
chains. A detailed implementation can be found in Appendix C. We use TVD and NRMSE as the metrics, and set our test
function as f : X → {0, 1}. This form of test function can be interpreted as the label of each node. Estimating the density
of the node label is crucial, especially in online social networks.

For each graph, we first randomly assign nodes with label 1 with some probability p and 0 otherwise. Namely, Let S1 be the
set of the node that is assigned to label 1, i.e. S1 = {i ∈ X |f(i) = 1}We aim to estimate the true proportion of label 1
using graph sampling. The assigned probability p is set as 0.3. Figure 6 include the result of MHRW, MTM, MHDA and
their corresponding HDT-version. We observe that HDT version algorithms consistently outperform the base version across
different graphs. We also notice that HDT version algorithms have better performance than SRRW, as shown in Facebook
graph and p2p-Gnutella08 graph.

Remark H.1. We conjecture that TVD metric reflects the exploration speed of the random walker, as it equally weights
contributions from visited and unvisited states. SRRW achieves superior performance by adjusting its transition kernel
to reduce self-transition probabilities. In contrast, HDT-MCMC’s use of the Metropolis-Hastings (MH) algorithm may
increase self-transition probabilities compared to SRRW. However, for graph sampling, even partial graph exploration
with an unbiased MCMC estimator can accurately approximate the true value effectively, explaining its improved NRMSE
performance.

Figure 5 shows the TVD result of HDT-MCMC framework over the graph dataset. The improvement in TVD is also
consistent among all the graph, showing the benefits of utilizing HDT-MCMC framework can convergence faster than the
base chain.

We also implemented HDT version of 2-cycle MCMC as an another nonreversible chain that be benefits from this works.
In particular, we used MTM and MH as two reversible chains in 2-cycle MCMC while its HDT version is constructed
by replacing MTM and MH with their HDT versions. Figure 7 shows the result where HDT version 2-cycle MCMC
outperforms the base 2-cycle chain among all the graph dataset.
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Figure 6. NRMSE Comparison for HDT framework.

H.3. Different Initializations on State X0 and Fake Visit Counts x0

Here, we conduct experiments under different setups to demonstrate the robustness of HDT-MCMC across several aspects.
In addition to Facebook graph presented in the main body, we further evaluate the robustness of HDT-MCMC to the choice
of initial state X0 using p2p-Gnutella04 graph. The results in Table 3 and Table 4 show both TVD and NRMSE maintain
consistent performance across different initializations.

Table 3. Mean (std error) TVD at n = 30, 000 step with different X0 initializations on p2p-Gnutella04. All std error values are in units of
10−4.

Low-Deg Group High-Deg Group

MHRW 0.545 (1.738) 0.545 (1.704)
HDT-MHRW 0.403 (0.748) 0.403 (0.765)
MTM 0.514 (1.546) 0.514 (1.556)
HDT-MTM 0.328 (0.999) 0.328 (1.035)
MHDA 0.522 (1.616) 0.521 (1.549)
HDT-MHDA 0.388 (0.708) 0.388 (0.747)

Table 4. Mean NRMSE at n = 30, 000 step with different X0 initializations on p2p-Gnutella04.

Low-Deg Group High-Deg Group

MHRW 0.030 0.031
HDT-MHRW 0.013 0.013
MTM 0.025 0.025
HDT-MTM 0.012 0.013
MHDA 0.028 0.029
HDT-MHDA 0.013 0.012

Next, we consider experiments in which the fake visit count x0 is initialized from

• ’Deg’ scenario: Fake visit counts set by node degrees, heavily favoring high-degree nodes.

• ’Non-unif’ scenario: Fake visit counts randomly drawn from a Dirichlet distribution with default concentration
parameter of 0.5.

• ’Unif’ scenario: Same initial count for all nodes.

Here, we use Facebook graph and p2p-Gnutella04 graph in our simulation and show TVD in Tables 5 - 6, and NRMSE in
Tables 7 - 8, both with confidence intervals 95%. Similar to the conclusions from the results on different initialization on
state X0, our HDT framework is robust to different fake visit counts, and our HDT version still showcases improvements
over their baseline counterparts in both TVD and NRMSE metrics.
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Table 5. Mean (std error) TVD at n = 15, 000 with different fake visit counts x0 on Facebook. All std error values are in units of 10−3

Deg Non-unif Unif

MHRW 0.520 (2.256) 0.520 (2.256) 0.520 (2.256)
HDT-MHRW 0.371 (1.246) 0.371 (1.281) 0.371 (1.246)
MTM 0.487 (2.128) 0.487 (2.128) 0.487 (2.128)
HDT-MTM 0.288 (1.751) 0.285 (1.456) 0.285 (1.496)
MHDA 0.513 (2.175) 0.513 (2.1.75) 0.513 (2.175)
HDT-MHDA 0.365 (1.281) 0.365 (1.246) 0.366 (1.258)

Table 6. Mean (std error) TVD at n = 30, 000 with different fake visit counts x0 on p2p-Gnutella04. All std error values are in units of
10−4.

Deg Non-unif Unif

MHRW 0.545 (1.621) 0.545 (1.621) 0.545 (1.621)
HDT-MHRW 0.403 (0.744) 0.403 (0.742) 0.403 (0.745)
MTM 0.514 (1.587) 0.514 (1.587) 0.514 (1.587)
HDT-MTM 0.325 (1.031) 0.330 (0.987) 0.328 (1.069)
MHDA 0.522 (1.573) 0.522 (1.573) 0.522 (1.573)
HDT-MHDA 0.388 (0.757) 0.388 (0.702) 0.388 (0.733)

Table 7. Mean NRMSE at n = 15, 000 step with different fake visit counts x0 on Facebook.

Deg Non-unif Unif

MHRW 0.079 0.079 0.079
HDT-MHRW 0.028 0.028 0.028
MTM 0.056 0.056 0.056
HDT-MTM 0.098 0.047 0.062
MHDA 0.068 0.068 0.068
HDT-MHDA 0.027 0.028 0.027

Table 8. Mean NRMSE at n = 15, 000 step with different fake visit counts x0 on p2p-Gnutella04.

Deg Non-unif Unif

MHRW 0.030 0.030 0.030
HDT-MHRW 0.013 0.013 0.013
MTM 0.023 0.023 0.023
HDT-MTM 0.013 0.012 0.012
MHDA 0.028 0.028 0.028
HDT-MHDA 0.013 0.012 0.013

H.4. Effect of α on Convergence

To illustrate the impact of α, we run HDT-MHRW under α ∈ {0, 1, 2, 5, 10}, with α = 0 being the MHRW. We observed in
Figure 8 that the performance of average TVD is asymptotically improved with larger α, supporting the theoretical result in
Theorem 3.3 where larger α leads to smaller covariance.

H.5. LRU on Larger graph

Here, we test our LRU with HDT-MHRW on WikiVote graph and p2p-Gnutella graph, and the result is shown in Figure 9.
We also observed LRU with 80% memory reduction can still outperforms standard MH. Moreover, in p2p-Gnutella08 graph,
we notice that the performance of LRU design is robust to the choice of the memory capacity. A comparable performance
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Figure 7. TVD Comparison for HDT-2cyc.
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Figure 8. Simulation of HDT-MHRW with different choices of α where MHRW can be viewed as the special case when α = 0.

when r is chosen within 5 to 20.

Furthermore, we test our design using the ego-Gplus graph (Leskovec & Krevl, 2014), which contains about 100K nodes,
and implemented r = 0.01 and r = 0.1 in LRU. For simulation setting, We run 50 independent trials with 300,000 steps and
set one-third of the number of steps as burn-in period before collecting samples. Figure 11 shows the result. We observed a
similar robustness behavior of the choice of LRU capacity with respect to average TVD. The performance of using r = 0.01
is comparable to using r = 0.1 where both cases outperforms MHRW. This findings open a possibility that we may only
requires an approximated empirical measure to implement HDT-MCMC while remaining fast convergence. Furthermore,
the corresponding theoretical result of that can be one possible future work.
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Figure 9. Simulation of incorporating LRU in HDT-MHRW framework to reduce memory issues.
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Figure 10. NRMSE result of HDT-MHRW framework with LRU
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Figure 11. Simulation of the HDT-MHRW with different LRU capacity for graph sampling on gplus-combined graph.

H.6. Additional Experiments on Non-Uniform Target

Since HDT-MCMC can generally be applied to any target distribution µ, we conducts additional experiments on non-uniform
target with HDT-MCMC. In particular, we conduct MHRW, MTM and MHDA with their HDT improvements over AS-733
graph (with 6474 nodes and 13895 edges) (Leskovec et al., 2005) and Whois graph (with 7476 nodes and 56.9K edges)
(Mahadevan et al., 2006), and set the target distribution proportional to the degree distribution, i.e. µi ∝ di with α = 1 in
HDT. Similar to the simulation settings in our manuscript, we compare HDT-MCMC to baseline algorithms through TVD
(with 95% confidence interval in shaded region) and NRMSE metrics. Since the target distribution is no longer uniform, we
adopt importance sampling (Doshi et al., 2023) to obtain an unbiased estimator and then compute NRMSE. The following
experimental results are obtained through 100 independent runs.

We first show the comparison between HDT-MCMC and baseline algorithms using the TVD metric in Figure 12, where
HDT outperforms its counterpart in both AS-733 and Whois graphs. In addition, for two baseline Then, we show the
performance ordering of HDT-MHRW in terms of different α values. As illustrated in Figure 13, a larger α leads to a
smaller TVD, aligning with our theoretical findings in our Theorem 3.3. We also test the performance of HDT-MCMC
with heuristic LRU cache scheme in Figure 14. In the Whois graph, HDT-MHRW combined with LRU results in a 10%
smaller TVD compared to the base MHRW, with over a 90% decrease in memory usage. On the other hand, on the AS-733
graph, the LRU caching scheme yields only modest benefits, achieving a 5% TVD reduction with approximately 50% less
memory consumption (with r = 0.5). In Figure 15, we compare the performance of HDT-MHRW and SRRW the under the
same computational budget. Since SRRW always requires computing the transition probability around its neighbor at each
iteration, it induces a large computation during sampling. In contrast, HDT-MHRW only queries one node per iteration,
making it more lightweight. In the experiment, we set α = 1 and the total steps as 30000 without a burn-in period. We
also observe HDT-MCMC achieves better performance in terms of TVD metric given any fixed budget. Moreover, the
performance gap between SRRW and HDT-MHRW is larger on the Whois graph, where average degree of is approximately
15 and is larger than average degree of AS 733, around 4. This also aligns with our Lemma 3.6 where the HDT framework
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provide more efficiency in dense graph under limited budget.

In the simulation of estimating the density of the node label, we retain the same test functions as in Appendix H.2 in our
submission. However, since the target distribution is no longer uniform, we have to use importance reweighting to adjust the
weight of each sample. In Figure 16, we show that in the long run, HDT-MCMC still outperforms its baseline counterpart.
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Figure 12. Comparison of HDT-MCMC with base chain MHRW, MTM, and MHDA via TVD metric in AS-733 and Whois graphs. The
plots in the right column is the zoom in version of those in the left column.
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Figure 13. Simulation of HDT-MHRW with different choices of α where MHRW can be viewed as the special case when α = 0.
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Figure 14. Performance of HDT-MHRW with LRU cache scheme.
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Figure 15. TVD comparison between HDT-MHRW and SRRW under budget constraints.
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Figure 16. Comparison of HDT-MCMC (with thicker solid curves) to base chain MHRW, MTM, and MHDA (with thinner dash-dot
curves) via NRMSE metric in AS-733 and Whois graphs. The plots in the right column is the zoom in version of those in the left column.
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