Under review as a conference paper at ICLR 2026

DYNA-THINK: SYNERGIZING REASONING, ACTING,
AND WORLD MODEL SIMULATION IN AI AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent progress in reasoning with large language models (LLMs), such as
DeepSeek-R1, demonstrates impressive capabilities in domains like mathemat-
ics and coding, by exhibiting complex cognitive behaviors such as verification,
goal decomposition, and self-reflection. However, it is unclear what behavior is
effective and what behavior is missing for agentic tasks. In this work, we propose
Dyna-Think, a thinking framework that integrates planning with an internal world
model with reasoning and acting to enhance Al agent performance. To enable
Dyna-Think, we propose Dyna-Think Imitation Learning (DIT) and Dyna-Think
Dyna Training (DDT). To initialize a policy with Dyna-Think, DIT reconstructs
the thinking process of R1 to focus on performing world model simulation relevant
to the proposed (and planned) action, and trains the policy using this reconstructed
data. To enhance Dyna-Think, DDT uses a two-stage training process to first
improve the agent’s world modeling ability for next state prediction and critique
generation, and then improve the agent’s action via policy training. We evaluate our
methods on OSWorld and WindowsAgentArena, and demonstrate that Dyna-Think
improves the agent’s in-domain and out-of-domain performance, achieving similar
best-of-n performance compared to R1 while generating 2x less tokens on average.
Our extensive empirical studies reveal that 1) using critique generation for world
model training is effective to improving policy performance; and 2) improving a
world model is effective to improving the performance of its Al agent. Our results
suggest a promising research direction to integrate world-model simulation into Al
agents to enhance their reasoning, planning, and acting capabilities.

1 INTRODUCTION

Autonomous Al agents powered by large language models (LLMs) have offered substantial promise
in real-world applications, automating digital tasks such as software engineering (Jimenez et al.|
2024} [Wang et al., [2024b; [Yang et al.| 2024a)), web navigation (Liu et al., |2018}; [Yao et al., [2023a}
Zhou et al., 2024b; |Koh et al., [2024a)), computer-use (Xie et al.,|2024; |Anthropic, [2025b; |Qin et al.,
2025]), and mobile device control (Rawles et al.l 2023} |2024; [Trivedi et al.|[2024). As many computer
use tasks require agents to interact with complex environments to achieve long-term objectives, one
critical challenge is to reason and act efficiently over a large decision space.

Recent methods of test-time scaling (Snell et al.l 2024) offer a potentially promising solution. For
example, | Yu et al.[(2023;|2024b); Zhou et al.| (2024a) show that LLM agents can significantly improve
performance using search algorithms such as Monte Carlo Tree Search (MCTS) to allow additional
interactions with the environment before decision-making. However, these methods require a large
amount of expensive, time-consuming interactions with a real (or a separately learned) world model,
limiting their applicability in real-world scenarios. Alternatively, many recent work (OpenAl, 2024
Valmeekam et al.,2024; Zhou et al.| |2025) finds that LLM agents can also improve their performance
by “thinking” longer, effectively internalizing parts of search into their reasoning process. For
example, models such as OpenAl ol/03 (OpenAll 2024} 2025a), Claude-3.7-Sonnet (Anthropicl,
2025al)), and DeepSeek-R1 (DeepSeek-Al et al.| [2025)) generate significantly longer reasoning chains
when faced with challenging tasks, exhibiting behaviors such as self-reflection, goal decomposition,
verification, exploration, and more (Gandhi et al.,|2025). Although many of these behaviors are
crucial for solving challenging long-horizon tasks, recent work also finds that these models suffer
from problems such as overthinking and fact-ignoring (Cuadron et al., 2025; Zhou et al., 2025), and

Under review as a conference paper at ICLR 2026

‘, g DeepSeek-R1
<think>Okay, let's tackle this task. The user wants to replace all instances of "text" with "file". First,

I see that the document opened... The menu bar has options like File, Edit...

Looking at the accessibility tree, the Edit button is at (484, 254). Clicking there should open the Edit
menu. From there, the Replace option might be available....

Alternatively, using Ctrl+H might be faster. But since the task requires using pyautogui, maybe
simulating the shortcut is better. Wait, but the user mentioned.. Alternatively, the
user might need to use Ctrl+Shift+F, but that's for searching across files...

Let's plan the steps:

1. Activate the VS Code window...; 2. Open the replace dialog using Ctrl+H...; 3. Then, type "text"..,
and execute Replace All.

Putting it all together: Click on the document to focus, open replace with Ctrl+H, type "text", tab,

But need to ensure that the cursor is in the correct place. Alternatively, after opening replace with
Ctrl+H, press Alt+A for Replace All. Wait, the default shortcut is Ctrl+Alt+Enter, ...

Action:
Click inside to focus
pyautogui.click(800, 600)

Open replace dialog
pyautogui.hotkey('ctrl', 'h")
pyautogui.write('text')
pyautogui.press('tab')
pyautogui.write('file')

Replace all
pyautogui.hotkey('ctrl', 'alt', 'enter")

[Token Count: 994

]

type "file", then send the Replace All shortcut.</think>
. o -
aD Dyna-Think

<think>Okay, the user wants to replace all instances of "text" with "file" in their document using
VSCode. First, if the Replace feature is accessible, we can use Find and Replace functionality.

The standard kevboard shortcut Ctrl+H obens the Replace inbut. Once opben. tvbina the find term
("text") and the replace term ("file")... If the Replace input field isn't visible, click on the "Find in
Files" button...

...using arrow keys or directly entering the Replace dialog might be necessary. However, without
visual cues, the most straightforward approach is to use keyboard shortcuts.

Simulatina this process: pressina Ctrl+H to open Reblace. then tvpina "text". naviaatina to the
replace field using Tab, typing "file", and running the Replace All command via Ctrl+Alt+Enter would
execute the task. Ensuring the focus is within the editor before invoking Replace is crucial.

Action:
Click on the editor to ensure focus
pyautogui.click(x=600, y=500)

Open Replace dialog
pyautogui.hotkey('ctrl', 'h")

find and replace, replace all
pyautogui.write('text')
pyautogui.press('tab')
pyautogui.write('file')
pyautogui.hotkey('ctrl', 'alt', 'enter")

Since the editor's position is at (496, 362), clicking there first to ensure focus might be beneficial.
Then, using keyboard shortcuts for efficiency. </think> [

Token Count: 314]

Figure 1: Dyna-Think focus on integrating world model simulation (shown in green) with reasoning
and acting. Behaviors that is not necessary to cause/has unclear contribution to the final action is
shown in . After training, we find Dyna-Think achieves similar BoN performance compared to
R1, while generating 2x less tokens on average and being only 32B in size.

are less efficient in certain tasks compared to non-reasoning models such as GPT-40 (Zhou et al.,
2023)). It is thus unclear what type of “thinking” is crucial to an agent’s performance for long-horizon
tasks, and how to improve it via learning from experiences.

The successes in Go, games, and robotics reveal that modeling and interacting with the environment is
key to solving challenging long-horizon tasks. The Dyna algorithms (Sutton, [1991) offer a promising
approach to combine real-world interactions with planning via simulation to improve an agent’s
policy. However, modeling the whole environment for tasks such as computer-use (e.g., predicting
screen content after entering ‘amazon.com’ in chrome) is challenging (Pathak et al.,|2017; Wang
et al., [2024a} [Fang et al., [2025} |Gu et al.l [2025). In contrast, research in cognitive sciences (Marr,
1982;Rao & Ballard, [1999) shows that the human brain encodes a compressed representation of the
external world, capturing only statistical regularities and meaningful structures related to current
tasks. We thus propose Dyna-Think, a thinking framework that performs “compressed” world model
simulation based on model-generated states and critiques (rewards), and integrates it with reasoning
and acting to improve an Al agent’s performance. illustrates the difference between the
Dyna-Think agent and DeepSeek-R1 using an example.

The Dyna-Think framework consists of Dyna-Think Imitation Learning (DIT) and Dyna-Think Dyna
Training (DDT). DIT improves a baseline agent policy by first distilling simulated experiences from
R1-generated thinking tokens, and then revising the baseline policy using the simulated experiences
via supervised learning. We finds models after DIT achieve a similar performance to R1-distilled
models, but with 2X less thinking tokens on average. To further improve DIT, we propose DDT, is
an extension to the Dyna-Q method (Sutton & Barto, [2018) that combines policy and world model
learning during online training. Similar to Dyna-Q, DDT first constructs policy and world model
training data using online rollouts in a real (digital) environment. Different from Dyna-Q, DDT is
applicable to the problems with arbitrarily large state-action space by leveraging the prior knowledge
encoded in a pre-trained LLM, and performs both policy learning and world model training based
on a single LLM. During world model training, the model encodes state transitions by optimizing
training objectives of next-state prediction and critiquing the states generated by its own. During
policy learning, the agent’s actions are improved using successful rollouts via reinforcement learning.

Under review as a conference paper at ICLR 2026

We evaluate Dyna-Think on OSWorld (Xie et al., 2024) and WindowsAgentArena (Bonatti et al.,
2024). Results show that Dyna-Think improves the agent’s in-domain and out-of-domain performance
compared to only performing policy training (e.g., reinforcement learning) or training a separate world
model (e.g., as in Dyna-Q), and that Dyna-Think leads to highly capable and cost-effective agents. For
example, our 32B-parameter Dyna-Think model achieves a similar best-of-n performance compared
to the much larger 685B-parameter R1 model, with 2x less tokens on average. Detailed analysis also
reveals that 1) the critique-style world model training is effective in improving policy; and 2) Al
agents with a stronger world model achieves better performance. Thus, our work demonstrates the
potential of integrating planning and learning to develop future agents powered by reasoning models.

2 RELATED WORK

Computer-Use Agents Computer-use agents powered by large (multimodal) language models
aim to automate tasks by controlling a computer, typically via GUI interactions with a virtual
Ubuntu/Windows (Xie et al., [2024; [Bonatti et al., 2024} /Anthropic, 2025b). Early computer-use
methods include reactive agents (Yao et al.,|2023b; | Xie et al.,|2024)) that directly prompts an LLM (e.g.,
GPT-40) to make decisions on immediate observations without simulation or planning approaches.
Recent advances include: 1) search-based methods (Zhou et al., 2024a; |Koh et al.,[2024b}; |Yu et al.|
2024b) that augments LLMs with look-ahead search algorithms such as MCTS; and 2) hierarchical-
planning methods that orchestrates multiple modules, tools, and LLMs to complete a task (Agashe
et al., [2024; [2025; [Liu et al.| 2025} |Gou et al., 2025} [Yang et al., [2024b). However, search-based
methods significantly increase inference time due to using additional interactions with the external
environment; and hierarchical-planning methods often require complex human-designed rules and
heuristics to coordinate multiple modules. We introduce our Dyna-Think framework to augment the
thinking process of a single LLM agent by performing action-centric world model simulation.

Training Al Agents Besides improving agent’s performance at test-time, many works also explored
methods to improve performance via training. Recent methods include |Chen et al.| (2023)); |Zhang
et al.[(2024); Zeng et al.| (2023); |Lai et al.|(2024); |Xu et al.| (2025) which perform supervised training
using human or machine generated trajectories based on direct prompting; |Qin et al.| (2025); |Su
et al.| (2025)); [Hong et al.| (2024)) which improves agent’s ability such as GUI grounding and error
recovery via SFT/DPO on human-machine collaboration data; and Bai et al.| (2024); |Chen et al.
(2025)); Jin et al.|(2025)), which explores using direct RL to improve agent’s policy within complex
tool-use/android-based environments. These methods focus on policy improvements based on an
existing thinking paradigm (e.g., ReACT or R1-style thinking). We propose DIT to improve the
agent’s reasoning ability by integrating world model simulation into its thinking process, and DDT to
further enhance policy training via world model training.

World Models Obtaining real-world data for large-scale training or test-time search are expensive
and may cause unintended consequences. To this end, early methods such as|Peng et al.|(2018); Wu
et al.| (2018)); [Fang et al.|(2025) consider Dyna-style training that separately trains a world model and
then enhance policy training using synthetic rollouts; and prompting LL.Ms as world models |[Hao
et al.| (2023); Kim et al.|(2024) in simplified environments such as BlocksWorld (Valmeekam et al.,
2023)). Recently, Chae et al.|(2025));|Gu et al.|(2025) trains a world model using a large corpus of web
data to facilitate inference-time algorithms such as MCTS. To our knowledge, this is the first work
to propose internalizing world model simulation into the agent’s thinking process, and to introduce
methods to further improve the agent’s policy by both world model and policy training.

Dyna Algorithms Dyna algorithms (Sutton, |I991) combine model-based and model-free methods
to learn optimal policies. These methods improve training efficiency of 7(#) by combining real-world
interaction with simulated planning. Given a set of real-world rollout data, Dyna algorithms typically
1) separately trains a world model W(u) using these rollouts; 2) perform additional rollouts using
W(u); and 3) trains 7(6) using both the real-world and simulated rollouts. Given a large set of
training tasks to perform rollouts, this two-stage training process can be repeated for multiple times.
Applications of Dyna algorithms with language models include Deep Dyna-Q (Peng et al.,[2018)),
Switch-DDQ (Wu et al., 2018)), Pseudo-DDQ (Zou et al.,|2020) and more, covering domains such as
movie-ticket booking and e-commerce product recommendations.

Under review as a conference paper at ICLR 2026

acting
/-> : world model learning
planmr? <\

1 acting 1 policy leaming WV 1
/N policy learning
0 QO o o lworldmode\ o o] 44— r

7T(9) policy learning w 7T(9) t@ g 7rw(0) Acllng) w

W(p)

(a) Reinforcement Learning (b) Dyna Training (c) Dyna-Think Training

Figure 2: Our Dyna-Think framework synergizes planning with world model simulation in an agent’s
reasoning process, and performs both world model training and policy training with my,(6).

3 DYNA-THINK FRAMEWORK

Accurate world simulation is challenging for Al agents. We propose Dyna-Think, a two-stage training
method to address this. First, we introduce DIT to synergize reasoning, acting, and
world model simulation in an agent’s thinking process via imitation learning. Then, we introduce
DDT to further improve its policy and world modeling ability via Dyna-style training.

3.1 TASK DEFINITION

Completing tasks in a complex environment (e.g., with a computer) is typically formulated as
a partially observable Markov decision process (POMDP) of (S, 0, A, T,R). In the context of
computer-use, S represents the set of possible computer states, O is the set of observations available
to the agent, .4 represents the set of executable actions as left/right-clicks at a location, typing, and
pressing keyboard shortcuts, 7 is the transition function 7 : S x A — S that determines the next
state given the current state and action, and R is the reward function that provides feedback to the
agent based on its actions. In typical computer-use benchmarks, o € O is either a screenshot of the
current computer screen or its text-based representation (e.g., accessibility tree); and r = 0 is zero if
the task has not terminated, and 7 = {0, 1} if the agent failed/succeeded the task at the end. Since
|A| is extremely large and tasks such as computer-use often requires many steps to complete, many
agent benchmarks remain challenging even for current state-of-the-art LLMs.

Given a task, a computer-use agent iteratively interact with the environment by generating an action
a; based on the current observation o; and the past history of observations and actions (0<;, a<;).
In this work, we refer to such language model policies parametrized by 6 as (), and learnt world
models parametrized by p as W(u). We denote policies that performs interaction with an internal
world model during its thinking process as my (6).

3.2 DYNA-THINK IMITATION LEARNING

Many expert LLMs capable of extensive thinking (e.g., DeepSeek R1, Claude-3.7-Sonnet, and
OpenAl’s 03) exhibits complex behaviors during its thinking process. This includes being able to
perform verification, self-reflection, error recovery, world modeling, and more. However, it is unclear
which behaviors are critical for decision-making in long-horizon Al agent tasks. In our preliminary
study, we find training on long CoT data with simulations/knowledge unrelated to the final action
degrades performance, a phenomenon also found in other domains (Zhou et al., 2024c; [Wu et al.|
2025). To enable Dyna-Think for “weak” non-reasoning models, we propose Dyna-Think Imitation
Learning (DIT) to first construct reasoning data that emphasizes on world simulation and perform
imitation learning. Specifically, DIT reconstructs R1’s thinking process to only contain text related
to reasoning, the final action, and the world modeling simulation related to the final action; and then
trains a policy using the reconstructed data. To perform this reconstruction, we few-shot prompt
GPT-4o (see[Appendix D|for examples and more details). After training, we refer to these models as
mw(0), highlighting their ability to perform world-model simulations during thinking.

Under review as a conference paper at ICLR 2026

3.3 DYNA-THINK DYNA TRAINING

Despite DIT learning, 7y (6) at inference time can still make mistakes when facing unseen states
unseen from training. However, creating a DIT training set that covers all possible states |S] is
intractable. To further improve DIT-trained models, we propose Dyna-Think Dyna Training (DDT),
a Dyna-style method that performs both policy and world model learning during online training.
Similar to Dyna, we first collect policy and world model learning data by performing m (6) rollouts
in the real environment. Different from Dyna, we then directly perform both policy and world model
learning on the same 7y (6) model. We illustrate our method in

Policy Training Alike reinforcement learning, the policy training stage aims to directly improve a
policy using environment feedback. This is achieved by first generating online rollouts with WV to
collect a trajectory 7 = (09, a1, 01, ag, ..., ar), and then constructing a policy learning dataset that
trains my (6) to predict each action a; given the previous context context (0g, a<;, 0<;) based on a
reward function (e.g., task success). Optimizing such reward can be done using algorithms such as
PPO (Schulman et al.,|2017), GRPO (Shao et al.| 2024), DPO (Rafailov et al., [2024])), or Rejection
Sampling (Bai et al.,|2022; Touvron et al., 2023).

World Model Training Data

@ T)

World Model Training Given a rollout trajectory | = !
T, we also construct world model training dataset to @ : Ta :
train myy (0) to model a function of the environment > iy ©.Qfs) - @
.. i . . . ‘ U ~ 0; 0; a; |
transition 7 (0;, a;). We experiment with three differ-) | Teritique " o

I Critic@(? |)_’ @ :

ent functions for 7; in this work. 7;(01‘7 a;) = 0j41 |)
which directly models the next state; Ta (0i,a;) — Legend: N R
A(04, 0i41|a;) which trains to predict relevant changes ~ [@Jovs: © smuaion fglacion §& crtaue [)ovs. o)
in the next state caused by a;; and ’tﬁtic(oi, a;) —
critic(o;, a;|0;11) which trains to predict a critique Figure 3: Three different forms of world
generated by an LLM (GPT-40) by comparing the model data experimented in DDT.

world model simulations in a,; with the previous and next state. An example world model simulation
could be “After opening the terminal with Ctrl+Alt+T, type ‘cp dir2/hi.txt dirl/’ to copy ...”, and an
example critique is “Wait, maybe we need to first ensure that ‘dirl’ exists in the current directory...”.
We illustrate these three functions in To utilize these objectives to enhance the world mod-
eling ability of the policy model, we optimize next-state prediction 7 and state-changes prediction
Ta as an “auxiliary” task trained by standard language modeling loss alongside policy training; and
we optimize ﬁrm by injecting the generated critique back into the action (a; = a; @ critic) and then
train the policy to predict critic tokens in a; using language modeling loss. Intuitively, T and Ta
enhance a policy’s world modeling ability implicitly, while Teritic 1S More explicit. For more details,

please sec and[E2

Finally, we combine policy and world model training, DDT follows Dyna methods and perform
two-stage learning by first training 7y (6) on the world model dataset, and then training 7y (6) on
the policy dataset. For pseudocode, please see[Algorithm I} For other implementation details such as

critique prompts and how training data is formatted, please refer to

4 EXPERIMENTS

4.1 BENCHMARKS

We mainly evaluate our methods on OSWorld (Xie et al.,[2024), a diverse benchmark consisting of
369 open-ended computer tasks that involves real web and desktop apps in open domains, OS file
I/O, and workflow tasks. Tasks are categorized into 10 different domains based on different desktop
applications involved, such as OS Terminal, LibreOffice Calc, LibreOffice Impress, LibreOffice
Writer, Chrome, VLC Player, Thunderbird, VS Code, GIMP and Workflow.

To evaluate the self-improving ability of Al agents, many methods (Huang et al.l [2022} |Yu et al.,
2024a;|Chen et al.| [2025; |Jin et al., 2025)) consider domains where the model has non-trivial initial
performance. However, in OSWorld we find many domains such as LibreOffice Calc and Workflow

Under review as a conference paper at ICLR 2026

to be extremely challenging, with current models achieving less than 10% success rate or solving
only 2-3 tasks often due to state representation issues (see [Appendix F.I)). To this end, we evaluate
our method on 5 domains that are more accessible to existing models, including OS, Chrome, VS
Code, GIMP, and Thunderbird; and also additionally on WindowsAgentArena (Bonatti et al., 2024)) to
further measure model’s generalization ability to a different operating system (Windows OS).

4.2 EXPERIMENTAL SETUP

Training/Testing Dataset Since most computer-use benchmarks were not designed for training, the
number of tasks available in each domain is often limited. We thus construct a training and test set by
1) manually augmenting existing tasks in each domain to increase its size; 2) construct training/test
splits for each domain, and 3) held out two domains (GIMP and Thunderbird) from training to
separately measure In-domain (ID) and Out-of-domain (OOD) performance. To augment a task,
we follow the principle that 1) action sequence that correctly completes task A does not complete the
augmented task A’; and 2) the augmented task A’ can still be evaluated using OSWorld’s evaluation
scripts after some adjustments. Please refer to for more details and example augmented
tasks. In we report the training and testing dataset statistics. For WindowsAgentArena, we
directly test on the official tasks as only OSWorld tasks were used in training.

Evaluation Details We evaluate all runs using the accessibility-tree mode (i.e., text-only) on both
benchmarks, and report task success for ID and OOD tasks. We use the same inference prompts and
hyperparameters (e.g., temperature of 1.0) provided by OSWorld, but extend the maximum number
of steps per task to 30 in order to measure scaling abilities. To provide a more robust evaluation for
these long-horizon tasks, we report the average success rate (Avg) and the Best-of-N success rate
(BoN) over 3 runs. Each evaluation is ran with 3 threads, lasting on average 18-24 hours to complete.

Training Details We train all of our models based on Qwen2.5-32B-Instruct (Qwen et al., [2025)
using 8xH100 GPUs. We use 32B models due to the limited learning ability of smaller models
for complex thinking patterns (L1 et al.l 2025). For simplicity, we use rejection sampling as the
optimization algorithm for policy training, and SFT for world model training. For all runs, we use
AdamW with a linear learning rate scheduler with 10% warmup steps. In the two-stage Dyna-Think
Dyna Training, we first perform world model training for 2 epoch with a max learning rate of Se-6,
and then continue training on policy learning data for 3 epochs with a max learning rate of Se-6.

4.3 MAIN RESULTS

Baselines We compare our Dyna-Think framework against 1) training-free methods based on
expert LLMs; and 2) related training methods. For training-free methods, we consider prompting
LLMs such as 03-mini and DeepSeek-R1 using REACT. For training-based methods, we consider
1) Reinforcement Finetuning (RFT) which only peforms policy learning, by finetuning on correct
rollouts after rejection sampling (Best-of-3); and 2) the vanilla Dyna algorithm (we follow |[Fang et al.
(2025))) which performs world model learning with a separate language model WW(y), and then trains
the policy using correct rolloutsﬂ collected with both the real W and the learned W (). Our DDT
method only uses rollouts with V¥ and performs policy and world model learning on a single model.

For a fair comparison, we use the same set of rollout trajectories (116 in total) to construct world
model (116) and policy training data (35 after rejection sampling, a similar data size as|Yu et al.
(2024b))) for all training methods, whenever possible.

Results We report our results on OSWorld in and results on WindowsAgentArena on
We first compare training-based methods. In[Table 1] we find that DDT training, especially
when trained with next-state prediction (DDT(7A')) and critique prediction (DDT(’fEritiC)) improves
upon both RFT and vanilla Dyna in both average success rate and BoN success rate. This indicates
that 1) world model training benefits policy training; and 2) directly training my (6) as a world model
is more effective than planning with a separately trained W(u). Next, we find that training with

critique data showed strong performance compared to training on state-difference (DDT(74)) and

'When rolling out with the learned Y/(), correctness of a trajectory is evaluated using an LLM (Fang et al.,
2025)). We use GPT-40 in this work.

Under review as a conference paper at ICLR 2026

Table 1: Average (AVG) and Best-of-N (BoN) success rate on OSWorld after policy and world model
learning. || and |WV| denotes the number of trajectories used during policy learning and world model
learning, respectively. “Gen. Token” denotes the 10th and 90th percentiles of output token lengths per
prompt generated by the models. All training are based on Qwen-2.5-32B-Instruct. All methods are
evaluated over 3 runs. For overall performance (All), we report average success + standard deviation.

Method ir| W| Gen. Token Avg Success Rate BoN Success Rate
(10%-90%) All(174) 1D(123) OOD(51) All(174) ID(123) OOD(51)
- (GPT-40-2024-11-20) - - 1.0x 16.5+2.5 19.5 9.2 31.6 36.6 19.6
- (Qwen2.5-32B-Instruct) - - 0.2x-0.8x 14.2+22 18.9 2.5 27.0 35.0 7.8
- (R1-distill-70B) - - 0.6x-2.2x 7.6+2.0 9.8 2.5 15.5 20.3 3.9
- (03-mini-2025-01-31) - - 3.4x-7.0x 20.5+1.4 23.3 13.7 31.0 36.6 17.6
- (R1) - - 1.7x-4.9x 31.2+1.4 35.8 20.2 44.8 48.8 353
DIT(R1) - - 1.1x-2.5x 22.6+1.0 26.8 12.4 35.6 40.7 23.5
+RFT 35 - 1.0x-2.7x 23.2+1.0 26.0 16.3 38.5 43.1 27.5
+vanilla Dyna 94 116 1.1x-2.5x 24.142.1 26.8 17.6 35.6 29.3 31.4
+DDT(T) 35 116 1.1x-2.7x 25.9+1.4 28.7 19.0 43.1 472 33.3
+DDT(7a) 35 116 1.2x-3.5x 23.240.7 27.6 12.4 38.5 44.7 235
+DDT(7riic) 35 116 1.2x-2.7x 26.6+1.5 30.3 17.6 44.3 49.6 31.4

Table 3: Integrating world model simulation (WM Sim) into reasoning. All training are based on
Qwen2.5-32B-Instruct. “R1 no-think” refers to only training on tokens after the “</think>" tag. Since
03-mini API does not return the model’s thinking process, it is unclear if it performs world modeling.

Method WM Sim? Gen. Token Avg Success Rate BoN Success Rate
(10%-90%) All(174) ID(123) OOD(51) All(174) ID(123) OOD(51)

- (GPT-40-2024-11-20) X 1.0x 16.5+2.5 19.5 9.2 31.6 36.6 19.6
- (Qwen2.5-32B-Instruct) X 0.2x-0.8x 142422 18.9 25 27.0 35.0 7.8
- (R1) v 1.7x-4.9x 31.2+1.4 35.8 20.2 44.8 48.8 353
DIRECT DISTILL(40) X 0.5x-1.7x 153424 18.5 7.8 28.7 34.1 15.7
DIRECT DISTILL(R1 no-think) X 0.1x-0.5x 17.1+2.1 19.3 11.8 28.2 30.9 21.6
DIRECT DISTILL(R1) v 1.6x-6.0x 20.9+£1.0 24.6 11.8 36.2 42.3 21.6
DIT(RI) v 1.1x-2.5x 22.6+1.0 26.8 124 35.6 40.7 23.5

on next-state prediction (DDT(7')). We believe this is because these critique data provide a more
direct signal for m, () to improve its world modeling and planning ability during inference (see

for more quantitative study). Table 2: WindowsAgentArena results.
Moreover, we find that training with the next-state prediction

objective (DDT(T)) shows strong performance for OOD Method Avg Success Rate
tasks, especially on WindowsAgentArena. We believe this is - (Qwen-32B) 23.941.1
because next-state prediction more effectively enhanced the - (R1) 26.9+1.5
model’s understanding of the deskptop environments, which pry(r1) 26.9+13

is useful for OOD where many states are entirely novel. +RFT 28.4+1.8
Finally, compared to best training-free methods such as + vanilla Dyna 20.9£1.1
prompting R1(685B), we find Dyna-Think achieves similar +DDT(T) 349114

BoN score, while generating 2x less tokens on average and +DDT(Toice) 38414

being only 32B in size. These results indicate the many
tokens/behaviors during R1-style reasoning may not be necessary, and that focusing on/improving
simulation ability is effective at improving agent performance.

4.4 THINKING BEHAVIOR ANALYSIS

We now investigate what behavior is essential for long-horizon AI agent tasks. We compares agents
with no-thinking; R1-style thinking, and Dyna-Think. For no-thinking, we consider 1) DIRECT
Di1STILL(40) which distills from GPT-40 that, to our observation, does not perform world modeling
(Chae et al., 2025)); and 2) DIRECT DISTILL(R1 no-think) which trains only on tokens after the
thinking process (by removing all text within the ‘<think></think>’ tags in each response). For
R1-style thinking, we consider DIRECT DISTILL(R1), which trains on the entire thinking process

Under review as a conference paper at ICLR 2026

Synthetic Task Generation

'
©

Generate N different task instruction in the
domain chrome. The list of tasks should be
diverse and cover a range of different
activities related to the given domain...

SRV
—»[l"']
Install the Grammarly extension
LR
Downloadanumu Guide PDF ()]

Search for "latest tech news" -_ &]
0 1500 3000 4500 6000

Rollouts # World Model Data from Synthetic Tasks (k)
(a) Generating synthetic tasks for rollouts. (b) Test performance.

N
©

IS
o

BoN Success Rate (%)
S »
w ~

Figure 4: Scaling world model learning with synthetic tasks generated by GPT-40. We use DDT(ﬁrmc)
and train from our best model in[Table 3] After world model training, we perform one-round of policy
training using the same set of policy learning data.

generated by R1. For Dyna-Think, we consider DIT(R1). For a fair comparison across different
methods, we use the same set of correct trajectories obtained by best-of-3 rejection sampling.

We present the results in First, we find that DIRECT DISTILL(R1 no-think) deteriorates
significantly compared to DIRECT DISTILL(R1), even though they are trained on the same set of
trajectories. This indicates that including long-CoT thinking during policy training is benefitial. Next,
we find that DIT(R1) achieved similar performance compared to DIRECT DISTILL(R1), despite
generating 2x less tokens on average. This suggests that the ability to perform reasoning with
world-model simulations is the central part in R1-style thinking, underscoring the importance of
world modeling in Al agents.

5 DISCUSSIONS

In this section, we study if the “upperbound” of our model’s performance (e.g., Best-of-3 success rate)
can be further improved via 1) scaling world model training data; and 2) iteratively bootstrapping
“better” policy data. Finally, we quantatively measure different model’s world model ability, and
compare it with their overall performance.

5.1 SCALING WORLD MODEL TRAINING IN DYNA-THINK

Since world model learning only requires interaction data (without evaluators for task success) with
the real VW, we investigate whether scaling world training in[Section 3.3|can further improve policy
performance. To test this, we 1) prompt GPT-40 to generate synthetic task instructions for each
domain; 2) use myy(#) collect rollout trajectories; and 3) construct a world model learning dataset
following Since no evaluator is required for world modeling data construction, we used
all rollout trajectories that terminated within a maximum of 30 steps. This results in a total of 703
additional trajectories for world model learning. For more details please see

We present our results in|[Figure 4] In[Figure 4b] we find that training with additional world model data
steadily improves model’s BoN success rate. This indicates that scaling world model training (with
synthetic tasks) enhances the agent’s environment understanding, enabling it to solve novel tasks.
However, we did not observe a substantial increase its “robustness” - the agent did not consistently
solve these novel tasks across all three trials. We believe this may be due to the stochastic nature of
real-world environments, and that increasing world model training data alone cannot ensure the agent
to robustly utilize all relevant world knowledge in its policy. We suggest future work should scale
both world model and policy training data together, by 1) manually creating a large set of agent tasks
with evaluators available for training; and/or 2) developing robust automatic evaluators (Pan et al.,
2024]) capable of evaluating synthetic tasks generated on-the-fly.

5.2 ITERATING POLICY TRAINING IN DYNA-THINK

We now investigate whether 7y (6) can be iteratively trained without any supervision from an expert
LLM (e.g., GPT-40 was used to critique simulation in[Section 3.3)). Specifically, we follow STaR
(Zelikman et al.| (2022), a simple method use for math and reasoning domain) and consider two

Under review as a conference paper at ICLR 2026

Instruction: Please help me use VS Code to open the "project_2" w/o eval hint
in the "user” folder under "/home".

IS
©

—e— w/ eval hint
HINT: The user will execute the following evaluation
config dict in the computer to check if the task is
completed correctly....
{

“func”: "compare_config”,

"expected": {

“type": "rule”, "rules": { "expected”: "project_2" }
) Added
“result”: int

IS
vl

BoN Success Rate (%)
w B
o N

“vscode_extension_command": "OpenProject”,
“path": "/home/user/OpenProject.txt”,
“dest": "OpenProject.txt"

}

w
o

} 0 1 2 3 4 5
where 'func’ is the main eval function to be executed...) Tra ining Iteration
(a) Rationalization with evaluation hint. (b) Test performance.

Figure 5: Iterative policy learning with and without adding evaluation configuration as hints. The
added evaluation dictionary (in blue) is part of the task configuration provided by OSWorld.

iterative training loops. Without Evaluation Hint (w/o eval hint), where we 1) first perform rejection
sampling using m,(0) on the training set; 2) perform policy learning on 7y (6); and 3) repeat. With
Evaluation Hint (w/ eval hint), where for tasks that () fail to solve during step 1, we perform
“rationalization” by appending the evaluation configuration to the original instruction (Fig a), and
then perform rejection sampling again on these tasks with evaluation hint. During training and testing,
we remove the added hints from the instruction. We report test performance over 5 training iterations.

We present our results in We find iterative training without rationalization (w/o eval hint)
quickly plateaus; and that training with rationalization (w/ eval hint) outperforms training without
rationalization. However, even when provided with evaluation configurations, we observe that 7y (6)
can only solve a portion of the tasks that it fails to solve otherwise. This indicates that agent tasks,
such as computer-use, remains to be a challenging domain for current language models.

Table 4: Measuring the world model ac-
5.3 QUANTIFYING WORLD MODEL ACCURACY curacy (Acc) and its correlation (1) with

. .) . task success rate.
In this work, we introduced Dyna-Think to integrate world

model learning with policy learning in a single m (6). To
measure the effectiveness of this world model learning, we
now evaluate the World Model Accuracy (Acc.) of differ-

Policy World Model
Avg BoN Acc r
R1-distill-70B 76 155 313 0.32

Method

ent models, and the Pearson Correlation Coefficient () R1 312 448 531 037
between the (average) world model accuracy for each task DITRI) 226 356 389 045
and the task success. To evaluate world model accuracy +RFT 232 385 466 037
given an action a;, = (think;, act;) generated by mp (), +DDT(Teriie) 266 443 557 0.44

we 1) prompt GPT-40 to extract the world model simulation text from think; that corresponds to act;;
and 2) prompt GPT-40 judge whether the extracted simulation is correct given the next state 0;11
after executing a;. For each model, we calculate this for every turn in each trajectory that terminated
within a maximum of 30 steps. Please refer to for prompts used and more details.

In we find that 1) models that achieve a higher success rate also achieve a higher world
model accuracy, and that 2) average world model accuracy for each task shows strong correlation
with task success, with a minimum correlation of 7 = 0.32 across all models. Next, we find that DDT
training significantly improved the world model accuracy (16.8% absolute) along with an improved
success rate, even though it was trained on the same set of policy data as RFT (see[Section 4.3). This
shows that combining world-model and policy learning effectively boosts Al agent performance.

6 CONCLUSION

We present Dyna-Think, a new thinking framework that synergizes reasoning, acting, and planning
by simulating with an internal world model to improve the performance of Al agents. Dyna-Think
consists of two training stages: DIT to initialize a model with simulation ability during reasoning,
and DDT for further improvement. We evaluated our methods on OSWorld and WindowsAgentArena,
and find our models based on Qwen2.5-32B-Instruct reach a similar best-of-n performance compared
to R1(685B), while generating 2x less tokens on average. Our empirical analysis reveals that 1)
critique-style world model training is effective for policy improvement; and 2) stronger Al agents
show stronger world modeling ability. Our results suggest a promising direction for integrating world
model simulation into Al agents to enhance their reasoning, planning, and acting abilities.

Under review as a conference paper at ICLR 2026

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human, 2024. URL https://arxiv.org/
abs/2410.08164.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2:
A compositional generalist-specialist framework for computer use agents, 2025. URL https:
//arxiv.org/abs/2504.00906.

Anthropic. Claude 3.7 Sonnet and Claude Code. https://www.anthropic.com/news/
claude—3-7-sonnet) 2025a. Accessed: 2025-05-13.

Anthropic. Introducing computer use, a new Claude 3.5 Sonnet, and Claude 3.5 Haiku. https://
www.anthropic.com/news/3-5-models—and-computer—use/, 2025b. Accessed:
2025-05-12.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning, 2024. URL
https://arxiv.org/abs/2406.11896.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, and et al. Constitutional ai:
Harmlessness from ai feedback, 2022. URL https://arxiv.org/abs/2212.08073.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu,
Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent
arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/abs/
2409.082604.

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong, Minju Gwak, Gwanwoo Song, Jihoon Kim,
Sunghwan Kim, Dongha Lee, and Jinyoung Yeo. Web agents with world models: Learning and
leveraging environment dynamics in web navigation, 2025. URL |https://arxiv.org/abs/
2410.13232.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao. Fireact:
Toward language agent fine-tuning, 2023. URL https://arxiv.org/abs/2310.05915,

Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger, Vladlen
Koltun, and Philipp Kridhenbiihl. Reinforcement learning for long-horizon interactive llm agents,
2025. URL https://arxiv.org/abs/2502.01600.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, Nicholas Thumiger, Aditya Desai, Ion Stoica,
Ana Klimovic, Graham Neubig, and Joseph E. Gonzalez. The danger of overthinking: Examining
the reasoning-action dilemma in agentic tasks, 2025. URL https://arxiv.org/abs/2502|
08235.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, and
et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URLhttps://arxiv.org/abs/2501.12948.

Tianqing Fang, Hongming Zhang, Zhisong Zhang, Kaixin Ma, Wenhao Yu, Haitao Mi, and Dong Yu.
Webevolver: Enhancing web agent self-improvement with coevolving world model, 2025. URL
https://arxiv.orqg/abs/2504.21024.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025. URL
https://arxiv.org/abs/2503.01307.

10

https://arxiv.org/abs/2410.08164
https://arxiv.org/abs/2410.08164
https://arxiv.org/abs/2504.00906
https://arxiv.org/abs/2504.00906
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/3-5-models-and-computer-use/
https://www.anthropic.com/news/3-5-models-and-computer-use/
https://arxiv.org/abs/2406.11896
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2410.13232
https://arxiv.org/abs/2410.13232
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2502.01600
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2504.21024
https://arxiv.org/abs/2503.01307

Under review as a conference paper at ICLR 2026

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents, 2025.
URL https://arxiv.org/abs/2410.05243.

Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari
Srivastava, Yanan Xie, Peng Qi, Huan Sun, and Yu Su. Is your llm secretly a world model of
the internet? model-based planning for web agents, 2025. URL https://arxiv.org/abs/
2411.065509.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model, 2023. URL https://arxiv,
org/abs/2305.14992.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A
visual language model for gui agents, 2024. URL |https://arxiv.org/abs/2312.08914|

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve, 2022. URL https://arxiv.org/abs/2210,
11610.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, and Madian Khabsa. Llama guard: Llm-based
input-output safeguard for human-ai conversations, 2023. URL https://arxiv.org/abs/
2312.06674.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning, 2025. URL https://arxiv.org/abs/2503.09516,

Doyoung Kim, Jongwon Lee, Jinho Park, and Minjoon Seo. How language models extrapolate
outside the training data: A case study in textualized gridworld, 2024. URL https://arxiv.
org/abs/2406.15275.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks, 2024a. URL https://arxiv.org/abs/
2401.136409.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents, 2024b. URL https://arxiv.org/abs/2407.01476!

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: Bootstrap and reinforce a large
language model-based web navigating agent, 2024. URL https://arxiv.org/abs/2404,
03648.

Yuetai Li, Xiang Yue, Zhangchen Xu, Fengqing Jiang, Luyao Niu, Bill Yuchen Lin, Bhaskar
Ramasubramanian, and Radha Poovendran. Small models struggle to learn from strong reasoners,
2025. URL https://arxiv.org/abs/2502.12143.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations (ICLR), 2018. URL https://arxiv.org/abs/1802.08802.

Haowei Liu, Xi Zhang, Haiyang Xu, Yuyang Wanyan, Junyang Wang, Ming Yan, Ji Zhang, Chunfeng
Yuan, Changsheng Xu, Weiming Hu, and Fei Huang. Pc-agent: A hierarchical multi-agent
collaboration framework for complex task automation on pc, 2025. URL https://arxiv.
org/abs/2502.14282.

11

https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2411.06559
https://arxiv.org/abs/2411.06559
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2312.08914
https://arxiv.org/abs/2210.11610
https://arxiv.org/abs/2210.11610
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2406.15275
https://arxiv.org/abs/2406.15275
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2407.01476
https://arxiv.org/abs/2404.03648
https://arxiv.org/abs/2404.03648
https://arxiv.org/abs/2502.12143
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/2502.14282
https://arxiv.org/abs/2502.14282

Under review as a conference paper at ICLR 2026

David Marr. Vision: A Computational Investigation into the Human Representation and Processing
of Visual Information. Henry Holt and Co., Inc., New York, NY, USA, 1982. ISBN 0716715678.

OpenAl. New and improved content moderation tooling. https://openai.com/index/
new—and-improved-content-moderation-tooling/} 2022. Accessed: 2025-05-13.

OpenAl Introducing OpenAl ol. https://openai.com/0l/} 2024. Accessed: 2024-09-29.

OpenAl Introducing OpenAl o3 and o4-mini. https://openai.com/index/
introducing-o3—-and-o4-mini/}, 2025a. Accessed: 2025-05-13.

OpenAl Computer-Using ~ Agent. https://openai.com/index/
computer—using—agent/, 2025b. Accessed: 2025-05-13.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents, 2024. URL https://arxiv.org/abs/2404,
06474,

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction, 2017. URL https://arxiv.org/abs/1705.05363|

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, Kam-Fai Wong, and Shang-Yu Su. Deep
dyna-q: Integrating planning for task-completion dialogue policy learning, 2018. URL https:
//arxiv.org/abs/1801.06176.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui interaction
with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, and et al. Qwen2.5 technical report, 2025. URL https:
//arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models, 2020. URL https://arxiv.org/abs/1910.
02054.

R. P. Rao and D. H. Ballard. Predictive coding in the visual cortex: a functional interpretation of
some extra-classical receptive-field effects. Nature neuroscience, 2(1):79-87, jan 1999. ISSN
1097-6256. doi: 10.1038/4580. URL http://dx.doi.org/10.1038/4580.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
the wild: A large-scale dataset for android device control, 2023. URL https://arxiv.org/
abs/2307.10088.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking
environment for autonomous agents, 2024. URL https://arxiv.org/abs/2405.14573,

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

12

https://openai.com/index/new-and-improved-content-moderation-tooling/
https://openai.com/index/new-and-improved-content-moderation-tooling/
https://openai.com/o1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/computer-using-agent/
https://openai.com/index/computer-using-agent/
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/1705.05363
https://arxiv.org/abs/1801.06176
https://arxiv.org/abs/1801.06176
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
http://dx.doi.org/10.1038/4580
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2405.14573
https://arxiv.org/abs/1707.06347

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/
2408.03314.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan O. Arik. Learn-by-
interact: A data-centric framework for self-adaptive agents in realistic environments, 2025. URL
https://arxiv.org/abs/2501.10893!

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 2(4):160-163, July 1991. ISSN 0163-5719. doi: 10.1145/122344.122377. URL https !
//doi.org/10.1145/122344.122377.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, and et al. Llama 2: Open foundation and fine-tuned chat
models, 2023. URL https://arxiv.org/abs/2307.09288.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents, 2024. URL https://arxiv.
org/abs/2407.18901.

Karthik Valmeekam, Sarath Sreedharan, Matthew Marquez, Alberto Olmo, and Subbarao Kambham-
pati. On the planning abilities of large language models (a critical investigation with a proposed
benchmark), 2023. URL https://arxiv.org/abs/2302.06706.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can Irms? a
preliminary evaluation of openai’s ol on planbench, 2024. URL https://arxiv.org/abs/
2409.13373.

Ruoyao Wang, Graham Todd, Ziang Xiao, Xingdi Yuan, Marc-Alexandre C6té, Peter Clark, and
Peter Jansen. Can language models serve as text-based world simulators?, 2024a. URL https |
//arxiv.org/abs/2406.06485.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fugiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Opendevin: An open platform for ai software
developers as generalist agents, 2024b. URL https://arxiv.org/abs/2407.16741,

Yuexin Wu, Xiujun Li, Jingjing Liu, Jianfeng Gao, and Yiming Yang. Switch-based active deep
dyna-q: Efficient adaptive planning for task-completion dialogue policy learning, 2018. URL
https://arxiv.org/abs/1811.07550.

Yuyang Wu, Yifei Wang, Tianqgi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Un-
derstanding chain-of-thought length in llms, 2025. URL https://arxiv.org/abs/2502,
07266.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024. URL https://arxiv.org/abs/
2404.07972.

13

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2501.10893
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2407.18901
https://arxiv.org/abs/2407.18901
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2406.06485
https://arxiv.org/abs/2406.06485
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/1811.07550
https://arxiv.org/abs/2502.07266
https://arxiv.org/abs/2502.07266
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972

Under review as a conference paper at ICLR 2026

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2025.
URL https://arxiv.org/abs/2412.04454.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024a. URL https://arxiv.org/abs/2405.15793.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-
ui: Visual grounding for gui instructions, 2024b. URL https://arxiv.org/abs/2412,
16256.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023a. URL https://arxiv,
org/abs/2207.01206.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv,
org/abs/2210.036209.

Xiao Yu, Maximillian Chen, and Zhou Yu. Prompt-based monte-carlo tree search for goal-oriented
dialogue policy planning, 2023. URL https://arxiv.org/abs/2305.13660,

Xiao Yu, Baolin Peng, Michel Galley, Jianfeng Gao, and Zhou Yu. Teaching language models to
self-improve through interactive demonstrations, 2024a. URL https://arxiv.org/abs/
2310.13522.

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng, Michel Galley, Jianfeng Gao, and Zhou Yu.
Exact: Teaching ai agents to explore with reflective-mcts and exploratory learning, 2024b. URL
https://arxiv.org/abs/2410.02052.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning, 2022. URL https://arxiv.org/abs/2203.14465.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for 1lms, 2023. URL https://arxiv.org/abs/2310.
12823l

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Awalgaonkar, Rithesh
Murthy, Eric Hu, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan Wang,
Silvio Savarese, and Caiming Xiong. xlam: A family of large action models to empower ai agent
systems. arXiv, 2024. URL https://arxiv.org/abs/2409.03215/

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2024a. URL https:
//arxiv.org/abs/2310.04406.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024b. URL https://arxiv.org/abs/
2307.13854.

Xueyang Zhou, Guiyao Tie, Guowen Zhang, Weidong Wang, Zhigang Zuo, Di Wu, Duanfeng Chu,
Pan Zhou, Lichao Sun, and Neil Zhenqgiang Gong. Large reasoning models in agent scenarios:
Exploring the necessity of reasoning capabilities, 2025. URL https://arxiv.org/abs/
2503.11074.

Zhanke Zhou, Rong Tao, Jianing Zhu, Yiwen Luo, Zengmao Wang, and Bo Han. Can language

models perform robust reasoning in chain-of-thought prompting with noisy rationales?, 2024c.
URLhttps://arxiv.org/abs/2410.23856.

14

https://arxiv.org/abs/2412.04454
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2412.16256
https://arxiv.org/abs/2412.16256
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2305.13660
https://arxiv.org/abs/2310.13522
https://arxiv.org/abs/2310.13522
https://arxiv.org/abs/2410.02052
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2409.03215
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2503.11074
https://arxiv.org/abs/2503.11074
https://arxiv.org/abs/2410.23856

Under review as a conference paper at ICLR 2026

Lixin Zou, Long Xia, Pan Du, Zhuo Zhang, Ting Bai, Weidong Liu, Jian-Yun Nie, and Dawei
Yin. Pseudo dyna-q: A reinforcement learning framework for interactive recommendation. In
Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM
20, pp. 816-824, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450368223. doi: 10.1145/3336191.3371801. URL https://doi.org/10.1145/
3336191.3371801.

15

https://doi.org/10.1145/3336191.3371801
https://doi.org/10.1145/3336191.3371801

Under review as a conference paper at ICLR 2026

A LLM USAGE

This work used LLMs as general-purpose writing assistants to improve the grammar and clarity of the
paper. We DO NOT use LLMs to generate research ideas, automate experiments, or analyze results.

B LIMITATIONS

Training Long-Horizon Trajectories Computer-use tasks on benchmarks such as OSWorld (Xie
et al.||2024)) often require 10 and sometimes up to 100 steps to complete using current LLM (OpenAl,
2025b; |Anthropic, [2025b). This makes model training challenging due to significantly increased
sequence length. In this work, we train each a; by keeping a maximum context length of 20480
tokens (about 3-4 turns), and use DeepSpeed Zero-3 (Rajbhandari et al.l [2020) to reduce memory
usage. In general, we believe memory-efficient methods to enable long-context training will be
beneficial, which we leave for future work.

Base Model Capability Powerful agents based on LLMs such as DeepSeek-R1 often have model
sizes reaching hundreds of billions of parameters. In this work, we used Qwen2.5-32B-Instruct as
we found training smaller models (e.g., 7B in size) yields limited performance improvements. We
believe this is due to the challenging nature of 1) computer-use tasks; and 2) learning long-CoT data
(L1 et al.| 2025). To significantly improve computer-use performance for these smaller models, we
believe substantial task-specific post-training may be required. We leave this for future work.

C ETHICS STATEMENT

Generally, while most methods and models are not designed for unethical usage, there is often
potential for abuse in their applications. Computer-use agents can be used for a wide-range of tasks
such as automating form filling, information gathering, software development, and more. In this
work, we proposed our Dyna-Think framework to enhance the performance and (token) efficiency
of Al agents. However, since computer-use agents are fundamentally task-agnostic, it is possible to
use them for unethical tasks such as scamming or disseminating false information on the internet.
We believe developing guardrails such as safety filters (OpenAlL [2022; [nan et al.| 2023)) are highly
valuable for Al agent research. We do not condone the use our Dyna-Think methods for any unlawful
or morally unjust purposes.

D DYNA-THINK IMITATION LEARNING DETAILS

<think>Okay, we are on the Chrome settings page. The
goal is to stop Chrome from opening funbrain.com every time.

We use GPT_40 to recopstmct Rl-Style reasoqlng ln The settings page has a search bar at (1224, 281). Clicking

tion 3.2] For each turn in an R1-generated trajectory, we thereishouidioctivatelfhelsearctibar end thentypingien
: X R R startup” could quickly navigate to the relevant section.

prompt GPT-40 to reconstruct a; given its immediate pre-

vious observation o;_; and relevant system instructions.

We present our prompt in[Table A4] A reconstructed out-

Y
UOHINIISUOIDI

put is shown in[Figure AT| For R1 responses within 550 / Simulating the process: cick the "Search
.. settings” button, type “on startup”, and press Enter. That
tokens, we do not perform abbreviation as these responses should filter the seffings to the "On startup” section. Then,
. N . check if the current setting is set to "Open a specific page
already mostly only constitutes verification, world model or set o pages”./think>
simulation, and action. To help ensure GPT-40 removes e

pyautogui.press(“enter")

as much token as possible, for each prompt we sample 5

outputs, and use the shortest output in our DIT training

corpus. Figure Al: Example reconstruction in
DIT. World simulation is in green.

E DYNA-THINK DYNA TRAINING DETAILS

E.1 WORLD MODEL DATA PROMPTS

To construct world model data, we experimented with three methods in Next-state
prediction (DDT('f')) which trains the model to directly predict the next state; State-difference
prediction (DDT(7A’A)) which trains the model to predict the difference A(0;,0;+1); and Simulation-
critique generation (DDT(ﬁmiC)), which trains the model to generate a critique for simulation in

16

Under review as a conference paper at ICLR 2026

a;. To obtain data for DDT(7A) we prompt GPT-40 using prompts in[Table A5| To obtain data for
DDT(7eitic), we first prompt GPT-4o to extract the world model simulation in a; corresponding to its
final action, and the prompt it to generate a critique using prompts in[Table A6] Example next-state,

state-difference, and simulation-critique data is shown in [Figure A3|

E.2 TRAINING DETAILS

We present an overview of Dyna-Think Dyna
Training in Given a set of roll-
out trajectories, we first perform world model
training and then perform policy training.
During policy training, the model 7y (6) is
trained to predict the next action a; given
its previous context using correct trajecto-
ries. During world model training, we ex-
periment with three data formats: DDT(7')
directly trains the model to predict the next
state 0;41; DDT(7Z) trains the model to pre-
dict a natural language description of the state
difference A(0;,0;41) generated by prompt-
ing GPT-4o (see and DDT(Fere)

trains the model to generate a critique for the

<think>Okay, let's see. The user wants to find the daily forecast
for New York on AccuWeather. The current accessibility tree
shows that they are on the AccuWeather homepage. There's an
entry field labeled "Search your Address, City or Zip Code” at
position (653, 429) with size (232, 20). That's probably where I

need to type "New York" to search. m
=

First, I should click on that search bar. The coordinates for the
center of the entry would be around (653 + 232/2, 429 + 20/2) =
(653 + 116, 429 + 10) = (769, 439). So pyautogui.click(769, 439).
Then type "New York” and press enter. <judge>Wait, perhaps
after typing '‘New York' into the search bar, an additional action
is needed to confirm or select the forecast for New

York.</judge> % m

After typing the city name, the forecast for New York should
load. So the next step is to click the search bar, type the city
name, and press enter.</think>

**“python

pyautogui.click(769, 439) # Click on the search bar
time.sleep(0.5)

pyautogui.write(New York")

time.sleep(0.5)

pyautogui.press(‘enter’)

time.sleep(2)

world model simulation in a; that caused 0,1
(sceTaBle A6).

To better localize the critique to its correspond-
ing world model simulation, we additionally
1) prompt GPT-40 to inject the critique back
to the original response; and 2) only train on
the critique by masking out all other tokens
(see [Figure A2). To inject a critique back into
a;, we 1) append an id “[[id=x]]” at the end of
every sentence in a;; and 2) prompt GPT-40 to output an injection location; and 3) inject the critique
back into the response based on the output id.

In we provide a high-level pseudocode for DDT. For world model training, we adopt
Language Modeling(LM) Loss:

Figure A2: Example simulation critique data. We
first prompt GPT-40 to extract the world model simu-
lation (shown in green) corresponding to the final ac-
tion; and then prompt GPT-40 to generate an critique
(shown in red) based on the extracted simulation and

the next state (see [Table A@). During training, all

tokens except for text in red is masked.

T
Lim(0) = = logm(w; | w<y), o))
t=1

During policy training, we use policy gradient to optimize the reward:

T

vSl:policy(o) = ETNWW(H) [Z VQ logﬂ_(at | Ot)R(T)] 3 (2)
t=0

where we use R(7) = 1 for successful tasks, otherwise 0. In our main experiment (Table T), we
perform [N = 1 iteration enable to have a fair comparison between the data used for policy and world
model training across different algorithms (RFT and vanilla Dyna). In[Section 5.2] we extend our
method to multiple iterations.

E.3 SYNTHETIC TASK GENERATION

Since world model training only requires rollout trajectories (regardless of their correctness), we
experiment with scaling up world model training by using GPT-40 to generate synthetic tasks for
rollouts. Specifically, we prompted GPT-40 using the template in and generated 200
tasks for each domain. To ensure diversity between tasks, we prompt GPT-4o0 to directly generate
N = 10 distinct tasks in a single prompt, and repeat this process 20 times for each domain. After

17

Under review as a conference paper at ICLR 2026

Algorithm 1 DDT Training (Policy + World Model with Critique Injection)

Require: Policy/world model 7y (), environment 7, rollout trajectory 7, reward function R

1: repeat N times > Data Collection:
2: Roll out myy(#) in T for trajectory 7 = (0p, a1, 01, az,...,ar)
3: Construct policy dataset D, < {(context(og, a<i, 0<;),a;, R)}
4: Construct world model dataset Dy, + {(0;, ai,0i11)}
> World Model Training:

5: for all (0;,a;,0,11) € Dy do
6: Option 1: Next-state prediction (DDT('7'))
Input (0;, a;), target 0; 1
£W|n — ELM(TFW (9)3 (0i7 a’i)a Oi—i—l) R
7: Option 2: State-change prediction (DDT(7x))
Input (0;, a;), target A(o;, 0;+1) (NL description from GPT-40)
Lum < Lov(mw (0), (05,), A(05,0i41))
8: Option 3: Critique prediction (DDT(7cigic))
(1) Append IDs [[1d=x]] to each sentence in a;
(2) Use GPT-4o0 to output injection location
(3) Inject critique — a;,
(4) Mask non-critique tokens in a
Lym +— Lim(mw (6), (0;, . . .), masked critique tokens)
9: end for
10: Update 6 < 0 — nVgLyn
> Policy Training:
11: for all (context, a;, R) € D, do

12: Ly < Lpoticy (mw (9), context, a;; R)
13: end for

14: Update 0 < 0 — nVoLl,

15: return 7y (0)

this generation process, we manually inspected multiple task and did not find obvious duplicates or
unreasonable tasks.

In practice, we notice that many tasks require additional configuration (e.g., setting up email profile
for the Thunderbird domain, or downloading an image to edit in GIMP). To accommodate this,
we consider a few domain-specific changes. For all synthetic tasks in the thunderbird domain, we
use the same email account configurations as used in the original OSWorld dataset. For the GIMP
domain, we augmented our prompt template in[Table A7|to additionally include an example GIMP
task configuration from the OSWorld dataset, and instructed the model to generate new tasks based
on the given configuration (see [Table Ag)). We then use the same task configuration used in the
prompt, but replace the instruction with our generated task. This process ensures that the agent has
the necessary initialization for the task (e.g., at least an image to edit). For all other domains (OS,
Chrome, VSCode), we use an empty configuration as they do not require additional resources.

Given these synthetic tasks, we directly perform rollouts using 7y (6). We then remove trajectories
that did not terminate within a maximum of 30 steps, and use all the remaining rollouts to construct
world model training data used in This resulted in a total of 6467 turns available for
training, 8x more than the world model training data used in

F OSWORLD DETAILS

F.1 ADDITIONAL DOMAINS

In[Table A2] we present our model performance on domains not included in our main except (VLC,
LibreOffice Impress, LibreOffice Writer, LibreOffice Calc, and Workflow). While we did observe
improvement on average after training, we find these are limited (e.g., 6% improvement in VLC only
corresponds to completing I additional task). Overall, we find solving tasks in these domains often
encounters representation issue, such as the need to interact with a video (in VLC) or making visual

18

Under review as a conference paper at ICLR 2026

[Next State]

tag name text class description position (top-left x&y) size (w&h)
label Home Home (1833, 1037) (40, 17)
push-button Minimise Minimise (1162, 185) (30, 30)
push-button Maximise Maximise (1202, 185) (30, 30)
push-button Close Close (1242, 185) (30, 30)
(...some content omitted)

link US WEATHER RADAR See More U.S Weather Radar (396, 875) (517, 335)
[Next State Diff.]

The feedback popup has been successfully closed. The "Close” Wait, perhaps after typing 'New York'
button and associated feedback elements are no longer into the search bar, an additional
present in the observation. The main flight search interface is action is needed to confirm or select
now fully visible again. the forecast for New York.

Figure A3: Example next-state, state-difference, and simulation-critique data used in DDT training.

changes to a powerpoint slide or document (in LibreOffice tasks). These visual information were
often missing or mis-represented in the text-modality (accessibility tree) provided by the OSWorld
benchmark. Thus, we mainly compare methods on domains such as OS, VSCode, Chrome, GIMP,
and Thunderbird, where most tasks are solvable under the text-modality.

F.2 TASK AUGMENTATIONS Table A1l: Number of tasks

As of the date of this work, OSWorld (Xie et al.,2024) is the largest- P°T domain in the training
scale computer-use benchmark available with 369 tasks covering 10 and test set.

domains. However, as creating evaluators for computer-use tasks is
non-trivial, this benchmark mainly serves as testing performances =~ Domain Train = Test
due to its limited size for training. To this end, we follow recent 0S 57 31
work (Su et al.} 2025) and increase the number of computer-use tasks. VSCode 46 38
Spemﬁgally, we manually create new t.asks by modlfymg the original ~prome 38 54
instruction; and/or the task initialization configuration; and the cor- GIMP _ 32
responding evaluator configuration. We ensure the resulting task is Tgird } 19
1) distinct from the original task, such that action sequences that can
correctly complete the original task does not complete the augmented tasks; and 2) can be correctly

evaluated by modifying the existing evaluator configurations. We present some example augmented
tasks in[Iable AJl

G ANALYSIS DETAILS

G.1 WORLD MODEL ACCURACY TEST

Given a trajectory from 7y (6) that performs world model simulation during its thinking process,
we 1) first prompt GPT-40 to extract the world model simulation corresponding to the final action
a;; and then 2) prompt GPT-40 to judge the correctness of this simulation given the next state. We
repeat this for every a; in a all trajectories that terminated within a maximum budget of 30 steps.
We present the prompts used to extract world model simulation in and prompts used to

measure simulation accuracy in[Table AT0]

19

Under review as a conference paper at ICLR 2026

Rollouts 7A_ World Model Data
© N 1
V Ta
Diff(,) —-Q
— ~ i i+1 i
':l$ i ’Tcritique

critic(Q) @ FRIS)— ¥
0; W,

— Policy Data
B2<® L R
T 09 a1 0; a; —‘

Figure A4: Illutration of Dyna-Think Dyna Training. Given a set of rollout trajectories, we first
perform world model training and then perform policy training.

Table A2: Model performance on additional domains (VLC, LibreOffice Impress, LibreOffice Writer,
LibreOffice Calc, and Workflow). All model training are based on Qwen-2.5-32B-Instruct. We
excluded these domains from because they often require visual interactions (e.g., VLC
involves video controls and LibreOffice Impress often needs slide edits) that the accessibility tree
often cannot represent.

Method Gen. Token Success Rate

(10%-90%) VLC (17) TImpress (47) Writer (23) Calc (47) Workflow (101)
- (Qwen2.5-32B-Instruct) 0.2x-1.0x 11.76 6.38 4.35 0.00 6.93
DIRECT DISTILL(R1) 2.0x-7.7x 17.65 4.26 8.70 2.13 6.93
DIT(R1) 1.3x-2.9x 11.76 2.12 13.04 2.13 7.92

Table A3: Example augmented tasks. We modify the task instruction and/or the initialization
configuration, such that action sequences that can correctly complete the original task does not
complete the augmented tasks.

Domain Task

oS // original task
Can you remove the first favorite app from ’favorites’?"

// augmented tasks
Can you remove thunderbird and google chrome from the *favorites’ apps?
Can you remove all the favorite apps except for thunderbird from ’favorites’?"

VSCode // original task
Please help me install the autoDocstring extension in VS Code."

/I augmented tasks
Please help me install the Live Server extension by Ritwick Dey in VS Code.
Please help me install the Auto Docstring and the Docker extension in VS Code.

Chrome /I original task
Find a men’s T-Shirt that is in large size with a stripe pattern, short sleeve and under
the Sales&Discount.

/I augmented tasks
Find a men’s T-Shirt that is blue, sleeveless and in XL size on Macy’s website.
Find a listing of woman’s sandals with ankle strap on Macy’s website."

20

Under review as a conference paper at ICLR 2026

Table A4: Prompts used abbreviate thinking in DIT. Generated response is shown in blue.

Role Prompt
System You are an agent which follow my instruction and perform desktop computer tasks
as instructed (...some content omitted)
You are asked to complete the following task: (...some content omitted)
User Given the info from accessibility tree as below:
tag name text class description position (top-left x&y) size (w&h)
label Home Home (1833, 1037) (40, 17)
(...some content omitted)
push-button Trash "" (0, 784) (70, 64)
toggle-button Show Applications "" (0, 1010) (70, 70)
What’s the next step that you will do to help with the task?
Assistant <think>Okay, the user is trying to (...some content omitted)</think>
“‘python
pyautogui.click(x=35, y=1045) # Click Show Applications
time.sleep(1)
pyautogui.write(‘terminal’)
(...some content omitted)
User ACTIONS TO BE EXECUTED:
“‘python
pyautogui.click(x=35, y=1045) # Click Show Applications
time.sleep(1)
pyautogui.write(‘terminal’)
(...some content omitted)
Your task now is to ABBREVIATE the THINKING process (inside the <think> xxx
</think> part) of the previous response.
Specifically, you need to KEEP THE FOLLOWING INFORMATION in the think-
ing section, while removing others as much as possible:
1. Thoughts related to verification: checking whether previous action has suc-
ceeded/failed. This is usually the first paragraph in the THINKING process.
2. Thoughts related to what could be potential actions to do next, if mentioned.
This usually follows after the verification process, (...some content omitted)
3. Thoughts related to final action simulation: simulating the outcome/process of
the ’ACTIONS TO BE EXECUTED?’ section (...some content omitted)
4. Other thoughts that you believe is necessary to logically connect step 2 to step 3
above.
5. Implementation details such as code snippets related to part 2 and 3 above
should also be KEPT.
{{one shot example}}
Now, abbreviate the thinking process in the <think> xxx </think> section of the
previous response. Your output should:
- keep the **ORIGINAL FORMATTING AND TONE** of the response (...some
content omitted)
- only **REMOVE UNNECESSARY THINKING PARTS WIHOUT TOUCH-
ING ANYTHING ELSE**. You can ONLY rephrase a few sentences if they are
necessary (...some content omitted)
- logically **CONNECT to the ’ACTIONS TO BE EXECUTED’ section**(...some
content omitted)
Respond in the following format. DO NOT generate anything else. Abbreviated
thinking process: <think>Okay, ...(your abbreviated thinking process)...</think>
Assistant

<think>Okay, the user is trying to*... some content omitted)</think>

Under review as a conference paper at ICLR 2026

Table A5: Prompts used to obtain A(o;, 0;41) data. Generated response is highlighted in blue.

Role

Prompt

System

User

Assistant

User

Assistant

You are an agent which follow my instruction and perform desktop computer tasks
as instructed (...some content omitted)
You are asked to complete the following task: (...some content omitted)

Given the info from accessibility tree as below:

tag name text class description position (top-left x&y) size (wé&h)
label Home Home (1833, 1037) (40, 17)

(...some content omitted)

toggle-button Show Applications "" (0, 1010) (70, 70)

What'’s the next step that you will do to help with the task?

<think>Okay, the user is trying to (...some content omitted)</think>
“‘python

pyautogui.click(x=35, y=1045) # Click Show Applications
time.sleep(1)

pyautogui.write(‘terminal’)

(...some content omitted)

1113

ACTIONS TO BE EXECUTED:

“‘python

pyautogui.click(x=35, y=1045) # Click Show Applications
time.sleep(1)

pyautogui.write(‘terminal’)

(...some content omitted)

1113

NEXT OBSERVATION AFTER EXECUTION:

tag name text class description position (top-left x&y) size (wé&h)
label Home Home (1833, 1037) (40, 17)

(...some content omitted)

toggle-button Show Applications "" (0, 1010) (70, 70)

Your task now is to describe changes in the next observation caused by the previous
action. Specifically, you need to describe what changes, if any, occured on the
"NEXT OBSERVATION AFTER EXECUTION’ after executing the ’ACTIONS
TO BE EXECUTED?’. The description should:

1. give high-level and functional description in detail after the action.

2. focus solely on describing the changes that are caused by the action.

3. if the ’NEXT OBSERVATION AFTER EXECUTION’ is identical to the previous
observation, say 'no changes’.

4. keep your description concise. **DO NOT explain why** certain changes
ocurred, only describe the changes in observation.

Now, describe the changes in "'NEXT OBSERVATION AFTER EXECUTION’ that
are likely caused by ’ACTIONS TO BE EXECUTED’ section. Respond in the
following format. DO NOT generate anything else. Keep your answer within 3
sentences.

Changes description: <your description of the changes>

Changes description: The terminal has been (...some content omitted)

22

Under review as a conference paper at ICLR 2026

Table A6: Prompts used to obtain Critic(o;, a;|0;+1) data. Generated response is highlighted in blue.
Extracted world model simulation from the agent’s response is shown in green.

Role

Prompt

System

User

Assistant

User

Assistant

You are an agent which follow my instruction and perform desktop computer tasks
as instructed (...some content omitted)
You are asked to complete the following task: (...some content omitted)

Given the info from accessibility tree as below:

tag name text class description position (top-left x&y) size (wé&h)
label Home Home (1833, 1037) (40, 17)

(...some content omitted)

toggle-button Show Applications "" (0, 1010) (70, 70)

What’s the next step that you will do to help with the task?

<think>Okay, the user is trying to (...some content omitted)</think>
“‘python

pyautogui.click(x=35, y=1045) # Click Show Applications
time.sleep(1)

pyautogui.write(‘terminal’)

(...some content omitted)

1113

ACTIONS TO BE EXECUTED:

“‘python

pyautogui.click(x=35, y=1045) # Click Show Applications
time.sleep(1)

pyautogui.write(‘terminal’)

(...some content omitted)

1113

RELATED THINKING FROM PREVIOUS RESPONSE:
Clicking on the ‘Show Applications’ will open an application grid. Then, we can
(...some content omitted).

NEXT OBSERVATION AFTER EXECUTION:

tag name text class description position (top-left x&y) size (wé&h)
label Home Home (1833, 1037) (40, 17)

(...some content omitted)

toggle-button Show Applications "" (0, 1010) (70, 70)

Your task now is to JUDGE if the action (in the ’ACTIONS TO BE EXECUTED’
section) achieved the intended effect in the ’ACTUAL NEXT STATE’ section.
Specifically, you need to:

1. decide whether the ’'RELATED THINKING FROM PREVIOUS RESPONSE’
section is correct based on the ’ACTUAL NEXT STATE’ section.

2. provide a confidence score from O to 5 for the above judgment, where 0 means
"not at all confident’ and 5 means ’very confident’.

3. if you think 'RELATED THINKING FROM PREVIOUS RESPONSE’ is
incorrect, provide a one-sentence reason (...some content omitted)

4. if you thin the 'RELATED THINKING FROM PREVIOUS RESPONSE’ is
correct, provide a one-sentence reason (...some content omitted)

NOTE: if the thinking is CORRECT, then the hint should:

- (...some content omitted) - start with *Yes, ...".

NOTE: if the thinking is INCORRECT, then the hint should:

- (...some content omitted) - start with *Wait, ...". (...some content omitted)

1s_simulation_correct: False

confidence: 5

reason: Terminal application is not present in the next state (...some content omitted)
in_context_hint: Wait, maybe we onzeed to wait a bit before typing ‘terminal’, or ...

Under review as a conference paper at ICLR 2026

Table A7: Prompts used to generate synthetic task instructions in domains excluding GIMP. Generated
response is highlighted in blue, with {domain} set to chrome.

Role Prompt

User You are a helpful assistant. Imagine you are in an Ubuntu VMware environment,
with access to applications like os, vscode, chrome, gimp, thunderbird, etc.
Your mission is to generate a list of 10 task instructions that can be performed in
this environment, and the tasks should be related to a given domain (application),
which means the tasks can be solved mainly by this application.
You should guarantee:
(1) The tasks should be clear to understand and should be related to common
activities that a user might perform in a virtual machine environment.
(2) The tasks should not be exploratory, i.e. whether the tasks are completed
correctly should be verifiable. You should avoid using words like "set a secure
password", "install a specific software", etc. Instead, you should explicitly nominate
these by making up them or using your knowledge.
(3) The tasks should be interesting and challenging, but not too complicated, i.e. a
user may accomplish them in a few minutes.
(4) You don’t need to consider the exact environment, such as the file structure and
the application versions, etc. You can add details to the tasks as long as they look
reasonable and not too complicated.
(5) The list of tasks should be diverse and cover a range of different activities related
to the given domain.
(6) You should NOT add indexes or titles to the tasks. Directly list the task
instructions split by new lines.
The domain for the tasks is ""

nn

{domain}"".

Assistant Access the Chrome settings and enable "Do Not Track" requests for all websites.

Open Chrome and go to the YouTube website. Search for a video on sports topic
and add it to the "Watch Later" playlist to ensure you can access it later.

Set up Chrome to automatically translate web pages written in a foreign language
to English using the built-in translation feature.

Use Chrome to download a PDF version of a popular Ubuntu guide, ensuring it’s
saved to the "Downloads" folder.

Use the "Save as PDF" feature in Chrome to save an online recipe from a cooking
website to your desktop.

Enable the reading list feature in Chrome’s settings. Add three different articles
from any technology news website to the reading list and mark one as read.

Open Chrome and navigate to a tech news website like TechCrunch. Bookmark the
homepage and create a new folder named "Tech News" in your bookmarks bar for
future reference.

Open Chrome and navigate to a weather website like weather.com. Search for the
weather forecast of your city for the next week and take a screenshot of the results.

Access Chrome’s "Task Manager" by clicking "More tools" and "Task Manager."
Identify the process consuming the most memory and end the task to free up
resources.

Open Chrome and navigate to the Chrome Web Store. Install the Grammarly
extension and verify that it is enabled by checking the extensions list in the browser
settings.

24

Under review as a conference paper at ICLR 2026

Table A8: Prompt used to generate synthetic tasks for the GIMP domain.

GIMP Prompt

You are a helpful assistant. Imagine you are in an Ubuntu VMware environment, with access
to applications like os, vscode, chrome, gimp, thunderbird, etc.

The followings are an example of a pair of task instruction and corresponding environment
setup configuration for GIMP:

[Environment setup configuration]: {{config}}

[Task instruction]: {{instruction}}

Your mission is to generate a list of 10 task instructions which are also related to gimp and can
all be performed with the SAME environment setup configuration as the above example.
You should guarantee: The tasks should be clear to understand and should be related to realistic
activities. The tasks could be interesting, challenging, and properly complicated, i.e. a user
may accomplish them in a few minutes.

If the example’s configuration is empty, you should ONLY consider tasks that does not require
any image operations, such as starting from a blank canvas, or changing the settings of gimp
itself.

For the result you generate, please make sure:

The list of tasks should be diverse and cover a range of different activities related to gimp.
They should be DISTINCT from each other and the examples provided.

You should NOT add indexes or titles to your answers. Directly list the task instructions split
by new lines.

25

Under review as a conference paper at ICLR 2026

Table A9: Prompts used to extract world model simulation. Generated response is in blue.

Role

Prompt

System

User

Assistant

User

Assistant

You are an agent which follow my instruction and perform desktop computer tasks
as instructed (...some content omitted)
You are asked to complete the following task: (...some content omitted)

Given the info from accessibility tree as below:

tag name text class description position (top-left x&y) size (w&h)
label Home Home (1833, 1037) (40, 17)

(...some content omitted)

toggle-button Show Applications "" (0, 1010) (70, 70)

What’s the next step that you will do to help with the task?

<think>Okay, the user is trying to (...some content omitted)</think>
“‘python

pyautogui.click(x=35, y=1045) # Click Show Applications
time.sleep(1)

pyautogui.write(‘terminal’)

(...some content omitted)

1113

ACTIONS TO BE EXECUTED:

“‘python

pyautogui.click(x=35, y=1045) # Click Show Applications
time.sleep(1)

pyautogui.write(‘terminal’)

(...some content omitted)

1133

Your task now is to ANNOTATE the thinking process of the previous action.
Specifically, you need to EXTRACT the simulation process behind the ’ACTIONS
TO BE EXECUTED’ section above. You should find them inside the previous
response (e.g., inside <think> xxx </think>).

The extracted simulation process:

1. SHOULD mention the high level plan of these actions, if exists

2. SHOULD mention the ALL the action in the ’ACTIONS TO BE EXECUTED’
section AND the effect each action was supposed to have. If this is missing for
some actions, you can fill in your best guess based on the context.

3. SHOULD ONLY mention any action or effect included in the ’ACTIONS TO
BE EXECUTED?’ section.

4. SHOULD keep the original formatting and tone of the response.

5. If you DID NOT FIND ANY such simluation process exists in the previous
response, you should still follow rule 2 but set the *has_world_model_simulation’
to False.

FOR EXAMPLE, given the following action and original response:
{{one shot example} }

Now, extract the simulation process for the ’ACTIONS TO BE EXECUTED’
section.

has_world_model_simulation: True
simulation_process: Clicking ‘Show Applications’ should open an application grid,
with search bar at... In the search bar we can type (...some content omitted)

26

Under review as a conference paper at ICLR 2026

Table A10: Prompts used to test simulation accuracy. World model simulation is in green. Generated
response is in blue.

Role Prompt

System You are an agent which follow my instruction and perform desktop computer tasks
as instructed (...some content omitted)
You are asked to complete the following task: (...some content omitted)

User Given the info from accessibility tree as below:

tag name text class description position (top-left x&y) size (w&h)
label Home Home (1833, 1037) (40, 17)

(...some content omitted)

toggle-button Show Applications "" (0, 1010) (70, 70)

What’s the next step that you will do to help with the task?

Assistant <think>Okay, the user is trying to (...some content omitted)</think>
“‘python
pyautogui.click(x=35, y=1045) # Click Show Applications
time.sleep(1)
pyautogui.write(‘terminal’)
(...some content omitted)

1113

User RELATED THINKING FROM PREVIOUS RESPONSE:
Clicking on the ‘Show Applications’ will open an application grid. Then, we can
(...some content omitted).

ACTIONS TO BE EXECUTED:

“‘python

pyautogui.click(x=35, y=1045) # Click Show Applications
time.sleep(1)

pyautogui.write(‘terminal’)

(...some content omitted)

1113

ACTUAL NEXT STATE:

tag name text class description position (top-left x&y) size (w&h)
label Home Home (1833, 1037) (40, 17)

(...some content omitted)

toggle-button Show Applications "" (0, 1010) (70, 70)

Your task now is to JUDGE if the action (in the ’ACTIONS TO BE EXECUTED’
section) achieved the intended effect in the ’ACTUAL NEXT STATE’ section.
Specifically, you need to:

1. decide whether the 'RELATED THINKING FROM PREVIOUS RESPONSE’
section is correct based on the ’ACTUAL NEXT STATE’ section.

2. provide a confidence score from O to 5 for the above judgment, where 0 means
"not at all confident’ and 5 means ’very confident’.

3. if you think the 'RELATED THINKING FROM PREVIOUS RESPONSE’ is
incorrect, provide a one-sentence reason of which part of the thinking may cause
the error.

4. if you think the 'RELATED THINKING FROM PREVIOUS RESPONSE’ is
correct, provide a one-sentence reason why you think so.

Assistant is_simulation_correct: False
confidence: 5
reason: Terminal application is not present in the next state (...some content omitted)

27

	Introduction
	Related Work
	Dyna-Think Framework
	Task Definition
	Dyna-Think Imitation Learning
	Dyna-Think Dyna Training

	Experiments
	Benchmarks
	Experimental Setup
	Main Results
	Thinking Behavior Analysis

	Discussions
	Scaling World Model Training in Dyna-Think
	Iterating Policy Training in Dyna-Think
	Quantifying World Model Accuracy

	Conclusion
	LLM Usage
	Limitations
	Ethics Statement
	Dyna-Think Imitation Learning Details
	Dyna-Think Dyna Training Details
	World Model Data Prompts
	Training Details
	Synthetic Task Generation

	OSWorld Details
	Additional Domains
	Task Augmentations

	Analysis Details
	World Model Accuracy Test

