
Under review as a conference paper at ICLR 2021

UNEVEN: UNIVERSAL VALUE EXPLORATION FOR
MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper focuses on cooperative value-based multi-agent reinforcement learn-
ing (MARL) in the paradigm of centralized training with decentralized execution
(CTDE). Current state-of-the-art value-based MARL methods leverage CTDE to
learn a centralized joint-action value function as a monotonic mixing of each
agent’s utility function, which enables easy decentralization. However, this mono-
tonic restriction leads to inefficient exploration in tasks with nonmonotonic re-
turns due to suboptimal approximations of the values of joint actions. To address
this, we present a novel MARL approach called Universal Value Exploration (Un-
eVEn), which uses universal successor features (USFs) to learn policies of tasks
related to the target task, but with simpler reward functions in a sample efficient
manner. UneVEn uses novel action-selection schemes between randomly sampled
related tasks during exploration, which enables the monotonic joint-action value
function of the target task to place more importance on useful joint actions. Em-
pirical results on a challenging cooperative predator-prey task requiring significant
coordination amongst agents show that UneVEn significantly outperforms state-
of-the-art baselines.

1 INTRODUCTION

Learning control policies for cooperative multi-agent reinforcement learning (MARL) remains chal-
lenging as agents must search the joint-action space, which grows exponentially with the number of
agents. Current state-of-the-art value-based methods such as VDN (Sunehag et al., 2017) and QMIX
(Rashid et al., 2020b) learn a centralized joint-action value function as a monotonic factorization of
decentralized agent utility functions and can therefore cope with large joint action spaces. Due to
this monotonic factorization, the joint-action value function can be decentrally maximized as each
agent can simply select the action that maximizes its corresponding utility function.

This monotonic restriction, however, prevents VDN and QMIX from representing nonmonotonic
joint-action value functions (Mahajan et al., 2019) where an agent’s best action depends on what ac-
tions the other agents choose. For example, consider a predator-prey task where at least three agents
need to coordinate to capture a prey and any capture attempts by fewer agents are penalized with a
penalty of magnitude p. As a result, both VDN and QMIX tend to get stuck in a suboptimal equi-
librium (also called the relative overgeneralization pathology, Panait et al., 2006; Wei et al., 2018)
in which agents simply avoid the prey (Mahajan et al., 2019; Böhmer et al., 2020). This happens
for two reasons. First, depending on p, successful coordination by at least three agents is a needle
in the haystack and any step towards it is penalized. Second, the monotonically factorized joint-
action value function lacks the representational capacity to distinguish the values of coordinated and
uncoordinated joint actions during exploration.

Recent work addresses the problem of inefficient exploration by VDN and QMIX due to monotonic
factorization. QTRAN (Son et al., 2019) and WQMIX (Rashid et al., 2020a) address this problem
by weighing important joint actions differently, which can be found by simultaneously learning a
centralized value function, but these approaches still rely on inefficient ε-greedy exploration which
may fail on harder tasks (e.g., the predator-prey task above with higher value of p). MAVEN (Ma-
hajan et al., 2019) learns an ensemble of monotonic joint-action value functions through committed
exploration by maximizing the entropy of the trajectories conditioned on a latent variable. Their
exploration focuses on diversity in the joint team behaviour using mutual information. By contrast,

1

Under review as a conference paper at ICLR 2021

this paper proposes Universal Value Exploration (UneVEn), which follows the intuitive premise that
tasks with a simpler reward function than the target task (e.g., a smaller miscoordination penalty
in predator-prey) can be efficiently solved using a monotonic factorization of the joint-action value
function. Therefore, UneVEn samples tasks related to the target task, that are often easier to solve,
but often have similar important joint actions. Selecting actions based on these related tasks dur-
ing exploration can bias the monotonic approximation of the value function towards important joint
actions of the target task (Son et al., 2019; Rashid et al., 2020a), which can overcome relative over-
generalization. To leverage the policies of the sampled related tasks, which only differ in their
reward functions, UneVEn uses Universal Successor Features (USFs, Borsa et al., 2018) which have
demonstrated excellent zero-shot generalization in single-agent tasks with different reward func-
tions (Barreto et al., 2017; 2020). USFs generalize policy dynamics over tasks using Universal
Value Functions (UVFs, Schaul et al., 2015), along with Generalized Policy Improvement (GPI,
Barreto et al., 2017), which combines solutions of previous tasks into new policies for unseen tasks.

Our contributions are as follows. First, we propose Multi-Agent Universal Successor Features
(MAUSFs) factorized into novel decentralized agent-specific SFs with value decomposition net-
works (Sunehag et al., 2017) from MARL. This factorization enables agents to compute decentral-
ized greedy policies and to perform decentralized local GPI, which is particularly well suited for
MARL, as it allows to maximize over a combinatorial set of agent policies. Second, we propose
Universal Value Exploration (UneVEn), which uses novel action-selection schemes based on re-
lated tasks to solve tasks with nonmonotonic values with monotonic approximations thereof. We
evaluate our novel approach in predator-prey tasks that require significant coordination amongst
agents and highlight the relative overgeneralization pathology. We empirically show that UneVEn
with MAUSFs significantly outperforms current state-of-the-art value-based methods on the target
tasks and in zero-shot generalization (Borsa et al., 2018) across MARL tasks with different reward
functions, which enables us to leverage UneVEn effectively.

2 BACKGROUND

Dec-POMDP: A fully cooperative decentralized multi-agent task can be formalized as a decentral-
ized partially observable Markov decision process (Dec-POMDP, Oliehoek et al., 2016) consisting
of a tuple G = 〈S,U , P,R,Ω, O, n, γ〉. s ∈ S describes the true state of the environment. At
each time step, each agent a ∈ A ≡ {1, ..., n} chooses an action ua ∈ U , forming a joint action
u ∈ U ≡ Un. This causes a transition in the environment according to the state transition kernel
P (s′|s,u) : S × U × S → [0, 1]. All agents are collaborative and share therefore the same reward
function R(s,u) : S × U → R and γ ∈ [0, 1) is a discount factor.

Due to partial observability, each agent a cannot observe the true state s, but receives an observation
oa ∈ Ω drawn from observation kernel oa ∼ O(s, a). At time t, each agent a has access to its
action-observation history τat ∈ Tt ≡ (Ω × U)t × Ω, on which it conditions a stochastic policy
πa(uat |τat). τt ∈ T nt denotes the histories of all agents. The joint stochastic policy π(ut|st, τt) ≡∏n
a=1 π

a(uat |τat) induces a joint-action value function : Qπ(st, τt,ut) = E [Gt|st, τt,ut], where
Gt =

∑∞
i=0 γ

irt+i is the discounted return.

CTDE: We adopt the framework of centralized training and decentralized execution (CTDE Krae-
mer & Banerjee, 2016), which assumes access to all action-observation histories τt and global state
st during training, but each agent’s decentralized policy πa can only condition on its own action-
observation history τa. This approach can exploit information that is not available during execution
and also freely share parameters and gradients, which improves the sample efficiency considerably
(see e.g., Foerster et al., 2018; Rashid et al., 2020b; Böhmer et al., 2020).

Value Decomposition Networks: A naive way to learn in MARL is independent Q-learning
(IQL, Tan, 1993), which learns an independent action value function Qa(τat , u

a
t ; θa) for each agent

a that conditions only on its local action-observation history τat . To make better use of other
agents’ information in CTDE, value decomposition networks (VDN, Sunehag et al., 2017) repre-
sent the joint-action value function Qtot as a sum of per-agent utility functions Qa: Qtot(τ ,u; θ) ≡∑n
a=1Q

a(τa, ua; θ). Each Qa still conditions only on individual action-observation histories and
can be represented by an agent network that shares parameters across all agents. The joint-action
value function Qtot can be trained using Deep Q-Networks (DQN, Mnih et al., 2015). Compared
to VDN, QMIX (Rashid et al., 2020b) allows joint-action value function Qtot to be represented as

2

Under review as a conference paper at ICLR 2021

a nonlinear monotonic combination of individual utility functions. The greedy joint action in both
VDN and QMIX can be computed decentrally by individually maximizing each agent’s utility. See
OroojlooyJadid & Hajinezhad (2019) for a more in-depth overview of cooperative deep MARL.

Task based Universal Value Functions: In this paper, we consider tasks that differ only in their
reward functions Rw(s,u) ≡ w>φ(s,u), which are linear combinations of a set of basis functions
φ : S × U → Rd. Intuitively, the basis functions φ encode potentially rewarded events, such
as opening a door or picking up an object. We use the weight vector w to denote the task with
reward function Rw. Universal Value Functions (UVFs, Schaul et al., 2015) is an extension of DQN
that learns a generalizable value function conditioned on tasks. UVFs are typically of the form
Qπ(st,ut,w) to indicate the action-value function of task w under policy π at time t as:

Qπ(st,ut,w) = Eπ
[∞∑
i=0

γiRw(st+i,ut+i)
∣∣ st,ut] = Eπ

[∞∑
i=0

γi φ(st+i,ut+i)
>w

∣∣ st,ut]. (1)

Successor Features: The Successor Representation (Dayan, 1993) has been widely used in single-
agent settings (Barreto et al., 2017; 2018; Borsa et al., 2018) to generalize across tasks with given
reward specifications. By simply rewriting the definition of the action value function Qπ(st,ut,w)
of task w from Equation 1 we have:

Qπ(st,ut,w) = Eπ
[∞∑
i=0

γi φ(st+i,ut+i)
∣∣ st,ut]>w ≡ ψπ(st,ut)

>w , (2)

where ψπ(s,u) are the Successor Features (SFs) under policy π. For the optimal policy π?z of task
z, the SFs ψπ

?
z summarize the dynamics under this policy, which can then be weighted with any

reward vector w ∈ Rd to instantly evaluate policy π?z on it: Qπ
?
z (s,u,w) = ψπ

?
z (s,u)>w.

Universal Successor Features and Generalized Policy Improvement: Borsa et al. (2018) intro-
duce universal successor features (USFs) which learns SFs conditioned on tasks using the general-
ization power of UVFs. Specifically, they define UVFs of the form Q(s,u, z,w) which represents
the value function of policy πz evaluated on task w ∈ Rd. These UVFs can be factored using the
SFs property (Equation 2) as: Q(s,u, z,w) = ψ(s,u, z)>w, where ψ(s,u, z) are the USFs that
generate the SFs induced by task-specific policy πz . One major advantage of using SFs is the ability
to efficiently do generalized policy improvement (GPI, Barreto et al., 2017), which allows a new
policy to be computed for any unseen task based on instant policy evaluation of a set of policies
on that unseen task with a simple dot-product. Formally, given a set C ⊆ Rd of tasks and their
corresponding SFs {ψ(s,u, z)}z∈C induced by corresponding policies {πz}z∈C , a new policy π′w
for any unseen task w ∈ Rd can be derived using:

π′w(s) ∈ arg max
u∈U

max
z∈C

Q(s,u, z,w) = arg max
u∈U

max
z∈C

ψ(s,u, z)>w. (3)

Setting C = {w} allows us to revert back to UVFs, as we evaluate SFs induced by policy πw on
task w itself. However, we can use any set of tasks that are similar to w based on some similarity
distribution D(·|w). The computed policy π′w is guaranteed to perform no worse on task w than
each of the policies {πz}z∈C (Barreto et al., 2017), but often performs much better. SFs thus enable
efficient use of GPI, which allows reuse of learned knowledge for zero-shot generalization.

3 MULTI-AGENT UNIVERSAL SUCCESSOR FEATURES

In this section, we introduce Multi-Agent Universal Successor Features (MAUSFs), extending
single-agent USFs (Borsa et al., 2018) to multi-agent settings and show how we can learn gen-
eralized decentralized greedy policies for agents. The USFs based centralized joint-action value
function Qtot(τ ,u, z,w) allows evaluation of joint policy πz =

〈
π1
z, . . . , π

n
z

〉
comprised of local

agent policies πaz of same task z on task w. However, each agent a may execute a different policy
πaza of different task za ∈ C, resulting in a combinatorial set of joint-policies. Maximizing over
all combinations z̄ ≡ 〈z1, . . . ,zn〉 ∈ Cn should therefore enormously improve GPI. To enable this
flexibility, we define joint-action value function (Qtot) of joint policy πz̄ = {πaza}za∈C evaluated on
any task w ∈ Rd as: Qtot(τ ,u, z̄,w) = ψtot(τ ,u, z̄)>w, where ψtot(τ ,u, z̄) are the MAUSFs
of (τ ,u) summarizing the joint dynamics of the environment under joint policy πz̄ . However, train-
ing centralized MAUSFs and using centralized GPI to achieve maximization over a combinatorial
space of z̄ becomes impractical when there are more than a handful of agents, since the joint action

3

Under review as a conference paper at ICLR 2021

+

MAUSFs training

argmax

+

max

argmax

max

UneVEn
exploration

a
g

e
n

t

MLP

GRU

MLP

ha
t−1 ha

t

MLP MLP

oa
t ua

t−1

Figure 1: Schematic illustration of the MAUSFs training and UneVEn exploration with GPI policy.

space (U) and joint task space (Cn) of the agents grows exponentially with the number of agents.
To leverage CTDE and enable decentralized execution by agents, we therefore propose novel agent-
specific SFs for each agent a following local policy πaza , which condition only on its own local
action-observation history and task za.

Decentralized Execution: We define local utility functions for each agent a asQa(τa, ua, za,w) =
ψa(τa, ua, za; θ)>w, where ψa(τa, ua, za; θ) are the local agent-specific SFs induced by local
policy πaza(ua|τa) of agent a sharing parameters θ. Intuitively, Qa(τa, ua, za,w) is the utility
function for agent a when local policy πaza(ua|τa) of task za is executed on task w. We use VDN
decomposition to represent MAUSFs ψtot as a sum of local agent-specific SFs for each agent a:

Qtot(τ ,u, z̄,w) =
n∑
a=1

Qa(τa, ua, za,w) =
n∑
a=1
ψa(τa, ua, za; θ)>w = ψtot(τ ,u, z̄; θ)>w . (4)

We can now learn local agent-specific SFs ψa for each agent a that can be instantly weighted with
any task vector w ∈ Rd to generate local utility functions Qa, thereby allowing agents to use the
GPI policy in a decentralized manner.

Decentralized Local GPI: Our novel agent-specific SFs allows each agent a to locally perform
decentralized GPI by instant policy evaluation of a set C of local task policies {πaza}za∈C on any
unseen task w to compute a local GPI policy. Due to linearity of the VDN decomposition, this is
equivalent to maximization over all combinations of z̄ ≡ 〈z1, . . . ,zn〉 ∈ C × . . .× C ≡ Cn as:

π′w(τ) ∈ arg max
u∈U

max
z̄∈Cn

Qtot(τ ,u, z̄,w) =
{

arg max
ua∈U

max
za∈C

ψa(τa, ua, za; θ)>w
}n
a=1

. (5)

As all of the above relies on the linearity of the VDN decomposition, it cannot be directly applied to
nonlinear mixing techniques like QMIX (Rashid et al., 2020b).

Training: MAUSFs for task combination z̄ are trained end-to-end by gradient descent on the loss:

L(θ, z̄) = E∼B
[∥∥φ(st,ut) + γψtot(τt+1,u

′
z̄, z̄; θ−)−ψtot(τt,ut, z̄; θ)

∥∥2

2

]
, (6)

where the expectation is over a minibatch of samples {(st,ut, τt)} from the replay buffer B (Lin,
1992), θ− denotes the parameters of a target network (Mnih et al., 2015) and joint actions u′

z̄ =
{u′aza}na=1 are selected individually by each agent network using the current parameters θ (called
Double Q-learning, van Hasselt et al., 2016): u′aza = arg maxu∈U ψ

a(τat+1, u,z
a; θ)>za. Each

agent learns therefore local agent-specific SFs ψa(τa, ua, z; θ) by gradient descent on L(θ, z̄) for
all z ∈ C ≡ ν ∪ {w}, where ν ∼ D(·|w) is drawn from a distance measure around target task w.
The green region of Figure 1 shows a CTDE based architecture to train MAUSFs for a given target
task w. A detailed algorithm is present in Appendix A.

4 UNEVEN

In this section, we present UneVEn (red region of Figure 1), which leverages MAUSFs and decen-
tralized GPI to enable efficient exploration on the target task w. The joint-action value function
of the target task w suffers from suboptimal approximations due to monotonic factorization. At

4

Under review as a conference paper at ICLR 2021

the beginning of every exploration episode, we sample a set of related tasks ν = {z ∼ D(·|w)},
containing potentially simpler reward functions, from a distribution D around the target task. The
basic idea is that some of these related tasks can be efficiently learned using a monotonic joint-action
value function. These tasks will therefore be solved early and exploration will concentrate on state-
actions that are useful to them. As the sampled tasks are similar to w, this has the potential to put
more weight on the important joint actions of the target task (Rashid et al., 2020a). This implicit
weighting allows the learning of the joint-action value function of the target task to focus on accu-
rately representing the value of the more important joint actions, and thereby overcome the relative
overgeneralization pathology.

Many choices for D are possible, but in the following we sample related tasks using a normal dis-
tribution centered around the target task w ∈ Rd with a fixed variance σ as D = N (w, σId). The
resulting task vectors weight the basis functions φ differently and represent different reward func-
tions. In particular the varied reward functions can make these tasks much easier, but also harder,
to solve with monotonic value functions. However, the approach has the advantage of not requiring
any domain knowledge. The consequences of sampling harder tasks on learning are discussed with
the corresponding action-selection schemes below.

Action-Selection Schemes: UneVEn uses two novel schemes to enable action selection based on
related tasks. To emphasize the importance of the target task, we define a probability α of selecting
actions based on the target task. Therefore, with probability 1−α, the action is selected based on the
related task. Similar to other exploration schemes, α is annealed from 0.3 to 1.0 in our experiments
over a fixed number of steps at the beginning of training. Once this exploration stage is finished (i.e.,
α = 1), actions are always taken based on the target task’s joint-action value function. Each action-
selection scheme employs a local decentralized GPI policy, that maximizes over a set of policies πz
based on z ∈ C1 (also referred to as the evaluation set) to estimate the Q-values of another set of
tasks k ∈ C2 (also referred to as the target set) using:

ut =
{
uat = arg max

u∈U
max
k∈C2

max
z∈C1

Qa(τa
t ,u,z,k)︷ ︸︸ ︷

ψa(τat , u,z; θ)>k
}
a∈A

. (7)

Here C1 = ν ∪ {w} is the set of target and related tasks which induce the policies that are evaluated
(dot-product) on the set of tasks C2, which varies with different action-selection schemes. The red
box in Figure 1 illustrates UneVEn exploration. For example,Q-learning always picks actions based
on the target task, i.e., the target set C2 = {w}. However, this scheme does not favour important joint
actions. We call this default action-selection scheme target GPI and execute it with probability α.
We now propose two novel action-selection schemes based on related tasks with probability 1− α,
and thereby implicitly weighting joint actions during learning.

Uniform GPI: At the beginning of each episode, this action-selection scheme uniformly picks one
related task, i.e., the target set C2 = {k ∼ Uniform(ν)}, and selects actions based on that task using
the GPI policy throughout the episode. This uniform task selection explores the learned policies of
all related tasks in D. This works well in practice as there are often enough simpler tasks to induce
the required bias over important joint actions. However, if the sampled related task is harder than
the target task, the action-selection based on these harder tasks might hurt learning on the target task
and lead to higher variance during training.

Greedy GPI: At every time-step t, this action-selection scheme picks the task k ∈ ν∪{w} that gives
the highest Q-value amongst the related and target tasks, i.e., the target set becomes C2 = ν ∪ {w}.
Due to the greedy nature of this action-selection scheme, exploration is biased towards solved tasks,
as those have larger values. We are thus exploring the solutions of tasks that are both solvable and
similar to the target task w, which makes them great candidates for important joint actions of w.

NO-GPI: To demonstrate the influence of GPI on the above schemes, we also investigate ablations,
where we define the evaluation set C1 = {k} to only contain the currently estimated task k, i.e.,
using ut = {uat = arg maxu∈U maxk∈C2 ψ

a(τat , u,k; θ)>k}a∈A for action selection.

5 EXPERIMENTS

In this section, we evaluate UneVEn on a variety of complex domains. For evaluation, all exper-
iments are carried out with five random seeds and results are shown with ± standard error across

5

Under review as a conference paper at ICLR 2021

seeds. We compare our method against a number of SOTA value-based MARL approaches: IQL
(Tan, 1993), VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2020b), MAVEN (Mahajan et al.,
2019), WQMIX (Rashid et al., 2020a), QTRAN (Son et al., 2019), and QPLEX (Wang et al., 2020a).

Domain 1 : m-step matrix game

Figure 2: Baseline results for m = 10.

We first evaluate UneVEn on m-step matrix game
proposed by Mahajan et al. (2019). This task is diffi-
cult to solve using simple ε-greedy exploration poli-
cies as committed exploration is required to achieve
the optimal return. Appendix E shows the m-step
matrix game from Mahajan et al. (2019), in which
the first joint decision of two agents determines the
maximal outcome after anotherm−1 decisions. One
initial joint action can reach a return of up to m+ 3,
whereas another only allows for m. This challenges
monotonic value functions, as the optimal joint reward function of the first decision is nonmono-
tonic. Figure 2 shows results of all methods on this task for m = 10 after training for 35k steps.
UneVEn with greedy (UneVEn-Greedy-GPI) action selection scheme converges to an optimal re-
turn and both greedy and uniform (UneVEn-Uniform-GPI) schemes outperforms all other methods,
which suffer from poor ε-greedy exploration and often learn to take the suboptimal action in the
beginning. Due to the nonmonotonicity of the initial state, it becomes difficult to switch the policy
later, leading to suboptimal returns and only rarely converging to optimal solutions.

Domain 2 : Cooperative Predator-Prey

We next evaluate UneVEn on challenging cooperative predator-prey tasks similar to one proposed
by Son et al. (2019), but significantly more complex in terms of the coordination required amongst
agents. We use a complex partially observable predator-prey (PP) task involving eight agents (preda-
tors) and three prey that is designed to test coordination between agents, as each prey needs to be
captured by at least three surrounding agents with a simultaneous capture action. If only one or two
surrounding agents attempt to capture the prey, a negative reward of magnitude p is given. Success-
ful capture yields a positive reward of +1. This task is challenging for two reasons. First, depending
on the magnitude of penalty p, exploration is difficult as even if a single agent miscoordinates, the
penalty is given, and therefore, any steps toward successful coordination are penalized. Second, the
agents must be able to differentiate between the values of successful and unsuccessful collaborative
actions, which monotonic value functions can only do if all agents already act optimally. More
details about the task are available in Appendix B.

Proposition 1. For the predator-prey game defined above, the optimal joint action reward function
for any group of 2 ≤ k ≤ n predator agents surrounding a prey is nonmonotonic (as defined by
Mahajan et al., 2019) iff p > 0. (Proof is provided in Appendix B).

Figure 3: Baseline results for p = 0.

Simpler PP Tasks: We first demonstrate that both
VDN and QMIX with monotonic joint-action value
functions can learn on target tasks with simpler re-
ward functions. To generate a simpler task, we re-
move the penalty associated with miscoordination,
i.e., p = 0, thereby making the returns monotonic.
Figure 3 shows that both QMIX and VDN can solve
this task as there is no miscoordination penalty and
the monotonic joint-action value function can learn
to efficiently represent the optimal joint-action val-
ues. Other SOTA value-based approaches (MAVEN, WQMIX and QPLEX) and UneVEn with both
uniform (UneVEn-Uniform-GPI) and greedy (UneVEn-Greedy-GPI) action-selection schemes can
also solve this monotonic target task.

Harder PP Tasks: We now make the target task nonmonotonic by increasing the magnitude of the
penalty associated with each miscoordination, i.e., p ∈ {0.004, 0.008, 0.012, 0.016}. For a smaller
penalty of p = 0.004, Figure 4 (top left) shows that VDN is still able to solve the task, further
suggesting that simpler reward related tasks (with lower penalties) can be solved with monotonic
approximations. However, both QMIX and VDN fail to learn on three other higher penalty target

6

Under review as a conference paper at ICLR 2021

Figure 4: Comparison between UneVEn and SOTA MARL baselines with p ∈ {0.004, 0.008, 0.012, 0.016}.

Figure 5: Ablation results: Comparison between different action selection of UneVEn for p ∈ {0.012, 0.016}.

tasks due to their monotonic constraints, which hinder the accurate learning of the joint-action value
functions. Intuitively, when uncoordinated joint actions are much more likely than coordinated
ones, the penalty term can dominate the average value estimated by each agent’s utility. This makes
it difficult to learn an accurate monotonic approximation that will select the optimal joint actions.

Interestingly, other SOTA value-based approaches that aim to address the monotonicity restriction
of QMIX and VDN such as MAVEN, QTRAN, WQMIX and QPLEX also fail to learn on higher
penalty tasks. WQMIX solves the task when p = 0.004, but fails on other three higher penalty
target tasks. Although WQMIX uses an explicit weighting mechanism to bias learning towards
important joint actions, it must identify these actions by learning a nonmonotonic value function
first. An ε-greedy exploration based on the target task will take a long time to learn such a value
function, which is visible in the large standard error for p ∈ {0.008, 0.012, 0.016} in Figure 4.
By contrast, both UneVEn-Uniform-GPI and UneVEn-Greedy-GPI can approximate nonmonotonic
value functions more accurately and solve the task for all values of p. As expected, the variance of
UneVEn-Uniform-GPI is high on higher penalty target tasks (for e.g., p = 0.016) as exploration
suffers from action selection based on harder related tasks. UneVEn-Greedy-GPI does not suffer
from this problem. Videos of learnt policies are available at https://rb.gy/rdwpo5.

Ablations: Figure 5 shows ablation results for higher penalty tasks, i.e., p = {0.012, 0.016}. To
contrast the effect of UneVEn on exploration, we compare our two novel action-selection schemes
to UneVEn-Target-GPI, which only selects the greedy actions of the target task. The results clearly
show that UneVEn-Target-GPI fails to solve the higher penalty nonmonotonic tasks as the employed
monotonic joint value function of the target task fails to accurately represent the values of different
joint actions. This demonstrates the critical role of UneVEn and its action-selection schemes.

Next we evaluate the effect of GPI by comparing against UneVEn with MAUSFs without using the
GPI policy, i.e., setting the evaluation set C1 = {k} in Equation 7. First, UneVEn using a NOGPI
policy with both uniform (Uniform-NOGPI) and greedy (Greedy-NOGPI) action selection outper-
form Target-NOGPI, further strengthening the claim that UneVEn with its novel action-selection

7

https://rb.gy/rdwpo5

Under review as a conference paper at ICLR 2021

scheme enables efficient exploration and bias towards optimal joint actions. Next, Figure 5 clearly
shows that for each corresponding action-selection scheme (uniform, greedy, and target), using a
GPI policy (∗-GPI) is always favourable as it performs either similarly to the NOGPI policy (∗-
NOGPI) or much better. GPI appears to improve zero-shot generalization of MAUSFs across tasks,
which in turn enables good action selection for related tasks during UneVEn exploration.

-2.77

-14.39

-1.24 -0.69

-11.18

-39.72

Figure 6: Zero-shot generalization comparison;
training on p = 0.004, testing on p ∈ {0.2, 0.5}.

Zero-Shot Generalization: Lastly, we evaluate this
zero-shot generalization for all methods to check if
the learnt policies are useful for unseen high penalty
test tasks. We train all methods for 8 million en-
vironmental steps on a task with p = 0.004, and
test 60 rollouts of the resulting policies of all meth-
ods that are able to solve the training task, i.e.,
UneVEn-Greedy-GPI, UneVEn-Uniform-GPI, VDN,
MAVEN, and WQMIX, on tasks with p ∈ {0.2, 0.5}.
For policies trained with UneVEn-Greedy-GPI and
UneVEn-Uniform-GPI, we use the NOGPI policy for
the zero-shot testing, i.e., C1 = C2 = {w}. Figure 6 shows that UneVEn with both uniform and
greedy schemes exhibits great zero-shot generalization and solves both test tasks even with very high
penalties. As MAUSFs learn the reward’s basis functions, rather than the reward itself, zero-shot
generalization to larger penalties follow naturally. Furthermore, using UneVEn exploration allows
the agents to collect enough diverse behaviour to come up with a near optimal policy for the test
tasks. On the other hand, the learnt policies for all other methods that solve the target task with
p = 0.004 are ineffective in these higher penalty nonmonotonic tasks, as they do not learn to avoid
unsuccessful capture attempts. More details about the implementations are included in Appendix C.
Additional ablation experiments are discussed in Appendix D.

Domain 3 : Starcraft Multi-Agent Challenge (SMAC)

We now evaluate UneVEn on challenging cooperative StarCraft II maps from the SMAC benchmark
(Samvelyan et al., 2019). We consider SMAC maps where each ally agent unit is additionally penal-
ized for being killed or suffering damage from the enemy, in addition to receiving positive reward for
killing/inflicting damage on enemy units, which has recently shown to improve performance (Son
et al., 2020). We present the results for one super hard map (MMM2, involving 10 units of 3 types),
two hard asymmetric maps (5m vs 6m and 10m vs 11m) and three easy maps (2s3z, 1c3s5z
and 8m).

Figure 7 presents the mean test win rate for all maps. Both VDN and QMIX achieve almost 100%
win rate on these maps, which leads us to conclude that they do not suffer from relative overgener-
alization and that simple ε-greedy policies suffices for these maps. Thus, the additional complexity
of learning MAUSFs in our approach results in slightly slower convergence. However, UneVEn
with both GPI schemes matches the performance as VDN and QMIX in most maps, with only small
deviations in 5m vs 6m, demonstrating that our method can scale well to large complex tasks.

Figure 7: Comparison between UneVEn, VDN and QMIX on SMAC maps.

8

Under review as a conference paper at ICLR 2021

6 RELATED WORK

Improving monotonic value function factorization in CTDE MAVEN (Mahajan et al., 2019)
shows that the monotonic joint-action value function of QMIX and VDN suffers from suboptimal
approximations on nonmonotonic tasks. It addresses this problem by learning a diverse ensemble
of monotonic joint-action value functions conditioned on a latent variable by optimizing the mutual
information between the joint trajectory and the latent variable. Deep Coordination Graphs (DCG)
(Böhmer et al., 2020) uses a predefined coordination graph (Guestrin et al., 2002) to represent the
joint-action value function. However, DCG is not a fully decentralized approach and specifying the
coordination graph can require significant domain knowledge. Son et al. (2019) propose QTRAN
that addresses the monotonic restriction of QMIX by learning a (decentralizable) VDN-factored
joint-action value function along with an unrestricted centralized critic. The corresponding utility
functions are distilled from the critic by solving a linear optimization problem involving all joint
actions, but its exact implementation is computationally intractable and the corresponding approxi-
mate versions have instable performance. QPLEX (Wang et al., 2020a) uses a duplex dueling (Wang
et al., 2016) network architecture to factorize the joint-action value function with linear decompo-
sition structure. WQMIX (Rashid et al., 2020a) learns a QMIX-factored joint-action value function
along with an unrestricted centralized critic and proposes explicit weighting mechanisms to bias the
monotonic approximation of the optimal joint-action value function towards important joint actions,
which is similar to our work. However, in our work, the weightings are implicitly done through
action-selection based on simpler reward related tasks, which are easier to solve.

Exploration There exists a plethora of techniques for exploration in model-free single-agent RL,
based on intrinsic novelty reward (Bellemare et al., 2016; Tang et al., 2017), predictability (Pathak
et al., 2017), pure curiosity (Burda et al., 2019) or Bayesian posteriors (Osband et al., 2016; Gal et al.,
2017; Fortunato et al., 2018; O’Donoghue et al., 2018). In the context of multi-agent RL, Böhmer
et al. (2019) discuss the influence of unreliable intrinsic reward and Wang et al. (2020b) quantify
the influence that agents have on each other’s return. Zheng & Yue (2018) propose to coordinate
exploration between agents by shared latent variables, whereas Jaques et al. (2018) investigate social
motivations of competitive agents. However, these techniques aim to visit as much of the state-action
space as possible, which exacerbates the relative overgeneralization pathology. Approaches that use
state abstraction (e.g., Roderick et al., 2018) can speed up exploration, but only by restricting the
considered space with prior knowledge. In contrast, UneVEn explores similar tasks. This guides
exploration to states and actions that prove useful, which restricts the explored space and overcomes
relative overgeneralization. To the best of our knowledge, the only other work that explores the task
space is Leibo et al. (2019): they use the evolution of competing agents as an auto-curriculum of
harder and harder tasks. Collaborative agents cannot compete against each other, though, and their
approach does therefore not affect relative overgeneralization.

Successor Features Most of the work on SFs have been focused on single-agent settings (Dayan,
1993; Kulkarni et al., 2016; Lehnert et al., 2017; Zhu et al., 2017; Barreto et al., 2017; 2018; Borsa
et al., 2018; Lehnert & Littman, 2019; Lee et al., 2019; Hansen et al., 2019) for transfer learning
and zero-shot generalization across tasks with different reward functions. Gupta et al. (2019) uses
single-agent SFs in a transition-independent multi-agent setting to estimate the probability of events.

7 CONCLUSION

This paper presents novel multi-agent universal successor features (MAUSFs) decomposed as local
agent-specific SFs, which enables decentralized version of the GPI to maximize over a combinato-
rial space of agent policies, making MAUSFs a perfect fit for MARL. We then propose UneVEn,
which leverages the generalization power of MAUSFs to perform action-selection based on sim-
pler related tasks to address the issue of sub-optimality of target task’s monotonic joint-action value
function in current SOTA methods. Our experiments show that UneVEn significantly outperforms
VDN, QMIX and other state-of-the-art value-based MARL methods on nonmonotonic tasks by a
substantial margin.

9

Under review as a conference paper at ICLR 2021

REFERENCES

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in neural
information processing systems, pp. 4055–4065, 2017.

Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel
Mankowitz, Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using
successor features and generalised policy improvement. In International Conference on Machine
Learning, pp. 501–510. PMLR, 2018.

André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement
learning with generalized policy updates. Proceedings of the National Academy of Sciences,
2020.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi
Munos. Unifying count-based exploration and intrinsic motivation. In Advances in Neural Infor-
mation Processing Systems (NIPS) 29, pp. 1471–1479, 2016.

Wendelin Böhmer, Tabish Rashid, and Shimon Whiteson. Exploration with unreliable intrinsic
reward in multi-agent reinforcement learning. CoRR, abs/1906.02138, 2019. URL http:
//arxiv.org/abs/1906.02138. Presented at the ICML Exploration in Reinforcement
Learning workshop.

Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In Proceedings
of Machine Learning and Systems (ICML), pp. 2611–2622, 2020. URL https://arxiv.
org/abs/1910.00091.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt,
David Silver, and Tom Schaul. Universal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros.
Large-scale study of curiosity-driven learning. In International Conference on Learning Repre-
sentations (ICLR), 2019.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural Computation, 5(4):613–624, 1993.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon White-
son. Counterfactual multi-agent policy gradients. In Thirty-second AAAI conference on artificial
intelligence, 2018.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Os-
band, Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles
Blundell, and Shane Legg. Noisy networks for exploration. In International Conference on
Learning Representations (ICLR), 2018. URL https://openreview.net/forum?id=
rywHCPkAW.

Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. In Advances in Neural Information
Processing Systems (NIPS), pp. 3584–3593, 2017.

Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In
ICML, volume 2, pp. 227–234. Citeseer, 2002.

Tarun Gupta, Akshat Kumar, and Praveen Paruchuri. Successor features based multi-agent rl for
event-based decentralized mdps. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 6054–6061, 2019.

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. arXiv preprint
arXiv:1906.05030, 2019.

10

http://arxiv.org/abs/1906.02138
http://arxiv.org/abs/1906.02138
https://arxiv.org/abs/1910.00091
https://arxiv.org/abs/1910.00091
https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=rywHCPkAW

Under review as a conference paper at ICLR 2021

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Çaglar Gülçehre, Pedro A. Ortega,
DJ Strouse, Joel Z. Leibo, and Nando de Freitas. Intrinsic social motivation via causal influ-
ence in multi-agent RL. CoRR, abs/1810.08647, 2018. URL https://arxiv.org/abs/
1810.08647.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor
reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

Donghun Lee, Srivatsan Srinivasan, and Finale Doshi-Velez. Truly batch apprenticeship learning
with deep successor features. arXiv preprint arXiv:1903.10077, 2019.

Lucas Lehnert and Michael L Littman. Successor features support model-based and model-free
reinforcement learning. CoRR abs/1901.11437, 2019.

Lucas Lehnert, Stefanie Tellex, and Michael L Littman. Advantages and limitations of using suc-
cessor features for transfer in reinforcement learning. arXiv preprint arXiv:1708.00102, 2017.

Joel Z. Leibo, Edward Hughes, Marc Lanctot, and Thore Graepel. Autocurricula and the emergence
of innovation from social interaction: A manifesto for multi-agent intelligence research. CoRR,
abs/1903.00742, 2019. URL http://arxiv.org/abs/1903.00742.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8(3):293–321, 1992.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. In Advances in Neural Information Processing Systems, pp. 7613–7624,
2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Brendan O’Donoghue, Ian Osband, Rémi Munos, and Volodymyr Mnih. The uncertainty Bell-
man equation and exploration. In Proceedings of the 35th International Conference on Machine
Learning (ICML), pp. 3836–3845, 2018. URL http://proceedings.mlr.press/v80/
o-donoghue18a.html.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Afshin OroojlooyJadid and Davood Hajinezhad. A review of cooperative multi-agent deep rein-
forcement learning. arXiv preprint arXiv:1908.03963, 2019.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. In Proceedings of the 33rd International Conference on International Conference
on Machine Learning (ICML), pp. 2377–2386, 2016.

Liviu Panait, Sean Luke, and R Paul Wiegand. Biasing coevolutionary search for optimal multiagent
behaviors. IEEE Transactions on Evolutionary Computation, 10(6):629–645, 2006.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the 34th International Conference on Machine
Learning (ICML), 2017.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation. arXiv preprint arXiv:2006.10800, 2020a.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:2003.08839, 2020b.

11

https://arxiv.org/abs/1810.08647
https://arxiv.org/abs/1810.08647
http://arxiv.org/abs/1903.00742
http://proceedings.mlr.press/v80/o-donoghue18a.html
http://proceedings.mlr.press/v80/o-donoghue18a.html

Under review as a conference paper at ICLR 2021

Melrose Roderick, Christopher Grimm, and Stefanie Tellex. Deep abstract Q-networks. In Pro-
ceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), pp. 131–138, 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320, 2015.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learn-
ing to factorize with transformation for cooperative multi-agent reinforcement learning. arXiv
preprint arXiv:1905.05408, 2019.

Kyunghwan Son, Sungsoo Ahn, Roben Delos Reyes, Jinwoo Shin, and Yung Yi. Qtran++: Improved
value transformation for cooperative multi-agent reinforcement learning, 2020.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pp. 330–337, 1993.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. #Exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in Neural Information Processing Systems (NIPS) 30,
pp. 2753–2762. 2017.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the 13th AAAI Conference on Artificial Intelligence, pp. 2094–2100,
2016. URL https://arxiv.org/pdf/1509.06461.pdf.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020a.

Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-based multi-agent ex-
ploration. In International Conference on Learning Representations, 2020b. URL https:
//openreview.net/forum?id=BJgy96EYvr.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on machine
learning, pp. 1995–2003, 2016.

Ermo Wei, Drew Wicke, David Freelan, and Sean Luke. Multiagent soft q-learning. arXiv preprint
arXiv:1804.09817, 2018.

Stephan Zheng and Yisong Yue. Structured exploration via hierarchical variational policy networks,
2018. URL https://openreview.net/forum?id=HyunpgbR-.

Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox, Li Fei-Fei, Abhinav Gupta, Roozbeh Mottaghi,
and Ali Farhadi. Visual semantic planning using deep successor representations. In Proceedings
of the IEEE international conference on computer vision, pp. 483–492, 2017.

12

https://arxiv.org/pdf/1509.06461.pdf
https://openreview.net/forum?id=BJgy96EYvr
https://openreview.net/forum?id=BJgy96EYvr
https://openreview.net/forum?id=HyunpgbR-

Under review as a conference paper at ICLR 2021

A TRAINING ALGORITHM

Algorithm 1 presents the training of MAUSFs with UneVEn. Our method is able to learn on all
tasks (target w and sampled z) simultaneously in a sample efficient manner using the same feature
φt ≡ φ(st,ut) due to the linearly decomposed reward function (Equation 1).

Algorithm 1 Training MAUSFs with UneVEn
Require: ε, α, β target task w, set of agents A, standard deviation σ

1: procedure TRAIN:
2: Initialize the local-agent SF network ψa(τa, ua, z; θ) and replay bufferM
3: for fixed number of epochs do
4: ν ∼ N (w, σId) ; o0 ← RESETENV() . ot ≡ {oat }a∈A
5: t = 0 ; M← NEWEPISODE(M, ν,o0)

6: while not terminated do
7: if Bernoulli(ε)=1 then ut ← Uniform(U)
8: else ut ← UNEVEN(τt, ν)
9: 〈ot+1,φt〉 ← ENVSTEP(ut)

10: M← ADDTRANSITION
(
M,ut,ot+1,φt

)
11: t← t+ 1

12: L ← 0 ; B ← SAMPLEMINIBATCH(M)

13: foreach {τt,ut,φt, τt+1, ν} ∈ B do
14: foreach z ∈ ν ∪ {w} do
15: u′z ←

{
arg max
u∈U

ψa(τat+1, u,z; θ)>z
}
a∈A

16: L ← L+
∥∥φt + γψtot(τt+1,u

′
z, z; θ−)−ψtot(τt,ut, z; θ)

∥∥2

2

17: θ ← OPTIMIZE(θ,∇θL)
18: θ− ← (1− β) θ− + β θ

19: procedure UNEVEN(τt, ν):
20: if Bernoulli(α) = 1 or Scheme is Target then
21: C2 ← {w}
22: else
23: if Scheme is Uniform then
24: C2 ← ν ∼ Uniform(ν)
25: else if Scheme is Greedy then
26: C2 ← ν ∪ {w}
27: if Use GPI Policy is True then
28: C1 ← ν ∪ {w}
29: ut ← {uat = arg max

u∈U
max
k∈C2

max
z∈C1

ψa(τat , u,z; θ)>k}a∈A
30: else
31: ut ← {uat = arg max

u∈U
max
k∈C2

ψa(τat , u,k; θ)>k}a∈A
return ut

B EXPERIMENTAL DOMAIN DETAILS AND ANALYSIS

We consider a complicated partially observable predator-prey (PP) task in an 10× 10 grid involving
eight agents (predators) and three preys that is designed to test coordination between agents, as
each prey needs a simultaneous capture action by at least three surrounding agents to be captured.
Each agent can take 6 actions i.e. move in one of the 4 directions (Up, Left, Down, Right), remain
still (no-op), or try to catch (capture) any adjacent prey. The prey moves around in the grid with a
probability of 0.7 and remains still at its position with probability 0.3. Impossible actions for both
agents and prey are marked unavailable, for eg. moving into an occupied cell or trying to take a
capture action with no adjacent prey.

13

Under review as a conference paper at ICLR 2021

A1-Capture A1-Other
A2-Capture A2-Other

A3-Capture +1 −p
A3-Other −p −p

A2-Capture A2-Other
A3-Capture −p −p
A3-Other −p 0

Table 1: Joint-Reward function of three agents surrounding a prey. The first table indicates joint-
rewards when Agent 1 takes capture action and second table indicates joint-rewards when Agent 1
takes any other action. Notice that there are numerous joint actions leading to penalty p.

If either a single or a pair of agents take a capture action on an adjacent prey, a negative reward of
magnitude p is given. If three or more agents take the capture action on an adjacent prey, it leads to
a successful capture of that prey and yield a positive reward of +1. The maximum possible reward
for capturing all preys is therefore +3. Each agent observes a 5×5 grid centered around its position
which contains information showing other agents and preys relative to its position. An episode ends
if all preys have been captured or after 800 time steps. This task is similar to one proposed by
Böhmer et al. (2020); Son et al. (2019), but significantly more complex in terms of the coordination
required amongst agents as more agents need to coordinate simultaneously to capture the preys. We
now prove Proposition 1 which states that:
Proposition. For, the predator-prey game defined above, the optimal joint action reward function
for any group of 2 ≤ k ≤ n predator agents surrounding a prey is nonmonotonic (as defined by
Mahajan et al., 2019) iff p > 0.

Proof. Without loss of generality, we assume a single prey surrounded by three agents (A1, A2, A3)
in the environment. The joint reward function for this group of three agents is defined in Table 1.

For the case p > 0 the proposition can be easily verified using the definition of non-
monotonicity (Mahajan et al., 2019). For any 3 ≤ k ≤ n agents attempting to catch a prey in
state s, we fix the actions of any k− 3 agents to be “other” indicating either of up, down, left, right,
and noop actions and represent it with uk−3. Next we consider the rewards r for two cases:

• If we fix the action of any two of the remaining three agents as “other” represented as
u2, the action of the remaining agent becomes u1 = arg maxu∈U r(s,

〈
u,u2,uk−3

〉
) =

“other”.

• If we fix the u2 to be “capture”, we have : u1 = arg maxu∈U r(s,
〈
u,u2,uk−3

〉
) =

“capture”.

Thus the best action for agent A1 in state s depends on the actions taken by the other agents and the
rewards R(s) are non-monotonic. Finally for the equivalence, we note that for the case p = 0 we
have that a default action of “capture” is always optimal for any group of k predators surrounding
the prey. Thus the rewards are monotonic as the best action for any agent is independent of the
rest.

C IMPLEMENTATION DETAILS

C.1 HYPER PARAMETERS

All algorithms are implemented in the PyMARL framework (Samvelyan et al., 2019). All our
experiments use ε-greedy scheme where ε is decayed from ε = 1 to ε = 0.05 over 250k time steps.
All our tasks use a discount factor of γ = 0.99. We freeze the trained policy every 30k timesteps
and run 20 evaluation episodes with ε = 0. We use learning rate of 0.0005 with soft target updates
for all experiments. We use a target network similar to Mnih et al. (2015) with “soft” target updates,
rather than directly copying the weights: θ− ← β ∗ θ + (1 − β) ∗ θ−, where θ are the current
network parameters. We use β = 0.005 for all experiments. This means that the target values are
constrained to change slowly, greatly improving the stability of learning. All algorithms were trained
with RMSprop optimizer by one gradient step on loss computed on a batch of 32 episodes sampled
from a replay buffer containing last 1000 episodes. We also used gradient clipping to restrict the
norm of the gradient to be ≤ 10.

14

Under review as a conference paper at ICLR 2021

Figure 8: Additional Ablation results: Comparison between different action selection of UneVEn for p ∈
{0.004, 0.008}.

Figure 9: Additional Zero-shot generalization results for p ∈ {0.2, 0.3, 0.5, 1.0}.

The probability α of action selection based on target task in UneVEn with uniform and greedy
action selection schemes increases from α = 0.3 to α = 1.0 over 250k time steps. For sampling
related tasks using normal distribution, we use N (w, σId) centered around target task w with σ ∈
{0.1, 0.2}. At the beginning of each episode, we sample six related tasks, therefore |ν| = 6.

C.2 NN ARCHITECTURE

Each agent’s local observation oat are concatenated with agent’s last action uat−1, and then passed
through a fully-connected (FC) layers of 128 neurons, followed by ReLU activation, a GRU (Chung
et al., 2014), and another FC of the same dimensionality to generate a action-observation history
summary for the agent. Each agent’s task vector z ∈ ν ∪ {w} is passed through a FC layer of
128 neurons followed by ReLU activation to generate an internal task embedding. The history and
task embedding are concatenated together and passed through two hidden FC-256 layers and ReLU
activations to generate the outputs for each action. For methods with non-linear mixing such as
QMIX (Rashid et al., 2020b), WQMIX (Rashid et al., 2020a), and MAVEN (Mahajan et al., 2019),
we adopt the same hypernetworks from the original paper and test with either a single or double
hypernet layers of dim 64 utilizing an ELU non-linearity. For all baseline methods, we use the code
shared publicly by the corresponding authors on Github.

D ADDITIONAL RESULTS

Figure 8 presents additional ablation results for comparison between UneVEn with different ac-
tion selection schemes for p ∈ {0.004, 0.008}. Figure 9 presents additional zero-shot generaliza-
tion results for policies trained on target task with penalty p = 0.004 tested on tasks with penalty
p ∈ {0.2, 0.3, 0.5, 1.0}. For UneVEn-Greedy-GPI, we can observe that the average number of mis-
coordinated capture attempts per episode actually drops with p and converges around 1.5, i.e., for
return Rp, average mistakes per episode is 3−Rp

p = {2.3, 2.1, 1.5, 1.6} for p ∈ {0.2, 0.3, 0.5, 1.0}.

15

Under review as a conference paper at ICLR 2021

Figure 10: m-step matrix game from Mahajan et al. (2019) for m = 10. The red cross means that selecting
that joint action will lead to termination of the episode.

E m-STEP MATRIX GAMES

Figure 10 shows the m-step matrix game for m = 10 from Mahajan et al. (2019), where there are
m − 2 intermediate steps, and selecting a joint-action with zero reward leads to termination of the
episode.

16

	Introduction
	Background
	Multi-Agent Universal Successor Features
	UneVEn
	Experiments
	Related Work
	Conclusion
	Training algorithm
	Experimental Domain Details and Analysis
	Implementation Details
	Hyper parameters
	NN Architecture

	Additional Results
	m-step matrix games

