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Abstract

The rapid rise of Large Language Models (LLMs) and Large Reasoning Models
(LRMs) has been accompanied by an equally rapid increase of benchmarks used
to assess them. However, due to both improved model competence resulting from
scaling and novel training advances as well as likely many of these datasets being
included in pre or post training data, results become saturated, driving a continuous
need for new and more challenging replacements. In this paper, we discuss whether
surpassing a benchmark truly demonstrates reasoning ability or are we simply
tracking numbers divorced from the capabilities we claim to measure? We present
an investigation focused on three model families, OpenAl, Anthropic, and Google,
and how their reasoning capabilities across different benchmarks evolve over the
years. We also analyze performance trends over the years across different reasoning
tasks and discuss the current situation of benchmarking and remaining challenges.
By offering a comprehensive overview of benchmarks and reasoning tasks, our
work aims to serve as a first reference to ground future research in reasoning
evaluation and model development.

1 Introduction

Benchmarks have long played a central role in evaluating and comparing machine learning models
[1]. As models scale up in size and capability, particularly Large Language Models (LLMs) and the
specialized Large Reasoning Models (LRMs), many benchmarks quickly saturate, often reaching or
surpassing human-level performance. Whether this saturation is driven primarily by improved model
capability or dataset contamination is generally unknown. Nevertheless, this quick saturation forces
the development of new and more challenging benchmarks that could be used to further compare
new model families. In this paper, we investigate several key research questions: How effective
are current benchmarks at measuring model capabilities, and does surpassing a benchmark reliably
indicate genuine reasoning?

To examine these questions, we select three model families, OpenAl, Anthropic, and Google, and
compile performance data from official sources [2H22]]. We gather a comprehensive list of 52
benchmarks used in evaluating these models and classify them according to the types of reasoning
they aim to evaluate. Analyzing performance trends over the years, we highlight where models
improve, where they struggle, and what these trends reveal about the current state of benchmarking.
Finally, we discuss the implications of the saturation cycle and emphasize the need for improved
evaluation practices that more accurately capture model capabilities.

Our contributions are threefold: (1) we provide a curated list of reasoning benchmarks, classified by
the types of reasoning they aim to assess (2) we analyze performance trends over the years to assess
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benchmarking effectiveness; (3) we examine current landscape of existing benchmarks, identifying
which benchmarks have reached high performance thresholds and which seem to remain unsolved.

By situating our analysis within the broader evaluation landscape, our work collects evidence to
emphasize the need for reasoning tasks that are more representative of the nature of reasoning process
and target evaluation beyond downstream accuracy.

2 Benchmark Landscape and Categorization

In order to provide a general analysis of how the creation and adoption of reasoning benchmarks have
evolved over time, we examine three model families and compile the set of benchmarks employed to
evaluate them. Our aim is to provide a comprehensive overview of current benchmarking practices
and to trace how the creation and adoption of benchmarks have evolved over time. The complete list
of benchmarks, their assigned reasoning types, and short summaries can be found in Appendix [A]
To facilitate analysis, we categorize benchmarks into seven reasoning types: commonsense and
logical reasoning, mathematical reasoning, multimodal reasoning, programming and coding, reading
comprehension and question answering, reasoning with general knowledge, and LLM-specific
capabilities such as safety, tool use, and instruction following. Figure|[T]illustrates a marked increase
in benchmark adoption for multimodal reasoning, mathematical reasoning, programming, reasoning
with general knowledge, and LLM-specific benchmarks after 2023. In contrast, no new benchmarks
in reading comprehension or commonsense reasoning were adopted by these model families during
this period. While the literature contains several other benchmarks in these areas [23H29]], our analysis
shows they have not been utilized by any of the prominent model families. This likely reflects the
evolving understanding of what constitutes reasoning in computational models, in accordance with
their current capabilities and what the community deems important to evaluate. Since most models
now have direct commercial applications, their performance in more applicable domains, such as
coding and tool-use benchmarks, may also motivate the evaluation in certain categories of reasoning
tasks.

Commonsense and
—— Logical

)

@ Reasoning

= LLM Benchmarks

@ 10 (Instruction

£ following, Tool

% use, etc.)

c 8 Mathematical

g ~ Reasoning

o« 6 Multimodal

S ~ Reasoning

= Programming and

24 ~— Coding
Reading

E 2 " Comprehension
and Question

z — / Answering

0 Reasoning with
General
o o QA 2 ) o N 9 o > o Knowledge
N N X N N U v 9 & » 9
S O T T
Year

Figure 1: Number of benchmarks in different reasoning types over time.

3 Performance Trends Across Models

Across all three model families there is a consistent effort to develop newer models or architectural
improvements to achieve higher benchmark performance. However, comparing performance across
families is challenging, as each family often employs different benchmarks, and even within a single
family, benchmarks used can vary between model iterations. This variation appears to stem from two
main factors: first, certain benchmarks reach saturation due to high performance; second, benchmark
updates or more challenging subsets are introduced, such as the transition from MATH to MATH-500
[30].

We observe a recurring pattern: once a model family achieves a high performance on a particular
benchmark, subsequent models tend to use that benchmark less frequently or may discontinue
its use entirely. This reflects both practical and conceptual considerations: benchmarks that no
longer discriminate between models provide limited evaluative value, and benchmark selection
increasingly reflects the evolving understanding of which reasoning tasks remain challenging for
current architectures.



Interestingly, performance trends reveal consistent directional correlations across benchmarks within
the same reasoning type. For example, when a model demonstrates improved performance on a
benchmark, it generally shows corresponding improvements on other benchmarks of the same type,
while lower performance on one benchmark tends to coincide with lower performance on others.
Nevertheless, the extent of performance differs across benchmarks, potentially due to variations in
problem complexity and the scaling limitations evident in smaller models, as seen within the OpenAl
family. This pattern suggests that benchmarks within a reasoning type often capture overlapping
aspects of reasoning, so that advances in a models’ capabilities tend to propagate across related
tasks. At the same time, variations in the magnitude of performance gains provide insight into the
relative difficulty of different benchmarks within the same reasoning type. Detailed plots illustrating
performance changes within model families for different reasoning types are provided in Appendix B}

Finally, we note that newer models generally achieve higher performance on previously low-scoring
benchmarks. However, the limited overlap of common benchmarks across model families complicates
cross-family comparisons. This raises a critical question: if benchmarks are intended to evaluate and
compare model capabilities, why are they not consistently adopted or reported across families? If
benchmarks are intended to provide a shared measure of capability, their fragmented and selective
use undermines that goal and exemplifies the need for more standardized, representative, and domain-
informed evaluation frameworks.

4 Performance of Models within Benchmarks

We collect all reported model performances across benchmarks and analyze saturation by defining
it as whether a model has achieved at least 80% accuracy on the given benchmark. Out of the full
set of benchmarks, we find that 27 benchmarks surpass this threshold in at least one model family,
while 25 benchmarks never reach it. The majority of “solved” benchmarks belong to commonsense
and logical reasoning, mathematical reasoning, reasoning with general knowledge, and reading
comprehension and question answering. By contrast, benchmarks targeting LLM-specific capabilities
and programming and coding remain comparatively difficult, with few instances of performance
above 80%.

We then examine the release years of benchmarks that never surpass the 80% threshold. The
distribution is striking: 60% of unsolved benchmarks were introduced in 2025, 32% in 2024, and only
two pre-2023 benchmarks remain unsolved, which are ActivityNet and EgoSchema [32]], both
multimodal reasoning benchmarks. This distribution suggests a clear trend. Nearly all benchmarks
released prior to 2025 have already been surpassed by at least one model family, indicating rapid
saturation. By contrast, the benchmarks still below the threshold overwhelmingly correspond to the
most recently introduced evaluation tasks.
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Figure 2: Benchmark saturation dynamics.

This temporal pattern highlights the central dynamic of the saturation cycle: older benchmarks
are rapidly mastered and lose discriminative power, while newly introduced benchmarks become
the standards for demonstrating progress. Nearly all unsolved benchmarks are recent, highlighting
both the accelerating pace of benchmark creation and the difficulty of maintaining evaluations



that remain challenging over time. Yet this difficulty seems only temporary. It is highly plausible
that within one or two years many of these currently unsolved benchmarks will also be surpassed,
at which point model families will shift to alternative or newly designed evaluations to preserve
differentiation. Crucially, this pattern reflects the fact that performance gains are often specific to
individual benchmarks rather than to the broader reasoning type they are intended to assess. As the
analyses indicate, while models often perform consistently and even strongly on benchmarks within
a domain, the introduction of a more challenging, novel benchmark frequently leads to a drop in
performance. This pattern may arise from the increased difficulty of the new benchmark, or from
contamination that inflated performance on earlier benchmarks without truly reflecting generalizable
reasoning ability. This situation raises the question of whether what appears as “reasoning ability” is
often tied more to benchmark design and prior exposure than to robust mastery of the reasoning type
itself. This saturation cycle casts doubt on the long-term evaluation value of benchmarks.

5 Discussion: Limitations of Current Benchmarking

Our analysis of three model families demonstrates that benchmark performance has generally in-
creased over time, with newer models achieving higher scores across most reasoning types and
benchmarks. However, given that many benchmarks have already been surpassed with high accuracy,
we would like to highlight a question originally posed in [25] regarding commonsense reasoning,
reframed here for reasoning in general: Have neural language models successfully acquired rea-
soning, or are we overestimating the true capabilities of machine reasoning? Several studies in the
literature show that these models still perform poorly when required to generalize to longer contexts
or handle tasks requiring inductive and compositional reasoning [33H38]. This discrepancy suggests
a limitation of current benchmarking practices: improvements in benchmark scores do not necessarily
reflect generalizable reasoning ability.

We believe this discrepancy can be reduced by developing more sophisticated, task-specific evaluation
metrics that capture intermediate reasoning steps or different modes of error. Additionally, formalizing
reasoning for different task types can support these efforts, enabling more structured analyses
and clearer assessment of models’ reasoning abilities. Such a formalization enables structured
representations of diverse reasoning types and their interrelationships [39H41]], and facilitates the
design of layered, targeted evaluation procedures that assess specific reasoning capabilities rather
than merely reporting overall accuracy. Furthermore, formal reasoning frameworks can support the
development of algorithms that deliver structured feedback to models, guiding the refinement of their
reasoning abilities. By integrating formalized reasoning with task-specific evaluations, benchmarking
can be conducted in a more targeted and informative manner.

6 Limitations

The analysis in our study focuses on 52 benchmarks used by the three model families. Other
model families and reasoning-focused models are not fully explored because including them, along
with more than two hundred benchmarks identified from other model families and several studies
evaluating different types of reasoning in large models, would create a combinatorial explosion of
comparisons. This restriction was necessary to maintain the scope of our work on a qualitative
evaluation of benchmark design and adoption rather than an exhaustive quantitative analysis of
all models and benchmarks. A comprehensive comparison across a wider range of models and
benchmarks is left for future work.

7 Conclusion

In this work, we analyze 52 benchmarks across three model families, covering multiple reasoning
types. Our study reveals the rapid saturation of older benchmarks, selective adoption of new ones, and
temporal dynamics that govern the utility of benchmarks in evaluating model performance. While
model performance generally improves over time and correlations within reasoning types indicate
overlapping evaluation properties, the introduction of more challenging benchmarks generally resets
performance, suggesting that apparent reasoning ability is influenced more by extrinsic factors than
by mastering the reasoning itself, as supported by other studies. This saturation cycle highlights
the limitations of current practices: benchmarks provide only a partial view of model reasoning.



Meaningful progress requires formalized reasoning tasks, layered evaluation procedures, and task-
specific metrics that go beyond accuracy scores.
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A Reasoning Benchmarks

Table 1: Taxonomy of benchmarks used in this study.

Benchmark Reasoning Year Explanation
Type
HellaSwag Commonsense 2019 Multiple-choice task: choose the most
[42] and Logical plausible sentence continuation.
Reasoning
MMLU [43] Reasoning with 2021 Multiple-choice task: answer questions
General across 57 domains to test knowledge and
Knowledge problem-solving.
Big-Bench- Reasoning with 2023 Open-generation task: solve difficult
Hard [44] General BIG-Bench problems testing multi-step
Knowledge reasoning and problem-solving.
MMMLU Reasoning with 2024 Multiple-choice task: answer 57 domain
[45] General questions translated into 14 languages to
Knowledge test multilingual knowledge and
problem-solving.
Humanity’s Reasoning with 2025 Multi-modal task: answer closed-ended
Last Exam General questions across many subjects to test
[46] Knowledge verifiable knowledge.
Global Reasoning with 2025 Multiple-choice task: answer 42-language
MMLU (Lite) | General questions with culturally sensitive labeling
[47] Knowledge to test equitable multilingual knowledge.
GPQA Reasoning with 2023 Multiple-choice task: answer 448
Diamond [48] | General expert-level science questions in biology,
Knowledge physics, and chemistry that are
Google-proof and highly challenging.
MMLU Pro Reasoning with 2024 Multiple-choice task: extended from
[49] General MMLU, answer more challenging
Knowledge reasoning questions with 10 options across
diverse domains.
ARC (A2 Reading Com- 2018 Multiple-choice task: answer grade-school
Reasoning prehension and science questions requiring advanced
Challenge) Question knowledge and reasoning beyond simple
[150] Answering retrieval.
ECLeKTic Reading Com- 2025 Closed-book QA task: answer 12-language
(511 prehension and questions to test cross-lingual knowledge
Question transfer.
Answering
DROP [52] Reading Com- 2019 Open-ended QA task: answer 96k English
prehension and questions requiring discrete reasoning over
Question paragraph content.
Answering
GSMS8K [53] | Mathematical 2021 Open-ended QA task: solve grade-school
Reasoning problems requiring multi-step
mathematical reasoning.
MATH [30] Mathematical 2021 Open-ended QA: solve 12,500 challenging
Reasoning competition problems with step-by-step
solutions to test advanced mathematical
reasoning.
MATH 500 Mathematical 2024 Open-ended QA: Challenging subset of
[30] Reasoning MATH benchmark.
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Benchmark Reasoning Year Explanation
Type
MGSM [54] Mathematical 2023 Open-ended QA: solve 250 GSMS8K
Reasoning problems translated into 10 languages.
MathVista Mathematical 2024 Open-ended multimodal QA: solve 6,141
[55] Reasoning math problems requiring visual and
compositional reasoning.
AIME 2024 Mathematical 2024 Open-ended QA: solve challenging
Reasoning competition-level mathematics problems.
AIME 2025 Mathematical 2025 Open-ended QA: solve challenging
Reasoning competition-level mathematics problems.
FrontierMath | Mathematical 2024 Open-ended QA: tests advanced
[56] Reasoning mathematical reasoning across diverse and
expert-level domains, requiring multi-step
problem solving and deep mathematical
knowledge.
MMMU [57] Multimodal 2024 Question answering task: multimodal
Reasoning multiple-choice and open-ended questions
across 30 subjects requiring advanced
reasoning and domain-specific knowledge.
AI2D [58]] Multimodal 2016 Open-ended QA: multimodal questions
Reasoning with 5,000 diagrams and 15,000 Q&A
pairs requiring diagram structure
understanding and reasoning.
ChartQA [59] | Multimodal 2022 Open-ended QA: multimodal questions
Reasoning with 32.7K chart-based problems requiring
visual and logical reasoning.
EgoSchema Multimodal 2023 Multiple-choice QA: multimodal questions
[32] Reasoning with 5,000 long-form video clips requiring
understanding of human activity and
temporal reasoning.
DocVQA [60] | Multimodal 2021 Open-ended QA: multimodal questions
Reasoning with 50,000 document images requiring
reading and interpreting document layout
and structure.
TextVQA Multimodal 2019 Open-ended QA: multimodal questions
[61] Reasoning with 45,336 images requiring reading and
reasoning about embedded text.
VideoMMMU | Multimodal 2025 Open-ended QA: multimodal questions
[62] Reasoning with 300 expert-level videos and 900 Q&A
pairs assessing knowledge acquisition
through perception, comprehension, and
adaptation.
Vibe-Eval Multimodal 2024 Open-ended QA: multimodal questions,
[63] Reasoning testing visual understanding and
multimodal chat capabilities.
ZeroBench Multimodal 2025 Open-ended QA: multimodal questions
[64] Reasoning with 434 visual reasoning problems
designed to be impossible for current
LMMs.
CharXiv [65] | Multimodal 2024 Open-ended QA: multimodal questions
Reasoning with 2,323 charts requiring descriptive

analysis and complex reasoning.
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Benchmark Reasoning Year Explanation
Type

MMMU Pro Multimodal 2025 QA task: multimodal multiple-choice and

[66] Reasoning open-ended questions, extended from
MMMLU, testing integrated visual and
textual reasoning.

ActivityNet Multimodal 2015 Multiple-choice and open-ended QA:

[31] Reasoning evaluates recognition and understanding of
complex human activities in untrimmed
videos, testing visual perception and
temporal reasoning.

ERQA [67] Multimodal 2025 Multiple-choice QA: evaluates embodied

Reasoning reasoning and spatial understanding in
real-world scenarios, requiring models to
integrate text and visual inputs to select the
correct answer.

SWE-bench Programming 2024 Open-ended QA: answer 2,294 software

Verified [68]] and Coding engineering problems requiring multi-file
code edits and complex reasoning.

Terminal- Programming 2025 Open-ended QA: answer complex tasks in

bench [69] and Coding terminal environments using text-based
commands and reasoning.

HumanEval Programming 2021 Open-ended QA: answer Python

[70] and Coding programming problems from docstrings
requiring functional code synthesis.

LiveCode Programming 2025 Open-ended QA: answer 600+ coding

Bench [71] and Coding problems from contests, testing generation,
self-repair, execution, and test prediction.

Aider Polygot | Programming 2024 Open-ended QA: answer 225 difficult

[72] and Coding coding problems in C++, Go, Java,
JavaScript, Python, and Rust.

SWE-Lancer | Programming 2025 Open-ended QA: answer 1,400 freelance

73] and Coding software engineering tasks, including
implementation and managerial decisions,
with real-world evaluation.

SWE-Lancer | Programming 2025 Open-ended QA: answer tasks from the

Diamond [73] | and Coding public SWE-Lancer Diamond split,
including implementation and managerial
software engineering problems.

TAU-bench Tool Use — 2024 Open-ended QA: tests reasoning,

[74]] LLM consistency, and rule-following in dynamic,
tool-assisted human-agent interactions.

TAU2-bench Tool Use — 2025 Open-ended QA: tests multi-turn reasoning,

[75] LLM coordination, and communication in
dual-control environments where both
agent and user act with tools.

COLLIE [76] | Constrained 2023 Open-ended QA: answer 2,080 prompts

Text requiring constrained text generation with

Generation — compositional, grammar-based, and

LLM reasoning challenges.

SimpleQA Factuality — 2024 Factual QA benchmark designed to test

[77] LLM factual accuracy and knowledge

calibration.

13




Benchmark Reasoning Year Explanation
Type
FACTS Factuality — 2024 Open-ended QA: answer questions
Grounding LLM requiring LLMs to generate factually
78] accurate and well-grounded responses from
provided source material.
BrowseComp | Factuality — 2025 Open-ended QA: answer 1,266 questions
[79] LLM by persistently navigating the internet to
find hard-to-locate information.
ComplexFunc | Tool Use — 2025 Open-ended QA: answer complex
Bench [80]] LLM function-calling tasks in five real-world
scenarios requiring multi-step reasoning,
parameter management, and long-context
handling.
IFEval [81]] Instruction 2023 Open-ended QA: answer 500 prompts
Following — requiring LLMs to follow verifiable natural
LLM language instructions.
Multi-IF [82]] | Instruction 2024 Open-ended QA: answer 4,501
Following — multilingual multi-turn prompts requiring
LLM accurate instruction-following across
languages and conversation turns.
LOFT [83]] Long-Context — 2024 Open-ended QA: answer real-world tasks
LLM requiring reasoning and in-context retrieval
over millions of tokens.
Graphwalks Long-Context — 2025 Open-ended QA: perform multi-hop
[14] LLM reasoning across a graph of millions of
tokens to answer questions requiring
breadth-first traversal.
Multi Multi-turn 2025 Open-ended QA: answer multi-turn
Challenge Conversation — conversation prompts requiring
[184] LLM instruction-following, context management,
and in-context reasoning.
HealthBench | Safety — LLM 2025 Open-ended QA: evaluates LLMs on
[185]] multi-turn healthcare conversations,

requiring factual reasoning, safety
awareness, and context-sensitive
decision-making across diverse medical
contexts.

14




B Performance of Models

Score (%)

1 2 3 4 5 6 7 8 9 10
Model Number

(a) Commonsense and Logical Reasoning

MU

= 2 d
5 —
°
s d
870 >
12}
60 —
4

50|

1 2 3 4 5 6 7 8 9 10

Model Number

(c) Multimodal Reasoning

1 2 3 7 8 9 10

5 6
Model Number

(e) Reading Comprehension and QA

5 6
Model Number

(g) LLM Benchmarks

=]
3

/l_,_‘esmax
-
-

MATH AIMBNR025

©
]

@
8

o

MathVista

Score (%)
©w & @ @ N
g8 &8 8 8 3

N
S

1 2 3 4 5 6 7 8 9 10
Model Number

(b) Mathematical Reasoning

Model Number

(d) Programming and Coding

ig-Bench-Hard
MMILU
920 MMLU & i)
. >
« - g d
80 /.’M\ UPro

1 2 3 4 5 6 7 8 9 10
Model Number

(f) Reasoning with General Knowledge

9 10

Figure 3: Performance of the Claude family on reasoning benchmarks by category. Model numbers
and corresponding names are as follows: 1 — Claude 3 Haiku; 2 — Claude 3 Sonnet; 3 — Claude 3
Opus; 4 — Claude 3.5 Haiku; 5 — Claude 3.5 Sonnet; 6 — Claude 3.7 Sonnet; 7 — Claude 3.7 Sonnet
(64K Extended Thinking); 8 — Claude Sonnet 4; 9 — Claude Opus 4; 10 — Claude Opus 4.1.
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Figure 5: Performance of the GPT family on general reasoning benchmarks. Model numbers and
corresponding names are as follows: 1 — GPT-3.5; 2 — GPT-4; 3 — GPT-4 Turbo; 4 — GPT-40 mini; 5 —
GPT-40; 6 — ol-preview; 7 — ol-mini; 8 —o0l; 9 — ol-pro; 10 — GPT-4.1 nano; 11 — GPT-4.1 mini; 12 —
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GPT-5 with Deep Research; 20 — ChatGPT Agent; 21 — GPT-5; 22 — GPT-5 Pro.
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Figure 6: Performance of the GPT family on LLM-specific benchmarks. Model numbers and
corresponding names are as follows: 1 — GPT-3.5; 2 — GPT-4; 3 — GPT-4 Turbo; 4 — GPT-40 mini; 5 —
GPT-40; 6 — ol-preview; 7 — ol-mini; 8 —o1; 9 — ol-pro; 10 — GPT-4.1 nano; 11 — GPT-4.1 mini; 12 —
GPT-4.1; 13 — GPT-4.5; 14 — 03-mini; 15 — 04-mini; 16 — 03; 17 — 03-pro; 18 — gpt-0ss-120b; 19 —
GPT-5 with Deep Research; 20 — ChatGPT Agent; 21 — GPT-5; 22 — GPT-5 Pro.
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