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IDEAS NCBR

Marek Cygan
University of Warsaw

Nomagic

Sebastian Jaszczur ∗

IDEAS NCBR
University of Warsaw

Abstract

Mixture of Experts (MoE) models based on Transformer architecture are pushing
the boundaries of language and vision tasks. The allure of these models lies in
their ability to substantially increase the parameter count without a corresponding
increase in FLOPs. Most widely adopted MoE models are discontinuous with
respect to their parameters - often referred to as sparse. At the same time, ex-
isting continuous MoE designs either lag behind their sparse counterparts or are
incompatible with autoregressive decoding. Motivated by the observation that the
adaptation of fully continuous methods has been an overarching trend in Deep
Learning, we develop Mixture of Tokens (MoT), a simple, continuous architecture
that is capable of scaling the number of parameters similarly to sparse MoE mod-
els. Unlike conventional methods, MoT assigns mixtures of tokens from different
examples to each expert. This architecture is fully compatible with autoregressive
training and generation. Our best models not only achieve a 3× increase in training
speed over dense Transformer models in language pretraining but also match the
performance of state-of-the-art MoE architectures. Additionally, a close connec-
tion between MoT and MoE is demonstrated through a novel technique we call
transition tuning.

1 Introduction

Transformer-based Large Language Models (LLMs) make up one of the most active fields in AI,
exhibiting human-level performance across a variety of tasks, including translation, language under-
standing, reasoning, and code generation [1, 2, 3]. The exorbitant sizes of all state-of-the-art language
models are integral to their success, with parameter counts reaching tens or even hundreds of billions.
This phenomenon aligns with findings from [4, 5], where the latter suggests that the optimal model
size grows proportionally to the available computational budget. Given that hardware efficiency has
been steadily increasing over the past decade [6, 7], these findings imply that scaling will continue to
be a vital component in training increasingly capable models.

∗Equal contribution. Work done while at IDEAS NCBR and University of Warsaw.
Detailed authors’ contributions are listed in Appendix F.
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Figure 1: Mixture of Tokens: Each expert receives a unique mixture of tokens in the group. Mixing
weights are determined by the controller, which is a fully connected layer (omitted for clarity). For a
given token, its update is a linear combination of expert outputs, with the coefficients equal to the
token’s original mixing weights for each expert.

However, model scaling invariably comes at a cost. Larger models execute more Floating Point
Operations (FLOPs) per token, resulting in both training and inference becoming slower and more
expensive [8, 9]. Mixture of Experts [10] architectures offer an attractive alternative to standard
Transformers by drastically increasing the number of parameters. The core idea is to have multiple
experts, each specializing in a different part of the input space. Currently, state-of-the-art models
based on MoE leverage sparsity by activating only a fraction of the parameters for each token [11].
This allows the networks to increase the number of parameters by an order of magnitude while
keeping the FLOPs per token roughly constant. In this work, we use MoE to signify sparse Mixture
of Experts architectures unless explicitly stated otherwise.

The aforementioned sparsity is made possible with a router, a small network that selects the best
experts for each token. This makes the output of an MoE layer discontinuous with respect to
its parameters, as only a subset of the experts is chosen for each token (this is typically done
with a discrete top-k operation). The discontinuity and the resulting fluctuations of the router’s
decisions have been shown to hurt training efficiency [12, 13] and are hypothesized to be a source of
training instability in large MoE models [14, 15]. Conversely, existing continuous MoE architectures
involve trade-offs, including the inability to scale [16, 17], or incompatibility with autoregressive
decoding [15].

This paper introduces Mixture of Tokens, a novel, continuous Transformer architecture closely related
to sparse Mixture of Experts. Similar to MoE, it can support large parameter counts without significant
costs in FLOPs. The core idea behind our design is for each expert to process not individual tokens
separately, but their combined representation.

This technique results in a continuous model that avoids the top-k operation. It requires no additional
techniques commonly required in existing MoE designs (both sparse and continuous), such as load
balancing losses, calculating solutions to optimization problems, or non-homogeneous training
schedules [17, 18, 12]. It is capable of scaling the parameter counts akin to sparse MoEs and is
compatible with autoregressive language modeling and generation. Our analysis demonstrates a
3× speedup over a dense baseline and improved stability over MoE.
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In summary, our contributions are the following:

• Introducing the novel Mixture of Tokens (MoT), a continuous Mixture of Experts architec-
ture that mixes tokens from different examples for joint processing.

• An analysis of scaling properties of Mixture of Experts models on multiple scales.
• Introducing transition tuning, allowing a pretrained MoT model to be tuned for sparse MoE

inference if desired.

2 Background and Related Work

In this section, we provide an overview of the approaches related to our work and discuss the
differences between various MoE designs. We will introduce the Mixture of Tokens architecture in
Section 3 and provide a detailed comparison between MoT and related methods in Section 3.4.

2.1 Large Language Models

Transformer scaling has been shown to be a critical factor in achieving state-of-the-art results in
language and vision tasks [4, 19], with the largest disclosed parameter counts in dense models
reaching hundreds of billions of parameters [20, 3, 2]. These large models exhibit impressive abilities
not present in their smaller counterparts [21]. [4] and [5] have demonstrated that the final model
performance is predictable and correlates directly with the model size and the amount of training
data. However, increasing model sizes raises the demand for computational resources during both
training and inference [22].

2.2 Mixture of Experts

Mixture of Experts (MoE) was first introduced by [10, 23] as an ensemble-like neural network
comprised of separate sub-networks called experts. The original design used a gating network to
select a soft assignment of experts for each input. In the context of Deep Learning, the notion of an
MoE layer was introduced in [24]. [25] combined a sparse version of MoE layers with an LSTM to
train a model with over 100 billion parameters, which was unprecedented at the time. The design,
similar to state-of-the-art MoE models today, used a small routing network to decide the top-k best
experts for each input. By choosing only a subset of the experts, they were able to increase the size of
the network while keeping FLOPs per token roughly constant. The Transformer was first combined
with MoE layers in [26], where it replaced the Feed-Forward layer. The design was further simplified
in [27], which trained a model with 1.6 trillion parameters using top-1 routing. Since then, a number
of studies have investigated different sparse MoE designs [28, 29, 30, 31, 32]. A comprehensive
analysis of scaling properties of sparse MoE architectures can be found in [33]. [34] introduced
the notion of granularity, which in spirit is similar to the number of groups in MoT, described in
Section 3.2.

2.3 Continuous Mixture of Experts

Continuous architectures serve an important role within the field due to their flexible and efficient
nature. [17] were pioneers in introducing them in MoE by presenting continuous techniques for
calculating encodings of the choice of an expert. In another approach, [16] proposed a method in
which they merge experts based on the weights of the router network. In a recent advancement, [15]
proposed a continuous variant of MoE for the Vision Transformer, where patches are mixed only
within each image.

2.4 From Hard to Soft Methods

From the very beginning of the Deep Learning field, there has been a shift from discrete functions
toward continuous ones. The first perceptron [35] used "all-or-none" activation, supposedly to align
with propositional logic. This was later improved with soft activation functions, enabling gradient
descent and multi-layer neural networks. Similarly, soft attention, introduced in [36], enabled RNNs
to look at arbitrary input from the past while maintaining the ability to learn the selection with
standard gradient descent. This is in contrast to hard attention, which requires, e.g., reinforcement
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Figure 2: (Left). Diagram of a standard Feed-Forward layer featured in the Transformer architecture:
each token is processed with the same MLP independently of other tokens. (Right). Diagram of a
Token Choice layer, where each token decides which expert to choose. In this way, different experts
process a different number of tokens. If one expert is chosen by too many tokens, a portion of the
tokens is dropped — they receive no update.

learning techniques. While hard attention could perform on par with soft attention [37, 38], soft
attention, with its simplicity of training, offered better trade-offs and was later used as the basic
building block of the Transformer [39].

Mixture of Experts, introduced into Deep Learning by [10, 23, 25], appears to be inherently a discrete
function—after all, the expert either processes a given token or it does not. However, similar to the
transition from hard to soft attention, an expert in MoE can "attend" to a combination of tokens, taken
as a weighted average. This results in a smooth, continuous model and facilitates more stable training.

3 Mixture of Tokens

The goal of this work is to develop an efficient, continuous architecture that retains the scalability
of Mixture of Experts, while simultaneously omitting the top-k operation, which limits a token’s
exposure to different experts. An intuitive approach to achieving this is to route all tokens to all
experts, but this is computationally infeasible for large-scale pretraining. To overcome this constraint,
the method explored in this work considers what happens not to an individual token but to a whole
group of tokens instead. The main contribution of this work is the observation that allowing an expert
to dynamically produce a continuous representation of the entire group of tokens, which is more
lightweight to process than each token individually, yields positive results.

Algorithm 1 Mixture of Tokens layer
1: for each E in experts do:
2: weightsE = Softmax(Linear(tokens))
3: mix =

∑
i token i ∗ weights i,E

4: outputE = E(mix)
5: for each i do
6: for each E do
7: updatei =

∑
E outputE ∗ weights i,E

More specifically, in our design, an input batch is divided into groups of tokens, and each group is
processed independently. Given a group and a single expert, a scalar weight is produced for each
token. The weights are then normalized and used to compute a linear combination of the tokens,
which is used as the expert’s input. The experts’ outputs are used for token updates as follows: for
each input token, its update is a linear combination of expert outputs, with the token’s mixing weights
for each expert as coefficients2. A diagram of our method is presented in Figure 1.

2The authors note that an MoT layer admits an efficient vectorized implementation, where all meaningful
computations are done with batched matrix multiplications.
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To see why this method is scalable, it is helpful to examine the relationship between the number
of tokens in a group and the number of experts. Essentially, if these two quantities are equal, the
total computation performed by the experts is the same as in the case of top-1 routing. This allows
MoT to benefit from the same parameter scaling as seen in MoE, which we confirm empirically in
Section 4.2.

3.1 Intuition Behind Our Method

As we mix tokens from multiple unrelated sequences, we do not expect the model to meaningfully
use the information from one sequence to improve prediction in a different sequence. However, we
hypothesize that such mixing (1) provides richer feedback (gradients) to train the model, especially
the router, and (2) results in a smoother loss landscape, which is resistant to small perturbations in
inputs and weights.

Intuitively, for a given expert, from the perspective of each token, the token receives a certain amount
of update to its representation (in the residual stream) based on:

• Itself, producing a proper signal expected to improve the token representation.

• Tokens other than itself, which are essentially random tokens from unrelated sequences.
As these sequences are randomly sampled from the dataset, the impact from these tokens
will point in random directions and, essentially, just add some amount of noise to the token
update.

We generally expect neural networks to be resistant to a certain amount of noise added to them.
Moreover, while the signal-to-noise ratio worsens for tokens with low expert weight, the expert
weight also modulates the magnitude of the update. Therefore, the amount of noise added to the
representation is limited.

We stipulate that MoT experts will learn to focus on a single token or a small number of tokens,
thereby minimizing noise and approximating sparse MoE when optimal. However, other tokens will
be assigned nonzero weight, allowing some information to flow to the router for each and every
token-expert pair, unlike sparse MoE. Additionally, the output of MoT is more continuous, with small
perturbations of input/weights corresponding to small changes in the output rather than large discrete
jumps, as may occur in the case of sparse MoE.

3.2 More Mixtures per Expert

Building on the design described above, we experiment with feeding more than one mixture into each
expert. Without further modifications, this approach would result in a linear increase in computational
costs for each additional mixture processed. To circumvent this added cost, MoT uses more experts,
but each expert has a proportionally reduced hidden dimension. This way, each mixture is processed
by a smaller expert, and the layer’s total number of parameters, as well as the number of FLOPs used
by all experts, remains approximately the same. We find that this design consistently improves MoT
as the number of processed mixtures increases, just as it does in sparse MoE [34]. Likewise, the
optimal granularity aligns roughly with the number of mixtures in this work.

3.3 Token Groups in Mixture of Tokens

The question of how token groups are decided within a batch is crucial for compatibility with
autoregressive training and inference. The main insight here is that tokens from the same sequence
cannot be placed in a single group, as the mixing operation would result in an information leak. Due
to this restriction, MoT groups tokens from different examples based on their position in the sequence.
Thus, all tokens within a group share the same position in their respective sequences. As previously
mentioned, to maintain a constant number of FLOPs per token, an increase in the number of experts
means an equal increase in group size. An illustration of how grouping is done within a batch of
tokens is shown in Figure 3.
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Figure 3: Each group consists of tokens with the same position in a sequence. In this example, the
group size is 2. Note that the maximum possible group size equals the size of the batch.

3.4 Comparison with Other Mixture of Experts Architectures

Scaling The technique featured in [17] is based on a continuously differentiable sparse top-k router,
which is a major advantage compared to the common top-k gating. However, this approach requires
that all experts are utilized in a portion of training, rendering it computationally prohibitive for models
with large numbers of experts. The architecture based on merging experts proposed in [16] also offers
an attractive, continuous alternative to top-k gating, yet the cost of merging all experts again scales
linearly with the number of experts. To address this, the technique is applied once per sequence,
which limits the expressive power of the final model.

Training stability [26] reported instabilities during the training of large MoE models, stemming
from the inaccuracies when calculating router weights in low precision. To stabilize the training,
they resorted to using full precision. [27] made progress in using mixed precision when training
MoE by using selective high precision for gating. When comparing [26, 27] to MoT, an advantage
of our technique emerges - it is more robust to training in lower precision than other methods. We
conjecture, that this is due to the merging mechanism being less susceptible to rounding errors than
gating in sparse MoEs.

Token dropping Token dropping is a phenomenon where tokens do not receive an update from any
expert. This can happen when the expert was selected by too many tokens in a batch [27, 26, 40] or,
in the case of routing experts to tokens, when a token is not selected by any expert [30]. Existing
techniques to combat this phenomenon offer a partial solution, yet the problem persists. In contrast,
tokens in MoT are part of every mixture produced within their group; hence, they always receive an
update.

Auto-regressive decoding Mixture of Tokens is based on the concept of merging tokens before they
are processed by an expert. An encoder-only design of a similar nature is featured in concurrent
work [15]. The technique is based on merging patches within an image for vision models, i.e., within
a single sample. This should be contrasted with MoT, which merges tokens from different sequences
within a batch. This crucial difference allows MoT to be compatible with autoregressive training and
inference.

Time complexity The time complexity of our approach is identical to that of the Token Choice
and Expert Choice methods. In all cases, the cost of computing routing logits is of order
O(dmodel ·Nexperts ·Ntokens).
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4 Experiments

The focus of this work is to investigate the efficiency of Tokens on autoregressive language modeling.
To measure model quality, we pretrain models for a fixed number of tokens and compare final
perplexity in accordance with existing MoE literature [28, 27]. In all experiments, the models are
trained on the C4 dataset3 [41] and use the GPT-2 tokenizer. Unless specified otherwise, we use
mixed precision, where all heavy computation is done in bfloat16, whereas the optimizer state and
weights are kept in full precision. To study the stability of our model, we experiment with training
fully in reduced precision.

Our main result is a substantial speed-up of MoT models compared to dense Transformers (Figure 7)
and results comparable to sparse MoEs (Figure 6). What follows is the analysis of the scaling
properties of the MoT architecture with respect to the number of parameters (Figure 4) and the
number of mixtures sent to each expert (Figure 5). We investigate the model’s performance in low
precision in order to simulate training instability and find that MoT is less susceptible to instabilities
arising from low-precision training. Lastly, we show the connection between MoT and MoE, by
spending an additional fraction of pretraining compute to effectively transform a MoT model into a
Token Choice model (Section 4.4).

4.1 Model Architecture

The base of our experiments is a decoder-only Transformer based on GPT-2 [42]. We conduct
experiments on two model scales: a 77M Medium model and a 162M Base model (refer to Appendix A
for hyperparameters and training details). To obtain a Mixture of Tokens model, we replace the
second half of the Feed-Forward layers in the Transformer with MoT layers. Because, similar to MoE
models, the FLOPs and parameter counts in MoT are decoupled, we indicate the model architecture
by its dense counterpart in terms of the number of FLOPs and, separately, the number of experts (or
equivalently, group size). To this end, a MoT-Medium/32E model is one that uses the same number
of FLOPs as a Medium (77M) Transformer model but uses 32 experts in MoT layers.

As outlined in Section 3.2, Medium/32E/4 signifies a model employing MoT layers with 32 · 4 small
experts, which add up to the same number of parameters as 32 normal experts.

In addition to using the Transformer as a baseline, we also compare against Token Choice [27] and
Expert Choice [30] as sparse MoE baselines. Given that Expert Choice is sensitive to the size of the
batch, in order to avoid discrepancy between training and inference, we group tokens prior to routing
in training Expert Choice models.

4.2 Scaling Results

Mixture of Tokens models demonstrate strong scaling properties with respect to the number of
parameters. As seen in Figure 4, increasing the number of experts in MoT layers while using the
same compute budget yields consistent improvements. All MoT models are a strict improvement over
the Transformer. The figure also includes an ablation experiment, where the mixing weights are fixed
to 1/n, where n is the group size. This corresponds to a uniform mixing strategy; the performance of
that model clearly suffers, confirming that MoT layers learn non-trivial mixing strategies.

The increased number of token mixtures described in Section 3.2 represents another axis of scaling for
MoT models, once again exhibiting consistent improvements. We hypothesize that this phenomenon
is due to two mechanisms: First, the model becomes more expressive with a larger number of
smaller experts. Second, the model can allocate its focus (the mixing weights) more flexibly to more
important tokens while reducing the updates for trivial ones.

4.3 Comparison with the Transformer and Sparse MoEs

Crucially, the performance of Mixture of Tokens is comparable to that of the strong Mixture of
Experts baselines (Figure 6). An increased number of mixtures allows it to compete with both Expert
Choice and Token Choice architectures. As the sparse routing is hypothesized to contribute to training
instabilities in large sparse models, Mixture of Tokens, being continuous, presents a promising

3https://huggingface.co/datasets/c4, dataset licensed under ODC-By.
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Figure 4: Scaling with respect to the number of parameters. Also featured are the Transformer
baseline and an MoT model with a non-learnable, uniform routing strategy.

Figure 5: Scaling with respect to the number of token mixtures.

alternative. To investigate training instabilities at the scale we experiment on, we trained models
entirely in bfloat16, as opposed to the mixed precision used in all other experiments. The results
confirm that MoT is more resistant to lower precision training: as the precision of training decreases,
the performance of Expert Choice drops below that of Mixture of Tokens, despite the former attaining
better perplexity using mixed precision. We find this to be evidence of the architecture’s potential for
stable training at higher model scales. See Table 1 for details.

Finally, we combine our findings on MoT scaling properties to train our most efficient MoT model
and compare it to the Transformer baseline (Figure 7). The result is a model that achieves the final
loss of the baseline in one-third of the training steps. This represents a 3× improvement in terms of
the compute budget.

Table 1: Comparison of training result loss comparison. MoT performs better in the bfloat16-only
setting. Learning rates were separately tuned in lower precision for both EC and MoT. Results are
averaged over 3 random seeds.

MoT-Medium/32E Expert Choice-Medium/32E
Mixed Precision 3.442 (± 0.002) 3.420 (± 0.002)
bf16 only 3.661 (± 0.007) 3.728 (± 0.044)
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Figure 6: Comparison of MoT and sMoE architectures. An increased number of smaller experts
allows MoT to match the performance of the best sMoE model. Due to computational constraints,
the models were trained for 100K steps.

Figure 7: Our best MoT model reaches the final loss of the baseline in just 33% of the compute
budget.

4.4 Transition Tuning

Mixture of Tokens suffers from a drawback common to MoEs, namely, it does not support unbatched
inference. This is a direct consequence of its design - in the forward pass, it groups several tokens
from different examples in the batch. With the growing adoption of Large Language Models on
consumer hardware [43, 44], this lack of support could hinder the architecture’s wider adoption.
While a Mixture of Tokens with a group size of one is technically possible, in order to keep FLOPs
constant, the layer would need to trivially reduce to a standard Transformer MLP.

To address this issue, we demonstrate that the weights learned by the Mixture of Tokens can be
used to directly initialize a Token Choice model of the same specifications (number of experts and
expert size). The layer responsible for producing mixing weights is utilized to initialize the sparse
router. In order to mitigate the difference in performance that is caused by this change in architecture,
we train the entire new model (no weights are frozen) for 10% of the total pretraining steps of the
original model in order to recover the original model’s performance (measured in eval loss). We
call this technique transition tuning. This way, it is possible to train with Mixture of Tokens and
enjoy unbatched generation at inference time. We hypothesize that this pipeline would be especially
attractive in setups where having parts of the model train in higher precision is impossible, e.g., on
specialized, low-precision hardware. The results are presented in Figure 8.
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Figure 8: Transition tuning: The first 150K steps of the model are completed using the Mixture of
Tokens architecture. Then, a new Token Choice model is initialized with weights from the MoT
model, and the model trains for an additional 15K steps to recover performance. The spike in loss
results from the sudden change of architecture.

5 Limitations and Future Work

With the strong performance of MoT on medium-sized models, an obvious next step is to train larger
models. This would present an opportunity to validate the stability results on larger models, where
training instabilities are more common.

As with most Mixture of Experts models, the memory footprint of MoT layers is substantial. Scaled
models require large amounts of RAM on specialized hardware for training, making their adoption
expensive. To this end, an attractive future direction would be to investigate model distillation with
Mixture of Tokens models.

In this work, we experimented only with text modality in an autoregressive manner. Other modalities,
such as vision, heavily overlap with the approach presented in work concurrent to ours [15].

Lastly, both training and inference with MoT involve mixing different examples within a single batch.
This mixing of tokens from different sequences and the requirement of performing batched inference
may be undesirable in some use cases. While performing unbatched inference is always inefficient
with LLMs, as the memory throughput to access model weights becomes the bottleneck, unbatched
inference still finds its uses. Even though transition tuning solves this problem, exploring different
inference strategies might bring new insights.

6 Conclusions

In this work, we presented the Mixture of Tokens, a novel continuous Mixture of Experts architecture
compatible with autoregressive decoding. This architecture scales to model sizes similar to sparse
Mixture of Experts models, matches their performance, and is more resistant to training instabilities
due to lower precision training. Moreover, we introduced transition tuning, a technique for initializing
an MoE model with another pretrained MoE model of a different architecture, and showed that the
new model achieves the performance of the original one using a fraction of the compute budget.
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A Training Hyperparameters

All models were trained using mixed precision unless explicitly stated otherwise. We conducted all
experiments with a batch size of 256 and a context length of 256 for 150K training steps (unless
explicitly stated), resulting in a total of 10B training tokens. We used the AdamW optimizer with
default hyperparameters. When necessary, we adopted a Fully Sharded Data Parallel approach from
PyTorch to parallelize training across multiple machines. Learning rates were tuned separately based
on model size and architecture. The optimal learning rate for Transformers was 1e-3 for Medium
models and 4e-4 for Base models, while for both MoT and MoE, they were 7e-4 for Medium models
and 2e-4 for Base models.

Table 2: Training hyperparameters. The table provides example models featured in our experiments.
All remaining models can be derived from this table.

Model Experts Expert Group Total Blocks dmodel dff #att.
size size params heads

Transformer-Medium - - - 77M 8 512 2048 8
MoT-Medium/32E 32 2048 32 336M 8 512 - 8

MoT-Medium/32E/8 256 256 32 337M 8 512 - 8
Transformer-Base - - - 162M 12 768 3072 12

MoT-Base/32E 32 3072 32 520M 12 768 - 12
MoT-Base/64E/16 1024 192 64 977M 12 768 - 12

B Downstream Evaluation

When trying to predict how specific changes to the model architecture will impact large-scale
models, comparing perplexity can provide a reliable indication of model improvements. However,
for completeness, we also measured performance on several downstream tasks relevant at this model
scale, comparing MoT-Medium to Transformer-Medium, without fine-tuning, in a zero-shot setting.
In these evaluations, for MoT, a single evaluation query is included in a batch of 32, with the
remainder of the batch comprised of random sequences from the C4 training dataset, ensuring it
remains zero-shot. We observe predictable improvements with the Mixture of Tokens on tasks
PIQA [45], HellaSwag [46], and ARC-e [47], see Table 3.

Table 3: Performance of a medium-sized model on downstream benchmarks.

Transformer-Medium MoT-Medium/32E/1 MoT-Medium/32E/16

PIQA 60.2 62.4 65.8
HellaSwag 27.3 31.1 33.3
ARC-e 35.5 37.3 39.6

C Reproducibility

The code and configuration files used to produce the results described in this work are available in
our public repository at https://github.com/llm-random/llm-random.

D Socio-Economic Impacts

The goal of this paper is to advance the field of Transformer training and Machine Learning in general,
language modeling in particular. With Large Language Models exhibiting the most impressive results
in Machine Learning to date, we believe that this work is able to help advance the model capabilities
even further. As to the potential socio-economic consequences of our work, it shares the common
potential impact of all work done on training efficiency.
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E Compute Resources

Table 4: Compute resources used for each experiment. All models were trained on NVIDIA A100
GPUs, with either 40 or 80 GB of RAM.

Model GPU RAM Time GPUs
Transformer-Base 40GB 32h 20m 1
MoT-Base/64E/16 40GB 33h 12m 2

MoT-Medium/128E 40GB 26h 36m 1
MoT-Medium/32E 40GB 23h 9m 1
MoT-Medium/8E 40GB 22h 31m 1

MoT-Medium/32E 40GB 20h 17m 1
Transformer-Medium 40GB 18h 48m 1

MoT->Switch Medium/32 40GB 35h 11m 1
MoT->Switch Base/32 40GB 17h 20m 4
MoT-Medium/32E/1 40GB 23h 9m 1
MoT-Medium/32E/8 40GB 24h 13m 1

MoT-Medium/32E/16 40GB 25h 36m 1
MoT-Medium/32E/32 40GB 28h 20m 1

Expert Choice-Base/32E 80GB 21h 12m 2
MoT-Base/32E 80GB 19h 38m 2

MoT-Base/32E/8 40GB 22h 10m 2
Token Choice-Base/32E 80GB 20h 19m 8

F Contributions

Szymon implemented a PoC and different variants of MoT, together with running experiments and
optimizations. Michał implemented and experimented with various MoT designs and contributed to
the infrastructure design and implementation. Sebastian provided the initial idea, research intuitions,
and direct project supervision. Maciej was responsible for parts of evaluation and significant
engineering. Jakub implemented MoE baselines, Jan stabilized Mixture of Experts training, while
both helped with MoE hyperparameter tuning. Tomasz consulted ideas and helped with cluster
infrastructure. Kamil and Krystian contributed to general engineering. Everybody above contributed
to the infrastructure of the project. Marek provided scientific advice and high-level supervision.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims in the abstract and the introduction are substantiated by experiments
and results shown in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 provides detailed limitations to the introduced technique.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper doesn’t contain theoretical results or theorems, as it relies on
experimental data.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper comes with a complete training and evaluation code, the settings of
experiments are contained in the paper, and the dataset is publicly available. Therefore, the
paper provides all the information needed to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Complete training and evaluation code is provided and open-sourced. The
datasets used are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

23

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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