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ABSTRACT

In this paper, we present MeshGen, an advanced image-to-3D pipeline designed to
generate high-quality 3D objects with physically based rendering (PBR) textures.
Existing methods struggle with issues such as poor auto-encoder performance,
limited training datasets, misalignment between input images and 3D shapes, and
inconsistent image-based PBR texturing. MeshGen addresses these limitations
through several key innovations. First, we introduce a render-enhanced point-
to-shape auto-encoder that compresses 3D shapes into a compact latent space,
guided by perceptual loss. A 3D-native diffusion model is then established to di-
rectly learn the distribution of 3D shapes within this latent space. To mitigate
data scarcity and image-shape misalignment, we propose geometric alignment
augmentation and generative rendering augmentation, enhancing the diffusion
model’s controllability and generalization ability. Following shape generation,
MeshGen applies a reference attention-based multi-view ControlNet for image-
consistent appearance synthesis, complemented by a PBR decomposer to separate
PBR channels. Extensive experiments demonstrate that MeshGen significantly
enhances both shape and texture generation compared to previous methods.

1 INTRODUCTION

With the rapid advancement of diffusion-based image generation models, there has been signifi-
cant progress in automatic 3D generation. In particular, methods utilizing score distillation sam-
pling (Poole et al., 2023) have demonstrated breakthroughs by leveraging priors from text-to-image
diffusion models. However, these optimization-based methods are relatively slow and face chal-
lenges such as mode collapse (Wang et al., 2023a;c) and the Janus problem (Armandpour et al.,
2023; Seo et al., 2023) due to the lack of inherent 3D information. Subsequent strategies address
these challenges by focusing on multi-view generation (Liu et al., 2023c; Long et al., 2023; Chen
et al., 2024c; Voleti et al., 2024) and large reconstruction models (Zou et al., 2023; Tang et al.,
2024a; Hong et al., 2023; Li et al., 2023a; Xu et al., 2024b; Liu et al., 2024; Wei et al., 2024). The
former generates multi-view images for 3D reconstruction. The latter maps sparse view images to
compact 3D representations using neural networks, such as triplane NeRF (Chan et al., 2021) or
grid 3D Gaussians (Zou et al., 2023; Tang et al., 2024a). While these methods have improved the
quality and speed of 3D generation, they typically use volumetric representations such as NeRF or
Gaussian instead of 3D meshes, resulting in further loss of quality during conversion (Hong et al.,
2023; Chen et al., 2024b; Tang et al., 2023). Moreover, these methods, which rely solely on render
loss for supervision, are highly susceptible to inconsistencies across multiple synthesized views and
often struggle to reconstruct objects with complex geometric structures (Sun et al., 2024).

Recently, 3D native diffusion methods have garnered significant attention as a promising paradigm
towards mesh-oriented generation (Gupta et al., 2023; Wang et al., 2023b; Zhang et al., 2024a; Li
et al., 2024b; Wu et al., 2024b; Hong et al., 2024; Chen et al., 2024a). By mapping 3D meshes
into a compact latent space using 3D auto-encoders, these methods directly learn the distribution
of 3D shapes instead of reconstructing from generated multi-views. Despite considerable progress
has been made, several challenges remain unresolved. Firstly, the inherent limitations of current
3D auto-encoders preclude the integration of perceptual loss during training, leading to less detailed
reconstructed meshes and consequently constrained expressiveness of the latent space. Moreover,
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existing 3D native diffusion methods typically generate simple and symmetric shapes, making it
challenging to match the input images, and the scarcity and poor quality of public datasets further
limit the generalization ability of current open-source models. In addition, existing image-guided
texture generation methods struggle to produce appearances consistent with the original images and
can only generate materials with light baked in, rather than the physically based rendering (PBR)
materials required in practical applications.

In response to these challenges, we introduce MeshGen, a novel image-to-3D pipeline specially
designed to generate PBR textured meshes that closely resemble the provided image in both geom-
etry and appearance. Specifically, to enhance the expressiveness of the point-to-shape auto-encoder,
we propose a triplane-based auto-encoder that incorporates perceptual render loss during training,
thereby fully exploiting the memory efficiency of triplane compared to latent vector set represen-
tation. Next, based on the geometrical covariant property of the point-to-shape auto-encoder and
the appearance-invariant nature of image-to-shape diffusion, we establish an image-to-shape dif-
fusion model with geometric alignment and generative rendering augmentation to enhance image-
shape consistency and generalization ability. For texture generation, we propose using a geometry-
conditioned ControlNet with reference attention fine-tuning to generate multi-view images consis-
tent with the input image in both appearance and lightning. We then employ a PBR decomposer to
estimate the PBR components in the shaded image and a texture inpainter to fill in the invisible parts.
As a result of these advancements, MeshGen can generate PBR textured 3D assets with consistent
geometry and exceptional fidelity within 30 seconds.

To summarize, our contributions are:

• We propose the MeshGen auto-encoder, which substantially improves the expressiveness
of the point-to-shape auto-encoder by incorporating both geometric and appearance super-
vision. It utilizes a coarse-to-fine optimization strategy guided by render-based perceptual
loss, ensuring more accurate shape representation.

• We introduce a novel image-to-shape pipeline with our proposed geometric alignment
augmentation and generative rendering augmentation, which largely enhance image-shape
alignment and generalization capabilities.

• We design a reference attention-based image-conditioned mesh texturing pipeline. Cou-
pled with our proposed PBR decomposer, our method is capable of generating relightable
textures that closely align with the appearance of the input image.

2 RELATED WORK

2.1 3D GENERATION

Early efforts in 3D generation focus on per-scene optimization methods based on CLIP similar-
ity (Radford et al., 2021; Sanghi et al., 2021; Jain et al., 2022) and score distillation sampling (Poole
et al., 2023). By utilizing powerful pre-trained image diffusion models, these methods soon excel
in various 3D generation tasks (Wang et al., 2023c; Chen et al., 2023b; Lin et al., 2023; Tang et al.,
2023; Chen et al., 2024b; Shi et al., 2023b; Li et al., 2023c; Wang & Shi, 2023; Sun et al., 2023; Chen
et al., 2023c). Despite great success has been achieved, optimization-based methods still suffer from
slow generation speed and low success rates. To overcome these challenges, researchers have ex-
plored multi-view generation (Liu et al., 2023b; Tang et al., 2024b; Lu et al., 2023; Liu et al., 2023c;
Long et al., 2023; Wu et al., 2024a; Li et al., 2024a; Chen et al., 2024c; Voleti et al., 2024) and large
reconstruction models (Szymanowicz et al., 2023; Liu et al., 2023e; Xu et al., 2023; 2024a; Hong
et al., 2023; Li et al., 2023b;a; Tang et al., 2024a; Wang et al., 2024). InstantMesh (Xu et al., 2024b)
adopts a two-stage optimization strategy that firstly trains a multi-view to triplane NeRF model,
then uses this model as initialization for FlexiCubes (Shen et al., 2023), thus yielding direct textured
mesh reconstruction from images. MeshLRM (Wei et al., 2024) follows a similar pipeline but uses
differentiable marching cubes with deferred rendering for direct mesh output. MeshFormer (Liu
et al., 2024) utilizes a hierarchical voxel structure for efficient large reconstruction model train-
ing. Although these methods have advanced 3D generation in speed and quality, the unsatisfying
performance of multi-view generation and the growing demands for higher mesh quality have led
researchers to focus increasingly on the development of native 3D generation methods (Liu et al.,
2023a; Gupta et al., 2023; Chen et al., 2024a; Wang et al., 2023b; Ren et al., 2024). 3DTopia trains
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Figure 1: Overview of the proposed MeshGen. We first train a render-enhanced auto-encoder to
compress 3D meshes to more compact latent space (Section. 3.1). We establish an image-to-shape
diffusion model based on our tailored generative augmentations for improving image-shape align-
ment and generalization ability (Section. 3.2). The obtained mesh undergoes a reference attention-
based multi-view synthesis and a PBR decomposer to obtain multi-view PBR channels. A UV-space
inpainter is then exploited to fill the areas invisible in multi-view images (Section. 3.3).

a text-to-triplane NeRF diffusion model on pre-computed latents to achieve native text-to-3D gener-
ation. 3DShape2Vecset (Zhang et al., 2023a) and CLAY (Zhang et al., 2024a) exploit latent vector
sets as representation, significantly enhancing the expressiveness of the latent space. CraftsMan (Li
et al., 2024b) improves 3DShape2Vecset by incorporating point normal as input to the auto-encoder
and proposes a normal enhancement process to generate finer details. Direct3D (Wu et al., 2024b)
exploits triplane as latent representation for capturing the structural 3D information. Our method
introduces a render-enhanced auto-encoder with geometric alignment and generative rendering aug-
mentation during training, improving the performance of 3D native diffusion in image-to-3D tasks.

2.2 TEXTURE GENERATION

Initial efforts in mesh texturing have focused on only utilizing image diffusion models through itera-
tive inpainting and optimization (Chen et al., 2023a; Jiang et al., 2024). TEXTure (Richardson et al.,
2023) presents an iterative texturing method that employs a pre-trained depth-to-image diffusion
model to progressively refine a 3D model’s texture map from various views. TexFusion (Cao et al.,
2023) enhances coherence by integrating texture information from multiple perspectives during the
denoising stage. SyncMVD (Liu et al., 2023d) improves multi-view consistency by denoising in UV
space and exploiting a self-attention reuse technique. FlashTex (Deng et al., 2024) proposes a light
ControlNet for text-to-PBR generation. In addition to methods that use only image diffusion, vari-
ous learning-based strategies initiate the training of generative texturing models using 3D textured
mesh data (Nichol et al., 2022; Luo et al., 2023; Jun & Nichol, 2023; Li et al., 2022; Collins et al.,
2022; Deitke et al., 2023; Chen et al., 2022; Yu et al., 2021b; Cheng et al., 2023). Texturify (Siddiqui
et al., 2022) proposes a GAN-based pipeline with face convolution to colorize meshes without di-
rect supervision. Point-UV (Yu et al., 2023) proposes a point diffusion to offer low-resolution global
information and a UV diffusion for enhancing finer details. Paint3D (Zeng et al., 2023) proposes a
coarse-to-fine strategy that firstly colorizes sparse views with depth-based inpainting and then im-
proves texture quality within the UV space. Meta 3D TextureGen (Bensadoun et al., 2024) exploits
a geometry-conditioned multi-view generator for text-to-texture generation.

3 METHOD

The overall pipeline of MeshGen is demonstrated in Fig. 1. We first train a render-enhanced
auto-encoder to compress the 3D meshes into compact triplanes. A diffusion model is then es-
tablished based on the proposed geometric alignment and generative rendering augmentation to en-
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hance image-shape alignment and generalization ability. The decoded 3D mesh then undergoes our
multi-view diffusion-based texturing pipeline for PBR material generation. The detailed MeshGen
methodology is presented as follows.

3.1 RENDER-ENHANCED AUTO-ENCODER

Transformer-based point-to-shape auto-encoder. To compress the discrete 3D meshes into a
continuous latent space, we adopted the same encoder as used in prior native 3D generation ap-
proaches (Zhang et al., 2023a; 2024a; Li et al., 2024b), namely the point-to-shape encoder. For a
given 3D object, we first uniformly sample NP points from its surface. Following previous methods,
we encode the sampled point cloud using Fourier positional encoding (Rahaman et al., 2019). Sub-
sequently, a set of learnable queries is introduced to extract information from the point cloud through
cross-attention, followed by a series of self-attentions to enhance the obtained representation. The
complete encoding process can be formulated as

z = SelfAttnn(CrossAttn(Q,FourierPE(P ))), (1)

where n refers to the number of self-attention layers, SelfAttn, CrossAttn and FourierPE
represents self-, cross-attention, and Fourier positional encoding. Here Q ∈ RNz×dz and P ∈
RNP×3 represent the learnable query set and the sampled point cloud respectively, Nz and dz refer to
the number of learnable queries and the dimension of the latent space. To incorporate render-based
perceptual loss during auto-encoder training, we choose triplane as the latent representation (Wu
et al., 2024b) instead of the latent vector set used in 3DShape2Vecset (Zhang et al., 2023a). This
choice is motivated by the fact that when querying the occupancy, the latent vector set requires
cross-attention with all latents, whereas the triplane only needs to pass through an MLP decoder,
thus supporting surface extraction at a higher resolution. To obtain the occupancy of a specific
point, a convolutional decoder is applied to upsample the encoded latent to a higher resolution to
represent finer details. As analyzed in (Wang et al., 2023b; Wu et al., 2024b), we concatenate the
three planes in the height dimension instead of the channel dimension to avoid artifacts caused by
spatial misalignment. The occupancy of point x can be formulated as

Occupancy(x) = MLP(UpSample(ztile),x), (2)

where Upsample denotes the convolution-based upsampling network, MLP refers to the occupancy
decoder, ztile represents the height-concatenated triplane. As suggested in Odena et al. (2016), we
use interpolation with convolution instead of deconvolution.

Perceptual loss with ray-based regularization. Previous point-to-shape auto-encoder relies solely
on occupancy loss, the absence of perceptual loss leads to poor performance when reconstructing
high-frequency details. In response, we propose supervising the auto-encoder using the rendered
normal map. During training, we query the occupancy of a 2563 grid and extract iso-surface dif-
ferentiably (Wei et al., 2023). To compute the render loss, we exploit nvdiffrast (Laine et al., 2020)
to differentiably rasterize the normal map. However, we found in our early experiment that simply
applying render loss alone will cause severe floaters in the final output mesh (see Fig. 8), which
can also be observed in previous research (Wei et al., 2024). To address this issue, we propose a
ray-based occupancy regularization that forces the occupancy in empty spaces to approach zero. As
shown in the left part of Fig. 2, for each camera ray, we uniformly sample Ns points between the
ray-bounding box intersection and the surface point, enforcing their occupancy to be near zero by
minimizing the sum of their occupancy. To save GPU VRAM and accelerate training, we interpo-
late the occupancy of the samples from the values used for previous surface extraction, rather than
querying the triplane.

Coarse-to-fine optimization. Due to the locality of differentiable marching cubes, the gradients
of the render loss can only propagate to points near surface vertices. Therefore, a coarse-to-fine
training process is required to ensure the effectiveness of the render loss. Specifically, during the
coarse stage, we apply the standard binary cross-entropy (BCE) loss for the point-to-shape auto-
encoder, along with a KL loss to regularize the latent space and a total variation loss (Yu et al.,
2021a) for reducing the floaters, i.e.

Lcoarse = LBCE + λKLLKL + λTVLTV, (3)

where LBCE, LKL and LTV denote the BCE loss, the KL loss and the total variation loss respectively,
λKL and λTV refers to the loss weights. After the coarse stage training, the model is capable of
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Figure 2: Illustration of the proposed ray-based regularization and two data augmentations.

reconstructing a coarse mesh from the input point cloud. In the refinement stage, we exploit render
loss with ray-based regularization to enhance the details of the reconstructed mesh:

Lrefine = LBCE + λKLLKL + λTVLTV + λMSELMSE
normal + λLPIPSLLPIPS

normal + λregLreg, (4)

where LMSE
normal and LLPIPS

normal denotes the MSE and LPIPS (Zhang et al., 2018) loss for rendered normal,
λMSE, λLPIPS, and λreg refers to the corresponding loss weight. The concrete hyper-parameter settings
are presented in appendix A.

3.2 IMAGE-TO-SHAPE DIFFUSION MODEL WITH GENERATIVE DATA AUGMENTATION

As shown in Fig. 4 and Fig. 5, compared to large reconstruction models, existing native 3D gener-
ation models almost always tend to generate symmetrical shapes that lack detail, leading to image-
shape misalignment. We believe this phenomenon arises because the training of existing models
predominantly relies on the Objaverse dataset (Deitke et al., 2022), and a considerable portion of the
objects in Objaverse have symmetrical geometry and lack realistic textures. Therefore, the diffusion
models trained on it tend to replicate simple geometries and struggle to generalize to images with
complex textures or lighting. To optimize a diffusion model with strong generalization capabilities
on limited data, we identify two key differences between the proposed pipeline and the previous
NeRF-based native 3D generation pipeline (typical methods include Rodin (Wang et al., 2023b),
3DTopia (Hong et al., 2024), etc): (1) Geometrical covariant auto-encoder. Previous NeRF-based
native 3D generation methods utilize a per-object optimized neural radiance field as the latent rep-
resentation. This approach requires pre-computing and storing numerous latent vectors and lacks
geometric covariance, as it necessitates re-optimizing the radiance field to obtain triplane latent
variables after applying a transformation to the object. In contrast, our point-to-shape auto-encoder
takes point clouds as input and does not require per-object optimization, it naturally achieves ge-
ometric covariance for transformations such as rotations by directly manipulating the point cloud.
(2) Appearance invariant image-to-shape modeling. Previous methods learn to generate textured
meshes from images, resulting in the entanglement of input images and the textures of the output
meshes. In contrast, our diffusion model is specifically designed to map images to shapes, ensuring
that the same shapes produce consistent renderings, regardless of variations in textures or lighting
conditions. Based on both insights, we propose two data augmentations that are critical for training
the image-to-shape model.

Geometric alignment augmentation. To enhance image-shape correspondence during training, we
propose utilizing the geometric covariance property of our point-to-shape auto-encoder to ensure
that different views of the same object correspond to different latents. Specifically, for each object
in the dataset, we select one view from multi-view images as the condition and rotate the point
cloud’s azimuth to align the object’s orientation with the selected image as the target (see the middle
part of Fig. 2 for a simple demonstration). The aligned image-shape pairs are then used as training
data for the diffusion model. Our experiments reveal that geometric alignment not only expands the
training dataset but also significantly improves the alignment between generated shapes and images.
We present the corresponding ablation study in Fig. 7.

Generative rendering augmentation. To enhance the generalization ability of the image-to-shape
diffusion, we propose leveraging the appearance-invariant property by utilizing generative rendering
to synthesize images with realistic textures and rich lighting based on the geometry of the object.
Concretely, for each rendered image in the dataset, we utilize the corresponding normal map and
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depth map as control signals to synthesize realistic renderings with ControlNet (Zhang et al., 2023b).
To ensure that the augmented images do not deviate significantly from the originals, we inject the
original image using an IP-adapter (Ye et al., 2023). We then use IC-light (Zhang et al., 2024b) to
generate renderings under various lighting conditions and directions. Experiments show that gener-
ative rendering augmentation is highly beneficial for helping diffusion models understand lighting
effects and generalize to real-world images (see Fig. 7 for the corresponding ablation study).

Image-to-3D diffusion UNet. We adopt a UNet similar to Stable Diffusion (Rombach et al., 2022)
as the image-to-shape diffusion network. Following Rodin (Wang et al., 2023b), we concatenate
triplanes along the height dimension as input to the UNet to avoid spatial mismatches. Interactions
between different planes are handled via self-attention layers. To incorporate image information
during diffusion, we encode the input image using DINOv2 (Oquab et al., 2024) and inject the
extracted features into the denoising process through cross-attention. Following SD3 (Esser et al.,
2024), we adopt rectified flow Liu et al. (2022) with lognorm timestep sampling as the training
schedule. For more details on the training and inference of our diffusion UNet, please refer to
appendix A.

3.3 TEXTURE GENERATION

3.3.1 GEOMETRY-CONDITIONED MULTI-VIEW GENERATION WITH REFERENCE ATTENTION

Previous image-guided texturing pipelines (Richardson et al., 2023; Zeng et al., 2023; Perla et al.,
2024) adopt IP-adapter (Ye et al., 2023) or personalization techniques (Ruiz et al., 2022; Gal et al.,
2022) to inject the image to pre-trained diffusion models. These methods are unable to gener-
ate textures consistent with the original image and are highly prone to the multi-face problem.

w. ref attn f.t. w/o. ref atten f.t. full f.t.Input

Figure 3: The effectiveness of the proposed
reference attention fine-tuning.

To generate a Janus-free, image-consistent texture,
we propose a geometry-conditioned ControlNet with
reference attention to produce multi-view shaded
images that align with the input in both appearance
and lighting. Unlike the IP-adaptor, which maps im-
ages to prompts, reference attention (Zhang, 2023)
integrates the keys and values from self-attention
layers corresponding to the reference image into the
denoising process, thus enhancing the consistency
between the generated and original images. Our
texturing model is based on Zero123++ (Shi et al.,
2023a), which inherently uses scaled reference at-
tention for generating multi-view images. To add
geometry control, we trained a ControlNet (Zhang et al., 2023b) on top of the base model, en-
abling it to generate corresponding multi-view images from multi-view normal and depth maps.
Specifically, our model mirrors the original ControlNet architecture but takes a six-channel image
(3 for normal and 3 for depth) as input, i.e.

IMV
i = fθ(I

MV
i−1 , I

front, i, hϕ(I
front, i|NMV , DMV )), (5)

where IMV
i represents the multi-view images at denoising step i, Ifront, NMV and DMV refer to the

input image, multi-view normal map and normalized depth map. However, applying the geometry-
conditioned ControlNet directly to generated shapes yields unsatisfying results, especially when the
input image and the multi-view normal and depth maps are not geometrically consistent, as shown in
the middle part of Fig. 3. We attribute this degradation to the gap between training and inference. To
mitigate this issue, we propose fine-tuning the reference attention layers to ensure that the generated
results focus more on the semantic information of the reference image, rather than being overly
sensitive to minor discrepancies. Specifically, we randomly apply slight translations to the condition
images and perform rotations and scaling on the mesh to perturb the rendered depth and normals,
thereby simulating situations of imperfect geometric consistency. We freeze the entire model except
for the projection matrices of the reference attention layers and fine-tune it on the augmented dataset.
As shown in Fig. 3, this lightweight fine-tuning effectively compensates for performance loss due
to imperfect matching without compromising the model’s generative capability. In contrast, full
fine-tuned models produce overly smooth textures, and the original model suffers significantly from
inconsistency.
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MeshLRM MeshFormer OursInstantMeshInput

Figure 4: Qualitative comparison with state-of-the-art large reconstruction models, including In-
stantMesh (Xu et al., 2024b), MeshLRM (Wei et al., 2024) and MeshFormer (Liu et al., 2024).

3.3.2 MULTI-VIEW PBR DECOMPOSITION

Previous methods that rely on pre-trained image diffusion models generate images with inherent
shading effects, leading to lighting-baked-in textures. In order to generate relightable PBR textures,
we propose a diffusion-based multi-view PBR decomposer, aiming to decompose the shaded multi-
view image to corresponding intrinsic channels with multi-view information. Specifically, inspired
by Zeng et al. (2024), our PBR decomposer employs an InstructPix2Pix (Brooks et al., 2023)-based
architecture, concatenating the shaded image latent and the noisy latent along the channel dimension
to output the desired PBR components, i.e.

IMV
i (y) = gϕ(I

MV
i−1 (y); I

MV , Ifront, i, τ(y)), (6)

where gϕ represents the denoising UNet, τ denotes the CLIP (Radford et al., 2021) text encoder,
y ∈ {"metallic","roughness","albedo"} denotes the component prompt for PBR tex-
ture, IMV

i (y) refers to the denoised y component at timestep i. After generating multi-view PBR
components, we use a view-weighted approach to fuse the multi-view textures in UV space, i.e.
UV =

∑
i Softmaxi(BP(I(i)),BP(w(i))) , where BP refers to back-projecting the rendered image

to UV space, I(i) denote the target image for the i-th view and w(i) represents the pixel-wise weight
calculated as the cosine of the viewing angle to the point.

3.3.3 UV-SPACE TEXTURE INPAINTING

For meshes with complicated topology, the generated views are not adequate to cover the entire
surface of the mesh. We propose a UV-space texture inpainter to fill the invisible part of the multi-
views. Specifically, due to the significant gap between casual images and texture maps, we first
train a LoRA on the texture maps in Objaverse with “A UV space [y] texture map of [*]” as textual
prompt, where the [*] represents the original caption of the corresponding 3D object generated
using Cap3D (Luo et al., 2023) and [y] represent the PBR component prompt. Subsequently, we
merge LoRA into the original UNet and train an inpainting ControlNet on top of it. To let the
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3DTopia-XL CraftsMan OursLN3DiffInput

Figure 5: Qualitative comparison with state-of-the-art native 3D diffusion models, including Crafts-
Man (Li et al., 2024b), LN3Diff (Lan et al., 2024), and 3DTopia-XL (Chen et al., 2024a).

2D image perceive information from the original mesh, our control signal includes not only the
masked image but also the normal and position maps in UV space. For the mask setup during
training, we simulate the inference process by back-projecting the visible mask from the fixed views
of our multi-view diffusion into UV space to obtain the invisible mask. To enhance robustness, we
randomly erode the visible masks from multi-views. We present more details about the texturing
pipeline in appendix A.3.

4 EXPERIMENTS

4.1 MESH GENERATION

In our experiments, we compare our method with state-of-the-art image-to-3D methods from the
following two categories.

Large reconstruction models. (Hong et al., 2023; Li et al., 2023a;b; Wang et al., 2024; Tang et al.,
2024a) exploit a neural network to map sparse views into 3D representations. We compare the pro-
posed methods with recent state-of-the-art large reconstruction models, including InstantMesh (Xu
et al., 2024b), MeshLRM (Wei et al., 2024) and MeshFormer (Liu et al., 2024). To be clear, the
results of MeshLRM and MeshFormer are obtained through their official demo, since their source
code is not publicly available.

Native 3D generation models. (Liu et al., 2023a; Zhang et al., 2023a; 2024a) compress discrete 3D
meshes into a continuous and compact latent space using a 3D auto-encoder, followed by a diffusion
model trained on this latent space to achieve 3D generation. We compared our method with recent
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Paint3D (10 s)EASI-Tex (~ 30 min) Ours (light baked-in, 10 s)Input Ours (albedo, 15 s)

Figure 6: Qualitative comparison with image-guided mesh texturing pipelines, including EASI-
Tex (Perla et al., 2024) and Paint3D (Zeng et al., 2023).

state-of-the-art open-source models, including LN3Diff (Lan et al., 2024), 3DTopia-XL (Chen et al.,
2024a), and CraftsMan (Li et al., 2024b).

We present a qualitative comparison between our method and large reconstruction models in Fig. 4.
Our approach significantly outperforms others in generating high-quality geometry. Specifically, our
method excels at producing complex structures from images, such as backpack handles, the mouth
of the alien, and the file sorter, where large reconstruction models struggle. Additionally, large
reconstruction models often suffer from poor multi-view generation outcomes, resulting in lower
quality when reconstructing details that require multi-view consistency, such as the gap between an
eagle’s legs. In Fig. 5, we provide a qualitative comparison with other 3D native generation meth-
ods, where our approach significantly outperforms the others. We observe that previous methods
often produce symmetrical and overly simplistic geometric structures, resulting in noticeable mis-
alignment with the input images. Our method, leveraging the proposed two data augmentations,
effectively addresses this issue. This image-shape alignment enhances the controllability of shape
generation and simplifies subsequent texturing. For 3DTopia-XL, its explicit representation results
in a lower compression rate compared to the point-to-shape auto-encoder. Consequently, despite
higher training costs, MeshGen still outperforms 3DTopia-XL by a large margin.

4.2 TEXTURE GENERATION

As there exist no algorithms specifically designed for image-consistent texturing, we compared our
method with state-of-the-art image-guided approaches, including EASI-Tex (Perla et al., 2024) and
Paint3D (Zeng et al., 2023). Fig. 6 demonstrates the texturing results on meshes generated by
our image-to-shape diffusion model. Our method significantly outperforms previous approaches
in quality and texture-image consistency, even when the shape and image do not perfectly align. In
contrast, despite using image inversion which requires additional per-input optimization, EASI-TEX
still struggles to maintain consistency with the original image and takes dozens of times longer than
our approach. Paint3D, which uses simple back projection and inpainting, exhibits noticeable seams
in the generated textures and is prone to the Janus problem. We further showcase the PBR materials
generated by our method in Fig. 13, highlighting its remarkable capability in handling objects with
complicated appearances under different lighting conditions.

9
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Figure 7: Ablation study results on render-enhanced auto-encoder, geometric alignment augmenta-
tion, and generative rendering augmentation.

4.3 ABLATIONS

Render-enhanced auto-encoder. To evaluate the significance of incorporating render loss in the
point-to-shape auto-encoder, we trained a variant without this component and compared it to our
render-enhanced version, as illustrated in the upper part of Fig. 7. The render-enhanced auto-encoder
exhibits markedly superior performance, particularly in capturing high-frequency details such as the
suckers on tentacles and the gaps in watch bands.

Geomtric alignment augmentation. To validate the impact of geometric alignment augmentation,
we trained a smaller diffusion UNet consisting of 4 layers without this augmentation for 300 epochs
as an ablation study. The comparison is presented in the lower left part of Fig. 7. Evidently, the
diffusion model trained without geometric alignment augmentation tends to generate symmetric
objects, whereas our model produces shapes that align well with the input images, significantly
enhancing the model’s controllability.

Generative rendering augmentation. To assess the impact of generative rendering augmentation
on image-to-shape diffusion training, we trained a smaller model without this augmentation, as de-
picted in the lower right part of Fig. 7. The model trained without generative rendering augmentation
exhibits poor performance in handling lighting effects in images and struggles to infer the geometric
structure based on lighting cues, such as determining the shape of the doll’s head and the shape of
the blender. These findings suggest that generative rendering augmentation significantly enhances
the model’s ability to understand lighting effects and interpret real-world images.

More ablations regarding to auto-encoder, image-to-shape diffusion model, and texture generation
model are presented in appendix B.1.

5 CONCLUSION

In this paper, we propose MeshGen, a novel pipeline for generating delicate PBR textured mesh
given a single image. MeshGen encodes 3D meshes to compact latent space with a render-enhanced
auto-encoder. Based on our in-depth analysis of point-to-shape auto-encoder and image-to-shape
diffusion, we propose to train the diffusion model with geometric alignment and generative rendering
augmentation to address the issues of image-shape misalignment and poor generalization ability.
Besides, to generate PBR texture consistent with the image, we establish a reference attention-based
multi-view generator followed by a PBR decomposer to obtain PBR components and a UV-space
inpainter to fill the invisible part. Extensive experiments have demonstrated the effectiveness of our
method. We hope our work will aid in a deeper understanding of native 3D diffusion and provide
support for future related research.
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A IMPLEMENTATION DETAILS

A.1 AUTO-ENCODER

We present our hyper-parameter setting in training auto-encoder in Tab. A.1.

Table 1: Concrete hyper-parameter setting of our render-enhanced auto-encoder.
Symbol Meaning Value

NP Number of points sampled from a mesh 65536
Nz Number of learnable queries 3072
n Number of self-attention layers 10
dz Dimension of the latent space 16
Ns Number of samples for calculating ray-based regularization loss 128
λKL Loss weight for KL loss 10−6

λTV Loss weight for TV loss 5× 10−3

λMSE Loss weight for normal MSE loss 1.0
λLPIPS Loss weight for normal LPIPS loss 2.0
λreg Loss weight for ray-based regularization loss 0.5

We first train our auto-encoder for 150 epochs in the coarse stage with a batch size of 192. The
model obtained after the coarse stage can reconstruct the rough shape of the original mesh but lacks
details. We then train the auto-encoder for another 50 epochs with the proposed render loss and a
batch size of 16.

A.2 IMAGE-TO-SHAPE DIFFUSION MODEL

A.2.1 DATA AUGMENTATION

In generative rendering data augmentation, to enhance the similarity between the generated images
and the original image, in addition to using the normal depth ControlNet and IP-adapter, we set the
initial noise to the latent of the original image with maximum noise added. For relighting diffusion,
we used IC-light (Zhang et al., 2024b). Specifically, during data augmentation, we randomly select
one lighting direction from the pre-defined light initial latent in IC-light (i.e., uniformly select from
left, right, top, and bottom), and choose one lighting condition from a set of predefined light prompts.

A.2.2 IMAGE-TO-SHAPE DIFFUSION MODEL

Our diffusion UNet takes in the noised triplane latent and exploits 8 ResNet blocks with spatial
self-attention as the encoder and a symmetric architecture as the decoder. We exploit DINOv2-
G (Oquab et al., 2024) to encode the input image and inject the extracted feature to the diffusion
UNet using cross-attention. For the diffusion schedule, we follow SD3 to use the simple yet effective
rectified flow Liu et al. (2022) with timesteps sampled from a standard logit-normal distribution. We
train the image-to-shape diffusion model with our proposed augmentations on a filtered subset of
GObjaverse (Qiu et al., 2024), which consists of about 120k high-quality multiview-mesh pairs.
To handle input images with different elevations, since the meshes in Objaverse are aligned in the
gravity axis, we force the diffusion to generate meshes with absolute elevation equal to zero. We
experimentally found that this conditioning method works better than generating meshes with a
rotation in elevation, as suggested in Chen et al. (2024c). We train the diffusion UNet of 16 NVIDIA
A800 GPUs using bf16 precision with an effective batch size equal to 1536. The whole training lasts
for about 18 days.

A.3 PBR TEXTURE GENERATION

Data preparation. To train the geometry-conditioned ControlNet and the multi-view PBR de-
composer, we rendered multi-view images and corresponding multi-view normals, depth, albedo,
roughness, and metallic maps of a subset of Objaverse containing PBR materials using Blender.
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w/o. depth filtering w. depth filtering w/o. UV inpainting w. UV inpaintingw. regularization w/o. regularization

Figure 8: Ablations on ray-based regularization, depth filtering, and UV space inpainting.

This constitutes a dataset comprising 35k multi-view images. For UV space inpainting, we calculate
the multi-view visible masks and back-project them into UV space to determine the invisible part of
the texture map and render the UV space position and normal map. To further enhance robustness,
we randomly erode the visible mask in pixel and UV space.

Geometry-conditioned ControlNet training. To ensure the model perceives precise depth and
positional information, we did not transform depth to normalized disparity as done in the original
depth ControlNet (Zhang et al., 2023b); instead, we performed a unified multi-view normalization
based on camera distance and object bounding box. Specifically, the depth map is processed as
Dnormalized = D−bias

scale , where bias equals to camera distance minus the length of the diagonal of
the bounding box (i.e. the minimal possible depth value) and the scale equals to the length of the
diagonal of the bounding box.

Multi-view target back-projection. As detailed in the main text, the obtained multi-view PBR
components are merged in UV space using back-projection with softmax. We apply a softmax
operation with a temperature of 0.1 to ensure consistent textures. However, images generated by
ControlNet sometimes extend beyond object boundaries, causing some pixels to be back-projected
onto surfaces behind them, leading to artifacts. To address this, we propose a simple depth filtering
technique. For each view, we identify locations in the depth map where sudden changes occur and
exclude these pixels during back-projection. Our experiments demonstrate that this approach effec-
tively reduces artifacts, and the color values of the corresponding surface points can be supplemented
by other views, as shown in the middle of Fig. 8.

UV space inpainting. Our UV space inpainter is a multi-channel ControlNet trained on top of the
LoRA fine-tuned diffusion model. The input to our inpainting model is a 9-channel image: the
first three channels represent the normal map in UV space, the middle three channels represent the
position map, and the last three channels contain the masked texture map, with pixel values set to -1
in regions that requires inpainting. During inference, we follow ControlNet inpainting (Zhang et al.,
2023b), applying masking in the latent space to maintain consistency in areas that do not require
inpainting.

B MORE EXPERIMENTS

B.1 MORE ABLATIONS

The effectiveness of ray-based regularization. We show in the left part of Fig. 8 an example
obtained using an auto-encoder trained without ray-based regularization. Without ray-based regu-
larization, the training of the auto-encoder quickly became unstable, resulting in severe floaters in
the reconstructed mesh.

Quatitative ablation study on render-enhanced auto-encoder. To better assess the importance
of incorporating render loss in our render-enhanced auto-encoder, we propose several variants and
demonstrate the corresponding accuracy and volumeIoU on a validation set of Objaverse consisting
of 2048 objects in Tab. B.1. Here, “base” represents the case with only BCE loss, while “w/. 3D
GAN loss” represents incorporating the 3D patch-based GAN loss proposed in Zheng et al. (2022).

As shown in Tab. B.1, removing either the MSE loss or the LPIPS loss leads to a certain performance
drop. Moreover, compared to the 3D patch-based GAN loss, the proposed render-based perceptual
loss is more beneficial for auto-encoder training.

UV-space texture inpainting. In the right part of Fig. 8, we compare the mesh obtained without
UV inpainting. The figure clearly shows that without UV inpainting, colors may be missing from re-
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Table 2: Quantitative ablation study on the proposed render-enhanced auto-encoder.
Setting Accuracy↑ VolumeIoU↑
Ours 96.987 91.045

w/o. LMSE
normal 95.972 89.977

w/o. LLPIPS
normal 96.021 90.044

w/. 3D patch GAN loss 96.224 90.149
base 94.745 87.164

MeshLRM MeshFormer OursInstantMeshInput

Figure 9: Qualitative comparison on textured meshes with state-of-the-art large reconstruction mod-
els, including InstantMesh (Xu et al., 2024b), MeshLRM (Wei et al., 2024) and MeshFormer (Liu
et al., 2024).

gions not visible from the fixed viewpoints generated by multi-view diffusion. UV space inpainting
effectively fills these regions with appropriate colors, enhancing both the visual quality and realism
of the model.

B.2 MORE RESULTS

Compare with large reconstruction models with texture. To comprehensively compare our ap-
proach with large reconstruction models, we compare the final generated textured mesh in Fig. 9. It
is evident from the figure that our method not only exceeds the previous best large reconstruction
models in geometry but also produces clearer and more consistent textures.
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Direct3D Hyperhuman RodinOurs

Figure 10: Comparison with non-open-source commercial products, including Direct3D and Hyper-
human Rodin.

Compare with commercial products. In Fig. 10, we compare our method with existing non-open-
source commercial products. The results for Direct3D are sourced from their paper, while those for
HyperHuman Rodin are generated on their official website without the “symmetric” tags. Although
our method is currently limited by lacking high-quality data and computational resources, resulting
in slightly lower mesh quality compared to commercial products, our proposed augmentation allows
for better alignment with the images. We believe that with increased computational power and more
high-quality data, our method can match the mesh quality of commercial products while preserving
image-shape alignment.

Real-world images. To validate the performance of our method on real-world objects, we present a
set of textured meshes generated from casual captures in Fig. 11. As shown in Fig. 11, our method
is capable of generating reasonable shapes and consistent textures when processing real objects,
demonstrating the generalization ability of our pipeline.

PBR decompositions. In Fig. 13, we present the intrinsic channels estimated using our proposed
multi-view PBR decomposer. The results show that our PBR decomposer can accurately infer the
PBR materials of objects by leveraging multi-view information and can still generate multi-view
consistent results under complex lighting conditions.

Generated textured mesh Generated textured meshInput Input

Figure 11: Performance of MeshGen on real-world captures.

C LIMITATIONS

Although our method has made some progress in native image-to-3D generation, there are still
limitations in the following three areas.

1. Due to the limited resolution of multi-view diffusion generation and the constraints of the
auto-encoder used, our texture model struggles to accurately reproduce high-frequency de-
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Input Generated mesh Input InputGenerated mesh Generated mesh

Figure 12: Some typical failure cases of MeshGen.

tails, such as the text on the box in the left part of Fig. 12. We believe that using more
advanced network architectures could achieve higher-resolution multi-view generation.

2. Our texture model finds it challenging to accurately capture textures and lighting effects
from input images when dealing with objects with complex high-frequency information
and lighting conditions, as shown by the face in the center of Fig. 12.

3. Our geometry generation model currently cannot effectively handle transparent objects, as
illustrated by the object on the right in Fig. 12.

Addressing these limitations will be the focus of our future research.
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Figure 13: Intrinsic channels estimated using our multi-view PBR decomposer. The proposed PBR
decomposer can handle images with complicated material under different lighting conditions.
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