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ABSTRACT

‘Bigger the better’ has been the predominant trend in recent Large Language Models
(LLMs) development. However, LLMs do not suit well for scenarios that require on-
device processing, energy efficiency, low memory footprint, and response efficiency.
These requisites are crucial for privacy, security, and sustainable deployment. This
paper explores the ‘less is more’ paradigm by addressing the challenge of designing
accurate yet efficient Small Language Models (SLMs) for resource constrained
devices. Our primary contribution is the introduction of an accurate and fully
transparent open-source 0.5 billion (0.5B) parameter SLM, named MobiLlama,
catering to the specific needs of resource-constrained computing with an emphasis
on enhanced performance with reduced resource demands. MobiLlama is a SLM
design that initiates from a larger model and applies a careful parameter sharing
scheme to reduce both the pre-training and the deployment cost. Our work strives
to not only bridge the gap in open-source SLMs but also ensures full transparency,
where complete training data pipeline, training code, model weights, and over
300 checkpoints along with evaluation codes is available at : https://github.
com/mbzuai-oryx/MobiLlama.

1 INTRODUCTION

Recent years have witnessed a tremendous surge in the development of Large Language Models
(LLMs) with the emergence of prominent closed-source commercial models such as ChatGPT, Bard,
and Claude. These LLMs exhibit surprising capabilities, typically called emergent abilities, towards
solving complex tasks. Most existing popular LLMs follow a similar trend that bigger is always better,
where scaling model size or data size typically provides improved model capacity and performance
on downstream tasks. For instance, the recent Llama-2 70 billion (70B) model Touvron et al. (2023)
is considered more favorable in different chat applications due to its effectiveness towards handling
dialogues, logical reasoning, coding, compared to its 7B counterpart which is typically better suited
for basic tasks such as categorization or summaries. While these LLMs demonstrate impressive
performance in handling complex language tasks, a key limitation is their size and computational
requirements.

Recently, Small Language Models (SLMs) have shown potential in terms of providing decent
performance with emergent abilities achieved at a significantly smaller scale compared to their large-
scale LLM counterparts. Modern SLMs like Microsoft’s Phi-2 2.7 billion Li et al. (2023b) highlight
the growing focus in the community on achieving more with less. SLMs offer advantages in terms
of efficiency, cost, flexibility, and customizability. With fewer parameters, SLMs offer significant
computational efficiency in terms of fast pre-training and inference with reduced memory and storage
requirements. This is critical in real-world applications where efficient resource utilization is highly
desired. It particularly opens up possibilities in resource-constrained computing, where the models
are required to be memory efficient to operate on low-powered devices (e.g., edge). SLMs support
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Model #Params Training Time GPU Hours GPU memory No. of layers Hidden dim size

baseline1 0.54B 7.5 days 28.8K 3.2 GB 22 1024
baseline2 0.52B 7 days 26.9K 3 GB 8 2048
large-base 1.2B 12 days 46.1K 6 GB 22 2048
MobiLlama 0.52B 7 days 26.6K 3 GB 22 2048

Table 1: Our MobiLlama demonstrates significant efficiency and scalability improvements compared
to large-base, baseline1, and baseline2. Evaluated on A100 GPUs with 80 GB memory, MobiLlama
reduces GPU training hours by 42% and lowers GPU memory usage under the same design configu-
ration. Additionally, it achieves increased model capacity (more layers and larger hidden dimensions)
while maintaining comparable training costs and parameter counts to the baselines.

on-device processing that enhances privacy, security, response time, and personalization. Such an
integration can lead to advanced personal assistants, cloud-independent applications, and improved
energy efficiency with a reduced carbon footprint.

The limited landscape of open-source SLMs restricts transparency and accessibility, hindering the
exploration of compact, efficient, and high-performing models. Addressing this gap is crucial to
democratize access and foster innovation in the community by enabling a deeper understanding of
SLM capabilities and limitations. To this end, we focus on designing accurate yet efficient SLMs
from scratch, offering full transparency with access to training pipelines, model weights, over 300
checkpoints, and evaluation codes. While scaling down larger LLMs by reducing hidden dimensions
or layers often results in inferior performance, we propose an alternative approach to develop SLMs
that ensure accuracy, efficiency in on-device memory, and complete transparency.

Contributions: We introduce a SLM framework, named MobiLlama, with an aim to develop
accurate SLMs by alleviating the redundancy in the transformer blocks. Different to the conventional
SLM design where dedicated feed forward layers (FFN) are typically allocated to each transformer
block, we propose to employ a shared FFN design for all the transformer blocks within SLM.
Our MobiLlama models outperform existing SLMs under 1B parameters, with the 0.5B model
achieving a 2.4% average performance gain across nine benchmarks and the 0.8B model achieving
top performance using an enhanced shared-FFN transformer design. Our MobiLlama leveraging a
shared FFN-based SLM design is accurate and maintains efficiency, while offering full transparency
in terms of data pipeline, training code, model weights and extensive intermediate checkpoints along
with evaluation codes.

2 METHOD

Baseline SLM Design: We first describe our baseline 0.5B SLM architecture that is adapted from
recent TinyLlama Zhang et al. (2024a) and Llama-2 Touvron et al. (2023). The baseline architecture
comprises N layers, where each layer consists of hidden dimensions of M and intermediate size
(MLPs) of 5632. The vocabulary size is 32K and max. context length is C. We consider two
different design choices when constructing a 0.5B model from scratch. In first design choice, named
baseline1, the number of layer is set to N = 22 and hidden size of each layer is set to M = 1024.
In second design choice, named baseline2, we set the number of layer to N = 8 and hidden size of
each layer is set to M = 2048.

We note that both the aforementioned baseline designs struggle to strike an optimal balance between
accuracy and efficiency. While a reduced size of hidden dimensions (1024) in case of baseline1
aids in computational efficiency, it can likely hamper the model’s capacity to capture complex
patterns within the data. Such a reduction in dimension can potentially lead to a bottleneck effect,
where the model’s ability to represent intricate relationships and nuances in the data is constrained,
thereby affecting the overall accuracy. On the other hand, reducing the number of hidden layers
(22 to 8), as in the baseline2, affects the model’s depth that in turn hampers its ability to learn
hierarchical representations of the language. Achieving superior performance on tasks requiring
deeper linguistic comprehension and contextual analysis likely requires combining the advantages
of the two aforementioned baselines. However, increasing the model capacity of baseline1 and
baseline2 into a single model (22 layers and hidden dimension size of 2048) results in a significantly
larger parameterized model of 1.2B with increased training cost (see Tab. 1). We name this larger
model as large-base. Next, we present our proposed MobiLlama 0.5B model design that does not
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Model Name #Params HellaSwag Truthfulqa MMLU Arc C CrowsPairs piqa race siqa winogrande Average

gpt-neo-125m 0.15B 30.26 45.58 25.97 22.95 61.55 62.46 27.56 40.33 51.78 40.93
tiny-starcoder 0.17B 28.17 47.68 26.79 20.99 49.68 52.55 25.45 38.28 51.22 37.86
cerebras-gpt-256m 0.26B 28.99 45.98 26.83 22.01 60.52 61.42 27.46 40.53 52.49 40.69
opt-350m 0.35b 36.73 40.83 26.02 23.55 64.12 64.74 29.85 41.55 52.64 42.22
megatron-gpt2-345m 0.38B 39.18 41.51 24.32 24.23 64.82 66.87 31.19 40.28 52.96 42.81
LiteLlama 0.46B 38.47 41.59 26.17 24.91 62.90 67.73 28.42 40.27 49.88 42.26
gpt-sw3-356m 0.47B 37.05 42.55 25.93 23.63 61.59 64.85 32.15 41.56 53.04 42.48
pythia-410m 0.51B 40.85 41.22 27.25 26.19 64.20 67.19 30.71 41.40 53.12 43.57
xglm-564m 0.56B 34.64 40.43 25.18 24.57 62.25 64.85 29.28 42.68 53.03 41.87
Lamini-GPT-LM 0.59B 31.55 40.72 25.53 24.23 63.09 63.87 29.95 40.78 47.75 40.83
MobiLlama (Ours) 0.5B 52.52 38.05 26.45 29.52 64.03 72.03 33.68 40.22 57.53 46.00

Lamini-GPT-LM 0.77B 43.83 40.25 26.24 27.55 66.12 69.31 37.12 42.47 56.59 45.49
MobiLlama (Ours) 0.8B 54.09 38.48 26.92 30.20 64.82 73.17 33.37 41.60 57.45 46.67

Table 2: State-of-the-art comparisons with existing ¡ 1B params models on nine benchmarks. In case
of around 0.5B model series, our MobiLlama achieves a substantial gain of 2.4% in terms of average
performance on nine benchmarks. Further, our MobiLlama 0.8B model achieves an average of 46.67.

Model HellaSwag Truthfulqa MMLU Arc C Average

baseline1 42.44 38.16 25.12 26.18 32.97
baseline2 43.66 38.54 25.76 26.32 33.57
MobiLlama 48.42 39.36 26.56 27.88 35.55

Table 3: Baseline comparison on four bench-
marks. Here, both the baselines and our MobiL-
lama comprise the same parameters (0.5B) and
are pre-trained on 120B tokens from Amber.

Model Load (ms) Init (ms) Forward-Pass (ms)

large-base 52 1896 15.7
MobiLlama-0.5B 27 642 9.3

Table 4: Latency analysis of our MobiLlama-
0.5B vs. large-base using a profiler at inference
time on RTX2080Ti.

reduce hidden dimension size in each layer (baseline1) or the total number of layers (baseline2),
while maintaining a comparable training efficiency (see Tab. 1).

Proposed SLM Design: MobiLlama: The proposed approach, MobiLlama, constructs a SLM
of desired sizes (e.g., 0.5B model) by first initiating from a larger model size design, large-base.
Then, we employ a careful parameter sharing scheme to reduce the model size to a pre-defined
model configuration, thereby significantly reducing the training cost. Generally, both SLMs and
LLMs typically utilize a dedicated multilayer perceptron (MLP) block comprising multiple feed
forward network (FFN) layers within each transformer block. In such a configuration (e.g., large-
base), the FFN layers account for a substantial 65% of the total trainable parameters, with attention
mechanisms and heads contributing 30% and 5%, respectively. As a consequence, a significant
number of parameters are concentrated within the FFN layers, thereby posing challenges during
pre-training with respect to computational cost and the model’s ability to achieve faster convergence.
To address these issues, we propose to use a sharing scheme where the FFN parameters are shared
across all transformer layers within the SLM. This enables us to significantly reduce the overall
trainable parameters by 60% in our MobiLlama, compared to the large-base. Such a significant
parameter reduction also enables us to increase the model capacity in terms of number of layers and
hidden dimension size without any substantial increase in the training cost (see Tab. 1). For additional
comparative details on the design choices, please refer to Fig. 1 in the Appendix.

Evaluation Benchmarks and Metrics: For a comprehensive evaluation, we use nine benchmarks
from the Open LLM Leaderboard1. These include: HellaSwag Zellers et al. (2019) for scenario
completion and common sense reasoning, TruthfulQA Lin et al. (2021a) for factual accuracy, and
MMLU Hendrycks et al. (2020) for multidisciplinary knowledge. ARC Challenge Clark et al.
(2018) tests complex reasoning, while CrowsPairs Nangia et al. (2020) evaluates bias and fairness.
PIQA Bisk et al. (2020) assesses physical commonsense, Race Lai et al. (2017) measures reading
comprehension, SIQA Sap et al. (2019) focuses on social reasoning, and Winogrande Sakaguchi et al.
(2021) tests text disambiguation and commonsense reasoning.

1
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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Platform Model #Params Precision Avg Tokens/Sec Avg Memory Avg Battery Consumption CPU
(↓) (↑) Consumption (↓) /1k Tokens (↓) Utilization (↓)

R
T

X
20

80
Ti Llama2 7B bf16 14.85 27793 MB 135.51 mAH 31.62%

Phi2 2.7B bf16 32.19 12071 MB 59.13 mAH 24.73%
large-base 1.2B bf16 50.61 6254 MB 18.91 mAH 18.25%
MobiLlama 0.5B bf16 63.38 3046 MB 8.19 mAH 14.79%

C
PU

-i
7

Llama2 7B 4bit 5.96 4188 MB 73.5 mAH 49.16%
Phi2 2.7B 4bit 22.14 1972 MB 27.36 mAH 34.92%
large-base 1.2B 4bit 29.23 1163 MB 10.81 mAH 30.84%
MobiLlama 0.5B 4bit 36.32 799 MB 4.86 mAH 24.64%

Sn
ap

dr
ag

on
-6

85 Llama2 7B 4bit 1.193 4287 MB 10.07 mAH 77.41%
Phi2 2.7B 4bit 2.882 1893 MB 14.61 mAH 56.82%
large-base 1.2B 4bit 6.687 780 MB 6.00 mAH 17.15%
MobiLlama 0.5B 4bit 7.021 770 MB 5.32 mAH 13.02%

Table 5: Comparison in terms of efficiency and resource consumption on different low-end hardware
devices. We show the comparison on: a PC with RTX-2080Ti GPU, a laptop with i7 CPU and a
smartphone with Snapdragon-685 processor. In addition to our large-base model, we also present the
comparison with Llama2 7B and Phi2 2.7B. The different metrics measure the model’s operational
efficiency, model’s footprint in the device’s RAM and the energy efficiency of processing 1,000
tokens. Our MobiLlama performs favorably in terms of efficiency on these low-end hardware devices.

3 RESULTS

Baseline Comparison: We first present a comparison with the two baselines in Tab. 3) for 0.5B
model series. For the baseline evaluation, we pre-train all the models on the same 120B tokens from
the Amber dataset and report the results on four benchmarks: HellaSwag, TruthfulQA, MMLU, and
Arc C. Our MobiLlama achieves favourable performance compared to the two baselines by achieving
an average score of 34.4 over the four benchmarks. We note that this performance improvement is
achieved without any significant increase in the training cost (see Tab. 1), highlighting the merits of
the proposed SLM design. Additional results and analysis are present in the Appendix.

State-of-the-art Comparison: We compare our MobiLlama 0.5B and 0.8B with existing SLMs
having comparable (less than 1B) parameters: gpt-neo Black et al. (2021), tiny-starcoder Li et al.
(2023a), cerebras-gpt Dey et al. (2023), opt Zhang et al. (2022), megatron-gpt-2 Shoeybi et al. (2019),
LiteLlama, gpt-sw3, pythia Biderman et al. (2023), xglm Lin et al. (2021b), Lamini-LM Wu et al.
(2023). Among existing methods falling around 0.5B model series category, pythia-410m achieves
an average score of 43.57. Our MobiLlama 0.5B model achieves superior performance with an
average score of 46.0, outperforming pythia-410m by 2.4% in terms of average performance on
nine benchmarks. Notably, MobiLlama achieves superior performance on the HellaSwag benchmark
which is designed to evaluate the model’s capabilities in the NLP text completion task. Additionally,
MobiLlama also performs favorably on commonsense reasoning tasks with superior results on piqa
and winogrande benchmarks. Further, our MobiLlama 0.8B model achieves an average of 46.67.

Efficiency and Speed Gains with Shared-FFN Design: Our MobiLlama-0.5B leverages a shared-
FFN design, reducing unique trainable parameters and enhancing efficiency compared to the large-
base 1.2B model. Profiling analysis (Tab. 4) demonstrates superior inference performance, with
reduced latency in loading, initialization, and forward passes. Unlike the large-base model, which
requires frequent parameter loading and switching during layer transitions, the shared-FFN design
enables faster processing, achieving higher token throughput and lower energy consumption, making
MobiLlama-0.5B a more efficient and practical solution for real-world deployment.

Efficiency Comparison: We present the comparison of our model in terms of efficiency and resource
consumption on various low-end hardware platforms: a PC with RTX-2080Ti GPU, a laptop with
i7 CPU, and a smartphone with Snapdragon-685 processor. Tab. 5 shows the comparison of our
MobiLlama 0.5B with large-base 1.2B, Llama2-7B Touvron et al. (2023) and Phi2-2.7B Li et al.
(2023b) model, in terms of the average processing speed in tokens per second (Average Tokens/Sec),
average memory consumption (Avg Memory Consumption) in megabytes (MB), and the average
battery consumption (Average Battery Consumption/1000 Tokens) in milliampere-hours (mAH). Our
MobiLlama performs favorably in terms of efficiency across different hardware platforms.
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4 CONCLUSION

We present a fully transparent SLM, MobiLlama, that alleviates redundancy in the transformer block.
Within MobiLlama, we propose to utilize a shared FFN design for all the blocks within the SLM.
Our MobiLlama is accurate yet efficient in terms of training cost, on-device memory and storage
efficiency. We evaluate MobiLlama on nine benchmarks, achieving favourable results compared to
existing methods falling under less than 1B category. We also build a multimodal model on top of
MobiLlama SLM to demonstrate visual reasoning capabilities. We hope that our MobiLlama will
help accelerate research efforts towards building fully-transparent, accurate yet efficient SLMs that
bridge the gap with their resource hungry LLM counterparts.
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A APPENDIX

In this appendix, we provide additional details and insights to complement the main content of the pa-
per. First, we present an overview of related work, offering context to situate our contributions within
the broader landscape of efficient SLM development. Next, we delve deeper into the architectural
design of MobiLlama, highlighting the key innovations and design principles that contribute to its
efficiency and performance. Finally, we provide empirical evidence demonstrating how MobiLlama
outperforms conventional SLMs across multiple benchmarks, showcasing its superiority in terms of
accuracy, efficiency, and scalability. These additional details further emphasize the robustness and
impact of MobiLlama as a state-of-the-art solution in efficient language model design.

B RELATED WORK

While LLMs have gained tremendous popularity Zhao et al. (2023), one of their key limitations is
the size and computational requirements both during pre-training and deployment. Another issue
is limited availability of fully transparent opens-source LLMs that provide complete access to data
pipeline, training code along with checkpoints and evaluation protocols. Prior works explore making
several components of LLM framework efficient such as, attention mechanism Dao (2023) and
optimization strategies Loshchilov & Hutter (2017). Further, existing efforts also include exploring
post-training sparsification schemes Ashkboos et al. (2024) or quantization Hoefler et al. (2021); Zhu
et al. (2023); Xiao et al. (2023) of computationally expensive LLM. In several cases, such a post-hoc
sparsification can reduce the performance of LLMs with more on-device memory consumption,
compared to a SLM trained from scratch. Further, these techniques typically employ LLMs with
limited transparency and accessibility.

Recently, designing SLMs from scratch have gained attention Biderman et al. (2023); Wu et al. (2023);
Zhang et al. (2024a); Li et al. (2023a); Lin et al. (2021b); Shoeybi et al. (2019); Zhang et al. (2022).
SLMs have shown potential as an alternative especially in case of limited pre-training compute as
well as deployment in resource-constrained environments (e.g., edge devices). Further, SLMs can
support on-device processing which in turn can enhance security, privacy, response efficiency, and
personalization. Here, we strive to construct fully transparent accurate yet computationally efficient
SLMs by maintaining the model’s capacity to capture complex patterns and relationships in data while
reducing the redundancy often present in the parameters of SLMs. Prior works Frantar et al. (2022);
Gholami et al. (2022); Pires et al. (2023); Pan et al. (2023); Bhojanapalli et al. (2021) exploring
alleviating redundancy in transformer design either focusing on the attention mechanism or on the
single feed-forward layer in BERT style architectures. Different from these approaches, we explore
alleviating the redundancy in the SLM architectures with an LLM objective function by focusing on
the sharing mechanism of MLP blocks having multiple feed-forward network (FFN) layers.

Our design thoughtfully maintains the model’s capacity to capture complex patterns and relationships
in data, ensuring that the reduction in size does not detrimentally affect the model’s performance.
Instead, we leverage the redundancy often present in the parameters of large models, identifying and
consolidating these overlaps through shared FFN layers.

Several existing works explore post-training sparsification schemes Ashkboos et al. (2024) or quanti-
zation (cite) of computationally expensive LLM. In several cases, such a post-hoc sparisification can
dramatically reduce the performance of LLMs with more on-device memory consumption, compared
to a SLM trained from scratch. Further, these techniques typically employ LLMs with limited
transparency and accessibility.

The quest for efficiency in Large Language Models (LLMs) has garnered significant attention in
recent years, leading to a plethora of innovative designs aimed at reducing computational demands
while preserving, or even enhancing, model performance. A notable direction in this field is the
development of models that leverage parameter-sharing mechanisms and sparsity to achieve lower
memory footprints and faster inference times. For instance, the introduction of models like GPT-
NeoX-20B Black et al. (2022) and the subsequent adaptations for mobile deployment, exemplify the
industry’s shift towards creating LLMs that are not only powerful but also accessible for a wide range
of applications.
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Figure 1: Illustrative comparison of our MobiLlama with the two baselines. For each case, we show
two transformer blocks denoted by different self-attention layers. In the case of both baseline1 and
baseline2, a dedicated MLP block comprising three FFN layers is utilized for each transformer layer.
In contrast, our MobiLlama utilizes a single MLP block (highlighted by the same color) that is shared
across different transformer layers. This enables to increase the capacity of the network in terms of
layers and hidden dimension size without any significant increase in the total number of trainable
parameters.

Another pivotal area of research focuses on optimizing attention mechanisms, a core component of
transformer-based LLMs. Techniques such as the flash-attention algorithm Dao (2023) have been
instrumental in speeding up the training and inference phases of LLMs by optimizing how models
attend to different parts of the input data. Similarly, the exploration of alternative optimization
strategies, such as those presented in the work on AdamW Loshchilov & Hutter (2017), showcases
the ongoing efforts to refine the training processes of LLMs to achieve better efficiency without
sacrificing model quality. These efforts are complemented by the use of advanced hardware and
distributed training frameworks, allowing researchers to push the boundaries of what’s possible
with LLMs in terms of scale and efficiency. Collectively, these advancements highlight a vibrant
and rapidly evolving landscape in the development of efficient designs for LLMs, underscoring the
research community’s commitment to making these powerful models more sustainable and broadly
accessible.

C TOWARDS FULLY TRANSPARENT MOBILLAMA

As discussed earlier, fully transparent open-source SLM development is desired to foster a more
inclusive, data/model provenance, and reproducible collaborative SLM research development envi-
ronment. To this end, we present here pre-training dataset and processing details, architecture design
configuration with training details, evaluation benchmarks and metrics. In addition, we will publicly
release complete training and evaluation codes along with intermediate model checkpoints.

Architecture Design: Our MobiLlama 0.5B comprises a hidden size of 2048, an intermediate size
of 5632 in its MLPs, and operates with 32 attention heads across 22 hidden layers. It is designed to
handle sequences up to 2048 tokens long, supported by a vocabulary size of 32,000. The precision
in normalization is ensured by an RMSNorm epsilon of 1e−6 to obtain a more stable training. We
utilize RoPE (Rotary Positional Embedding) Su et al. (2024) to encode positional information in
our MobiLlama. Similar to Zhang et al. (2024a), we employ a combination of Swish and Gated
Linear Units together as activation functions. We also derive a 0.8B version from our MobiLlama by
widening the shared FFN design. Compared to the 0.5B model, our 0.8B design increases the hidden
dimension size to 2532 and the intermediate size to 11,080 while the rest of the configuration is same.

Pre-training Dataset and Processing: For pre-training, we use 1.2T tokens from LLM360 Amber
dataset Liu et al. (2023b). The Amber dataset provides a rich and varied linguistic landscape having
different text types, topics, and styles.

Tab. 6 shows the data mix from Amber dataset gathered from various sources. The dataset’s
comprehensive nature supports the model’s ability to grasp subtle distinction of language, enhancing
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Subset Tokens (Billion)

Arxiv 30.00
Book 28.86
C4 197.67
Refined-Web 665.01
StarCoder 291.92
StackExchange 21.75
Wikipedia 23.90

Total 1259.13

Hyperparameter Value

Number Parameters 0.5B
Hidden Size 2048
Intermediate Size (in MLPs) 5632
Number of Attention Heads 32
Number of Hidden Layers 22
RMSNorm ϵ 1e−6

Max Seq Length 2048
Vocab Size 32000

Table 6: Datasets and architecture details. (Left) Data mix in Amber-Dataset. (Right) MobiLlama
architecture and hyperparameters.

its performance on a variety of tasks, from language understanding to content generation. Each subset
within this data compilation plays a pivotal role in enhancing the language learning capabilities of
Large Language Models (LLMs):

• Arxiv (30 Billion Tokens): This subset, drawn from the repository of scientific papers,
provides complex, domain-specific language and technical terminology, enriching the
understanding of academic prose.

• Book (28.9 Billion Tokens): This subset comprises tokens from a broad range of literature
with diverse narrative styles, cultural contexts, and rich vocabulary, deepening the grasp of
storytelling and language nuances.

• C4 (197.7 Billion Tokens): The Colossal Clean Crawled Corpus (C4) offers a vast and
cleaned selection of web text, providing a broad linguistic foundation that includes various
registers, styles, and topics.

• Refined-Web (665 Billion Tokens): This subset, likely a curated web crawl, offers the model
exposure to contemporary, informal, and varied internet language, enhancing the relevance
and applicability to modern communication.

• StarCoder (291.9 Billion Tokens): The StarCoder is a vast collection used for code under-
standing featuring 783GB of code across 86 programming languages. It includes GitHub
issues, Jupyter notebooks, and commits, totaling approximately 250 billion tokens. These
are meticulously cleaned and de-duplicated for training efficiency.

• StackExchange (21.8 Billion Tokens): From the network of Q&A websites, this subset aids
the model in learning question-answering formats and technical discussions across diverse
topics.

• Wikipedia (23.9 Billion Tokens): As an encyclopedia collection, it offers well-structured
and factual content that helps the model to learn encyclopedic knowledge and formal writing
styles.

From the above-mentioned subsets, Arxiv, Book, C4, StackExchange and Wikipedia are sourced
from RedPajama-v1 Computer (2023). The Amber dataset uses RefinedWeb Penedo et al. (2023)
data to replace common crawl subset of RedPajama-v1. These subsets amount to 1259.13 billion
tokens. offering LLMs a rich and diverse linguistic diet that is essential for developing a broad, deep
understanding of human language and its many applications.

Initially, raw data sourced from the above sources is tokenized using Huggingface LLaMA tok-
enizer Touvron et al. (2023). Subsequently, these tokens are organized into sequences with each
containing 2048 tokens. To manage data, these sequences are merged to the token sequences and
divided the amalgamated dataset into 360 distinct segments. Each data segment, structured as a jsonl
file, carries an array of token IDs along with a source identifier that denotes the originating dataset.
Each data sample is designed to have 2049 tokens.

Pretraining Details: For pre-training of our MobiLlama, we use a public cluster having 20 GPU nodes
each equipped with 8 NVIDIA A100 GPUs with 80 GB memory each and 800 Gbps interconnect for
model training. Each GPU is interconnected through 8 NVLink links, complemented by a cross-node
connection configuration of 2 port 200 Gb/sec (4× HDR) InfiniBand, optimizing the model’s training
process. To further enhance the training efficiency, we employ flash-attention mechanism and follow
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the pre-training hyper-parameters established by the LLaMA Touvron et al. (2023) model. Our
MobiLlama model’s training is performed using the AdamW optimizer, leveraging hyperparameters
β1 = 0.9, β2 = 0.95, with an initial learning rate of η = 3e−4. This rate follows a cosine learning
rate schedule, tapering to a final rate of η = 3e−5. We further incorporate a weight decay of
0.1 and apply gradient clipping at 1.0 with a warm-up period over 2, 000 steps. Adapting to our
hardware configuration of 20 GPU nodes, we optimize the pre-training batch size to 800 (160× 5),
achieving a throughput of approximately 14k-15k tokens per second on a single GPU. During our
model pre-training, we save intermediate checkpoints after every 3.3B tokens which will be publicly
released.

Figure 2: Comparison of our MobiLlama
0.5B and 0.8B models with recent OLMo-
1.17B Groeneveld et al. (2024) and TinyLlama-
1.1B Zhang et al. (2024a) in terms of pre-training
tokens, pre-training time and memory, model
parameters, overall accuracy across nine bench-
marks, and on-device efficiency (average bat-
tery consumption and average tokens/second
on a PC with RTX2080Ti). Our MobiLlama
achieves comparable accuracy while requiring
significantly fewer pre-training data (1.2T tokens
vs. 3T tokens), less pre-training time and GPU
memory, along with being efficient for deploy-
ment on resource-constrained devices.

D ADDITIONAL RESULTS

We present additional empirical evidence demonstrating that our MobiLlama outperforms conven-
tional SLM design schemes in pre-training from scratch. The MobiLlama 0.5B model achieves a
2.4% improvement in average performance across nine benchmarks compared to the best existing
0.5B SLMs in the literature. Additionally, we extend this design to develop a 0.8B SLM by adopting
a wider shared-FFN scheme within the transformer blocks, achieving state-of-the-art performance
among SLMs with fewer than 1B parameters. Furthermore, we enhance our SLM by building
multimodal models to demonstrate advanced visual perception and reasoning capabilities. Fig. 2
highlights the competitive advantages of our MobiLlama compared to larger, fully transparent SLMs
in terms of accuracy, pre-training complexity, and onboard deployment cost.

Evaluating Large-base Model: As discussed earlier, we strive to develop fully transparent models
for democratization of SLMs and fostering future research. To this end, we compare our large-base
1.2B with existing fully transparent SLMs falling within the less than 2B category. These existing
SLMs are: Boomer, pythia Biderman et al. (2023), Falcon-RW Penedo et al. (2023), TinyLlama Zhang
et al. (2024b), OLMo Groeneveld et al. (2024), cerebras-gpt Dey et al. (2023), Lamini-LM Wu et al.
(2023), opt Zhang et al. (2022) and gpt-neo Black et al. (2021). Tab. 7 shows that compared to recent
OLMo and TinyLlama that are pre-trained on a larger dataset of 3T tokens, our large-base 1.2B
model pre-trained on 1.2T tokens achieves favourable results with an average score of 49.06 over
nine benchmarks. We hope that our large-base model will serve as a solid baseline and help ease
future research in SLM development.

Post-Training Sparsification: We further perform an efficiency comparison to a recent post-training
sparsification scheme Ashkboos et al. (2024), where each weight matrix is substituted with a smaller
(dense) matrix, thereby reducing dimensions of the embeddings in the model. In such a scheme, the
parameters of the original LLM are reduced significantly up to 70% followed by post-slicing fine-
tuning using a dataset such as WikiText-2 Merity et al. (2016). Tab. 8 shows the comparison of our
MobiLlama with existing LLMs (e.g., Llama-2-7B, OPT-6.7B) on four benchmarks following Ashk-
boos et al. (2024). Our MobiLlama 0.5B and 0.8B models perform favorably against representative
LLMs, with an average score of 53.72 computed over four benchmarks. These results highlight the
potential of designing new fully transparent SLMs that can achieve comparable capabilities of their
larger sliced model counterparts.

12



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Model #Params HellaSwag Truthfulqa MMLU Arc C CrowsPairs piqa race siqa winogrande Average

Boomer 1B 31.62 39.42 25.42 22.26 61.26 57.99 28.99 40.32 50.98 39.80
Pythia-Dedup 1B 49.63 38.92 24.29 29.09 67.11 70.23 32.44 42.63 53.98 45.36
Falcon-RW 1B 63.12 35.96 25.36 35.06 69.04 74.10 36.07 40.23 61.88 48.98
TinyLlama 1.1B 60.22 37.59 26.11 33.61 70.60 73.28 36.45 41.65 59.18 48.74
OLMo 1.2B 62.50 32.94 25.86 34.45 69.59 73.70 36.74 41.14 58.90 48.42
Cerebras-GPT 1.3B 38.51 42.70 26.66 26.10 63.67 66.75 30.33 42.42 53.59 43.41
Lamini 1.3B 38.05 36.43 28.47 26.62 64.62 67.89 33.39 43.19 50.59 43.25
OPT 1.3B 54.50 38.67 24.63 29.6 70.70 72.47 34.16 42.47 59.74 47.43
GPT-NEO 1.3B 48.49 39.61 24.82 31.31 65.67 71.05 34.06 41.81 57.06 45.98
Pythia-Deduped 1.4B 55.00 38.63 25.45 32.59 67.33 72.68 34.64 42.68 56.90 47.32
Qwen-2 1.8B 26.99 47.30 25.83 24.57 50.64 51.19 24.59 36.28 49.72 37.45
large-base 1.2B 62.99 35.90 24.79 34.55 68.49 75.57 35.31 41.96 62.03 49.06

Table 7: Comprehensive comparisons with existing ¡ 2B params fully open-source LLM models on 9
benchmarks. Our 1.2B large-base model pre-trained on 1.2T tokens achieves superior performance
compared to both the recent OLMo 1.17B model Groeneveld et al. (2024) and TinyLlama 1.1B
model Zhang et al. (2024a), which are pre-trained on a substantially larger data of 3T tokens.

Model #Slice #Params HellaS Arc C piqa wino Average

OPT-1.3B 30% 0.91B 39.81 25.77 60.77 54.7 45.26
OPT-6.7B 30% 4.69B 54.56 29.01 68.61 60.69 53.21
Llama-2-7B 30% 4.9B 49.62 31.23 63.55 61.33 51.43
Phi2-2.7B 30% 1.89B 47.56 30.29 65.94 63.14 51.73

Dense 0.5B 52.52 29.52 72.03 57.53 52.90MobiLlama Dense 0.8B 54.09 30.20 73.17 57.45 53.72

Table 8: Comparison on 4 open LLM benchmarks when parameters are sliced down to 30% using
Wiki2Text dataset, following Ashkboos et al. (2024).

Model GQA SQA TextQA MME

MobileLLM-1.7B 56.1 54.7 41.5 1196.2
MobileLLM-3B 59.0 61.0 47.5 1288.9
MobiLlama-V -0.5B 51.0 52.2 32.4 1032.1
MobiLlama-V -0.8B 58.5 53.1 41.4 1191.9

Table 9: Quantitative performance of our multimodal design, MobiLlama-V 0.8B, on different
benchmarks. Our model achieves favorable performance across different benchmarks. Comparative
analysis of our models against the MobileVLM, across a range of benchmarks designed to evaluate
various aspects of language model proficiency. For the LLM size category, our models demonstrate
impressive efficiency, with the 0.5B and 0.8B variants delivering competitive performance despite
their smaller sizes. The benchmarks include General Question Answering (GQA), Specific Question
Answering (SQA), Text-based Question Answering (TextQA), POPE, Multi-Modal Evaluation
(MME), and Multi-Modal Benchmark (MMB), with our 0.8B model particularly excelling in GQA
and POPE. These results showcase the capability of our models to achieve high performance in
complex tasks, highlighting the effectiveness of our architectural optimizations even with a reduced
parameter count.

Multimodal MobiLlama: We further build a multimodal model on top of our MobiLlama by
combining it with a vision encoder to develop a general-purpose visual assistant having visual
reasoning capabilities. Our multimodal model, MobiLlama-V , is trained by bridging the visual
encoder of CLIP Radford et al. (2021) with the language decoder of our MobiLlama, and fine-tuning
it in an end-to-end fashion on a 665k vision-language instruction set Liu et al. (2023a). We conduct
evaluation on GQA Hudson & Manning (2019), SQA Lu et al. (2022), TextQA Singh et al. (2019),
and MME Fu et al. (2023). Tab. 9 shows the performance of MobiLlama-V 0.8B model.

Limitation and Future Direction: A potential direction is to further improve MobiLlama for
enhanced context comprehension and understanding subtlety of linguistic nuances. Domain-specific
expertise of the model can also be explored (e.g., healthcare). While MobiLlama offers a fully
transparent SLM framework, a follow-up study to understand any misrepresentations and biases
is desired to improve model’s robustness. While MobiLlama marks a significant stride in the
development of lightweight, efficient language models, it is not without limitations.
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