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ABSTRACT

Long-term time series forecasting plays an important role in various real-world
scenarios. Recent deep learning methods for long-term series forecasting tend to
capture the intricate patterns of time series by Transformer-based or sampling-
based methods. However, most of the extracted patterns are relatively simplistic
and may include unpredictable noise. Moreover, the multivariate series forecast-
ing methods usually ignore the individual characteristics of each variate, which
may affect the prediction accuracy. To capture the intrinsic patterns of time series,
we propose a novel deep learning network architecture, named Multi-resolution
Periodic Pattern Network (MPPN), for long-term series forecasting. We first con-
struct context-aware multi-resolution semantic units of time series and employ
multi-periodic pattern mining to capture the key patterns of time series. Then,
we propose a channel adaptive module to capture the multivariate perceptions
towards different patterns. In addition, we adopt an entropy-based method for
evaluating the predictability of time series and providing an upper bound on the
prediction accuracy before forecasting. Our experimental evaluation on nine real-
world benchmarks demonstrated that MPPN significantly outperforms the state-
of-the-art Transformer-based, sampling-based and pre-trained methods for long-
term series forecasting.

1 INTRODUCTION

Time series forecasting is a long-standing problem and has been widely used in weather forecasting,
energy management, traffic flow scheduling, and financial planning. Long-term time series fore-
casting (LTSF) means predicting further into the future, which can provide sufficient reference for
long-term planning applications and is of great importance. This paper focuses on long-term time
series forecasting problem. Most of the typical methods for LTSF task before treated time series as a
sequence of values, similar to the sequence in speech and natural language processing. Specifically,
the encoding of a lookback window of historical time series values, along with time feature embed-
ding (e.g., Hour of Day, Day of Week and Day of Month) and positional encoding, are combined
as the model input sequence. Then the convolution-based Wang et al. (2023) or Transformer-based
techniques Zhou et al. (2021); Liu et al. (2021) are used to extract the intricate correlations or high-
dimensional features of time series to achieve long-term sequence prediction.

Unlike other types of sequential data, time series data only record scalars at each moment. Data of
solitary time points cannot provide adequate semantic information and might contain noise. There-
fore, some works implement sub-series Wu et al. (2021) or segments Wang et al. (2023); Zhang
& Yan (2023) as the basic semantic tokens aiming to capture the inherent patterns of time series.
However, the patterns of time series are intricate and usually entangled and overlapped with each
other, which are extremely challenging to clarify. Without making full use of the properties of time
series (e.g., period), relying solely on the self-attention or convolution techniques to capture the
overlapped time series patterns can hardly avoid extracting noisy patterns. In addition, most of the
multivariate time series prediction methods Liu et al. (2022b); Zhang & Yan (2023) mainly focus on
modeling the correlations between variates and ignore the individual characteristics of each variate,
which may affect the prediction accuracy.
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Existing methods for LTSF tasks often involve building complex models based on multi-level
time series decomposition or sampling techniques to capture patterns within the time series.
Decomposition-based methods attempt to decompose the time series into more predictable parts
and predict them separately before aggregating the results Wu et al. (2021); Zhou et al. (2022);
Wang et al. (2023); Oreshkin et al. (2019); Zeng et al. (2023). For instance, FEDformer Zhou et al.
(2022) and MICN Wang et al. (2023) proposed multi-scale hybrid decomposition approach based
on Moving Average to extract various seasonal and trend-cyclical parts of time series. However,
the real-world time series are usually intricate which are influenced by multiple factors and can be
hardly disentangled. Most sampling-based methods implement downsampling techniques, which
can partially degrade the complexity of time series and improve the predictability of the original
series Liu et al. (2022a); Zhang et al. (2022). But they can easily suffer from the influence of out-
liers or noise in time series, which reduces the quality of the extracted patterns and affects their
performance in LTSF tasks. Thus, we consider whether it is feasible to extract the characteristics or
patterns of a time series explicitly, without relying on decomposition or sampling based approaches.

Resolution 1
Resolution 2

Figure 1: An example of time series
with the multi-resolution periodic
patterns. It displays a client’s elec-
tricity consumption for two days
and shows that the series generally
peaks between 8 PM and midnight,
while during daytime, it maintains
a low range, presumably implying
that the resident is outside working.

We believe that, analogous to speech and natural language,
time series have their own distinctive patterns that can rep-
resent them. The challenge lies in how to extract these pat-
terns. For the same variate, we observe that time series with
larger resolutions often exhibit stronger periodicity, whereas
those with smaller resolutions tend to have more fluctuations,
as shown in Figure 1. Motivated by this, we thought that a
time series can be seen as an overlay of multi-resolution pat-
terns. Moreover, time series possess regular patterns, which
is why we can predict them. One obvious observation is that
real-world time series, such as electricity consumption and
traffic, usually exhibit daily and weekly periods. Therefore,
we attempt to capture the multi-periodicity of time series to
decode their unique characteristics. Further, for multivariate
series prediction task, each variate has its own characteristics
and perception of temporal patterns. Existing methods fre-
quently employ the same model parameters, which can only
model the commonalities among the multiple variates, with-
out taking into account the individualities of each variate.

Based on the above motivations, we propose a novel deep
learning network architecture, named Multi-resolution Peri-
odic Pattern Network (MPPN) for long-term time series fore-
casting. Firstly, we construct context-aware multi-resolution semantic units of the time series and
propose a multi-periodic pattern mining mechanism for capturing the distinctive patterns in time
series. Secondly, we propose a channel adaptive module to infer the variate embedding (attributes)
from data during training and to perform adaptive weighting on the mined patterns. In addition, we
argue that before predicting a time series, it should be evaluated whether the series is predictable
or not. Therefore, in this paper, we adopt an entropy-based method for evaluating the predictability
of time series and providing an upper bound on how predictable the time series is before carrying
out predictions. Our objective is devising an efficient and effective long-term forecasting model,
aiming at capturing the intrinsic characteristics of time series. The contributions of this paper are
summarized as follows:

• We propose a novel framework MPPN to explicitly capture the inherent multi-resolution
and multi-periodic patterns of time series for efficient and accurate long-term series fore-
casting.

• We propose a channel adaptive module to adaptively model different perceptions of mul-
tivariate series towards various temporal patterns, further improving the prediction perfor-
mance.

• Experimental evaluations on nine real-world benchmarks demonstrate that our MPPN sig-
nificantly outperforms the state-of-the-art methods in LTSF tasks, while maintaining linear
computational complexity. Furthermore, to the best of our knowledge, we are the first to
derive predictability results of these widely-used datasets for LTSF tasks.
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2 RELATED WORK

In the past several decades, numerous methods for time series forecasting have been developed,
evolving from conventional statistics (such as ARIMA Williams & Hoel (2003)) and machine learn-
ing (such as Prophet Taylor & Letham (2018)) to the current deep learning. Especially, deep learn-
ing has gained popularity owing to its strong representation ability and nonlinear modeling capacity.
Typical deep learning-based methods include RNN Lai et al. (2018), TCN Bai et al. (2018) and
Transformer Vaswani et al. (2017). Transformer-based methods with self-attention mechanism are
frequently used for LTSF task Zhou et al. (2022); Wu et al. (2021); Zhang & Yan (2023); Zhou et al.
(2021); Liu et al. (2021). Although Transformer-based methods have achieved impressive perfor-
mance, recent research Zeng et al. (2023) have questioned whether they are suitable for LTSF tasks,
especially since the permutation-invariant self-attention mechanism causes loss of temporal infor-
mation. They have shown that an embarrassingly simple linear model outperforms all Transformer-
based models. This highlights the importance of focusing on intrinsic properties of time series.

Recently, sampling-based methods in conjunction with convolution have achieved remarkable re-
sults for LTSF tasks. SCINet Liu et al. (2022a) adopts a recursive downsample-convolve-interact
architecture that downsamples the sequence into two sub-sequences (odd and even) recursively to
extract time series patterns. MICN Wang et al. (2023) implements a multi-scale branch structure
with down-sampled convolution for local features extraction and isometric convolution for cap-
turing global correlations. Although these methodologies exhibit better performance compared to
Transformer-based models in LTSF task, they neglect intrinsic properties of time series and pat-
terns extracted based on global indiscriminate downsampling may contain noise. With the explosive
growth of large models, foundation models have demonstrated excellent performance in NLP and
vision fields Devlin et al. (2018); Dosovitskiy et al. (2020); He et al. (2022); Brown et al. (2020). The
field of time series analysis has also shifted focus towards developing pre-trained models Zerveas
et al. (2021); Nie et al. (2023); Wu et al. (2022), which have shown promising outcomes.

3 METHODOLOGY

In this section, we first present the problem definition of the multivariate time series forecasting task
and introduce a quantitative evaluation of predictability. Then we introduce our proposed MPPN
method. The overall architecture of the MPPN model is illustrated in Figure 2. It consists of Multi-
resolution Periodic Pattern Mining (MPPM), a channel adaptive module, and an output layer.
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Figure 2: The overall architecture of Multi-resolution Periodic Pattern Network (MPPN).

3.1 PROBLEM DEFINITION

Multivariate time series prediction aims to forecast future values of multiple variates based on their
historical observations. Considering a multivariate time series X = [x1, . . . ,xt, . . . ,xT ]

T ∈
RT×C consisting of T time steps and C recorded variates, where xt ∈ RC represents an observation
of the multivariate time series at time step t. We set the look-back window length as L and the length
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of the forecast horizon as H . Then, given the historical time series Xin = [xt−L, . . . ,xt−1]
T ∈

RL×C , the forecasting objective is to learn a mapping function F that predicts the values for the
next H time steps Xout = [xt, . . . ,xt+H ]

T ∈ RH×C :

[xt−L, . . . ,xt−1]
T F−→ [xt, . . . ,xt+H ]

T
. (1)

3.2 PREDICTABILITY

Predictability is a measure that quantifies the confidence in the predictive capability for a time series,
providing an upper bound on the accuracy possibly achieved by any forecasting approach. As the
foundation of time series prediction, predictability explains to what extent the future can be foreseen,
which is often overlooked by prior deep learning-based temporal forecasting methods. In the context
of time series prediction, the foremost importance lies not in the construction of predictive models,
but rather in the determination of whether the time series itself is predictable. Based on the deter-
minations, it becomes possible to filter out time series with low predictability, such as random walk
time series, thereby discerning the meaningfulness of the prediction problem at hand. There exists a
multitude of seminal works in the domain of predictability Song et al. (2010); Xu et al. (2019); Guo
et al. (2021); Smith et al. (2014), among which the most commonly employed approach is based on
entropy measures.

For long-term time series forecasting, we firstly evaluate the predictability following the method
in Song et al. (2010), which explored the predictability of human mobility trajectories using en-
tropy rates. Firstly, we discretize the continuous time series into Q discrete values. Denote
x = {x1, x2, · · · , xn} as a time series after discretization, its entropy rate is defined as follows:

Hu(x) = lim
n→∞

1

n

n∑
i=1

H (xi | xi−1, · · · , x1) , (2)

which characterizes the average conditional entropy H of the current variable given the values of
all the past variables as n → ∞. In order to calculate this theoretical value, we utilize an estimator
based on Lempel-Ziv encoding Kontoyiannis et al. (1998), which has been proven to be a consistent
estimator of the real entropy rate Hu(x). For x, the entropy rate Hu(x) is estimated by

S =

(
1

n

n∑
i=1

Λi

)−1

ln(n), (3)

where Λi signifies the minimum length of the sub-string starting at position i that has not been
encountered before from position 1 to i − 1. We further derive the upper bound of predictability
Πmax by solving the following Fano’s inequality Kontoyiannis et al. (1998):

S ≤ H(Πmax) + (1−Πmax) log2(Q− 1), (4)

where H(Πmax) = −Πmax log2(Π
max)−(1−Πmax) log2(1−Πmax) represents the binary entropy

function and Q is the number of distinct values in x. It is worth noting that the inequality equation 4
is tight, in the sense that the upper bound of predictability is attainable by some actual algorithm. As
a result, the upper bound of predictability provides a theoretical guarantee for conducting long-term
time series forecasting.

3.3 MULTI-RESOLUTION PERIODIC PATTERN MINING

The MPPM is composed of two key components, namely multi-resolution patching and periodic
pattern mining, which are specially designed to capture intricate multi-resolution patterns inherent
in time series data with multiple periods. For simplicity, we omit the channel dimension C and
denote the hidden state of the series as D.

Multi-resolution patching To capture the multi-resolution patterns in time series data, we first
obtain context-aware semantic units of the time series. Specifically, as shown in Figure 2, we employ
non-overlapping multi-scale convolutional kernels ( inception mechanism Szegedy et al. (2016))
to partition the input historical time series Xin into multi-resolution patches. For instance, for a
time series with a granularity of 1 hour and assuming a resolution of 3 hours, the above-mentioned
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convolution with a kernel size 3 is used to map Xin to the output Xr. This process can be formulated
as follows:

Xr = Conv 1d (Padding (Xin))kernel =r , (5)
where r denotes the convolutional kernel size that correspond to the pre-defined temporal resolution.
For Conv1d, we set the kernel and stride both to be r. For the resolution selection, we choose a
set of reasonable resolutions r ∈ {r1, r2, · · · , rn} based on the granularity of the input time series
(See Appendix A.4 for more details). Xr denotes the obtained semantic units of the time series
corresponding to resolution r.

Periodic pattern mining We implement periodic pattern mining to explicitly capture the multi-
resolution and multi-periodic patterns in time series data. We firstly employ Fast Fourier Transform
(FFT) to calculate the periodicity of the original time series, following the periodicity computation
method proposed by Wu et al. Wu et al. (2022). Briefly, we take the Fourier transform of the
original time series X and calculate the amplitude of each frequency. We then select the top-k
amplitude values and obtain a set of the most significant frequencies {f1, · · · , fk} corresponding to
the selected amplitudes, where k is a hyperparameter. Consequently, we acquire k periodic lengths
{Period1, · · · ,Periodk} that correspond to these frequencies. Similar to Wu et al. (2022), we only
consider frequencies within

{
1, · · · ,

[
T
2

]}
. The process is summarized as follows:

A = Avg (Amp (FFT (X))) , {f1, · · · , fk} = argTopk
f∗∈{1,··· ,[T2 ]}

(A), Periodi =

⌈
T

fi

⌉
, (6)

where i ∈ {1, · · · , k}, FFT(·) represents the FFT, and Amp(·) denotes the amplitude calculation.
A ∈ RT denotes the calculated amplitudes, which are determined by taking the average of C
variates using Avg(·) .

We then utilize the periodicity calculated above and employ dilated convolutions to achieve multi-
periodic and multi-resolution pattern mining. Specifically, given a periodic length of Periodi and the
resolution r, we set convolution dilation as

⌊
Periodi

r

⌋
and kernel size as

⌊
L

Periodi

⌋
for the convolution

operation on Xr. To obtain regularized patterns, we perform truncation on the outputs of dilated
convolution. The process can be formulated as follows:

XPeriodi,r = Truncate

(
Conv 1d (Xr)kernel =

⌊
L

Periodi

⌋
,dilation =

⌊
Periodi

r

⌋) , (7)

where XPeriodi,r ∈ R

⌊
Periodi

r

⌋
×D denotes the patterns extracted corresponding to Periodi and res-

olution r. For the same period, we concatenate all the corresponding XPeriodi,r of different resolu-
tions r to obtain its whole pattern XPeriodi . We then concatenate the patterns of multiple periods to
obtain the final multi-periodic pattern of the time series, denoted as XPattern ∈ RP×D, formulated
as follows:

XPeriodi
=

n

∥
j=1

XPeriodi,rj , XPattern =
k

∥
i=1

XPeriodi
, P =

k∑
i=1

n∑
j=1

⌊
Periodi

rj

⌋
. (8)

3.4 CHANNEL ADAPTIVE MODULE

To achieve adaptivity for each variate, we propose a channel adaptive mechanism. We firstly define
a learnable variate embeddings matrix E ∈ RC×P , which can be updated during model training,
where P represents the number of pattern modes extracted by the above MPPM. Next, we apply
the sigmoid function to activate the learned variate representation E and then perform broadcast-
ing multiplication with the obtained multi-resolution periodic pattern XPattern, producing the final
channel adaptive patterns XAdpPattern ∈ RC×P×D, formulated as follows:

XAdpPattern = XPattern · sigmoid (E) , (9)

At last, we implement the output layer with one fully connected layer to generate the final long-term
prediction Xout ∈ RH×C . The output layer can be formulated as follows:

Xout = Reshape (XAdpPattern) ·W + b, (10)

where W ∈ R(PD)×H and b ∈ RH are learnable parameters. Xout is the final output of the MPPN.
Finally, we adopt the Mean Squared Error (MSE) as the training loss to optimize the model.
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4 EXPERIMENTS

In this section, we present the experimental evaluation of our MPPN model compared to state-of-the-
art baseline models. Additionally, we conduct comprehensive ablation studies and perform model
analysis to demonstrate the effectiveness of each module in MPPN. More detailed information can
be found in the Appendix.

4.1 EXPERIMENTAL SETTINGS

Datasets We conduct extensive experiments on nine widely-used time series datasets, including
four ETT Zhou et al. (2021) (ETTh1, ETTh2, ETTm1, ETTm2), Electricity, Exchange-Rate Lai
et al. (2018), Traffic, Weather and ILI dataset. A brief description of these datasets is presented in
Table 1. We provide a detailed dataset description in Appendix A.1.

Table 1: Dataset statistics.
Datasets Electricity Weather Traffic Exchange-Rate ILI ETTh1&ETTh2 ETTm1&ETTm2

Timesteps 26,304 52,696 17,544 7,588 966 17,420 69,680
Features 321 21 862 8 7 7 7

Granularity 1hour 10min 1hour 1day 1week 1hour 15min

Baselines We employ two pre-trained models: PatchTST Nie et al. (2023) and TimesNet Wu et al.
(2022), two SOTA Linear-based models: DLinear and NLinear Zeng et al. (2023), three cutting-edge
Transformer-based models: Crossformer Zhang & Yan (2023), FEDformer Zhou et al. (2022), Aut-
oformer Wu et al. (2021), and two CNN-based models: MICN Wang et al. (2023) and SCINet Liu
et al. (2022a) as baselines. We choose the PatchTST/64 due to its superior performance compared
to PatchTST-42. For FEDformer, we select the better one (FEDformer-f, which utilizes Fourier
transform) for comparison. More information about the baselines can be found in Appendix A.3.

Implementation details Our model is trained with L2 loss, using the ADAM Kingma & Ba (2014)
optimizer with an initial learning rate of 1e-3 and weight decay of 1e-5. The training process is early
stopped if there is no loss reduction on the validation set after three epochs. All experiments are
conducted using PyTorch and run on a single NVIDIA Tesla V100 GPU. Following previous work
Zhou et al. (2022); Wu et al. (2021); Wang et al. (2023), we use Mean Square Error (MSE) and Mean
Absolute Error (MAE) as evaluation metrics. See Appendix A.4 for more detailed information.

4.2 MAIN RESULTS

Table 2: Predictability and periodicity results of the nine benchmark datasets.
Datasets Electricity Weather Traffic Exchange-Rate ILI ETTh1 ETTh2 ETTm1 ETTm2

Timesteps 26,304 52,696 17,544 7,588 966 17,420 17,420 69,680 69,680
Predictability 0.876 0.972 0.934 0.973 0.917 0.853 0.927 0.926 0.967
Top-1 period 24 144 12 – – 24 – 96 –

Predictability analysis As a prerequisite, we investigate the predictability of the nine public
datasets before constructing prediction models. For each dataset, a quantitative metric is provided
in accordance with the method outlined in Section 3.2. We designate the average predictability of
distinct univariate datasets as the measure of predictability for each benchmark dataset in question.
The corresponding results are summarized in Table 2. It can be observed from Table 2 that all
predictability results exceed 0.85, indicating the nine benchmark datasets exhibit a notable level of
predictability. This provides sufficient confidence and theoretical assurance for constructing excel-
lent prediction models upon the nine benchmark datasets. Results of MPPN in Table 3 show that
MAE and MSE for Weather and Exchange with predictability larger than 0.97 reside at a low level,
while those for ETTm1 and ILI with lower predictability lie at a relatively higher level. Although
the situation is not always the case, the general rule is that for datasets with higher predictability,
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carefully constructed predictive models usually tend to exhibit lower prediction metrics (e.g., MSE
or MAE).

Periodicity analysis To capture the intricate temporal patterns and multiple-periodicity within the
time series, we employ the method of FFT as discussed in Section 3 to extract the Top-1 period
for each of the nine benchmark datasets. See the last row of Table 2 for details. It can be con-
cluded from Table 2 that Electricity, Weather, Traffic, ILI, ETTh1, and ETTm1 exhibit noticeable
periodic patterns, while the remaining datasets do not possess discernible periodicities, indicating
the manifestation of more complex time series patterns.

Table 3: Multivariate long-term time series forecasting results with different prediction length
O ∈ {24, 36, 48, 60} for ILI dataset and O ∈ {96, 192, 336, 720} for others. The SOTA results are
bolded, while the sub-optimal results are underlined.

Models MPPN PatchTST/64 NLinear DLinear TimesNet SCINet MICN FEDformer Autoformer Crossformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.144 0.196 0.149 0.198 0.182 0.232 0.174 0.233 0.170 0.220 0.184 0.242 0.170 0.235 0.219 0.300 0.263 0.332 2.320 0.877

192 0.189 0.240 0.194 0.241 0.225 0.269 0.218 0.278 0.224 0.263 0.244 0.298 0.223 0.285 0.271 0.331 0.295 0.354 2.370 0.919
336 0.240 0.281 0.245 0.282 0.271 0.301 0.263 0.314 0.282 0.304 0.287 0.322 0.278 0.339 0.318 0.354 0.346 0.385 3.839 1.243
720 0.310 0.333 0.314 0.334 0.339 0.349 0.332 0.374 0.357 0.353 0.346 0.360 0.342 0.386 0.410 0.419 0.428 0.433 5.161 1.494

Tr
af

fic

96 0.387 0.271 0.393 0.284 0.412 0.282 0.413 0.287 0.589 0.315 0.444 0.281 0.524 0.307 0.588 0.368 0.644 0.415 0.530 0.293
192 0.396 0.273 0.408 0.290 0.425 0.287 0.424 0.290 0.618 0.324 0.528 0.321 0.541 0.315 0.606 0.373 0.623 0.386 0.560 0.307
336 0.410 0.279 0.419 0.294 0.437 0.293 0.438 0.299 0.635 0.341 0.531 0.321 0.540 0.312 0.629 0.390 0.620 0.385 0.585 0.324
720 0.449 0.301 0.508 0.366 0.465 0.311 0.466 0.316 0.664 0.352 0.620∗ 0.394∗ 0.599 0.324 0.627 0.381 0.677 0.418 0.591 0.314

E
le

ct
ri

ci
ty 96 0.131 0.226 0.129 0.222 0.141 0.237 0.140 0.237 0.168 0.271 0.167 0.269 0.163 0.269 0.189 0.305 0.202 0.317 0.220 0.303

192 0.145 0.239 0.149 0.244 0.154 0.249 0.154 0.250 0.191 0.293 0.174 0.280 0.178 0.286 0.197 0.312 0.233 0.338 0.279 0.347
336 0.162 0.256 0.163 0.259 0.171 0.265 0.169 0.268 0.197 0.299 0.186 0.292 0.184 0.293 0.214 0.329 0.260 0.359 0.336 0.370
720 0.200 0.289 0.199 0.292 0.210 0.298 0.204 0.300 0.262 0.345 0.231∗ 0.316∗ 0.214 0.324 0.244 0.351 0.256 0.361 0.429 0.441

E
xc

ha
ng

e 96 0.089 0.204 0.099 0.223 0.089 0.208 0.085 0.209 0.105 0.235 0.116 0.254 0.082 0.205 0.134 0.262 0.143 0.273 0.257 0.383
192 0.177 0.295 0.226 0.343 0.180 0.300 0.162 0.296 0.234 0.352 0.218 0.345 0.157 0.298 0.261 0.372 0.271 0.380 0.878 0.732
336 0.344 0.418 0.348 0.430 0.331 0.415 0.333 0.441 0.387 0.457 0.294 0.413 0.269 0.402 0.442 0.494 0.456 0.506 1.149 0.858
720 0.929 0.731 1.225 0.834 0.943 0.728 0.898 0.725 0.936 0.737 1.110 0.767 0.701 0.653 1.125 0.820 1.090 0.812 1.538 1.002

IL
I

24 1.796 0.860 1.794 0.913 2.285 0.983 2.280 1.061 2.110 0.948 3.409 1.245 3.031 1.180 3.221 1.242 3.410 1.296 3.197 1.199
36 1.748 0.840 1.478 0.840 2.119 0.938 2.235 1.059 2.764 1.035 3.200 1.204 2.507 1.011 2.660 1.071 3.365 1.252 3.191 1.210
48 1.692 0.840 1.849 0.917 2.062 0.933 2.298 1.079 2.461 0.963 2.943 1.187 2.427 1.013 2.717 1.101 3.125 1.200 3.450 1.205
60 1.840 0.881 1.971 0.954 2.258 0.994 2.573 1.157 2.218 0.970 2.719 1.189 2.654 1.085 2.840 1.148 2.847 1.146 3.505 1.264

E
T

T
h1

96 0.371 0.393 0.372 0.403 0.374 0.394 0.384 0.405 0.389 0.412 0.405 0.428 0.405 0.431 0.377 0.416 0.436 0.448 0.426 0.436
192 0.405 0.413 0.413 0.429 0.408 0.415 0.443 0.450 0.440 0.442 0.470 0.470 0.501 0.489 0.424 0.446 0.444 0.451 0.585 0.547
336 0.426 0.425 0.422 0.440 0.429 0.427 0.447 0.448 0.495 0.471 0.530 0.514 0.541 0.528 0.450 0.463 0.516 0.493 0.552 0.521
720 0.436 0.452 0.447 0.468 0.440 0.453 0.504 0.515 0.518 0.495 0.584 0.561 0.822 0.700 0.474 0.491 0.500 0.501 0.655 0.604

E
T

T
h2

96 0.278 0.335 0.273 0.337 0.277 0.338 0.290 0.353 0.332 0.370 0.397 0.434 0.292 0.355 0.339 0.381 0.397 0.430 0.843 0.669
192 0.344 0.380 0.340 0.381 0.344 0.381 0.388 0.422 0.397 0.410 0.594 0.548 0.441 0.454 0.429 0.437 0.440 0.441 0.472 0.492
336 0.362 0.400 0.329 0.384 0.357 0.400 0.463 0.473 0.453 0.451 0.615 0.559 0.545 0.515 0.445 0.461 0.477 0.481 0.898 0.687
720 0.393 0.434 0.380 0.423 0.394 0.436 0.733 0.606 0.438 0.450 1.079 0.764 0.834 0.688 0.455 0.475 0.482 0.489 1.250 0.830

E
T

T
m

1 96 0.287 0.335 0.290 0.344 0.306 0.348 0.301 0.345 0.335 0.377 0.339 0.386 0.315 0.365 0.349 0.401 0.520 0.487 0.392 0.425
192 0.330 0.360 0.334 0.371 0.349 0.375 0.336 0.366 0.405 0.411 0.381 0.413 0.361 0.388 0.390 0.423 0.543 0.498 0.472 0.492
336 0.369 0.382 0.369 0.392 0.375 0.388 0.372 0.389 0.416 0.422 0.414 0.436 0.387 0.416 0.433 0.450 0.652 0.543 0.527 0.525
720 0.426 0.414 0.416 0.420 0.433 0.422 0.427 0.423 0.479 0.459 0.475 0.470 0.445 0.454 0.480 0.474 0.707 0.570 0.608 0.564

E
T

T
m

2 96 0.162 0.250 0.166 0.256 0.167 0.255 0.172 0.267 0.188 0.266 0.196 0.294 0.178 0.272 0.189 0.280 0.254 0.321 0.360 0.426
192 0.217 0.288 0.223 0.296 0.221 0.293 0.237 0.314 0.263 0.311 0.369 0.424 0.236 0.310 0.255 0.322 0.273 0.331 0.580 0.568
336 0.273 0.325 0.274 0.329 0.275 0.327 0.295 0.359 0.322 0.349 0.410 0.447 0.299 0.351 0.323 0.363 0.340 0.371 1.623 0.799
720 0.368 0.383 0.362 0.385 0.370 0.385 0.427 0.439 0.424 0.408 0.583 0.535 0.435 0.452 0.421 0.419 0.453 0.439 1.954 1.015

Results∗ are from SCINet Liu et al. (2022a) due to out-of-memory. Other results are implemented by us.

Multivariate results For multivariate long-term forecasting, our proposed MPPN outperforms all
baseline models and achieves the state-of-the-art performance on most of the datasets (Table 3).
Compared to the up-to-date Transformer-based models, MPPN achieves substantial reductions of
22.43% in MSE and 17.76% in MAE. Additionally, when compared to the best results achieved by
CNN-based models, MPPN achieves a notable overall reduction of 19.41% on MSE and 14.77%
on MAE. Regarding the Linear-based models, MPPN consistently outperforms it across all datasets,
with particularly notable improvements observed in large datasets(Weather, Traffic) and Exchange-
Rate. Specifically, MPPN reduces MSE by 11.48% in Weather, 5.57% in Traffic, and 18.80%
in Exchange-Rate. Compared with the SOTA pre-trained models for LTSF tasks, MPPN can still
outperform them in general. The effectiveness of pre-trained models stems from their extensive
parameters while our model is a lightweight model aiming to capture the intrinsic temporal patterns.

For datasets with evident periodicity, such as Electricity, Weather, and Traffic (Table 2), our MPPN
shows stronger capabilities in capturing and modeling their inherent time series patterns compared
to other models. As for data without clear periodic patterns, like the Exchange-Rate and ETTh2,
MPPN still provides commendable predictions. The impressive pattern mining aptitude of MPPN
for LTSF tasks makes it a practical choice for real-world applications. Besides, the overall sampling-
based and decomposition-based methods perform better than other baseline models, highlighting the
importance of capturing specific patterns in time series data. We also list the full benchmark and
univariate long-term forecasting results in Appendix B.
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4.3 ABLATION STUDIES

Table 4: Ablation studies: multivariate long-term series prediction results on Weather and Electricity
with input length 720 and prediction length in {96, 192, 336, 720}. Three variants of MPPN are
evaluated, with the best results highlighted in bold.

Methods MPPN w/o multi-resolution w/o periodic sampling w/o channel adaption

Metric MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.144 0.196 0.165 0.226 0.147 0.200 0.167 0.222

192 0.189 0.240 0.209 0.261 0.196 0.249 0.212 0.259
336 0.240 0.281 0.258 0.302 0.246 0.289 0.258 0.295
720 0.310 0.333 0.313 0.336 0.312 0.335 0.322 0.341

E
le

ct
ri

ci
ty 96 0.131 0.226 0.156 0.264 0.133 0.228 0.133 0.228

192 0.145 0.239 0.171 0.276 0.148 0.242 0.147 0.241
336 0.162 0.256 0.186 0.290 0.164 0.258 0.164 0.258
720 0.200 0.289 0.223 0.319 0.203 0.292 0.203 0.291

In this section, we conduct ablation studies on Weather and Electricity to assess the effect of each
module in MPPN. Three variants of MPPN are evaluated: 1) w/o multi-resolution: we remove the
multi-resolution patching and instead employ a single resolution and a single period for sampling;
2) w/o periodic sampling: we eliminate periodic pattern mining and directly adopt multi-resolution
patching followed by a channel adaptive module and an output layer; 3) w/o channel adaption: we
drop channel adaptive module and treat each channel equally; The experimental results are summa-
rized in Table 4 with best results bolded. As can be seen from Table 4, omitting multi-resolution or
periodic pattern mining leads to significant performance degradation. Employing multi-resolution
patching and multiple periodic pattern mining facilitates better exploration of the intrinsic patterns
in times series. Channel adaption also brings noticeable performance improvement for both datasets.
Compared to Electricity containing only electricity consumption data, the impact of channel adap-
tion is more pronounced on Weather. Since Weather dataset comprises distinct meteorological in-
dicators, such as wind velocity and air temperature, it is conducive to regard different channels
distinctively rather than treating them equally. Overall, MPPN enjoys the best performance across
different datasets and prediction horizons, which demonstrates the effectiveness of each modeling
mechanism. Further ablation experiment results can be found in the Appendix.

4.4 MODEL ANALYSIS

Periodic pattern As shown in Figure 3(a), we randomly select a variate from the Electricity
dataset with hourly interval and sample its historical data over 7 days. We find that the data at
the same time point for each day exhibits fluctuations within a relatively small range, while the
magnitude of the fluctuations varies at different time points. Our findings confirm the existence of
periodic patterns in the analysed time series, demonstrating that our proposed MPPM in Section 3
which can extract these patterns could improve the performance. Meanwhile, we also investigate
the patterns of three-hour resolution by taking the mean value of the adjacent three time points, as
shown in Figure 3(b). Time series data exhibits periodic patterns across different resolutions, thus
integrating multi-resolution patterns of the series can enhance modeling accuracy.

Channel adaptive modeling To illustrate the effect of the channel adaptive module, we visualize
the channel embedding matrix on ETTh1 dataset with eight patterns. We set the look-back window
L = 336 and the prediction horizon to be 96. In Figure 4, the varying hues and numbers in each
block represent the sensitivity of various channels to distinct temporal patterns. It can be seen that
most variates (channels) are significantly influenced by the third and fourth patterns, with the excep-
tion of ‘LULF’, which denotes Low UseFul Load. The channel adaptive module in MPPN helps
capture the perceptions of multivariate towards different patterns, while also providing interpretabil-
ity to our approach.

Efficiency analysis We compare the training time for one epoch of our MPPN with serval base-
line models on the Weather dataset, and the results are shown in Figure 5. In general, pre-trained
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Figure 3: Period pattern analysis on the Electricity dataset.

models exhibit the highest time complexity, followed by Transformer-based models. While MPPN
demonstrates sightly higher time complexity compared to the single-layer DLinear, the difference is
not significant under the premise of better prediction accuracy. As the prediction length increases,
the training time of certain models, such as TimesNet, MICN, and FEDformer, shows a noticeable
growth. Meanwhile, models like SCINet and Crossformer do not show a significant increase as the
prediction length grows, but they still have considerably higher training time compared to MPPN.
Our MPPN model exhibits superior efficiency in handling long-term time series forecasting.
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Figure 4: Heat map of channel adaption on
ETTh1 with eight extracted patterns.
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Figure 5: Comparison of the training time for
different baseline models and our MPPN.

5 CONCLUSION

In this paper, we propose a novel deep learning network architecture MPPN for long-term time se-
ries forecasting. We construct multi-resolution contextual-aware semantic units of time series and
propose the multi-period pattern mining mechanism to explicitly capture key time series patterns.
Furthermore, we propose a channel-adaptive module to model each variate’s perception of differ-
ent extracted patterns for multivariate series prediction. Additionally, we employ an entropy-based
method for evaluating the predictability and providing an upper bound on the prediction accuracy
before carrying out predictions. Extensive experiments on nine real-world datasets demonstrate the
superiority of our method in long-term forecasting tasks compared to state-of-the-art methods.
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