
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUBLINEAR TIME QUANTUM ALGORITHM FOR ATTEN-
TION APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Given the query, key and value matrices Q,K, V ∈ Rn×d, the attention module
is defined as Att(Q,K, V) = D−1AV where A = exp(QK⊤/

√
d) with exp(·)

applied entrywise, D = diag(A1n). The attention module is the backbone of
modern transformers and large language models, but explicitly forming the softmax
matrix D−1A incurs Ω(n2), motivating numerous approximation schemes that
reduce runtime to Õ(nd) via sparsity or low-rank factorization.
We propose a quantum data structure that approximates any row of Att(Q,K, V)
using only row queries to Q,K, V . Our algorithm preprocesses these matrices
in Õ

(
ϵ−1n0.5

(
s2.5λ + s1.5λ d+ α0.5d

))
time, where ϵ is the target accuracy, sλ is

the λ-statistical dimension of the exponential kernel defined by Q and K, and α

measures the row distortion of V . Each row query can be answered in Õ(s2λ+ sλd)
time.
To our knowledge, this is the first quantum data structure that approximates rows
of the attention matrix in sublinear time with respect to n. Our approach relies on a
quantum Nyström approximation of the exponential kernel, quantum multivariate
mean estimation for computing D, and quantum leverage score sampling for the
multiplication with V .

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have emerged as one of the most successful machine learning
architectures in recent years, revolutionizing fields such as natural language processing (Devlin
et al., 2019; Yang et al., 2019; Raffel et al., 2020; Brown et al., 2020; Jiao et al., 2020), computer
vision (Carion et al., 2020; Dosovitskiy et al., 2021; Guo et al., 2022), speech recognition (Chorowski
et al., 2015; Wang et al., 2021), robotics (Liu et al., 2022), and time series forecasting (Zhou et al.,
2021). These models typically operate on sequences of length n, autoregressively predicting the
next most likely token to produce an output of length n. In applications like large language models
(LLMs), it has been widely observed that increasing the sequence length n significantly enhances
generative performance. However, this benefit comes at a substantial computational cost: the core
attention module has a quadratic time complexity in n, which severely limits both training and
inference scalability.

Formally, let Q,K, V ∈ Rn×d denote the query, key, and value embeddings. The attention module
is defined as Att(Q,K, V) = D−1AV ∈ Rn×d, where A = exp(QK⊤/

√
d) ∈ Rn×n is computed

entrywise, and D = diag(A1n) ∈ Rn×n. The matrix A is referred to as the attention matrix,
and D−1A as the softmax matrix. Due to the n × n size of A, much recent research has focused
on reducing the quadratic complexity by approximating attention through pattern-based sparse
attention (Daras et al., 2020; Kitaev et al., 2020; Roy et al., 2021; Sun et al., 2022; Child et al., 2019;
Beltagy et al., 2020; Ainslie et al., 2020; Zaheer et al., 2020), linearizing the kernel through feature
mapping (Katharopoulos et al., 2020; Choromanski et al., 2021; Wang et al., 2020; Peng et al., 2021),
or various algorithmic and data structure optimizations (Zandieh et al., 2023; Alman & Song, 2023;
Han et al., 2024; Kacham et al., 2024; Zandieh et al., 2024; van den Brand et al., 2024; Song et al.,
2024; Kannan et al., 2025; Chu et al., 2024; Chen et al., 2025b; Indyk et al., 2025).

The theoretical goal in these efforts is to achieve a runtime that scales nearly linearly with n, allowing
some approximation error. This is a natural target, since the input size to the attention module is n×d.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

On a classical computer, any algorithm that approximates attention in time Õ(nd) is considered
optimal. But could this process be accelerated further using a quantum computer?

If our objective is to output the entire n× d matrix Att(Q,K, V), then Ω(nd) time is unavoidable
due to output size. However, in many transformer applications — particularly during inference (Pope
et al., 2023; Brandon et al., 2024; Adnan et al., 2024; Zhang et al., 2024a; Feng et al., 2025; Liu
et al., 2024b; Kumari et al., 2024; Behnam et al., 2025; Chen et al., 2025a;c; Indyk et al., 2025) —
only row queries are needed. In this setting, we aim to preprocess Q,K, V into a data structure such
that, for any index i ∈ [n], the structure can return a vector r̃i ∈ Rd that approximates the i-th row
of Att(Q,K, V). This model circumvents the Ω(nd) lower bound by focusing on partial output.
Nonetheless, since each row of Att(Q,K, V) is a convex combination of rows of V , achieving truly
sublinear time in n still appears classically intractable.

In this work, we answer this question affirmatively. Specifically, we construct a quantum data structure
that preprocesses Q,K, V using only row queries, and does so in time1 Õ(ϵ−1n0.5 · poly(d, sλ, α)),
where sλ is the statistical dimension of the exponential kernel matrix associated with Q and K, and
α is a measure of the row distortion of V (see Definition C.2). Given any index i ∈ [n], the data
structure returns an approximation to the i-th row of Att(Q,K, V) in time Õ(s2λ + sλd).

To our knowledge, this is the first quantum algorithm to implement the row query model in sublinear
time. Prior works either require superlinear preprocessing time or impose structural assumptions (Gao
et al., 2023). Our approach avoids both: it makes no assumptions on Q,K, V , making it broadly
applicable in practice. Moreover, our construction is conceptually simple — it combines quantum
techniques such as Grover search (Grover, 1996), Nyström kernel approximation, and quantum
multivariate mean estimation (Cornelissen et al., 2022) to approximate each component of the
attention module: D, A, and V .

Quantum Computation Model. We follow the standard quantum computation framework as
in Apers & De Wolf (2022); Apers & Gribling (2023). The model allows quantum subroutines using
O(log n) qubits, quantum queries to the input, and access to a quantum-read/classical-write RAM
(QRAM) of poly(n) bits. Each quantum read or classical write takes unit cost. We measure time
complexity by the number of QRAM operations, and query complexity by the number of queries to
the input. In our setting, we query rows of Q, K, and V , each requiring O(d) time classically. For
simplicity, we assume Q and K have been scaled by 1/d1/4, which can also be done via row queries
in O(d) time.

2 PRELIMINARY

Notation. Given symmetric matrices A,B ∈ Rn×n, we use A−B ⪰ 0 to denote A−B is a positive
semidefinite (PSD) matrix, i.e., for any x ∈ Rn, x⊤(A−B)x ≥ 0. Given a matrix M ∈ Rn×n, we
use exp(M) to denote the entrywise exponentiation operation. We use tr[M] to denote the trace of
M . For a real matrix A, we use A† to denote its Moore-Penrose pseudoinverse, and for a square,
nonsingular real matrix M , we use M−1 to denote its inverse. For two vectors x, y ∈ Rn, we use
x⊤y or ⟨x, y⟩ to denote the inner product of x and y. We use 0n and 1n to denote all-0’s and all-1’s
vector. For a vector x ∈ Rn, we use ∥x∥2 =

√
x⊤x to denote its ℓ2 norm, ∥x∥∞ = maxi∈[n] |xi| to

denote its ℓ∞ norm. If M is a PSD matrix, then we use ∥x∥M =
√
x⊤Mx to denote the M -energy

norm of x. For a matrix A, we use ∥A∥ to denote its spectral norm and ∥A∥∞ to denote its max row
ℓ1 norm, and ∥A∥F to denote its Frobenius norm. Throughout the paper, we will also exclusively
work with weighted sampling matrices, usually denoted by S ∈ Rn×s for where s is the total number
of samples taken, let i(j) be the index of the i-th sample, then the i-th column of S is 1√

pj
ej , where

pj is the probability of choosing the index j. We use E[X] to denote the expectation of a random
variable X . We use I[E] to denote the indicator of whether event E happens.

Numerical Linear Algebra. We rely on several primitives from numerical linear algebra for fast
approximations and provable guarantees.

1We use Õ(·) to suppress polylogarithmic factors in n, d, sλ, and 1/ϵ.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Definition 2.1 (Leverage score). Let A ∈ Rn×d. The i-th leverage score of A is defined as

τi := a⊤i (A
⊤A)−1ai,

where ai is the i-th row of A.

We will also work exclusively with kernel matrices. Given a dataset X = {x1, . . . , xn} ⊆ Rd, we
define the exponential kernel matrix E ∈ Rn×n by Ei,j = exp(⟨xi, xj⟩). Although E is generally
full-rank, our algorithm depends only on a parameter called the λ-statistical dimension of E, which
may be much smaller than n.

Definition 2.2 (Statistical dimension (Zhang, 2005; Hastie et al., 2009)). Let E ∈ Rn×n be a PSD
matrix, and let λ > 0. The λ-statistical dimension of E is defined as sλ(E) := tr[E(E + λI)−1].
When E is clear from context, we write sλ for simplicity.

Note that sλ is a monotonically decreasing function of λ, and is closely related to the notion of ridge
leverage scores.

Definition 2.3 (Ridge leverage score (Alaoui & Mahoney, 2015)). Let E ∈ Rn×n be a kernel matrix
and let λ > 0. The λ-ridge leverage score of the data point xi is defined as

τλi := (E(E + λI)−1)i,i.

If E = BB⊤ for some B ∈ Rn×n, then this can be equivalently written as

τλi = b⊤i (B
⊤B + λI)−1bi,

where bi is the i-th row of B.

It is easy to see that
∑n

i=1 τ
λ
i = sλ. Moreover, Musco & Musco (2017) shows that Nyström

approximations (Williams & Seeger, 2000) based on ridge leverage score sampling yield accurate
spectral approximations to E.

Lemma 2.4 (Theorem 3 of Musco & Musco (2017)). Let s = O(sλ log(sλ/δ)), λ > 0, and δ ∈
(0, 1). Let E ∈ Rn×n be any kernel matrix. Let S ∈ Rn×s be the λ-ridge leverage score sampling
matrix. Then the Nyström approximation Ẽ := ES(S⊤ES)†S⊤E satisfies E ⪯ Ẽ ⪯ E + λI with
probability at least 1− δ.

Quantum Primitives. In this paper, we primarily leverage two quantum algorithmic primitives. The
first is an efficient quantum sampling oracle based on Grover search.

Lemma 2.5 (Claim 3 in Apers & De Wolf (2022)). Let n be a positive integer, and let {p1, . . . , pn} ⊆
[0, 1] be a list of probabilities. There exists a quantum algorithm, QSAMPLE(p), that generates a list

of indices where each i is sampled independently with probability pi, in time Õ
(√

n
∑n

i=1 pi

)
· T ,

where T denotes the time required to generate any individual pi.

The second primitive is a quantum procedure for approximating matrix-vector products using quantum
multivariate mean estimation.

Lemma 2.6 (Theorem 5.1 of Apers & Gribling (2023)). Let ϵ ∈ (0, 1), and let A ∈ Rn×d and
v ∈ Rn. Suppose we are given quantum query access to the rows of A and the entries of v. Then
there exists a quantum algorithm QMATVEC(A, v, ϵ) that outputs a vector µ̃ ∈ Rd such that, with
probability at least 1− 1/poly(n), ∥µ̃− A⊤v∥(A⊤A)−1 ≤ ϵ, using Õ

(
ϵ−1n0.5d0.5∥v∥∞

)
queries

to A and v.

3 TECHNICAL OVERVIEW

In this section, we provide an overview on the algorithmic techniques we utilize to approximate A,D
and V , in sublinear time.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 APPROXIMATE THE ATTENTION MATRIX VIA QUANTUM NYSTRÖM

To approximate the attention matrix A, we will make use of Nyström approximation (Williams &
Seeger, 2000). However, recall that A = exp(QK⊤); for Q ̸= K, the matrix itself is not even
symmetric. This poses significant challenges for obtaining a good approximation. On the other hand,
if we treat the queries and keys as the dataset, and form the exponential kernel matrix over them, then
the resulting matrix is indeed a kernel matrix.

Specifically, let the dataset X = {q1, . . . , qn, k1, . . . , kn}, and consider E ∈ R2n×2n where E =[
exp(QQ⊤) exp(QK⊤)
exp(KQ⊤) exp(KK⊤)

]
, then the attention matrix can be retrieved via PE

[
0n

1n

]
where P ∈

Rn×2n is the matrix consisting of the first n rows of the 2n × 2n identity matrix, which selects
the first n rows of E. Thus, once we obtain an approximation for E, we automatically obtain an
approximation for A.

It remains to compute a Nyström approximation of E, as at first glance it is not clear how to even
generate the ridge leverage score sampling matrix S in sublinear time. Musco & Musco (2017)
shows that on a classical computer, it is possible to compute a generalized ridge leverage score
sampling matrix using Õ(nsλ) evaluations of the kernel function and an additional Õ(ns2λ) time, via
a recursive sampling scheme:

• Uniformly sample half of the data points, then recursively compute the weighted sampling matrix
S̃n×s for the subset;

• Compute the generalized ridge leverage score, defined as τ̃λi := b⊤i (B
⊤S̃S̃⊤B + λI)†bi, and set

pi = min{1, τ̃λi · log(sλ/δ)};
• Output S as the weighted sampling matrix according to pi.

The key ingredients in their algorithm are (1) the generalized ridge leverage score can be computed
via kernel function evaluations instead of computing the factorization (see Definition A.4), and (2)
sampling according to generalized ridge leverage score only increases the sample size by a constant
factor, hence it does not affect the asymptotic runtime of the algorithm (see Lemma A.3).

For the simpler setting of leverage score sampling, Apers & Gribling (2023) shows that this recursive
framework can benefit from quantum speedup, especially the Grover search sampler of Lemma 2.5,
by noting that when sampling according to the leverage score, it is not necessary to compute or
approximate all the scores; rather, it is enough to implement an oracle that can supply any approximate
leverage score when needed.

For our application, however, this oracle is much more difficult to implement, as in the setting
of Apers & Gribling (2023), one could directly query the row of B, which is not the case for the
kernel setting. Nevertheless, we show how to implement such an oracle for generalized ridge leverage
scores of kernels. The algorithm is detailed in Algorithm 1. Throughout this section, we let s denote
the final sample size of the Nyström approximation.

The main idea is to utilize the identity τ̃λi = 1
λ (E − ES(S⊤ES + λI)−1S⊤E)i,i, where Ei,i

involves a single kernel evaluation K(xi, xi), and S⊤ES requires only O(s2) kernel evaluations.
Finally, the term (ES(S⊤ES + λI)†S⊤E)i,i can be computed by evaluating the kernel between
xi and the sampled points in S, weighted appropriately, which requires O(s) kernel evaluations.
This shows that we can implement the oracle by precomputing (S⊤ES + λI)† in O(s2) · TK + sω

time, where TK denotes the time for kernel evaluation and ω ≈ 2.37 is the matrix multiplication
exponent (Duan et al., 2023; Williams et al., 2024; Alman et al., 2025). Each oracle query can
then be answered in O(s) · TK + s2 time. By Lemma 2.5, the quantum sampler requires only
Õ(n0.5s0.5) oracle calls, so the overall runtime is Õ(n0.5s1.5 · (TK + s) + sω). In our setting, the
kernel function K(xi, xj) = exp(⟨xi, xj⟩) can be computed in O(d) time, which gives a runtime of
Õ(n0.5s1.5(d+ s) + sω), sublinear in n.

It remains to analyze the approximation guarantee. Sampling according to generalized ridge leverage
scores ensures that E ⪯ Ẽ ⪯ E + λI , but this does not immediately imply a bound on the

approximation error for exp(QK⊤). To address this, let E =

[
B A
A⊤ C

]
and Ẽ =

[
B̃ Ã

Ã⊤ C̃

]
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Quantum Nyström approximation via recursive generalized ridge leverage score sam-
pling.

1: procedure QNYSTRÖMKERNEL({x1, . . . , xn} ∈ (Rd)n,K : Rd × Rd → Rm, δ ∈ (0, 1), λ ∈
(0,∞)) ▷ δ is the failure probability, λ is the ridge leverage score parameter.

2: s← O(sλ log(sλ/δ))
3: T ← O(log(n/s))
4: Let S0 ⊂1/2 S1 ⊂1/2 · · · ⊂1/2 ST = [n] ▷ We use A ⊂1/2 B to denote A is a uniform

subset of half of the indices of B
5: M0 ← {K(xi, xj)}(i,j)∈S0×S0

▷ |S0| = s

6: Let D0 ∈ Rn×|S0| be the sampling matrix of S0

7: for t = 1 to T do
8: M̂ ← (Mt−1 + λIs)

−1

9: ▷ Let D⊤
t−1Ki := {Dt−1(j) · K(xi, xj)}j∈Dt−1

∈ Rs for i ∈ St where Dt−1(j) is the
weight corresponding to xj specified by Dt−1

10: Implement oracle for qi ← 5
λ · (K(xi, xi)− (D⊤

t−1Ki)
⊤M̂D⊤

t−1Ki) for i ∈ St

11: ▷ pi = min{1, 16qi log(2s/δ)}
12: D̃t ← QSAMPLE(p) ▷ D̃t ∈ R|St|×s

13: Dt ← DSt
· D̃t ▷ Dt ∈ Rn×s

14: Mt ← {Dt(i)Dt(j) · K(xi, xj)}(i,j)∈Dt×Dt
▷ Mt ∈ Rs×s

15: end for
16: return DT

17: end procedure

Standard spectral approximation theory guarantees that B ⪯ B̃ ⪯ B + λI and C ⪯ C̃ ⪯ C +

λI . By considering all vectors of the form
[
x
x

]
, one can show that a similar bound holds for the

symmetrization of exp(QK⊤): A+A⊤ ⪯ Ã+ Ã⊤ ⪯ A+A⊤ + 2λI . While this does not directly
bound Ã in terms of A, it is consistent with our approximation framework, which preserves only the
symmetric part of A. Hence, our guarantee holds for the symmetrized attention matrix. It is also
worth noting that Algorithm 1 merely computes the weighted sampling matrix S, which can be stored
compactly by recording the sampled indices and corresponding weights, but does not explicitly form
the Nyström approximation Ẽ = ES(S⊤ES)†S⊤E. While (S⊤ES)† can be computed and stored
in O(s2d+ sω) time, forming Ẽ would take Ω(ns) time, which is prohibitive due to output size. In
what follows, we show that this restricted representation of S is nonetheless sufficient to approximate
D, V , and Att(Q,K, V).

We now compare our Nyström approximation scheme to a related method known as Nyström-
former (Xiong et al., 2021), which also integrates Nyström into the attention mechanism. Specifically,

they consider the attention matrix A and partition it as A =

[
X1 X2

X3 X4

]
, aiming to approximate X4

using the other three blocks. Given Nyström landmark points Q′ and K ′ sampled from Q and K, they
set X1 = exp(Q′K ′⊤), X2 = exp(QK ′⊤), and X3 = exp(Q′K⊤). Since the number of landmarks
is small, these blocks are all low-dimensional. Xiong et al. (2021) proves that X4 can be efficiently
approximated using X1, X2, and X3 in O(nmd) time, where m is the number of landmarks. While
Nyströmformer performs well in practice, it guarantees convergence to the true attention matrix only
when all rows of Q and K are included as landmarks. In contrast, our Nyström scheme operates on
the exponential kernel matrix formed from Q and K, and achieves spectral approximation guarantees
as long as the sample size is sufficiently large without needing to include all data points.

3.2 APPROXIMATE THE NORMALIZATION FACTOR VIA QUANTUM MEAN ESTIMATION

Recall that D = diag(A1n), and each normalization factor only requires computing a⊤i 1n, where ai
is the i-th row of A. If we have access to Ẽ, then the i-th normalization factor could be estimated

as Ẽ⊤
i,∗

[
0n

1n

]
. However, as discussed earlier, we cannot explicitly form Ẽ due to its size. To resolve

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

this, we define U := ES(S⊤ES)†/2 ∈ R2n×s. By the definition of the Nyström approximation,
we have Ẽ = UU⊤. Given any vector v ∈ R2n, if we can compute or approximate U⊤v, then
the normalization factor for the i-th row can be estimated as u⊤

i (U
⊤v), where ui ∈ Rs is the i-th

row of U . Fortunately, we can implement row queries to U . We first precompute (S⊤ES)†/2 in
O(s2d + sω) time, then each row ui of U is computed via kernel evaluations between xi and the
points in S, followed by matrix-vector multiplication with (S⊤ES)†/2. This takes O(s2 + sd) time.

It remains to approximate U⊤v, which we cast as a multivariate mean estimation problem. Define
the random variable X = 2nviU∗,i, where i ∈ [2n] is selected uniformly at random. It is easy
to verify that E[X] = U⊤v, and the variance is bounded. Therefore, one can apply the quantum
multivariate mean estimation procedure of Cornelissen et al. (2022) to approximate U⊤v. To further
reduce variance, Apers & Gribling (2023) proposes approximating the matrix-vector product in the
(U⊤U)−1-energy norm. Following this idea, we apply Lemma 2.6 to output a vector µ̃ ∈ Rs such
that ∥µ̃−U⊤v∥(U⊤U)−1 ≤ ϵ, using Õ(ϵ−1n0.5s0.5∥v∥∞) row queries to U and v. In our application,
we always have ∥v∥∞ = 1, and as noted above, each row query to U takes O(s2 + sd) time. We
present the full algorithm below in Algorithm 2.

Algorithm 2 Algorithm for estimating normalization factor.

1: data structure QROWNORM
2: begin members
3: s ∈ N
4: S ∈ (R2)s

5: N ∈ Rs×s

6: µ̃ ∈ Rs

7: end members
8:
9: procedure PREPROCESS(Q ∈ Rn×d,K ∈ Rn×d, λ ∈ (0,∞), ϵ ∈ (0, 1))

10: s← O(sλ log(sλn))
11: S ← QNYSTRÖMKERNEL(Q ∪K, (xi, xj) 7→ exp(⟨xi, xj⟩), 1/ poly(n), λ) ▷

Algorithm 1, S is a list of sampled indices and weights
12: N ← (S⊤ES)†/2

13: Implement row oracle uj as follows:
14: ũj(k) ← Sk · exp(⟨xj , xk⟩),∀k ∈ S ▷ ũj ∈ Rs

15: uj ← Nũj ▷ S stores pairs of indices and weights, Sk is the weight corresponding to
index k, uj ∈ Rs

16: Implement entry oracle for a vector v ∈ R2n, where vj = 0 for j ∈ [n] and vj = 1 for
j ∈ {n+ 1, . . . , 2n} ▷ v = [0n;1n]

⊤

17: µ̃← QMATVEC(U, v, ϵ) ▷ µ̃ ∈ Rs, Lemma 2.6
18: end procedure
19:
20: procedure QUERY(i ∈ [n])
21: bi ← ⟨ui, µ̃⟩ ▷ ui is computed via row oracle
22: return bi
23: end procedure
24: end data structure

For the approximation guarantee, we prove that for any vector x ∈ Rs, if we have ∥x∥(U⊤U)−1 ≤ ϵ,
then ∥x∥U⊤U ≤ ϵ · ∥U⊤U∥. This is particularly useful for us, as we can set x = U⊤v − µ̃, in which
case ∥x∥U⊤U =

√
x⊤U⊤Ux = ∥UU⊤v − Uµ̃∥2, and the upper bound becomes ϵ · ∥U⊤U∥ =

ϵ · ∥Ẽ∥ ≤ ϵ · (λ+ ∥E∥). On the other hand, we can upper bound ∥(Ẽ − E)v∥∞ using the matrix
infinity norm, defined as ∥Ẽ − E∥∞ = maxi∈[2n] ∥Ẽi,∗ − Ei,∗∥1. A simple argument shows that
∥Ẽ − E∥∞ ≤

√
n · ∥Ẽ − E∥ ≤ λ

√
n. A triangle inequality then yields the final approximation

guarantee. If we define D̃ := diag(Ã1n), the above analysis provides a bound on ∥D−D̃∥. However,
in forming the attention module, it is more desirable to control ∥D̃−1∥. To achieve this, we prove a
perturbation bound on matrix inversion that relates ∥D̃−1∥ to ∥D−1∥.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.3 APPROXIMATE THE VALUE MATRIX VIA LEVERAGE SCORE SAMPLING

In preceding discussions, we have shown how to construct the sampling matrix for Nyström ap-
proximation and how to compute the normalization factor for any row i ∈ [n]. It remains to
approximate V in sublinear time. Prior classical algorithms, such as Zandieh et al. (2023), propose
using importance sampling based on the joint row norm of V and D−1A. Specifically, the sampling
probability for the i-th row is set as pi ≥ 1/4 · (∥e⊤i D−1A∥22 + γ · ∥vi∥22)/(∥D−1A∥2F + γ · ∥V ∥2F),
where γ = ∥D−1A∥2/∥V ∥2. This method achieves a final sample size that is nearly linear in
d+ srank(D−1A), where srank(D−1A) = ∥D−1A∥2F /∥D−1A∥2 is the stable rank of the softmax
matrix. While this approach is conceptually simple and easy to implement, it requires estimating
the Frobenius norms of both V and D−1A to constant-factor accuracy. This is straightforward if
we are allowed to read all entries of V , but becomes particularly challenging in sublinear time. Our
solution is to instead use leverage score sampling on the matrix V , which can be implemented in
sublinear time Apers & Gribling (2023). Unlike the joint sampling distribution of Zandieh et al.
(2023), which yields a spectral norm approximate matrix multiplication guarantee of the form
∥D−1ASS⊤V ∥ ≤ ϵ · ∥D−1A∥ ·∥V ∥, leverage score sampling has two key limitations: (1) it requires
that V have orthonormal columns (Clarkson & Woodruff, 2017), and (2) it provides approximate
matrix multiplication guarantees in Frobenius norm, i.e., ∥D−1ASS⊤V ∥F ≤ ϵ · ∥D−1A∥F · ∥V ∥F .

To address the first limitation, we introduce a new parameter called the row distortion of V , defined
as α := d/∥V ∥2F ·maxi∈[n] ∥vi∥22/τi. Intuitively, α measures the mismatch between the row density
and row importance. Specifically, the ratio ∥vi∥22/∥V ∥2F quantifies how much row vi contributes in
ℓ22 norm, while τi/d measures how linearly independent vi is compared to other rows via τi.

Our main result is that by sampling Õ(ϵ−2α) rows of V according to its leverage score distribution,
we obtain an approximate matrix multiplication guarantee in Frobenius norm. Note that α = 1 if V
has orthonormal columns, which recovers the result of Clarkson & Woodruff (2017). This sampling
procedure can be implemented in Õ(ϵ−1n0.5α0.5d) time by making row queries to V .

3.4 MAIN RESULT

Now that we have described how to approximate each of the matrices D, A, and V , we are in a
position to state our main result. We provide an overview of our algorithm below in Algorithm 3.
Theorem 3.1 (Informal version of Theorem D.2). Let Q,K, V ∈ Rn×d be the query, key and
value matrices, let ϵ, λ > 0. Let E ∈ R2n×2n be the exponential kernel matrix on the dataset
Q ∪K and sλ be the statistical dimension of E (Definition 2.2) and α be the row distortion of V
(Definition C.2). Assume that ∥D−1∥ < 1

ϵ∥E∥+λ
√
n

and let β = 1
1−(ϵ∥E∥+λ

√
n)∥D−1∥ . There exists a

quantum data structure that preprocesses Q,K, V through only row queries to these matrices and
maintains matrices D̃, Ã, Ṽ implicitly such that, with probability at least 1− 1/ poly(n),

∥D̃−1(Ã+ Ã⊤)/2 · Ṽ −D−1(A+A⊤)/2 · V ∥F
≤ ϵ · (β · ∥D−1∥) · (∥(A+A⊤)/2)∥F + λ

√
n) · ∥V ∥F .

Moreover, the data structure has the specification

• It preprocesses Q,K, V in Õ(ϵ−1n0.5(s2.5λ + s1.5λ d+ α0.5d)) time;

• For any i ∈ [n], it returns a vector r̃i = e⊤i D̃
−1ÃṼ in Õ(s2λ + sλd) time.

We pause to make some remarks on Theorem 3.1. The preprocessing time scales as n0.5, achieving
a quadratic speedup over any classical algorithm. Several parameters merit further discussion, in
particular the statistical dimension sλ and the approximation factor for ∥D−1∥, denoted by β. We
summarize their relationships as functions of λ in Table 1. The row distortion factor α also affects
the runtime, and the algorithm remains sublinear in n only when α = o(n). As previously illustrated,
we have α = 1 when V has orthonormal columns. If all rows of V are identical, then τi = d/n and
∥vi∥22/∥V ∥2F = 1/n for all i ∈ [n], leading again to α = 1. The distortion factor becomes large only
when there exists a row with small leverage score but disproportionately large row norm compared to
others. For most practical datasets, one can expect α = O(1).
We also highlight the slightly unusual approximation guarantee: instead of bounding ∥D̃−1ÃṼ −
Att(Q,K, V)∥F , we must consider a symmetrization of Ã. Unfortunately, this is unavoidable given

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 3 Quantum data structure for attention row query.

1: data structure QATTENTION ▷ Theorem 3.1
2: begin members
3: sE , sV ∈ N
4: Ṽ ∈ RsV ×d

5: Ñ ∈ RsE×sV

6: L̃ ∈ RsE×d

7: QROWNORM QRN ▷ Algorithm 2
8: end members
9:

10: procedure PREPROCESS(Q ∈ Rn×d,K ∈ Rn×d, V ∈ Rn×d, λ > 0, ϵ > 0, α ≥ 1)
11: sλ ← sλ(E)

12: sV ← Õ(ϵ−2α), sE ← Õ(sλ)
13: QRN.PREPROCESS(Q,K, λ, ϵ) ▷ Algorithm 2
14: SV ← QLEVERAGESCORE(V, sV) ▷ SV ∈ Rn×sV , Lemma A.5
15: Ṽ ← S⊤

V V ▷ Ṽ ∈ RsV ×d

16: SE ← QNYSTRÖMKERNEL(Q ∪K, (xi, xj) 7→ exp(⟨xi, xj⟩), 1/ poly(n), λ)
17: ▷ Let x1, . . . , x2n denote the dataset Q ∪K

18: M̃ ← {SE(i)SE(j) · exp(⟨xi, xj⟩)}(i,j)∈SE×SE
▷ M̃ ∈ RsE×sE

19: R̃← {SE(i)SV (j) · exp(⟨xi, xj⟩)}(i,j)∈SE×SV
▷ R̃ ∈ RsE×sV , R̃ = S⊤

EES̃V

20: Ñ ← M̃†R̃ ▷ Ñ ∈ RsE×sV

21: L̃← Ñ Ṽ ▷ L̃ ∈ RsE×d

22: end procedure
23:
24: procedure QUERY(i ∈ [n])
25: bi ← QRN.QUERY(i) ▷ Algorithm 2
26: ui ← {SE(j) · exp(⟨xi, xj⟩}j∈SE

▷ ui ∈ RsE

27: return L̃⊤ui/bi
28: end procedure
29: end data structure

λ sλ
1

ϵ∥E∥+λ
√
n

β

↑ ↓ ↓ ↑
↓ ↑ ↑ ↓

Table 1: Parameters sλ, 1
ϵ∥E∥+λ

√
n

, and β as functions of λ.

that our approximation of A is obtained via Nyström approximation on the exponential kernel matrix
over the rows of Q and K. While this approach yields direct bounds on approximating exp(QQ⊤)
and exp(KK⊤), it only provides guarantees on A+A⊤. To obtain a bound without symmetrization,
one would need an alternative method that does not rely on the kernel matrix E.

4 RELATED WORK

Transformers and Attention Mechanism. Transformers (Vaswani et al., 2017) have been the driving
force behind large language models (Devlin et al., 2019; Brown et al., 2020; Touvron et al., 2023;
Bubeck et al., 2023; Team et al., 2023; Liu et al., 2024a). They are sequence-to-sequence generative
models, where the sequence length is typically denoted by n. The key architectural component that
distinguishes transformers from earlier models is the attention mechanism, which computes a softmax
over the pairwise interactions of query-key vectors. However, computing the full softmax distribution
requires Ω(n2) time, due to the size of the attention matrix. This quadratic dependency renders
transformers inefficient for long sequences, motivating a rich body of work aimed at approximating
attention in subquadratic time. These approaches can be broadly categorized into three main classes:
(1) Pattern-based sparse attention: only a subset of attention matrix entries are computed, with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the subset determined by predefined patterns, such as sliding windows or graph-based sparsity
structures (Daras et al., 2020; Kitaev et al., 2020; Roy et al., 2021; Sun et al., 2022; Child et al., 2019;
Beltagy et al., 2020; Ainslie et al., 2020; Zaheer et al., 2020). (2) Kernel-based linear attention:
these methods attempt to linearize the kernel by exploiting the identity K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩
for a feature map ϕ : Rd → Rm. When the kernel is exponential, exact computation requires
m =∞, so many heuristic approximations for ϕ have been proposed (Katharopoulos et al., 2020;
Choromanski et al., 2021; Wang et al., 2020; Peng et al., 2021) with m = O(d). (3) Data structure-
based attention: these works design specialized data structures for approximating various components
of attention. Examples include estimating the normalization factor via kernel density estimation
(KDE) (Zandieh et al., 2023), using hashing to identify large entries (Han et al., 2024), applying
polynomial approximation methods under bounded input conditions (Alman & Song, 2023), and
other algorithmic innovations (Kacham et al., 2024; Zandieh et al., 2024; van den Brand et al., 2024;
Song et al., 2024; Kannan et al., 2025; Chu et al., 2024; Chen et al., 2025b; Indyk et al., 2025). Our
work falls into the third category, as we design quantum data structures to approximate each of the
matrices involved in the attention computation.

Quantum Machine Learning. Given a machine learning problem, can we solve it faster on a
quantum computer? The paradigm of using quantum mechanics to accelerate machine learning
algorithms has sparked significant interest, leading to a wide array of results across diverse problem
domains, including clustering (Kerenidis et al., 2019; Xue et al., 2023), classification (Li et al., 2019),
regression (Chen & de Wolf, 2023), training neural networks (Chakrabarti et al., 2019; Kerenidis
et al., 2020), convex optimization (Chakrabarti et al., 2020; van Apeldoorn et al., 2020a; Li & Zhang,
2022; Sidford & Zhang, 2023; Zhang et al., 2024b; Wang et al., 2024), mathematical program-
ming (Brandão et al., 2019; van Apeldoorn et al., 2020b; van Apeldoorn & Gilyén, 2019; Kerenidis
& Prakash, 2020; Kerenidis et al., 2021; van Apeldoorn et al., 2021; Apers & Gribling, 2023), graph
sparsification (Apers & De Wolf, 2022), and recommender systems (Kerenidis & Prakash, 2017).
Among the key quantum techniques, Grover search (Grover, 1996) plays a foundational role. It
provides a quadratic speedup for database search problems: given a function f : [n]→ {0, 1}, the
goal is to list up to m indices i such that f(i) = 1. The Grover search algorithm requires oracle
access to f and can produce these m indices using only O(

√
mn) queries, in contrast to the O(n)

queries required classically. Several variants of Grover search have been developed to suit different
computational settings. In this paper, we use the probabilistic version: given a list of n probabilities
p1, . . . , pn ∈ [0, 1], Grover search can be used to sample a list of indices where each i is selected
independently with probability pi. By the standard analysis of Grover search, this sampling requires
Õ(
√
nP) queries to the probability values pi where P =

∑n
i=1 pi. Before our work, Gao et al. (2023)

also applied Grover search to accelerate attention computation. However, their method requires a
structural assumption: for each query qi ∈ Rd, the associated set Si = {j ∈ [n] : ⟨qi, kj⟩ ≥ τ} must
have cardinality at most k. Under this assumption, their algorithm runs in time Õ(n1.5k0.5d+ nkd).
Notably, if k = n, then their algorithm offers no speedup over the exact computation.

5 CONCLUSION

We consider the problem of approximating the attention module in the row query model, where the
goal is to return individual rows of the approximate attention matrix. We design a quantum data
structure that preprocesses Q, K, and V in Õ(ϵ−1n0.5 poly(sλ, d, α)) time, and answers any row
query in Õ(s2λ + sλd) time. To the best of our knowledge, this is the first quantum algorithm to
achieve sublinear dependence on n even in the row query model.

Our work also has several limitations, which raise interesting open questions. First, the error guarantee
we obtain is in Frobenius norm rather than spectral norm. While Frobenius norm bounds the sum of
the squared ℓ2 errors across all rows, the spectral norm provides a worst-case guarantee that each
row is well approximated. Therefore, it would be desirable to strengthen the result to achieve a
spectral norm guarantee. Second, our current guarantee is expressed in terms of the symmetrization
of the attention matrix. While somewhat unnatural, this is a consequence of approximating the
attention matrix through the Nyström method applied to the exponential kernel matrix over the
combined dataset Q ∪K, where the attention matrix appears as the off-diagonal block. A natural
open problem is whether one can obtain approximation guarantees for the attention matrix directly
without symmetrization, while still benefiting from quantum speedup in the construction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work is a theoretical quantum framework to approximate the attention module in sublinear time.
We don’t foresee any potential ethics concerns.

REPRODUCIBILITY STATEMENT

We include all the proofs in the appendix. For proofs of the exponential kernel, see Section A,
for proofs of estimating the normalization factor, see Section B. For proofs of the leverage score
approximate matrix multiplication, see Section C. The final conclusion is proved in Section D.

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J. Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. In Proceedings of the 7th Conference on Machine Learning and Systems
(MLSys), 2024.

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip Pham,
Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. ETC: Encoding long and structured
inputs in transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 268–284. Association for Computational Linguistics, 2020.

Ahmed El Alaoui and Michael W. Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. In Advances in Neural Information Processing Systems 28 (NeurIPS 2015), pp.
775–783, 2015.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36:63117–63135, 2023.

Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou.
More asymmetry yields faster matrix multiplication. In Proceedings of the 2025 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2005–2039, 2025.

Simon Apers and Ronald De Wolf. Quantum speedup for graph sparsification, cut approximation,
and laplacian solving. SIAM Journal on Computing, 51(6):1703–1742, 2022.

Simon Apers and Sander Gribling. Quantum speedups for linear programming via interior point
methods. arXiv preprint arXiv:2311.03215, 2023.

Payman Behnam, Yaosheng Fu, Ritchie Zhao, Po-An Tsai, Zhiding Yu, and Alexey Tumanov.
Rocketkv: Accelerating long-context llm inference via two-stage kv cache compression. arXiv
preprint arXiv:2502.14051, 2025.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020.

Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M. Svore, and
Xiaodi Wu. Quantum sdp solvers: Large speed-ups, optimality, and applications to quantum
learning. In 46th International Colloquium on Automata, Languages, and Programming (ICALP
2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 27:1–27:14.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelley. Reducing transformer key-value cache size with cross-layer attention. In Advances in
Neural Information Processing Systems (NeurIPS), 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4,
2023. URL https://arxiv.org/abs/2303.12712.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 213–229. Springer, 2020.

Shouvanik Chakrabarti, Yiming Huang, Tongyang Li, Soheil Feizi, and Xiaodi Wu. Quantum
wasserstein generative adversarial networks. In Advances in Neural Information Processing
Systems 32 (NeurIPS 2019), pp. 6768–6779, 2019.

Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, and Xiaodi Wu. Quantum algorithms and
lower bounds for convex optimization. Quantum, 4:221, 2020.

Bo Chen, Xiaoyu Li, Yekun Ke, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the limits of
kv cache compression in visual autoregressive transformers. arXiv preprint arXiv:2503.14881,
2025a.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. HSR-enhanced sparse attention
acceleration. In The Second Conference on Parsimony and Learning (Proceedings Track), 2025b.
URL https://openreview.net/forum?id=wso1gABiPZ.

Yanlin Chen and Ronald de Wolf. Quantum algorithms and lower bounds for linear regression with
norm constraints. In 50th International Colloquium on Automata, Languages, and Programming
(ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pp.
38:1–38:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yu Tian. Time and
memory trade-off of kv-cache compression in tensor transformer decoding. arXiv preprint
arXiv:2503.11108, 2025c.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
Colwell, and Adrian Weller. Rethinking attention with performers. In International Conference on
Learning Representations, 2021.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
Attention-based models for speech recognition. Advances in neural information processing
systems, 28, 2015.

Timothy Chu, Josh Alman, Gary L Miller, Shyam Narayanan, Mark Sellke, and Zhao Song. Met-
ric transforms and low rank representations of kernels for fast attention. Advances in Neural
Information Processing Systems, 37:47014–47068, 2024.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input sparsity
time. Journal of the ACM (JACM), 63(6):1–45, 2017.

Arjan Cornelissen, Yassine Hamoudi, and Sofiene Jerbi. Near-optimal quantum algorithms for
multivariate mean estimation. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2022, pp. 33–43, New York, NY, USA, 2022. Association for
Computing Machinery.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G. Dimakis. Smyrf: Efficient
attention using asymmetric clustering. In Advances in Neural Information Processing Systems,
volume 33, pp. 6470–6481, 2020.

11

https://arxiv.org/abs/2303.12712
https://openreview.net/forum?id=wso1gABiPZ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pp. 4171–4186. Association for Computational Linguistics, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing. In
FOCS, 2023.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Identify critical kv cache in llm
inference from an output perturbation perspective. arXiv preprint arXiv:2502.03805, 2025.

Yeqi Gao, Zhao Song, Xin Yang, and Ruizhe Zhang. Fast quantum algorithm for attention computa-
tion, 2023.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219,
New York, NY, USA, 1996. Association for Computing Machinery. ISBN 0897917855. doi:
10.1145/237814.237866. URL https://doi.org/10.1145/237814.237866.

Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu,
Song-Hai Zhang, Ralph R Martin, Ming-Ming Cheng, and Shi-Min Hu. Attention mechanisms in
computer vision: A survey. Computational Visual Media, 8(3):331–368, 2022.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P. Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In International Conference on
Learning Representations (ICLR), 2024.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, New York, 2nd edition, 2009.

Piotr Indyk, Michael Kapralov, Kshiteej Sheth, and Tal Wagner. Improved algorithms for kernel
matrix-vector multiplication under sparsity assumptions. In Proceedings of the International
Conference on Learning Representations (ICLR), May 2025.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
TinyBERT: Distilling BERT for natural language understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pp. 4163–4174. Association for Computational
Linguistics, 2020.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketching polynomial kernels. In Proceedings of the 41st International Conference on Machine
Learning, 2024.

Ravindran Kannan, Chiranjib Bhattacharyya, Praneeth Kacham, and David P. Woodruff. Levatten-
tion: Time, space, and streaming efficient algorithm for heavy attentions. In Proceedings of the
International Conference on Learning Representations (ICLR), 2025.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In Proceedings of the 37th International
Conference on Machine Learning, pp. 5156–5165. PMLR, 2020.

Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In 8th Innovations
in Theoretical Computer Science Conference (ITCS 2017), volume 67 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 49:1–49:21. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2017.

Iordanis Kerenidis and Anupam Prakash. A quantum interior point method for lps and sdps. ACM
Transactions on Quantum Computing, 1(1):1–32, 2020.

12

https://doi.org/10.1145/237814.237866

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. q-means: A quantum
algorithm for unsupervised machine learning. In Advances in Neural Information Processing
Systems, volume 32, pp. 4134–4144, 2019.

Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algorithms for deep con-
volutional neural networks. In Proceedings of the 8th International Conference on Learning
Representations (ICLR), 2020.

Iordanis Kerenidis, Anupam Prakash, and Dániel Szilágyi. Quantum algorithms for Second-Order
Cone Programming and Support Vector Machines. Quantum, 5:427, 2021.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020.

Lilly Kumari, Shengjie Wang, Tianyi Zhou, Nikhil Sarda, Anthony Rowe, and Jeff Bilmes. Bumble-
bee: Dynamic kv-cache streaming submodular summarization for infinite-context transformers. In
Proceedings of the Conference on Learning for Molecules (COLM), 2024.

Tongyang Li and Ruizhe Zhang. Quantum speedups of optimizing approximately convex functions
with applications to logarithmic regret stochastic convex bandits. In Advances in Neural Information
Processing Systems, volume 35, pp. 19565–19577, 2022.

Tongyang Li, Shouvanik Chakrabarti, and Xiaodi Wu. Sublinear quantum algorithms for training
linear and kernel-based classifiers. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 3815–3824. PMLR, June 2019.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Minghui Liu, Tahseen Rabbani, Tony O’Halloran, Ananth Sankaralingam, Mary-Anne Hartley, Brian
Gravelle, Furong Huang, Cornelia Fermüller, and Yiannis Aloimonos. Hashevict: A pre-attention
kv cache eviction strategy using locality-sensitive hashing. arXiv preprint arXiv:2412.16187,
2024b.

Xiaoyun Liu, Daniel Esser, Brandon Wagstaff, Anna Zavodni, Naomi Matsuura, Jonathan Kelly, and
Eric Diller. Capsule robot pose and mechanism state detection in ultrasound using attention-based
hierarchical deep learning. Scientific Reports, 12(1):21130, 2022.

Cameron Musco and Christopher Musco. Recursive sampling for the nyström method. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp.
3836–3848, Red Hook, NY, USA, 2017. Curran Associates Inc.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong.
Random feature attention. In Proceedings of the 9th International Conference on Learning
Representations (ICLR), 2021.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference. In Proceedings of the 6th Conference on Machine Learning and Systems
(MLSys), 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:1–67, 2020.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53–68, 2021.

Aaron Sidford and Chenyi Zhang. Quantum speedups for stochastic optimization. In Advances in
Neural Information Processing Systems 36 (NeurIPS 2023), pp. 1–12, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhao Song, Junze Yin, and Lichen Zhang. Solving attention kernel regression problem via pre-
conditioner. In International Conference on Artificial Intelligence and Statistics, pp. 208–216.
PMLR, 2024.

Zhiqing Sun, Yiming Yang, and Shinjae Yoo. Sparse attention with learning to hash. In International
Conference on Learning Representations, 2022.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Joran van Apeldoorn and András Gilyén. Improvements in quantum sdp-solving with applications.
In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019),
volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 99:1–99:15. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2019.

Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Convex optimization
using quantum oracles. Quantum, 4:220, 2020a.

Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Quantum sdp-solvers:
Better upper and lower bounds. Quantum, 4:230, 2020b.

Joran van Apeldoorn, Sander Gribling, Yinan Li, Harold Nieuwboer, Michael Walter, and Ronald
de Wolf. Quantum algorithms for matrix scaling and matrix balancing. In 48th International
Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz
International Proceedings in Informatics (LIPIcs), pp. 110:1–110:17. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. In International Conference on Machine Learning, pp.
49008–49028. PMLR, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Hao Wang, Chenyi Zhang, and Tongyang Li. Near-optimal quantum algorithm for minimizing the
maximal loss. In Proceedings of the 12th International Conference on Learning Representations
(ICLR), 2024.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020.

Yuanchao Wang, Wenji Du, Chenghao Cai, and Yanyan Xu. Explaining the attention mechanism of
end-to-end speech recognition using decision trees. arXiv preprint arXiv:2110.03879, 2021.

Christopher K. I. Williams and Matthias Seeger. Using the nyström method to speed up kernel
machines. In Proceedings of the 14th International Conference on Neural Information Processing
Systems, NIPS’00, pp. 661–667, Cambridge, MA, USA, 2000. MIT Press.

Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix
multiplication: from alpha to omega. In Proceedings of the 2024 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 3792–3835. SIAM, 2024.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
AAAI, pp. 14138–14148. AAAI Press, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yecheng Xue, Xiaoyu Chen, Tongyang Li, and Shaofeng H.-C. Jiang. Near-optimal quantum coreset
construction algorithms for clustering. In Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 38881–38912.
PMLR, 2023.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in Neural
Information Processing Systems, volume 32, pp. 5754–5764. Curran Associates, Inc., 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird:
Transformers for longer sequences. In Advances in Neural Information Processing Systems,
volume 33, pp. 17283–17297, 2020.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 40605–40623. PMLR,
2023.

Amir Zandieh, Insu Han, Vahab Mirrokni, and Amin Karbasi. Subgen: Token generation in sublinear
time and memory. arXiv preprint arXiv:2402.06082, 2024.

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang, Hao Cheng, Chao Zhang, and Yelong
Shen. Lorc: Low-rank compression for llms kv cache with a progressive compression strategy. In
NeurIPS 2024 Workshop on Model Compression, 2024a.

Tong Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural
Computation, 17(9):2077–2098, 2005.

Yexin Zhang, Chenyi Zhang, Cong Fang, Liwei Wang, and Tongyang Li. Quantum algorithms and
lower bounds for finite-sum optimization. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 12345–12356.
PMLR, 2024b.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 11106–11115. AAAI Press,
2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we describe the quantum algorithm for exponential kernels. In Section B,
we discuss how to estimate the normalization factor. In Section C, we show the details on approx-
imating matrix multiplication via leverage scores. In Section D, we combine things together and
obtain the main result.

A QUANTUM ALGORITHM FOR EXPONENTIAL KERNEL

In this section, we give a generic reduction from attention matrix to a kernel matrix. Given queries and
keys Q = {q1, . . . , qn},K = {k1, . . . , kn}, recall that we are interested in the matrix exp(QK⊤)
where the (i, j)-th entry is exp(q⊤i kj), and this matrix is not a PSD kernel matrix. We show a
reduction that first computes the exponential kernel K(x, y) = exp(⟨x, y⟩) over the dataset Q ∪K,
then we can effectively extract certain blocks of the kernel matrix E that approximates exp(QK⊤)
well. We start with a lemma on block approximation.

Lemma A.1. Let E ∈ R2n×2n be a PSD matrix and E =

[
B A
A⊤ C

]
where each block is of size

n × n. Suppose there exists a matrix Ẽ ∈ R2n×2n such that E ⪯ Ẽ ⪯ E + λI for λ > 0 and let

Ẽ =

[
B̃ Ã

Ã⊤ C̃

]
, then we have

A+A⊤ − 2λI ⪯ Ã+ Ã⊤ ⪯ A+A⊤.

Proof. We first note that since Ẽ spectrally approximates E, so do B̃ approximate B and C̃ approxi-

mate C. Let x ∈ Rn and consider x1 =

[
x
0n

]
and x2 =

[
0n

x

]
, then

x⊤
1 Ex1 = x⊤Bx,

x⊤
2 Ex2 = x⊤Cx,

therefore we have

B ⪯ B̃ ⪯ B + λI,

C ⪯ C̃ ⪯ C + λI.

Now, set x3 = x1 + x2, and we compute the quadratic form:

x⊤
3 Ex3 = (x1 + x2)

⊤E(x1 + x2)

= x⊤
1 Ex1 + x⊤

2 Ex2 + x⊤
1 Ex2 + x⊤

2 Kx1

= x⊤Bx+ x⊤Cx+ x⊤(A+A⊤)x,

by the spectral approximation guarantee, we have

B + C + (A+A⊤) ⪯ B̃ + C̃ + (Ã+ Ã⊤) ⪯ B + C + (A+A⊤) + λI, (1)

finally use the guarantees on B̃, C̃ yields,

−λI ⪯ B − B̃ ⪯ 0,

−λI ⪯ C − C̃ ⪯ 0,

incorporate these bounds into Eq. (1), we conclude

A+A⊤ − 2λI ⪯ Ã+ Ã⊤ ⪯ A+A⊤,

as desired. This completes the proof.

Our plan is to form the kernel matrix over the dataset Q ∪K implicitly via Nyström approximation,
then extract corresponding blocks to approximate exp(QK⊤).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Corollary A.2. Let Q,K ∈ Rn×d and let E ∈ R2n×2n be the exponential kernel matrix over the
dataset Q ∪K, suppose there exists an Ẽ ∈ R2n×2n such that E ⪯ Ẽ ⪯ E + λI for some λ > 0,
then there exists B̃ ∈ Rn×n such that

exp(QK⊤) + exp(KQ⊤)− 2λI ⪯ Ã+ Ã⊤ ⪯ exp(QK⊤) + exp(KQ⊤)

Proof. The result is a consequence of Lemma A.1 by identifying that

E =

[
exp(QQ⊤) exp(QK⊤)
exp(KQ⊤) exp(KK⊤)

]
,

and Ẽ contains proper approximations for the desired blocks.

It remains to give an efficient algorithm to approximate the exponential kernel matrix E. A popular
scheme is via Nyström approximation (Williams & Seeger, 2000): the algorithm selects a subset of
“landmark” points, and constructs Ẽ through these landmarks. Musco & Musco (2017) uses recursive
ridge leverage score sampling to generate such an approximation efficiently. Musco & Musco (2017)
presents an algorithm that uses Õ(nsλ log(1/δ)) kernel function evaluations and Õ(ns2λ log(1/δ))

additional runtime to compute an approximation K̃ satisfying K ⪯ K̃ ⪯ K + λI with probability at
least 1− δ. We restate their main result here for the sake of completeness.
Lemma A.3 (Theorem 7 of Musco & Musco (2017)). Let s = O(sλ log(sλ/δ)), there ex-
ists a weighted sampling matrix S ∈ Rn×s, such that the Nyström approximation of E, Ẽ =
ES(S⊤ES)†S⊤E satisfies

E ⪯ Ẽ ⪯ E + λI,

holds with probability at least 1− δ. Moreover, S can be computed using O(ns) kernel evaluations
and O(ns2) additional time.

Our main contribution is a quantum algorithm that generates the approximation in sublinear time.
Before introducing the algorithm, we recall several key concepts.

Lemma A.3 relies on approximating the ridge leverage score on a sample, which can be captured by
the notion of generalized ridge leverage score.
Definition A.4 (Generalized ridge leverage score, Musco & Musco (2017)). Let E ∈ Rn×n be a
kernel matrix, let λ > 0, and let S ∈ Rn×s be any weighted sampling matrix, the λ-generalized ridge
leverage score with respect to S, is defined for any i ∈ [n],

τ̃λi :=
1

λ
(E − ES(S⊤ES + λI)−1S⊤E)i,i,

let B ∈ Rn×n be any factorization of E = BB⊤, it can be equivalently defined as

τ̃λi = b⊤i (B
⊤S⊤SB + λI)−1bi,

where bi is the i-th row of B.

We also need a procedure introduced in Apers & Gribling (2023) that generates a spectral approxima-
tion of an n× d matrix, given only queries to its rows, using quantum leverage score sampling. We
record it here.
Lemma A.5 (Theorem 3.1 of Apers & Gribling (2023)). Let U ∈ Rn×d, ϵ, δ ∈ (0, 1). There exists a
quantum algorithm that computes a weighted sampling matrix S ∈ Rn×s with s = O(ϵ−2d log(d/δ))
such that with probability at least 1− δ,

(1− ϵ)U⊤U ⪯ U⊤SS⊤U ⪯ (1 + ϵ)U⊤U.

The quantum algorithm uses Õ(ϵ−1n0.5d0.5) row queries to U , and it takes time Õ(ϵ−1n0.5d1.5+dω).
Moreover, if the leverage score sampling matrix contains s ≤ d rows, then the algorithm uses
Õ(n0.5s0.5) row queries to U and it takes time Õ(n0.5s0.5d+dω). We use QLEVERAGESCORE(U, s)
to denote this procedure that produces a leverage score sampling matrix S ∈ Rn×s.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We prove the key algorithmic result of this section.
Theorem A.6. Let {x1, . . . , xn} ⊆ Rd be a dataset, K : Rd×Rd → Rm be a kernel function, λ > 0
and δ ∈ (0, 1). Let E be the kernel matrix where Ei,j = K(xi, xj). Suppose s = O(sλ log(sλ/δ)),
then Algorithm 1 computes a weighted sampling matrix S ∈ Rn×s such that with probability at least
1− δ,

E ⪯ Ẽ ⪯ E + λI,

where Ẽ = ES(S⊤ES)†S⊤E. Moreover, S can be computed in time Õ(n0.5s1.5 · (TK + s) + sω),
where TK is the time to evaluate the kernel function.

Proof. We note that the major differences between Algorithm 1 and the algorithm in Musco & Musco
(2017) are

• Musco & Musco (2017) algorithm is recursive, our algorithm unrolls the recursion and
iteratively constructs the weighted sampling matrix;

• Musco & Musco (2017) computes all pi’s classically, while we use QSAMPLE to generate
samples.

Hence, the correctness is automatically satisfied. It remains to give a bound on the running time.

• Computing M0: M0 ∈ Rs×s contains the values of kernel functions over s2 pairs, forming
it takes O(s2) · TK time;

• Computing M̂ : we maintain the invariant that Mt ∈ Rs×s for all t ∈ [T], therefore
computing M̂ is inverting an s× s matrix, which takes O(sω) time;

• Computing D⊤
t−1Ki: this operation involves computing s weighted kernel function evalua-

tions, given Dt−1 stores a list of s indices together with weights, it can be done in O(s) · TK
time;

• Oracle for qi: for any fixed i, note that we need to form D⊤
t−1Ki using O(s) · TK time, and

computing the quadratic form takes O(s2) time. Thus each oracle call takes O(s)·TK+O(s2)
time;

• Computing D̃t: this step requires to compute at most n probabilities, and each probability
can be computed via an oracle call in O(s) · TK +O(s2) time, so it remains to give a bound
on the sum of probabilities. By the definition of pi,

n∑
i=1

pi ≤ 16 log(2s/δ)

n∑
i=1

qi,

and the sum of qi’s is
n∑

i=1

qi =
5

λ
· (K(xi, xi)− (D⊤

t−1Ki)
⊤M̂(D⊤

t−1Ki))

=
5

λ
· (E − EDt−1(D

⊤
t−1EDt−1 + λI)−1D⊤

t−1E)i,i

= 5 ·
n∑

i=1

τ̃λi ,

by Theorem 8 of Musco & Musco (2017), the sum of λ-generalized ridge leverage score
with sampling matrix Dt−1 is at most O(sλ log(sλ/δ)) = s, thus the runtime is Õ(n0.5s1.5 ·
(TK + s)).

Finally, note that the loop is dominated by the last iteration, and at each iteration, the number of
points to consider is divided by half, we conclude the overall runtime of Algorithm 1 is

Õ(n0.5s1.5 · (TK + s) + sω),

as desired.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We can then apply Theorem A.6 to exponential kernel function and the dataset Q ∪K to compute a
Nyström sampling matrix S.

Corollary A.7. Let Q,K ∈ Rn×d, λ > 0 and δ ∈ (0, 1). Define the dataset X =
{x1, x2, . . . , x2n} ⊆ Rd where for i ∈ [n], xi = qi and for i ∈ {n + 1, . . . , 2n}, xi = ki.
Let E be the kernel matrix where Ei,j = exp(⟨xi, xj⟩). Suppose s = O(sλ log(sλ/δ)), then
there exists an algorithm that computes a weighted sampling matrix S ∈ R2n×s such that, let
Ẽ = ES(S⊤ES)†S⊤E, then with probability at least 1− δ, E ⪯ Ẽ ⪯ E + λI . Moreover, S can
be computed in Õ(n0.5s1.5 · (d+ s) + sω) time.

Proof. Apply Theorem A.6 to the kernel function K(xi, xj) = exp(⟨xi, xj⟩) and note that the kernel
function can be computed in O(d) time.

B ESTIMATING THE NORMALIZATION FACTOR

Given a sublinear quantum algorithm to approximate the matrix exp(QK⊤), our next step is to
estimate the normalization factor exp(QK⊤)1n to compute the softmax matrix. We first show that
given a Nyström approximation to the 2n× 2n kernel matrix E, how to compute the normalization
factor and the approximate guarantees.

Lemma B.1. Let M ∈ Rn×n be a symmetric matrix, then we have

∥M∥∞ ≤
√
n · ∥M∥.

Proof. Fix any i ∈ [n], we examine the row Mi,∗, set the test vector x to be xj ={
+1, if Mi,j ≥ 0,

−1, otherwise.
, then

∥Mi,∗∥1 =M⊤
i,∗x

= ⟨Mei, x⟩
≤ ∥Mei∥2 · ∥x∥2
≤ ∥M∥ · ∥x∥2
=
√
n · ∥M∥.

The conclusion can be achieved by noting that this bound works for any row i.

There are two major issues for estimating the normalization factor:

• Corollary A.7 only allows us to compute the sampling matrix in sublinear time, explicitly
forming the Nyström approximation Ẽ however, would require Ω(n) time since the matrix
is of size n× n;

• Even though we are given the explicit factorization Ẽ = UU⊤ where U ∈ R2n×s, we
would have to compute n normalization factors, which would require Ω(n) time.

In other words, because the output has size Ω(n), one cannot expect any quantum algorithm that runs
in o(n) time. Instead, we design a quantum data structure with preprocessing time o(n) time, and
can support query to compute the normalization factor to any row efficiently.

In particular, we are interested in the following algorithmic task: given query access to the rows of a
matrix U ∈ Rn×s and a vector v ∈ Rn, output a vector µ̃ ∈ Rs such that ∥µ̃− U⊤v∥(U⊤U)−1 ≤ ϵ,
which can be solved via Lemma 2.6. For our application, ∥v∥∞ = 1. However, we are interested in
the quantity UU⊤v so we need to measure the error ∥U(µ̃− U⊤v)∥2. How would a bound on the
∥ · ∥(U⊤U)−1 be useful? We prove a structural lemma below.

Lemma B.2. Let M ∈ Rs×s be a PD matrix and x ∈ Rs satisfy ∥x∥M−1 ≤ ϵ for some ϵ ∈ (0, 1).
Then, we have

∥x∥M ≤ ϵ · ∥M∥.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof. Let M = UΛU⊤ be its eigendecomposition, we consider the squared norm of x:

∥x∥2M−1 = x⊤M−1x

= x⊤UΛ−1 U⊤x︸︷︷︸
y

= y⊤Λ−1y

=

s∑
i=1

1

λi
y2i ,

meanwhile, by the same token of argument, we have

∥x∥2M = y⊤Λy

=

s∑
i=1

λiy
2
i

=
s∑

i=1

λ2
i ·

1

λi
y2i

≤ λ2
max

s∑
i=1

1

λi
y2i

= ∥M∥2 · ∥x∥2M−1

≤ ϵ2 · ∥M∥2,

this concludes the proof.

Corollary B.3. Let δ ∈ (0, 1), U ∈ Rn×s and v ∈ Rn, suppose there exists a vector µ̃ ∈ Rs with
∥µ̃− U⊤v∥(U⊤U)−1 ≤ ϵ, then we have

∥UU⊤v − Uµ̃∥2 ≤ ϵ · ∥U⊤U∥.

Proof. Let M = U⊤U and x = µ̃− U⊤v, then note that

∥U(U⊤v − µ̃)∥22 = ∥Ux∥22
= x⊤U⊤Ux

= x⊤Mx

= ∥x∥2M
≤ ϵ2 · ∥M∥2,

where the last step is by Lemma B.2.

We are now in the position to state our formal theorem, which provides an end-to-end guarantee on
estimating the normalization factor. For simplicity, we will prove the statement with high probability
guarantee, i.e., the success probability is 1− 1/ poly(n).

Theorem B.4. Let Q,K ∈ Rn×d, λ > 0 and ϵ ∈ (0, 1). Let s = Õ(sλ) where sλ is the statistical
dimension of the exponential kernel on Q ∪K. There exists a data structure (Algorithm 2) with the
following specification:

• Preprocessing in time Õ(n0.5s1.5(s+ d)/ϵ+ sω);

• For any i ∈ [n], it outputs an approximate normalization factor for row i in time O(s(s+d)).

Moreover, with probability at least 1− 1/ poly(n), it holds that for any i ∈ [n], the output bi satisfies

|bi − (exp(qiK
⊤)1n| ≤ O(ϵ∥E∥+ λ

√
n),

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

if λ
√
n

∥E∥ ≤ 1, then the bound can be further simplified to

|bi − exp(qiK
⊤)1n| ≤ O(λ

√
n),

and the preprocessing time simplifies to

Õ(s1.5(s+ d)∥E∥/λ+ sω).

Proof. Given Q,K, let E ∈ R2n×2n be the associated exponential kernel matrix. We will first
invoke Corollary A.7 to compute a sampling matrix S ∈ R2n×s where s = Õ(sλ) such that
Ẽ = ES(S⊤ES)†S⊤E approximates E, in time Õ(n0.5s1.5(s+d)+sω). Set U = ES(S⊤ES)†/2,
we have that Ẽ = UU⊤. Note that forming U explicitly would take Ω(n) time, so we instead
implement a row oracle for U . Since U ∈ Rn×s, we only need to compute s entries for each row,
and let N = (S⊤ES)†/2, we see that uj = N(ES)j,∗ and (ES)j,∗ contains values in the form of
Sk ·exp(⟨xj , xk⟩) for k ∈ S. N can be computed in O(s2d+sω) time, and row oracle for any j ∈ [n]

can be implemented in O(sd+ s2) time. By Lemma 2.6, µ̃ can be computed in Õ(n0.5s1.5(s+ d)/ϵ)
time. To query the normalization factor for row i, note that it can be computed via (Uµ̃)i = ⟨ui, µ̃⟩,
which can be computed using row oracle, in O(s(s + d)) time. Thus, the overall runtime of our
procedure can be summarized as

• Preprocessing time Õ(n0.5s1.5(s+ d)/ϵ+ sω);

• Query time O(s(s+ d)).

It remains to give an approximation guarantee. With probability at least 1 − 1/ poly(n), we have
E ⪯ Ẽ ⪯ E + λI , and observe that

|ã⊤i 1n − exp(qiK
⊤)1n| ≤ ∥(Ẽ − E)v∥∞

≤ ∥Ẽ − E∥∞ · ∥v∥∞
≤ λ
√
n,

where the second step is by the matrix infinity norm is the induced norm of vector ℓ∞ norm, and the
last step is by Lemma B.1. On the other hand, our final output bi is an approximation to ã⊤i 1n. Let
ỹ := Uµ̃, by Corollary B.3, we have

∥Ẽv − ỹ∥2 ≤ ϵ · ∥U⊤U∥,

this holds with probability at least 1−δ, conditioning on this event, and note that Ẽ = UU⊤, therefore
∥U⊤U∥ = ∥Ẽ∥ because UU⊤ and U⊤U have the same spectrum. Since E ⪯ Ẽ ⪯ E + λI , we
could bound the spectral norm of Ẽ as ∥Ẽ∥ ≤ ∥E∥ + λ simply by triangle inequality. Thus, we
conclude our final result by

|bi − exp(qiK
⊤)1n| ≤ |bi − ãi1n|+ |ã⊤i 1n − exp(qiK

⊤)1n|
≤ ∥Ẽv − ỹ∥2 + λ

√
n

≤ ϵ · (λ+ ∥E∥) + λ
√
n.

Now, suppose λ
√
n ≤ ∥E∥, then we could set ϵ = λ

√
n

∥E∥ , the error bound simplifies to O(λ
√
n).

C APPROXIMATE MATRIX MULTIPLICATION VIA LEVERAGE SCORE

It remains to handle the value matrix, and we will do so via a machinery called approximate matrix
multiplication.
Definition C.1 (Approximate matrix multiplication, Clarkson & Woodruff (2017)). Let A ∈
Rn×d, B ∈ Rn×m and let C = A⊤B ∈ Rd×m. The approximate matrix multiplication prob-
lem asks to design a random matrix S ∈ Rn×s, such that

Pr[∥A⊤SS⊤B − C∥F ≤ ϵ∥A∥F ∥B∥F] ≥ 1− δ,

where ϵ, δ ∈ (0, 1). We call such S satisfying (ϵ, δ)-AMM.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

To generate the random matrix S, our strategy will be performing leverage score sampling over V .
However, standard proof (see, e.g., Clarkson & Woodruff (2017)) requires V to have orthonormal
columns. We provide a proof for the case where V does not have orthonormal columns (albeit it
requires extra factors in blowups). Before doing so, we define a parameter that quantifies this blowup
which we call row distortion.
Definition C.2 (Row distortion). Let A ∈ Rn×d for n ≥ d, we define the row distortion of A, denoted
by α(A), as

α(A) :=
d

∥A∥2F
·max
i∈[n]

∥ai∥22
τi

,

where ai is the i-th row of A and τi is the i-th leverage score of A (Definition 2.1). When A is clear
from context, we use α as an abbreviation.

We are now ready to prove a generalized approximate matrix multiplication based on leverage score
sampling, when the matrix does not have orthonormal columns.
Lemma C.3. Let A ∈ Rn×d, B ∈ Rn×m, let S ∈ Rn×s be the leverage score sampling matrix of A
with s = (ϵ−2α log(1/δ)) for ϵ, δ ∈ (0, 1) and α is the row distortion of A (Definition C.2). Then, S
is an (ϵ, δ)-AMM.

Proof. For the sampling matrix S, it is a scaled submatrix of the permutation matrix, where for any
m ∈ [s], Sm,zm = 1√

spm
where pm ≥ τm

d and zm = i with probability pi. Let ai, bj denote the i-th
and j-th row of A and B, respectively. We can write

A⊤SS⊤B −A⊤B =
1

s

∑
i∈[n],m∈[s]

aib
⊤
i

(
I[zm = i]

pi
− 1

)
,

taking expectation, we obtain

E[A⊤SS⊤B −A⊤B] =
1

s

n∑
i=1

aib
⊤
i

(
pi
pi
− 1

)
= 0,

to bound the second moment of ∥A⊤SS⊤B −A⊤B∥F , we first expand the definition of Frobenius
norm square:

E tr[(A⊤SS⊤B −A⊤B)(A⊤SS⊤B −A⊤B)]

= E
1

s2
tr

 ∑
i,j∈[n],m∈[s]

bja
⊤
j aib

⊤
i

(
I[zm = j]

pj
− 1

)(
I[zm = i]

pi
− 1

)
=

1

s2

s∑
m=1

tr[

n∑
i=1

1

pi
· bia⊤i aib⊤i −B⊤AA⊤B]

=
1

s
tr[

n∑
i=1

1

pi
· bia⊤i aib⊤i −B⊤AA⊤B]

≤ 1

s

(∑
i=1

1

pi
∥ai∥22∥bi∥22 − tr[B⊤AA⊤B]

)

≤ 1

s
(α∥A∥2F ∥B∥2F − ∥A⊤B∥2F)

≤ α

s
∥A∥2F ∥B∥2F ,

where the first step is by definition of S, the second step is by applying expectation and use
E[A⊤SS⊤B − A⊤B] = 0, the fourth step is by tr[bia

⊤
i aib

⊤
i] = ∥aib⊤i ∥2F ≤ ∥ai∥22∥bi∥22, the

fifth step is by pi ≥ τi
d , therefore

1

pi
≤ d

τi

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

=
∥A∥2F
∥ai∥22

· d

∥A∥2F
· ∥ai∥

2
2

τi

≤ α · ∥A∥
2
F

∥ai∥22
,

where the last step is by the definition of α. By Chebyshev’s inequality, we can choose s = O(α/ϵ2)
so that the approximate matrix multiplication holds with constant probability, and one could boost
the success probability to 1− δ by either taking log(1/δ) independent copies via a Chernoff bound,
or directly through Bernstein inequality.

We are ready to state our final result on approximating the value matrix V .

Theorem C.4. Let V ∈ Rn×d, ϵ ∈ (0, 1) and α be the row distortion of V . There exists a quantum
algorithm that computes a weighted sampling matrix S ∈ Rn×s with s = Õ(ϵ−2α) such that for
any fixed matrix B ∈ Rn×m, S is an (ϵ, 1/ poly(n))-AMM. Moreover, S can be computed using
Õ(ϵ−1n0.5α0.5) row queries to V and Õ(ϵ−1n0.5α0.5d+ dω) time.

Proof. The proof is by composing Lemma A.5 and Lemma C.3, and note that for Õ(ϵ−2α) rows, the
sum of leverage scores is at most Õ(ϵ−2α).

D PUT THINGS TOGETHER

We are now ready to state our final algorithm and its guarantee. Recall that, we define D =

exp(QK⊤)1n and D′ = exp(KQ⊤)1n. We use D̃, D̃′ to denote their approximations.

We prove a simple inequality that quantifies the perturbation on the inverse.

Lemma D.1. Let C,D ∈ Rn×n, if D is nonsingular and ∥C −D∥ ≤ ϵ, and ∥D−1∥ < 1/ϵ, then C

is also nonsingular and ∥C−1∥ ≤ ∥D−1∥
1−ϵ·∥D−1∥ .

Proof. We will make use of Neumann series, which states that for ∥A∥ < 1, (I −A)−1 admits the
expansion

(I −A)−1 =

∞∑
k=0

Ak,

this leads to a bound on the norm:

∥(I −A)−1∥ = ∥
∞∑
k=0

Ak∥

≤
∞∑
k=0

∥Ak∥

≤
∞∑
k=0

∥A∥k

=
1

1− ∥A∥
, (2)

now, to prove our desired bound, we write C = D + E where E is the perturbation, then C =
D + E = D(I +D−1E), and we will apply Eq. (2) to −D−1E:

∥D−1E∥ ≤ ∥D−1∥ · ∥E∥
= ∥D−1∥ · ∥C −D∥
< 1/ϵ · ϵ
= 1,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

therefore

∥C−1∥ = ∥(I +D−1E)−1D−1∥
≤ ∥D∥ · ∥(I −D−1E)−1∥

≤ ∥D−1∥
1− ∥D−1E∥

≤ ∥D−1∥
1− ∥E∥ · ∥D−1∥

≤ ∥D−1∥
1− ϵ · ∥D−1∥

,

this completes the proof.

Theorem D.2 (Formal version of Theorem 3.1). Let Q,K, V ∈ Rn×d be the query, key and value
matrices for attention, let ϵ, λ > 0. Let E ∈ R2n×2n be the exponential kernel matrix with the dataset
Q ∪K, and let sλ be the statistical dimension of E (Definition 2.2), α be the row distortion of V
(Definition C.2). There exists a quantum data structure (Algorithm 3) that preprocesses Q,K, V only
through row queries to these matrices and with probability at least 1− 1/ poly(n), for any i ∈ [n], it
outputs a vector r̃i ∈ Rd where

r̃i = e⊤i D̃
−1ÃṼ .

If in addition, we have ∥D−1∥ < 1
ϵ∥E∥+λ

√
n

, then the approximations D̃, Ã and Ṽ satisfy that

∥(D̃−1(Ã+ Ã⊤)/2 · Ṽ)−D−1(A+A⊤)/2 · V ∥F
≤ ϵ · (β · ∥D−1∥) · (∥(A+A⊤)/2∥F + λ

√
n) · ∥V ∥F ,

where β = 1
1−(ϵ∥E∥+λ

√
n)∥D−1∥ . Moreover, the algorithm has the following runtime specification:

• Preprocesses in Õ(ϵ−1n0.5(s2.5λ + s1.5λ d+ α0.5d) + dω + sωλ + ϵ−2sλαd) time;

• For any i ∈ [n], it outputs r̃i in Õ(s2λ + sλd) time.

Proof. By Theorem C.4, we know that with probability at least 1− 1/ poly(n), the following bound
holds:

∥D̃−1(Ã+ Ã⊤)/2 · SV S
⊤
V V ∥F ≤ ϵ · ∥D̃−1(Ã+ Ã⊤)/2∥F · ∥V ∥F

≤ ϵ · ∥D̃−1∥ · ∥(Ã+ Ã⊤)/2∥F · ∥V ∥F ,
where the second step is by ∥AB∥F ≤ ∥A∥ · ∥B∥F . By Theorem B.4, we know that

∥D̃ −D∥ ≤ ϵ∥E∥+ λ
√
n,

note that as long as the error satisfies that ∥D−1∥ < 1
ϵ∥E∥+λ

√
n

, then by Lemma D.1, we obtain a

bound on ∥D̃−1∥:

∥D̃−1∥ ≤ ∥D−1∥
1− (ϵ∥E∥+ λ

√
n)∥D−1∥

.

Finally, by Corollary A.2, we have∥∥∥∥∥ Ã+ Ã⊤

2

∥∥∥∥∥
F

≤
∥∥∥∥A+A⊤

2

∥∥∥∥
F

+ λ
√
n.

For the runtime, it suffices to combine Corollary A.7, Theorem B.4 and Theorem C.4, and the only
additional runtime term is the ϵ−2sλαd, which is the time to form matrix R̃ and L̃.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

24

	Introduction
	Preliminary
	Technical Overview
	Approximate the Attention Matrix via Quantum Nyström
	Approximate the Normalization Factor via Quantum Mean Estimation
	Approximate the Value Matrix via Leverage Score Sampling
	Main Result

	Related Work
	Conclusion
	Quantum Algorithm for Exponential Kernel
	Estimating the Normalization Factor
	Approximate Matrix Multiplication via Leverage Score
	Put Things Together

