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ABSTRACT

Given the query, key and value matrices @, K,V € R"*9, the attention module
is defined as Att(Q, K,V) = D~1AV where A = exp(QK " //d) with exp(-)
applied entrywise, D = diag(A1,). The attention module is the backbone of
modern transformers and large language models, but explicitly forming the softmax
matrix D=1 A incurs (n?), motivating numerous approximation schemes that

reduce runtime to O(nd) via sparsity or low-rank factorization.

We propose a quantum data structure that approximates any row of Att(Q, K, V)
using only row queries to @, K, V. Our algorithm preprocesses these matrices
in O (e*1n0'5 (S?\'S +s3°d + a0'5d)) time, where € is the target accuracy, s is
the A-statistical dimension of the exponential kernel defined by @ and K, and «
measures the row distortion of V. Each row query can be answered in 6(5§ + sad)
time.

To our knowledge, this is the first quantum data structure that approximates rows
of the attention matrix in sublinear time with respect to n. Our approach relies on a
quantum Nystrom approximation of the exponential kernel, quantum multivariate
mean estimation for computing D, and quantum leverage score sampling for the
multiplication with V.

1 INTRODUCTION

Transformers (Vaswani et al.|[2017)) have emerged as one of the most successful machine learning
architectures in recent years, revolutionizing fields such as natural language processing (Devlin
et al., 2019;|Yang et al.| 2019} |Raffel et al., 2020; Brown et al., 2020; Jiao et al.,|2020), computer
vision (Carion et al.,[2020; Dosovitskiy et al., 2021} /Guo et al., 2022)), speech recognition (Chorowski
et al.}2015; [Wang et al.| |2021]), robotics (Liu et al., |2022), and time series forecasting (Zhou et al.|
2021). These models typically operate on sequences of length n, autoregressively predicting the
next most likely token to produce an output of length n. In applications like large language models
(LLMs), it has been widely observed that increasing the sequence length n significantly enhances
generative performance. However, this benefit comes at a substantial computational cost: the core
attention module has a quadratic time complexity in n, which severely limits both training and
inference scalability.

Formally, let @, K,V € R™*? denote the query, key, and value embeddings. The attention module
is defined as Att(Q, K,V) = D' AV € R™*9, where A = exp(QK ' /v/d) € R"*" is computed
entrywise, and D = diag(Al,) € R™*™. The matrix A is referred to as the attention matrix,
and D! A as the softmax matrix. Due to the n X n size of A, much recent research has focused
on reducing the quadratic complexity by approximating attention through pattern-based sparse
attention (Daras et al., 2020; |Kitaev et al.| 2020; Roy et al., [2021} |Sun et al.| 2022; |Child et al.,[2019;
Beltagy et al.,|2020; |Ainslie et al.| 2020; Zaheer et al.,|2020), linearizing the kernel through feature
mapping (Katharopoulos et al., 2020; (Choromanski et al., 2021; |Wang et al.,2020; |Peng et al., 2021)),
or various algorithmic and data structure optimizations (Zandieh et al.||2023;/Alman & Song} 2023}
Han et al.| 2024} Kacham et al.,|2024; Zandieh et al., | 2024; ivan den Brand et al., 2024} Song et al.,
2024} Kannan et al., [2025} |Chu et al.| 2024; |Chen et al., 2025b; [Indyk et al., 2025).

The theoretical goal in these efforts is to achieve a runtime that scales nearly linearly with n, allowing
some approximation error. This is a natural target, since the input size to the attention module is n x d.
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On a classical computer, any algorithm that approximates attention in time 6(nd) is considered
optimal. But could this process be accelerated further using a quantum computer?

If our objective is to output the entire n x d matrix Att(Q, K, V'), then 2(nd) time is unavoidable
due to output size. However, in many transformer applications — particularly during inference (Pope
et al., |2023; |Brandon et al., 2024} |Adnan et al.| [2024; [Zhang et al., |2024a; |Feng et al., |2025; |[Liu
et al.,|2024b; |Kumari et al., 2024} [Behnam et al., 2025} |Chen et al., [2025ajc; |Indyk et al., 2025) —
only row queries are needed. In this setting, we aim to preprocess (), K, V into a data structure such
that, for any index ¢ € [n], the structure can return a vector 7; € R< that approximates the ¢-th row
of Att(Q, K, V). This model circumvents the Q2(nd) lower bound by focusing on partial output.
Nonetheless, since each row of Att(Q, K, V') is a convex combination of rows of V, achieving truly
sublinear time in n still appears classically intractable.

In this work, we answer this question affirmatively. Specifically, we construct a quantum data structure
that preprocesses Q, K, V using only row queries, and does so in timeﬂ O(e~n%5 . poly(d, sy, )),
where s, is the statistical dimension of the exponential kernel matrix associated with ) and K, and
o is a measure of the row distortion of V' (see Definition . Given any index ¢ € [n], the data

structure returns an approximation to the i-th row of Att(Q, K, V) in time O(s3 + sxd).

To our knowledge, this is the first quantum algorithm to implement the row query model in sublinear
time. Prior works either require superlinear preprocessing time or impose structural assumptions (Gao
et al] [2023)). Our approach avoids both: it makes no assumptions on @), K, V, making it broadly
applicable in practice. Moreover, our construction is conceptually simple — it combines quantum
techniques such as Grover search (Grover, [1996), Nystrom kernel approximation, and quantum
multivariate mean estimation (Cornelissen et al., 2022) to approximate each component of the
attention module: D, A, and V.

Quantum Computation Model. We follow the standard quantum computation framework as
in|Apers & De Wolf] (2022)); |Apers & Gribling|(2023). The model allows quantum subroutines using
O(logn) qubits, quantum queries to the input, and access to a quantum-read/classical-write RAM
(QRAM) of poly(n) bits. Each quantum read or classical write takes unit cost. We measure time
complexity by the number of QRAM operations, and query complexity by the number of queries to
the input. In our setting, we query rows of @, K, and V, each requiring O(d) time classically. For
simplicity, we assume @ and K have been scaled by 1/d"/4, which can also be done via row queries
in O(d) time.

2 PRELIMINARY

Notation. Given symmetric matrices A, B € R™*", we use A — B > 0 to denote A — B is a positive
semidefinite (PSD) matrix, i.e., for any x € R", a:T(A — B)x > 0. Given a matrix M € R"*" we
use exp(M) to denote the entrywise exponentiation operation. We use tr[M] to denote the trace of
M. For a real matrix A, we use AT to denote its Moore-Penrose pseudoinverse, and for a square,
nonsingular real matrix M, we use M —1 to denote its inverse. For two vectors z, y € R", we use
x "y or (x,y) to denote the inner product of = and y. We use 0,, and 1,, to denote all-0’s and all-1’s

vector. For a vector z € R™, we use ||z][2 = Vo T2 to denote its £ norm, ||2[|oc = max;e[n) |2 to

denote its £, norm. If M is a PSD matrix, then we use ||x||»s = V2T Mz to denote the M-energy
norm of z. For a matrix A, we use || A|| to denote its spectral norm and || A || to denote its max row
¢ norm, and || A|| r to denote its Frobenius norm. Throughout the paper, we will also exclusively
work with weighted sampling matrices, usually denoted by S € R™** for where s is the total number

of samples taken, let ¢(j) be the index of the i-th sample, then the i-th column of S is iej, where

VPj
p; is the probability of choosing the index j. We use E[X] to denote the expectation of a random

variable X. We use I[E] to denote the indicator of whether event E happens.

Numerical Linear Algebra. We rely on several primitives from numerical linear algebra for fast
approximations and provable guarantees.

'"We use O(-) to suppress polylogarithmic factors in n, d, sx, and 1/e.
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Definition 2.1 (Leverage score). Let A € R"*%. The i-th leverage score of A is defined as
Ti = a;r(ATA)_lai,
where a; is the i-th row of A.

We will also work exclusively with kernel matrices. Given a dataset X = {z1,...,z,} C R%, we
define the exponential kernel matrix £ € R"*" by E; ; = exp((x;, z;)). Although E is generally
full-rank, our algorithm depends only on a parameter called the A-statistical dimension of E, which
may be much smaller than n.

Definition 2.2 (Statistical dimension (Zhang, 2005; |Hastie et al.,[2009)). Let E € R™*™ be a PSD
matrix, and let X > 0. The \-statistical dimension of E is defined as s)(E) := tr[E(E + \I)™1].
When E is clear from context, we write s for simplicity.

Note that s) is a monotonically decreasing function of A, and is closely related to the notion of ridge
leverage scores.

Definition 2.3 (Ridge leverage score (Alaoui & Mahoney, [2015)). Let E € R™*™ be a kernel matrix
and let A > 0. The \-ridge leverage score of the data point x; is defined as

7'.)‘ = (E(E + )‘I>_1)i7i'

If E = BB for some B € R" ", then this can be equivalently written as
 =b (B"B+ \)"'b;,
where b; is the i-th row of B.

It is easy to see that Z;’:l TZ-’\ = s). Moreover, Musco & Musco| (2017)) shows that Nystrom
approximations (Williams & Seeger, [2000) based on ridge leverage score sampling yield accurate
spectral approximations to E.

Lemma 2.4 (Theorem 3 of Musco & Musco, (2017)). Let s = O(sylog(sx/0)), A > 0, and 6 €
(0,1). Let E € R™*™ be any kernel matrix. Let S € R™"*® be the \-ridge leverage score sampling

matrix. Then the Nystrom approximation E = ES(STES)'STE satisfies E < E < E + X\ with
probability at least 1 — 6.

Quantum Primitives. In this paper, we primarily leverage two quantum algorithmic primitives. The
first is an efficient quantum sampling oracle based on Grover search.

Lemma 2.5 (Claim 3 in|Apers & De Wolf](2022)). Let n be a positive integer, and let {p1, ..., pn} C
[0, 1] be a list of probabilities. There exists a quantum algorithm, QSAMPLE(p), that generates a list
of indices where each i is sampled independently with probability p;, in time 0] (\ /m 2?21 pi) T,
where T denotes the time required to generate any individual p;.

The second primitive is a quantum procedure for approximating matrix-vector products using quantum
multivariate mean estimation.

Lemma 2.6 (Theorem 5.1 of |/Apers & Gribling| (2023)). Let € € (0,1), and let A € R"*? and
v € R™. Suppose we are given quantum query access to the rows of A and the entries of v. Then
there exists a quantum algorithm QMATVEC(A, v, €) that outputs a vector i € R? such that, with
probability at least 1 — 1/poly(n),

i — AT vl a7 a)-1 < € using 9] (e7'n%2d*?||v|| o) queries
to A and v.

3 TECHNICAL OVERVIEW

In this section, we provide an overview on the algorithmic techniques we utilize to approximate A, D
and V/, in sublinear time.
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3.1 APPROXIMATE THE ATTENTION MATRIX VIA QUANTUM NYSTROM

To approximate the attention matrix A, we will make use of Nystrom approximation (Williams &
Seeger, 2000). However, recall that A = exp(QK T); for Q # K, the matrix itself is not even
symmetric. This poses significant challenges for obtaining a good approximation. On the other hand,
if we treat the queries and keys as the dataset, and form the exponential kernel matrix over them, then
the resulting matrix is indeed a kernel matrix.

Specifically, let the dataset X = {q1,-..,qn,k1,---,kn}, and consider E € R?"*?" where £ =
exp(QQT) exp(QK)
exp(KQ") exp(KK")

R™%27 g the matrix consisting of the first n rows of the 2n x 2n identity matrix, which selects

the first n rows of E. Thus, once we obtain an approximation for £, we automatically obtain an

approximation for A.

. . . . 0
, then the attention matrix can be retrieved via PE {1”] where P €
n

It remains to compute a Nystrom approximation of F, as at first glance it is not clear how to even
generate the ridge leverage score sampling matrix .S in sublinear time. |[Musco & Musco| (2017)
shows that on a classical computer, it is possible to compute a generalized ridge leverage score
sampling matrix using O(nsy ) evaluations of the kernel function and an additional O(ns3 ) time, via
a recursive sampling scheme:

+ Uniformly sample half of the data points, then recursively compute the weighted sampling matrix
S"*$ for the subset;

« Compute the generalized ridge leverage score, defined as 7> := b] (BT SST B + \I)Tb;, and set
p; = min{1, 7 - log(sx/0)};
o Output S as the weighted sampling matrix according to p;.

The key ingredients in their algorithm are (1) the generalized ridge leverage score can be computed
via kernel function evaluations instead of computing the factorization (see Definition , and (2)
sampling according to generalized ridge leverage score only increases the sample size by a constant
factor, hence it does not affect the asymptotic runtime of the algorithm (see Lemma[A.3).

For the simpler setting of leverage score sampling, |Apers & Gribling (2023)) shows that this recursive
framework can benefit from quantum speedup, especially the Grover search sampler of Lemma[2.5]
by noting that when sampling according to the leverage score, it is not necessary to compute or
approximate all the scores; rather, it is enough to implement an oracle that can supply any approximate
leverage score when needed.

For our application, however, this oracle is much more difficult to implement, as in the setting
of |Apers & Gribling| (2023)), one could directly query the row of B, which is not the case for the
kernel setting. Nevertheless, we show how to implement such an oracle for generalized ridge leverage
scores of kernels. The algorithm is detailed in Algorithm[I} Throughout this section, we let s denote
the final sample size of the Nystrom approximation.

The main idea is to utilize the identity 7 = +(E — ES(STES + A)"*STE);;, where E; ;
involves a single kernel evaluation K(z;,z;), and ST ES requires only O(s?) kernel evaluations.
Finally, the term (ES(STES + AI)'STE); ; can be computed by evaluating the kernel between
x; and the sampled points in S, weighted appropriately, which requires O(s? kernel evaluations.
This shows that we can implement the oracle by precomputing (ST ES + AI)T in O(s?) - Tx + s
time, where Tk denotes the time for kernel evaluation and w =~ 2.37 is the matrix multiplication
exponent (Duan et al., 2023 |Williams et al., [2024; |/Alman et al., [2025). Each oracle query can
then be answered in O(s) - Tx + s* time. By Lemma the quantum sampler requires only

O(n035%5) oracle calls, so the overall runtime is O(n%5s5 - (Tx + s) + s*). In our setting, the
kernel function K(z;, ;) = exp((«;, z;)) can be computed in O(d) time, which gives a runtime of

O(n°?s'5(d + s) + s*), sublinear in n.

It remains to analyze the approximation guarantee. Sampling according to generalized ridge leverage
scores ensures that £ < F =< FE + A, but this does not immediately imply a bound on the

approximation error for exp(QK ). To address this, let £ = [fr é] and E = { AI?T g} .

4
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Algorithm 1 Quantum Nystrom approximation via recursive generalized ridge leverage score sam-
pling.
1: procedure QNYSTROMKERNEL({z1,...,7,} € (RY)" K:R? x R4 - R™ § € (0,1),\ €
(0,00)) > ¢ is the failure probability, A is the ridge leverage score parameter.
2: s+ O(sylog(sr/9))

3: T < O(log(n/s))

4: Let So Cy/2 S1 Ciy2 --- C1y2 ST = [n] > We use A Cy/5 B to denote A is a uniform
subset of half of the indices of B

500 Mo+ {K(zi,7;5) }i,5)e 50 S0 > |Sol = s

6: Let Dy € R™*1%l be the sampling matrix of Sy

7 fort =1toT do

8: M <+ (My_1 + M)t

9: > Let D) K; := {Di—1(j) - K(xi,2;)}jep, , € R® fori € S; where Dy_1(j) is the
weight corresponding to x; specified by D;_

10: Implement oracle for g; < 2 - (K(z;,z;) — (D1 K;)"MD,_|K;) fori € S,

11: > p; = min{1, 16¢; log(2s/6)}

12: Dy <+ QSAMPLE(p) > D, € RIStIxs

13: Dt — DSt . Dt > Dt € R"xs

14: My {Dt(l)Dt(]) K(Iiaxj)}(i,j)EDtth > M, € R$*s

15: end for

16: return Dp

17: end procedure

Standard spectral approximation theory guarantees that B =< B=<B+AMandC =< C < C+

Al. By considering all vectors of the form B] , one can show that a similar bound holds for the

symmetrization of exp(QK T): A+ AT < A+ AT < A+ AT + 2)\I. While this does not directly
bound A in terms of A, it is consistent with our approximation framework, which preserves only the
symmetric part of A. Hence, our guarantee holds for the symmetrized attention matrix. It is also
worth noting that Algorithm[T]merely computes the weighted sampling matrix .S, which can be stored
compactly by recording the sampled indices and corresponding weights, but does not explicitly form
the Nystrém approximation £ = ES(STES)'STE. While (ST ES)' can be computed and stored

in O(s2d + s*) time, forming E would take €2(n.s) time, which is prohibitive due to output size. In
what follows, we show that this restricted representation of S is nonetheless sufficient to approximate
D,V,and Att(Q, K, V).

We now compare our Nystrom approximation scheme to a related method known as Nystrom-
former (Xiong et al., 2021}, which also integrates Nystrom into the attention mechanism. Specifically,
X1
X3
using the other three blocks. Given Nystrom landmark points )’ and K’ sampled from @ and K, they
set X1 = exp(Q'K'T), Xo = exp(QK'"), and X3 = exp(Q'K "). Since the number of landmarks
is small, these blocks are all low-dimensional. Xiong et al.| (2021) proves that X, can be efficiently
approximated using X1, X», and X3 in O(nmd) time, where m is the number of landmarks. While
Nystromformer performs well in practice, it guarantees convergence to the true attention matrix only
when all rows of () and K are included as landmarks. In contrast, our Nystrom scheme operates on
the exponential kernel matrix formed from ) and K, and achieves spectral approximation guarantees
as long as the sample size is sufficiently large without needing to include all data points.

they consider the attention matrix A and partition it as A = [ Xz} , aiming to approximate X4
4

3.2 APPROXIMATE THE NORMALIZATION FACTOR VIA QUANTUM MEAN ESTIMATION
Recall that D = diag(A1,,), and each normalization factor only requires computing a;" 1,,, where a;
is the ¢-th row of A. If we have access to E, then the ¢-th normalization factor could be estimated

~+ |0 . . - ~ o
as EZT " [1"} . However, as discussed earlier, we cannot explicitly form £ due to its size. To resolve
’ n
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this, we define U := ES(STES)/2 € R?"*5, By the definition of the Nystrém approximation,
we have E = UU . Given any vector v € R?", if we can compute or approximate U ' v, then
the normalization factor for the i-th row can be estimated as u, (U "v), where u; € R? is the i-th
row of U. Fortunately, we can implement row queries to U. We first precompute (STES)T/ 2in
O(s%d + s*) time, then each row u; of U is computed via kernel evaluations between z; and the
points in S, followed by matrix-vector multiplication with (ST ES)1/2. This takes O(s> + sd) time.

It remains to approximate U " v, which we cast as a multivariate mean estimation problem. Define
the random variable X = 2nv;U, ;, where i € [2n] is selected uniformly at random. It is easy
to verify that E[X] = U v, and the variance is bounded. Therefore, one can apply the quantum
multivariate mean estimation procedure of (Cornelissen et al.|(2022) to approximate U To. To further
reduce variance, |Apers & Gribling (2023) proposes approximating the matrix-vector product in the
(UTU)~!-energy norm. Following this idea, we apply Lemmato output a vector i € R such

that [|i — U o[ 1)1 < € using O(e'n55%3 ]| ) row queries to U and v. In our application,

we always have |[v]|o = 1, and as noted above, each row query to U takes O(s? + sd) time. We
present the full algorithm below in Algorithm 2}

Algorithm 2 Algorithm for estimating normalization factor.

data structure QROWNORM
begin members

seN

S € (R?)®

N 6 RSXS

e RS
end members

—

procedure PREPROCESS(Q € R™*4 K € R"*? X\ € (0,00), € € (0,1))

s+ O(sylog(san))

S < QNYSTROMKERNEL(Q U K, (2;, ;) + exp({(z;, z;)), 1/ poly(n), A) >
Algorithm[I] S is a list of sampled indices and weights
122 N« (STES)!/?

TeYReRIUNAELD

—_

13: Implement row oracle u; as follows:

14: ﬂj(k) +— Sk - exp((xj7xk>),Vk es > ﬂj € R

15: uj < Nu; > .S stores pairs of indices and weights, Sj, is the weight corresponding to
index k, u; € R®

16: Implement entry oracle for a vector v € R*", where v; = 0 for j € [n] and v; = 1 for
je{n+1,...,2n} bv=[0,;1,]"

17: i < QMATVEC(U, v, €) > e RS, Lemrna

18: end procedure

19:

20: procedure QUERY(: € [n])

21: b; < (u;, 1) > u; is computed via row oracle

22: return b;

23: end procedure
24: end data structure

For the approximation guarantee, we prove that for any vector x € R, if we have ||z|y)-1 <€,
then ||z||yTy < € ||[UTUJ|. This is particularly useful for us, as we can set x = U " v — [z, in which
case ||z||yTy = VaTUTUx = |[UUTv — Ufil|2, and the upper bound becomes ¢ - [|[UTU|| =
e-|E|| < e- (A + ||E]). On the other hand, we can upper bound ||(E — E)v||s using the matrix
infinity norm, defined as ||E — E||o = mMax;e|(2n] HEM — E; «||1. A simple argument shows that
|E — Elloo < vn-||E— E| < A\\/n. A triangle inequality then yields the final approximation
guarantee. If we define D := diag(A1,,), the above analysis provides a bound on || D — D||. However,
in forming the attention module, it is more desirable to control || D! ||. To achieve this, we prove a
perturbation bound on matrix inversion that relates | D~1| to || D~
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3.3 APPROXIMATE THE VALUE MATRIX VIA LEVERAGE SCORE SAMPLING

In preceding discussions, we have shown how to construct the sampling matrix for Nystrom ap-
proximation and how to compute the normalization factor for any row ¢ € [n]. It remains to
approximate V' in sublinear time. Prior classical algorithms, such asZandieh et al.|(2023)), propose
using importance sampling based on the joint row norm of V and D~! A. Specifically, the sampling
probability for the i-th row is set as p; > 1/4- (|le] D7 A3+~ ||vi]|2) /(I D7 A|I% +~ - |[V]%),
where v = ||[D=1A|?/||V|?. This method achieves a final sample size that is nearly linear in
d + srank(D ™1 A), where srank(D ™' A) = || D71 A||% /|| D~ A|? is the stable rank of the softmax
matrix. While this approach is conceptually simple and easy to implement, it requires estimating
the Frobenius norms of both V' and D~ A to constant-factor accuracy. This is straightforward if
we are allowed to read all entries of 1/, but becomes particularly challenging in sublinear time. Our
solution is to instead use leverage score sampling on the matrix V', which can be implemented in
sublinear time |Apers & Gribling| (2023). Unlike the joint sampling distribution of Zandieh et al.
(2023), which yields a spectral norm approximate matrix multiplication guarantee of the form
|D~TASSTV| <e-||[DLA|l-||V||, leverage score sampling has two key limitations: (1) it requires
that V' have orthonormal columns (Clarkson & Woodruff, 2017)), and (2) it provides approximate
matrix multiplication guarantees in Frobenius norm, i.e., [D"TASS V| r <€ |[D Y A|r - |V|F.

To address the first limitation, we introduce a new parameter called the row distortion of V', defined
as 1= d/||V|% - max;ep,) [|vi]|3/7;. Intuitively, o measures the mismatch between the row density
and row importance. Specifically, the ratio ||v;|3/||V||% quantifies how much row v; contributes in
¢3 norm, while 7; /d measures how linearly independent v; is compared to other rows via 7;.

Our main result is that by sampling 5(6_2a) rows of V" according to its leverage score distribution,
we obtain an approximate matrix multiplication guarantee in Frobenius norm. Note that « = 1 if V
has orthonormal columns, which recovers the result of (Clarkson & Woodruff| (2017)). This sampling

procedure can be implemented in O(e~1n%3a-5d) time by making row queries to V.

3.4 MAIN RESULT

Now that we have described how to approximate each of the matrices D, A, and V, we are in a
position to state our main result. We provide an overview of our algorithm below in Algorithm 3]

Theorem 3.1 (Informal version of Theorem [D.2). Let Q, K,V € R"*% be the query, key and
value matrices, let e,N > 0. Let E € R2"X27 he the exponential kernel matrix on the dataset
Q U K and sy be the statistical dimension of E (Definition[2.2)) and o be the row distortion of V

(Deﬁnition . Assume that ||[D71|| < m and let § = 1—(6HEH+>{\/E)HD*1H' There exists a

quantum data structure that preprocesses QQ, K,V through only row queries to these matrices and

maintains matrices D, A,V implicitly such that, with probability at least 1 — 1/ poly(n),
ID"YA+AT)/2.V-D YA+ AT)/2-V|r

<e-(B-ID7H) - (A +AT)/2)|p +AVnR) - [V p-
Moreover, the data structure has the specification

o It preprocesses Q, K,V in 5(6_1n0‘5(s§‘5 + s3°d + a®5d)) time;

« Foranyi € [n], it returns a vector 1; = e] D™YAV in O(s3 + s\d) time.

We pause to make some remarks on Theorem The preprocessing time scales as n°-3, achieving
a quadratic speedup over any classical algorithm. Several parameters merit further discussion, in
particular the statistical dimension s, and the approximation factor for ||[D~!||, denoted by 3. We
summarize their relationships as functions of A in Table|l} The row distortion factor « also affects
the runtime, and the algorithm remains sublinear in n only when v = o(n). As previously illustrated,
we have o = 1 when V' has orthonormal columns. If all rows of V' are identical, then 7; = d/n and
llvill3/[IV]|% = 1/n for all i € [n], leading again to o = 1. The distortion factor becomes large only
when there exists a row with small leverage score but disproportionately large row norm compared to
others. For most practical datasets, one can expect & = O(1).

We also highlight the slightly unusual approximation guarantee: instead of bounding ||l~)_1ﬁ1~/ —
Att(Q, K, V)|, we must consider a symmetrization of A. Unfortunately, this is unavoidable given
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Algorithm 3 Quantum data structure for attention row query.

1: data structure QATTENTION > Theorem 3.1]
2: begin members
3: Sg,sv € N

4 ‘,./:, e RSV xd

5: N € Reexsv

6: L € Rsexd

7 QROWNORM QRN > Algorithm 2]
8: end members

9:
10: procedure PREPROCESS(Q € R™*?¢ K € R™*4 V ¢ R"*4 X > 0,e > 0,a > 1)
11: sx + sa(E)

12: sy < O(e72a),sp + O(s)y)

13: QRN.PREPROCESS(Q, K, ), €) > Algorithm [2)
14: Sy < QLEVERAGESCORE(V, sy) > Sy € R"™5v LemmalA.5]
15 V< Spv >V e Rsvd
16: SE < QNYSTROMKERNEL(Q U K, (x;, z;) + exp({z;, x;)), 1/ poly(n), \)

17: > Let xq,..., T, denote the dataset ) U K
18: M « {Sg(i)Se(j) - exp((zi, ;) } i,j)esm x5p > M e R?#X5E
19: R {Su(i)Sy () - exp((@s2;)) Hig)ese xsy >R e R=* R = SLESy
200 N+« MR > N € RssXsv
21: L+ NV > L € Reexd
22: end procedure

23:

24: procedure QUERY (i € [n])

25: b; <+ QRN.QUERY(%) > Algorithm 2]
26: ui < {Sg(j) - exp((zi, z;) }es, >u; € R
27: return L "u; /b;

28: end procedure
29: end data structure

Moo | e | 8
17T R
T 17

Table 1: Parameters s), m, and 3 as functions of A.

that our approximation of A is obtained via Nystrom approximation on the exponential kernel matrix
over the rows of Q and K. While this approach yields direct bounds on approximating exp(QQ ")
and exp(K K ), it only provides guarantees on A + AT To obtain a bound without symmetrization,
one would need an alternative method that does not rely on the kernel matrix E.

4 RELATED WORK

Transformers and Attention Mechanism. Transformers (Vaswani et al.,2017) have been the driving
force behind large language models (Devlin et al., 2019; Brown et al., [2020; [Touvron et al., 2023},
Bubeck et al., 2023} Team et al., 2023} [Liu et al.,|2024a). They are sequence-to-sequence generative
models, where the sequence length is typically denoted by n. The key architectural component that
distinguishes transformers from earlier models is the attention mechanism, which computes a softmax
over the pairwise interactions of query-key vectors. However, computing the full softmax distribution
requires §2(n?) time, due to the size of the attention matrix. This quadratic dependency renders
transformers inefficient for long sequences, motivating a rich body of work aimed at approximating
attention in subquadratic time. These approaches can be broadly categorized into three main classes:
(1) Pattern-based sparse attention: only a subset of attention matrix entries are computed, with
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the subset determined by predefined patterns, such as sliding windows or graph-based sparsity
structures (Daras et al.| 2020} [Kitaev et al., 2020; Roy et al.,[2021; [Sun et al.| 2022} |Child et al.,|2019;
Beltagy et al., [2020; |Ainslie et al., 2020; Zaheer et al.| [2020). (2) Kernel-based linear attention:
these methods attempt to linearize the kernel by exploiting the identity K(x;, z;) = (¢(x;), ¢(x;))
for a feature map ¢ : R? — R™. When the kernel is exponential, exact computation requires
m = 00, s0 many heuristic approximations for ¢ have been proposed (Katharopoulos et al., [2020;
Choromanski et al.,[2021; Wang et al.,|2020; Peng et al.,[2021) with m = O(d). (3) Data structure-
based attention: these works design specialized data structures for approximating various components
of attention. Examples include estimating the normalization factor via kernel density estimation
(KDE) (Zandieh et al., 2023), using hashing to identify large entries (Han et al.| 2024), applying
polynomial approximation methods under bounded input conditions (Alman & Song} [2023)), and
other algorithmic innovations (Kacham et al.||2024; Zandieh et al., 2024} van den Brand et al.,|2024;
Song et al., [2024} [Kannan et al., 2025} |Chu et al., 2024; |Chen et al., 2025b} |Indyk et al., 2025). Our
work falls into the third category, as we design quantum data structures to approximate each of the
matrices involved in the attention computation.

Quantum Machine Learning. Given a machine learning problem, can we solve it faster on a
quantum computer? The paradigm of using quantum mechanics to accelerate machine learning
algorithms has sparked significant interest, leading to a wide array of results across diverse problem
domains, including clustering (Kerenidis et al., 2019; |Xue et al.| 2023), classification (Li et al.| 2019)),
regression (Chen & de Wolfl, [2023)), training neural networks (Chakrabarti et al.| 2019} Kerenidis
et al., 2020), convex optimization (Chakrabarti et al., [2020; ivan Apeldoorn et al., 2020a} [L1 & Zhang,
2022; Sidford & Zhang| 2023; [Zhang et al.| 2024b}; [Wang et al.| 2024), mathematical program-
ming (Brandao et al.| [2019; |van Apeldoorn et al.,[2020b; ivan Apeldoorn & Gilyén| [2019} |[Kerenidis
& Prakash, [2020; |[Kerenidis et al., 2021} van Apeldoorn et al., 2021} |Apers & Gribling,2023), graph
sparsification (Apers & De Wolf}, 2022), and recommender systems (Kerenidis & Prakash, [2017)).
Among the key quantum techniques, Grover search (Grover, |1996) plays a foundational role. It
provides a quadratic speedup for database search problems: given a function f : [n] — {0, 1}, the
goal is to list up to m indices ¢ such that f(i) = 1. The Grover search algorithm requires oracle
access to f and can produce these m indices using only O(y/mn) queries, in contrast to the O(n)
queries required classically. Several variants of Grover search have been developed to suit different
computational settings. In this paper, we use the probabilistic version: given a list of n probabilities
P1,-.-,Pn € [0,1], Grover search can be used to sample a list of indices where each ¢ is selected
independently with probability p,;. By the standard analysis of Grover search, this sampling requires
O(v/nP) queries to the probability values p; where P = >-i_, pi. Before our work,|Gao et al.| (2023)
also applied Grover search to accelerate attention computation. However, their method requires a
structural assumption: for each query ¢; € RY, the associated set S; = {j € [n] : (g;, k;) > 7} must

have cardinality at most k. Under this assumption, their algorithm runs in time O(n!-*k%->d + nkd).
Notably, if & = n, then their algorithm offers no speedup over the exact computation.

5 CONCLUSION

We consider the problem of approximating the attention module in the row query model, where the
goal is to return individual rows of the approximate attention matrix. We design a quantum data

structure that preprocesses @, K, and V in O(e'n®5 poly(sy, d, o)) time, and answers any row

query in 5(5%\ + sxd) time. To the best of our knowledge, this is the first quantum algorithm to
achieve sublinear dependence on n even in the row query model.

Our work also has several limitations, which raise interesting open questions. First, the error guarantee
we obtain is in Frobenius norm rather than spectral norm. While Frobenius norm bounds the sum of
the squared ¢, errors across all rows, the spectral norm provides a worst-case guarantee that each
row is well approximated. Therefore, it would be desirable to strengthen the result to achieve a
spectral norm guarantee. Second, our current guarantee is expressed in terms of the symmetrization
of the attention matrix. While somewhat unnatural, this is a consequence of approximating the
attention matrix through the Nystrom method applied to the exponential kernel matrix over the
combined dataset () U K, where the attention matrix appears as the off-diagonal block. A natural
open problem is whether one can obtain approximation guarantees for the attention matrix directly
without symmetrization, while still benefiting from quantum speedup in the construction.
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ETHICS STATEMENT

Our work is a theoretical quantum framework to approximate the attention module in sublinear time.
We don’t foresee any potential ethics concerns.

REPRODUCIBILITY STATEMENT

We include all the proofs in the appendix. For proofs of the exponential kernel, see Section [A]
for proofs of estimating the normalization factor, see Section B} For proofs of the leverage score
approximate matrix multiplication, see Section|[C| The final conclusion is proved in Section D]
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Appendix

Roadmap. In Section[A] we describe the quantum algorithm for exponential kernels. In Section
we discuss how to estimate the normalization factor. In Section|[C| we show the details on approx-
imating matrix multiplication via leverage scores. In Section D] we combine things together and
obtain the main result.

A QUANTUM ALGORITHM FOR EXPONENTIAL KERNEL

In this section, we give a generic reduction from attention matrix to a kernel matrix. Given queries and
keys Q = {q1,...,qn}, K = {k1,..., k,}, recall that we are interested in the matrix exp(QK ")
where the (4, j)-th entry is exp(g;' k;), and this matrix is not a PSD kernel matrix. We show a
reduction that first computes the exponential kernel K(x, y) = exp((z, y)) over the dataset Q U K,
then we can effectively extract certain blocks of the kernel matrix E that approximates exp(QK ")
well. We start with a lemma on block approximation.

Lemma A.l. Let E € R?"*2" pe a PSD matrix and E = {ABT é} where each block is of size

n X n. Suppose there exists a matrix E € R2"2" gych that E < E < E + M for A > 0 and let

E = Lgr g} then we have

A+ AT —AI <A+ AT <A+ A",

Proof. We first note that since E spectrally approximates F, so do B approximate B and C approxi-
mate C. Let x € R™ and consider 1 = [0:1: } and zo = [(L”] , then
n

x| Ex; = 2" Bz,
ty Bxy = Cr,

therefore we have

Now, set 3 = =1 + 2, and we compute the quadratic form:
x3 Brs = (v1 + x2) " E(x1 + x2)
=u| Bz + x) Exy + 2] Exy + 2] K2,
—g'Br+az'Co+ax' (A+ ATz,
by the spectral approximation guarantee, we have
B+C+(A+AT)<B+C+(A+A")<B+C+(A+AT)+ )\, (1)
finally use the guarantees on B , C yields,
M <B-B=0,
A= C-C =0,
incorporate these bounds into Eq. (I, we conclude
A+ AT —2X <A+ AT <A+ AT,

as desired. This completes the proof. O

Our plan is to form the kernel matrix over the dataset () U K implicitly via Nystrom approximation,
then extract corresponding blocks to approximate exp(QK ).
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Corollary A.2. Let Q, K € R"*? and let E € R27X27 be the exponential kernel matrix over the
dataset Q U K, suppose there exists an E € R2"*2" gych that E < E < E + A for some \ > 0,
then there exists B € R™*™ such that

exp(QK ") +exp(KQT) =2 < A+ AT < exp(QK ") + exp(KQ)

Proof. The result is a consequence of Lemma[A.T] by identifying that

exp(QQT)  exp(QKT)
exp(KQT) exp(KKT)|"

and F contains proper approximations for the desired blocks. O

It remains to give an efficient algorithm to approximate the exponential kernel matrix E. A popular
scheme is via Nystrom approximation (Williams & Seeger, 2000): the algorithm selects a subset of

“landmark” points, and constructs E through these landmarks. Musco & Musco|(2017)) uses recursive

ridge leverage score sampling to generate such an approximation efficiently. Musco & Musco (2017)
presents an algorithm that uses O(ns) log(1/4)) kernel function evaluations and O(ns3 log(1/4))

additional runtime to compute an approximation K satisfying K < K = K + A with probability at
least 1 — §. We restate their main result here for the sake of completeness.
Lemma A.3 (Theorem 7 of Musco & Musco| (2017)). Let s = O(sylog(sr/d)), there ex-

ists a weighted sampling matrix S € R"**®, such that the Nystrom approximation of E, E =
ES(STES)'STE satisfies

E<E=<E+M,

holds with probability at least 1 — 6. Moreover, S can be computed using O(ns) kernel evaluations
and O(ns?) additional time.

Our main contribution is a quantum algorithm that generates the approximation in sublinear time.
Before introducing the algorithm, we recall several key concepts.

Lemma[A 3|relies on approximating the ridge leverage score on a sample, which can be captured by
the notion of generalized ridge leverage score.

Definition A.4 (Generalized ridge leverage score, Musco & Musco| (2017)). Let E € R™*™ be a
kernel matrix, let A > 0, and let S € R™** be any weighted sampling matrix, the \-generalized ridge
leverage score with respect to S, is defined for any i € [n),

~ 1
ﬁ::XQZ—ES@TES+AD”STE%h
let B € R™ " be any factorization of E = BB, it can be equivalently defined as
7 =b] (BTSTSB+ )b,
where b; is the i-th row of B.
We also need a procedure introduced in|Apers & Gribling| (2023)) that generates a spectral approxima-

tion of an n X d matrix, given only queries to its rows, using quantum leverage score sampling. We
record it here.

Lemma A.5 (Theorem 3.1 of Apers & Gribling|(2023)). Let U € R"*%, ¢, € (0,1). There exists a
quantum algorithm that computes a weighted sampling matrix S € R™** with s = O(e~2dlog(d/?))
such that with probability at least 1 — 9,

1-eU'U=U'SS'TU<(1+eU'U.

The quantum algorithm uses O(e~1n%2d%>) row queries to U, and it takes time O(e~1n%5d> 4-d*).
Moreover, if the leverage score sampling matrix contains s < d rows, then the algorithm uses
O(n®55°5) row queries to U and it takes time O(n°s%-5d+d*). We use QLEVERAGESCORE(U, s)
to denote this procedure that produces a leverage score sampling matrix S € R™*5,
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We prove the key algorithmic result of this section.

Theorem A.6. Let {x1,...,7,} C R? be a dataset, K : R x RY — R™ be a kernel function, A > 0
and § € (0,1). Let E be the kernel matrix where E; ; = K(z;, x;). Suppose s = O(sxlog(sx/9)),
then Algorlthm I computes a weighted sampling matrix S € R™** such that with probability at least

E=<E=<E+\,
where E = ES(STES)'ST E. Moreover, S can be computed in time O(n%5s'5 - (T + s) + s¥),

where Tk is the time to evaluate the kernel function.

Proof. We note that the major differences between Algorithm|[T]and the algorithm inMusco & Musco
(2017) are

* Musco & Musco| (2017) algorithm is recursive, our algorithm unrolls the recursion and
iteratively constructs the weighted sampling matrix;

* Musco & Musco|(2017) computes all p;’s classically, while we use QSAMPLE to generate
samples.

Hence, the correctness is automatically satisfied. It remains to give a bound on the running time.

 Computing My: My € R*** contains the values of kernel functions over s? pairs, forming
it takes O(s2) - T time;

» Computing M: we maintain the invariant that M; € R**° for all ¢ € [T, therefore
computing M is inverting an s X s matrix, which takes O(s“) time;

. Computlng D/ | K;: this operation involves computing s weighted kernel function evalua-
tions, given Dt 1 stores a list of s indices together with weights, it can be done in O(s) - T
time;

* Oracle for g;: for any fixed i, note that we need to form D, ; K; using O(s) - Tk time, and
computing the quadratic form takes O(s?) time. Thus each oracle call takes O(s)- T +O(s?)
time;

* Computing ﬁt: this step requires to compute at most n probabilities, and each probability
can be computed via an oracle call in O(s) - Tx + O(s?) time, so it remains to give a bound
on the sum of probabilities. By the definition of p;,

> pi < 16log(2s/6) Y qi,
=1 =1

and the sum of ¢;’s is
n 5 -
Z 6 = 5 - (K(@i, 2i) = (DL K) T M (DL K))
5

=1 (E~ED, (D[ ED,—y + M) ' D[, E)i;

n
—5-3 7
,’_1

by Theorem 8 of Musco & Musco|(2017), the sum of A-generalized ridge leverage score

with sampling matrix D;_1 is at most O(sx log(sy/d)) = s, thus the runtime is O(n?-5s%5 .
(T + 5))-

Finally, note that the loop is dominated by the last iteration, and at each iteration, the number of
points to consider is divided by half, we conclude the overall runtime of Algorithm [I]is

O(n%%s'5 - (T + s) + ),
as desired. O
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We can then apply Theorem [A.6]to exponential kernel function and the dataset () U K to compute a
Nystrom sampling matrix S.

Corollary A.7. Let QK € R"™4 X > 0and § € (0,1). Define the dataset X =
{x1,29,...,22,} C R? where fori € [n], ©; = q; and fori € {n+1,...,2n}, x; = ki
Let E be the kernel matrix where E; ; = exp((x;,x;)). Suppose s = O(sxlog(sr/0)), then
there exists an algorithm that computes a weighted sampling matrix S € R?™* such that, let
E = ES(STES)'STE, then with probability at least 1 — §, E < E < E + \I. Moreover, S can
be computed in O(n%5s15 . (d + s) + s*) time.

Proof. Apply Theorem [A.6]to the kernel function K(x;, 2;) = exp((z;, z;)) and note that the kernel
function can be computed in O(d) time. O

B ESTIMATING THE NORMALIZATION FACTOR

Given a sublinear quantum algorithm to approximate the matrix exp(QK ), our next step is to
estimate the normalization factor exp(QK ' )1,, to compute the softmax matrix. We first show that
given a Nystrom approximation to the 2n x 2n kernel matrix F, how to compute the normalization
factor and the approximate guarantees.

Lemma B.1. Let M € R™*™ be a symmetric matrix, then we have

M|l < v/~ [|M]].

Proof. Fix any @ € [n|, we examine the row M, ., set the test vector = to be T; =

U0 e e
M olly = M@
=(Me;, x)
< [[Mellz - |||z
<M - ]2
=M.
The conclusion can be achieved by noting that this bound works for any row 1. O

There are two major issues for estimating the normalization factor:

 Corollary only allows us to compute the sampling matrix in sublinear time, explicitly

forming the Nystrom approximation £ however, would require §2(n) time since the matrix
is of size n X n;

* Even though we are given the explicit factorization E = UU" where U € R2"%%, we
would have to compute n normalization factors, which would require 2(n) time.

In other words, because the output has size {2(n), one cannot expect any quantum algorithm that runs
in o(n) time. Instead, we design a quantum data structure with preprocessing time o(n) time, and
can support query to compute the normalization factor to any row efficiently.

In particular, we are interested in the following algorithmic task: given query access to the rows of a
matrix U € R™** and a vector v € R™, output a vector 1 € R* such that || — U "o )1 <€,
which can be solved via Lemma 2.6 For our application, ||v||o, = 1. However, we are interested in
the quantity UU " v so we need to measure the error |[U (i — U " v)||2. How would a bound on the
Il - ll(wToy-1 be useful? We prove a structural lemma below.

Lemma B.2. Let M € R**® be a PD matrix and x € R® satisfy ||z||p-1 < € for some € € (0,1).
Then, we have

zllar < € [[M]].
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Proof. Let M = UAUT be its eigendecomposition, we consider the squared norm of x:
3 =T M e
=z UN Uz
~—~—
y
=y Ay

>t

meanwhile, by the same token of argument, we have

=] =y Ay

S
- >t
=1
S
1
= Z)\ZZ ) yy?
. 3
=1

SIS

i=1
= 1M - flll3
< e |M?
this concludes the proof. O

Corollary B.3. Let 6 € (0,1), U € R"* and v € R", suppose there exists a vector fi € R® with
|7 — Ul ri)-1 < € then we have

IUUTw ~Ufill2 < e~ |UTU].

Proof. Let M = U U and « = 11 — U "v, then note that
U —m)3 = Uz|3

=2 U Uz
=z Mz
= ||=%
<M,
where the last step is by Lemma O

We are now in the position to state our formal theorem, which provides an end-to-end guarantee on
estimating the normalization factor. For simplicity, we will prove the statement with high probability
guarantee, i.e., the success probability is 1 — 1/ poly(n).

Theorem B.4. Let Q, K € R™*% X\ > 0and e € (0,1). Let s = O(sy) where s is the statistical
dimension of the exponential kernel on Q U K. There exists a data structure (Algorithm[2)) with the
following specification:

« Preprocessing in time O(n%5s'3(s + d) /e + s*);
* Foranyi € [n], it outputs an approximate normalization factor for row i in time O(s(s+d)).
Moreover, with probability at least 1 — 1/ poly(n), it holds that for any i € [n], the output b; satisfies
b — (exp(giK " )1n| < O(e| Bl + AV/n),
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if )“I—ﬁ < 1, then the bound can be further simplified to
b — exp(¢iK T )1a| < O(AWn),

and the preprocessing time simplifies to

O(s"*(s + d)| Bl /A + ).

Proof. Given Q, K, let E € R?"*2" be the associated exponential kernel matrix. We will first
invoke Corollary to compute a sampling matrix S € R2"%s where s = O(sy) such that
E = ES(STES)'ST E approximates E, in time O(n%5s'5(s+d) +s*). Set U = ES(STES)1/2,
we have that E = UU . Note that forming U explicitly would take Q(n) time, so we instead
implement a row oracle for U. Since U € R"**, we only need to compute s entries for each row,
and let N = (STES)'/2, we see that u; = N(ES); . and (ES); . contains values in the form of

Si-exp({zj,zy)) for k € S. N can be computed in O(s?d+ s*) time, and row oracle for any j € [n]

can be implemented in O(sd + s2) time. By Lemma fi can be computed in O(n°-5s1-5(s 4+ d) /)
time. To query the normalization factor for row i, note that it can be computed via (Upx); = (u;, i),
which can be computed using row oracle, in O(s(s + d)) time. Thus, the overall runtime of our
procedure can be summarized as

« Preprocessing time O(n?s'5(s + d) /e + s*);

* Query time O(s(s + d)).

It remains to give an approximation guarantee. With probability at least 1 — 1/ poly(n), we have
FE < FE < E + M, and observe that

@ 1n — exp(@: K ")1a] < |(E — E)vllo
<NE = Elloo - [0/l
<\,
where the second step is by the matrix infinity norm is the induced norm of vector ¢, norm, and the

last step is by Lemma|B.1| On the other hand, our final output b; is an approximation to @, 1,,. Let
y := Up, by Corollary [B.3] we have

|Ev—glla <e-|UTU,
this holds with probability at least 1 — &, conditioning on this event, and note that E=UU T, therefore

|[UTU| = | E|| because UU T and UT U have the same spectrum. Since E < E < E + A, we

could bound the spectral norm of E as ||EH < ||E|| + A simply by triangle inequality. Thus, we
conclude our final result by

[b: = exp(qil ) L] < [bi = @iLa| + (@] 1 — exp(qi K 7)1
<[|Bv—gll2 + AV
<e - (A+[E]) + M\/n.
Now, suppose A/n < ||E||, then we could set € = ﬁ, the error bound simplifies to O(Ay/n). O

C APPROXIMATE MATRIX MULTIPLICATION VIA LEVERAGE SCORE

It remains to handle the value matrix, and we will do so via a machinery called approximate matrix
multiplication.

Definition C.1 (Approximate matrix multiplication, [Clarkson & Woodruff] (2017))). Let A €
R™ 4 B € R"™™ and let C = ATB € R™™. The approximate matrix multiplication prob-
lem asks to design a random matrix S € R™*5, such that

Pr[|ATSSTB — Cllp < €| A|rl|Blr] = 1 -6,
where €,6 € (0,1). We call such S satisfying (e, 0)-AMM.
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To generate the random matrix .S, our strategy will be performing leverage score sampling over V.
However, standard proof (see, e.g., /Clarkson & Woodruff] (2017)) requires V' to have orthonormal
columns. We provide a proof for the case where V' does not have orthonormal columns (albeit it
requires extra factors in blowups). Before doing so, we define a parameter that quantifies this blowup
which we call row distortion.

Definition C.2 (Row distortion). Let A € R™*? forn > d, we define the row distortion of A, denoted
by a(A), as

d e
A) = .
oA = e

where a; is the i-th row of A and T; is the i-th leverage score of A (Definition[2.1). When A is clear
from context, we use o as an abbreviation.

We are now ready to prove a generalized approximate matrix multiplication based on leverage score
sampling, when the matrix does not have orthonormal columns.

Lemma C.3. Let A € R"*4 B € R™™™ et S € R"** be the leverage score sampling matrix of A
with s = (e 2alog(1/8)) for €,6 € (0,1) and « is the row distortion of A (Definition . Then, S
is an (¢,0)-AMM.

Proof. For the sampling matrix S, it is a scaled submatrix of the permutation matrix, where for any
m € [s], Sm.z, = \/% where p,, > 7 and z,, = i with probability p;. Let a;, b; denote the i-th
and j-th row of A and B, respectively. We can write

ATSSTB—ATBZE Z aib; (Mzm:l]_l)
Di

S
i€[n],me[s]

taking expectation, we obtain
1 & i
E[ATSSTB~ATB] == aib] (p - 1)
s pi
i=1

:0,

to bound the second moment of ||ATSST B — A" B||r, we first expand the definition of Frobenius
norm square:

Etr[(ATSS'B - ATB)(ATSS"B— A" B)]

1 T o7 (Uzm = J] L[z = ]
:E?tr Z bja; a;b; (pjl — -1

i,jE€[n],me(s]

1 "1
== Z tr[z — -bsa, a;b] — BTAAT B]
m=1 =11t
1 =1
=-tr[)_ —-ba] a;p] — BTAAT B

s
i=1 "

1 1
<3 (Z 27”“71”%”@2”% - tr[BTAATB])
i=1 1"
1
< g(aHAH%IIBIIQF — AT B|3)

o
< 2)AlR1BI%,

where the first step is by definition of S, the second step is by applying expectation and use

E[ATSSTB — AT B] = 0, the fourth step is by tr[b;a a;b;] = |la;ib] |% < |la;|3]|b:||3, the
fifth step is by p; > 7, therefore

1 d

i S —

bi T
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AR d a3
laill3  [IA[F 7
A2
<o I
aill3

where the last step is by the definition of «.. By Chebyshev’s inequality, we can choose s = O(a/€?)
so that the approximate matrix multiplication holds with constant probability, and one could boost
the success probability to 1 — ¢ by either taking log(1/§) independent copies via a Chernoff bound,
or directly through Bernstein inequality. O

We are ready to state our final result on approximating the value matrix V.

Theorem C.4. Let V € R"*%, ¢ € (0,1) and « be the row distortion of V.. There exists a quantum

algorithm that computes a weighted sampling matrix S € R"** with s = O(e~2a) such that for
any fixed matrix B € R™"*™, S is an (¢,1/ poly(n))-AMM. Moreover, S can be computed using

O(e71n%2a%%) row queries to V and O(e " 1n%2a%3d + d“) time.

Proof. The proof is by composing Lemma and Lemma and note that for 5(6_2(1) rows, the
sum of leverage scores is at most O (e~ 2a). O

D PuUT THINGS TOGETHER

We are now ready to state our final algorithm and its guarantee. Recall that, we define D =
exp(QK )1, and D’ = exp(KQ")1,. We use D, D’ to denote their approximations.
We prove a simple inequality that quantifies the perturbation on the inverse.

Lemma D.1. Let C, D € R™ ™, if D is nonsingular and ||C — D| < ¢, and |[D~|| < 1/¢, then C
1D~

is also nonsingular and |C~1|| < e

Proof. We will make use of Neumann series, which states that for ||A|| < 1, (I — A)~! admits the
expansion

o0

(I—A)t=>" Ak,

k=0

this leads to a bound on the norm:

I =) =11 A%
k=0
<> 14¥
k=0
> lAp*
k=0

1
1—A]”

now, to prove our desired bound, we write C = D + FE where FE is the perturbation, then C' =
D+ E = D(I + D7'E), and we will apply Eq. (@) to —D~'E:

IN

@

ID7LE| < D7 - I E|
=D~ [lc - D
<1l/e-e
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therefore
I =7 + D7 E)~ D
<|ID|I- (1 = DTE) 7
_ D
T 1-|DTE|
D~
1B ID7
D71
T l—c- DM
this completes the proof. O

Theorem D.2 (Formal version of Theorem[3.1). Let Q, K,V € R"*¢ be the query, key and value
matrices for attention, let e, \ > 0. Let E € R*™*2" be the exponential kernel matrix with the dataset
Q U K, and let sy, be the statistical dimension of E (Definition , « be the row distortion of V
(Definition[C.2). There exists a quantum data structure (Algorithm%vthat preprocesses QQ, K,V only
through row queries to these matrices and with probability at least 1 — 1/ poly(n), for any i € [n), it
outputs a vector 7; € R% where

7= el DLAT.

If in addition, we have | D~|| < then the approximations D, A and V satisfy that

TET
(DY (A+AT)/2-V) =D YA+ A")/2-V|r
<e-(B-ID7H) - (IA+AT)/2llp + AVn) - [V]|F,

ok Moreover, the algorithm has the following runtime specification:

_ 1
where B = T rErravmID-

* Preprocesses in 6(6*1n0‘5(s§\'5 + s3°d + a¥5d) + d¥ + s§ + e ?syad) time;
« Forany i € [n), it outputs 7; in O(s3 + sd) time.

Proof. By Theorem|C.4] we know that with probability at least 1 — 1/ poly(n), the following bound
holds:
DN A+ AT)/2- Sy Sy Vlp <e-[[DTHA+AT)/2p - [IVF
<e |ID7H A+ AT 2]e - IV,
where the second step is by ||AB||r < ||A| - | B|| . By Theorem[B.4] we know that
ID = DI| < €| E]| + AVn,

note that as~long as the error satisfies that |[D71|| < W, then by Lemma , we obtain a
bound on || D~1:

”ﬁ—IH < ”D_lH )

T 1= (el El + Avn)[|IDH|
Finally, by Corollary [A.2] we have
A+ AT A+ AT
* < H i + \/n.
2 F

For the runtime, it suffices to combine Corollary Theorem [B.4]and Theorem| [C.4] and the only
additional runtime term is the ¢ ~2s)ad, which is the time to form matrix R and L. O

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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