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Abstract

As a glyphic language, Chinese incorporates001
information-rich visual features, with distinct002
characters combining to form compounds that003
inherit the meaning or pronunciation of their004
components. However, we argue that Large005
Language Models (LLMs) fail to effectively006
harness this valuable feature. This study de-007
signs ’radical prompting’ to improve LLMs’008
effectiveness across general NLP tasks such as009
Part-Of-Speech (POS) tagging and investigates010
the limitations of contemporary LLMs in ac-011
curately identifying the visual information of012
characters. Results demonstrate that the intro-013
duction of ’radical prompting’ markedly im-014
proved LLM performance across various NLP015
tasks, particularly when correct radicals were016
provided, highlighting its potential as a crucial017
tool for optimizing Chinese language process-018
ing. However, most LLMs struggle to correctly019
identify the visual fundamentals of Chinese020
characters, which limits their effectiveness. De-021
spite some progress achieved through prompt-022
ing and fine-tuning, the current accuracy levels023
still fall short of the desired excellence.024

1 Introduction025

Unlike alphabetical languages, a character is not026

the smallest meaningful unit in Chinese. Most Chi-027

nese characters consist of meaningful radicals or028

components, which can themselves be made up029

of smaller radicals and characters. For example,030

the Chinese character "花" (meaning "flower") is031

composed of the "艹" (grass) radical, which con-032

tributes to its semantic property, and the component033

"化," which guides its pronunciation. The compo-034

nent "化" can be further decomposed into the "亻"035

(human) radical and the "七" component as illus-036

trated in Figure 1. Therefore, when encountering037

unknown or unfamiliar characters, it is a very com-038

mon and useful strategy to look at the radicals to039

estimate their meanings or pronunciations. Often,040

Figure 1: component of "fresh flower" in Chinese and
English

the components within unknown characters are sim- 041

pler and more familiar. Inspired by this strategy, 042

we designed the radical prompting approach to im- 043

plement a similar strategy in Chinese NLP tasks 044

in Section 4. For part-of-speech (POS) tagging 045

task, this method effectively improves LLMs’ per- 046

formance. For instance, when providing a gold 047

label, GPT-3.5 Turbo experiences approximately a 048

14% improvement. For more challenging tasks like 049

named entity recognition (NER), larger and more 050

robust models, such as Claude-3, achieve around a 051

6% improvement even without being provided the 052

correct radicals. Smaller models, however, show a 053

minor increase or even a decrease in performance. 054

To further investigate the improvement gap be- 055

tween providing the actual radical and not provid- 056

ing it, we initiated an intrinsic evaluation of LLMs’ 057

ability to identify the visual information of Chi- 058

nese characters in Section 5. We constructed a 059

dataset containing Chinese characters and three 060

information-rich properties embedded within them: 061

the components or radicals of the characters, the 062

structure composing the characters, and the total 063

stroke count of the characters. The components 064

serve as foundational elements, akin to prefixes 065

or suffixes in alphabetical languages, and provide 066

clues to both the meaning and pronunciation of 067

the characters. The structural composition of the 068

characters, categorized into eight distinct types as 069
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Figure 2: The statistics and examples of our Chinese character visuals dataset. While the total number of Chinese
characters in existence far exceeds the scope of our dataset, it’s worth noting that the List of Commonly Used
Characters in Modern Chinese comprises only 1,000 primary characters and an additional 2,500 less frequently
used ones. Our dataset goes beyond the number of conventional set.

shown in Figure 2, influences how characters are070

perceived, specifically affecting the order in which071

a character’s components are recognized. Lastly,072

the stroke count offers a measure of a character’s073

visual complexity or density. Unlike alphabetic lan-074

guages, where word length can hint at complexity,075

Chinese characters occupy uniform space, making076

stroke count a valuable indicator of intricacy be-077

tween complex and simple characters. The results078

show that all LLMs, whether Chinese or multilin-079

gual, failed to successfully identify this visual infor-080

mation, resulting in relatively high entropy and low081

F1 scores, which indicate low confidence and poor082

performance on the task. Traditionally, most LLMs083

process Chinese text at various levels: at the char-084

acter level using Unicode, at the word level, or at085

an intermediary level through techniques like Byte086

Pair Encoding (BPE). This processing approach087

tends to filter out the explicit visual information088

inherent to the components of characters, which089

need to be captured at a more fine-grained level090

to enhance understanding. In response to these091

challenges, we explored various architectures, fine-092

tuning methods, prompting strategies, and encod-093

ing methods. Our investigation revealed that pixel-094

level encoders and glyph-based encoding are par-095

ticularly effective in handling this task, suggesting096

directions for further research.097

This paper makes four key contributions to un-098

derscore the importance of the issue and suggest099

avenues for future research: 1) It develops a dataset100

that captures the visual aspects of Chinese char-101

acters; 2) introduces ’radical prompting’ to en-102

hance the performance of LLMs across various103

NLP tasks; 3) examines the challenges contempo-104

rary LLMs face in precisely recognizing the visual 105

information of characters; and 4) explores novel 106

methods to boost contemporary LLMs’ capabilities 107

in identify visual structure of the characters. 108

2 Related Work 109

Within the realm of Chinese language processing, 110

the exploration of radicals has been relatively un- 111

explored. Therefore, our discussion in the related 112

work section will focus on research that intersects 113

with the study of radicals, spanning topics from 114

Chinese character decomposition in computer vi- 115

sion, to specialized datasets, and existing strategies 116

that use radicals in language processing. 117

Chinese Character Decomposition in Computer 118

Vision The task of decomposing Chinese char- 119

acters into their constituent components closely 120

aligns with challenges faced in the field of com- 121

puter vision. Research within this domain, such 122

as the studies by (Ma et al., 2021), (Xia, 1994), 123

(Liu et al., 2021), has explored analogous chal- 124

lenges. The work by (Zhang et al., 2018) employs 125

a methodical approach by categorizing characters 126

into structured types, such as top-bottom or left- 127

right, and further decomposing sub-components 128

according to their spatial arrangements—akin to 129

the layered structural analysis this paper adopts. 130

This technique allows for a nuanced breakdown 131

of characters into constituent elements, as will be 132

further explored in Section 5.1. 133

Chinese decomposition dataset In reviewing 134

available resources, we encountered a comprehen- 135

sive dataset (CJKVI) that offers decompositions 136

for the unified characters of Chinese, Japanese, 137
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and Korean. Although this collection encompasses138

enormous Chinese characters, it does not cite any139

authoritative sources for its data. This omission140

leads to potential ambiguity due to multiple decom-141

position sequences for individual characters.142

Contrastingly, our approach utilizes the struc-143

tural classifications from the Kangxi Dictionary,144

ensuring a validated framework for segmentation145

and maintaining a manageable dataset size to guar-146

antee accuracy. Additionally, our dataset stands147

apart by gathering stroke count data from the Xin-148

hua Dictionary, thus creating a dataset specifically149

focus on visual information of Chinese characters.150

Glyphic Embedding Strategies in LMs Recent151

studies have increasingly sought to leverage the152

rich visual information inherent in Chinese char-153

acters to enhance language model performance.154

For instance, (Sun et al., 2021) introduce a novel155

approach that incorporates different embeddings156

alongside glyph embeddings derived from different157

fonts to enrich character representations. Similarly,158

Si et al. (2021) delve into the potential of stroke159

encoding among other glyph based input method160

to explore their performance (Si et al., 2021). Addi-161

tionally, (Shi et al., 2015) harness radical informa-162

tion, utilizing it as a key component for embedding163

Chinese characters. These systems share a common164

challenge: the necessity of retraining the entire sys-165

tem which not only demands substantial compu-166

tational resources but also raises questions about167

scalability and adaptability, especially since these168

enhancements have predominantly been applied169

to smaller-scale models. Our paper, in contrast,170

zeroes in on the impact of incorporating visual fea-171

tures of Chinese characters, such as stroke count172

and structure, directly within contemporary large173

language models, bypassing the complex embed-174

ding strategies employed by earlier studies.175

3 Dataset176

To evaluate the proficiency of contemporary lan-177

guage models with character fundamentals, we178

curated a dataset from simplified Chinese charac-179

ters sourced from the digitized Kangxi Dictionary.1180

These characters were categorized into 8 distinct181

structures, as defined by the dictionary, and are182

1The Kangxi Dictionary has been regarded from its incep-
tion until the early 20th century as the preeminent reference
for written Chinese characters. It has undergone updates since
its original publication, maintaining its esteemed position in
the realm of Chinese lexicography.

Figure 3: The process of radical prompting and example
of radial prompting answer for part-of-speech (POS)
tagging with an unfamiliar Chinese word.

detailed in Figure 2. With the assistance of APIS- 183

pace’s Chinese character segmentation API and 184

the Xinhua Dictionary API, we identified the com- 185

ponents and stroke count for each character. The 186

results underwent manual verification to ensure the 187

dataset’s accuracy and integrity. In the segmenta- 188

tion process, we not only adhered to the established 189

practice of segmenting by structures, as detailed 190

in (Zhang et al., 2018), but also made a concerted 191

effort to retain meaningful units wherever feasible. 192

For example, "人" could technically be identified 193

as a left and right structure; however, doing so 194

would reduce it to meaningless strokes. Therefore, 195

we classify "人" as a single structure and do not 196

separate it further. 197

4 Extrinsic Evaluation with Radical 198

Prompting 199

In this section, we extrinsically examine the signifi- 200

cance of radicals, the key visual feature in Chinese 201

characters, by prompting models to leverage radical 202

knowledge as illustrated in Figure 3. This approach 203

aims to assess the impact of such visual properties 204

on improving Chinese language processing tasks. 205

4.1 Tasks 206

Part-of-Speech (POS) tagging. In evaluating the 207

effectiveness of Large Language Models (LLMs) 208

in Chinese Part-Of-Speech (POS) tagging, three 209

datasets were utilized: the GSD Simplified dataset 210

for contemporary Chinese (Qi and Yasuoka, 2023), 211

the Parallel Universal Dependencies (PUD) dataset 212

(McDonald et al., 2023) for comparative modern 213

language analysis, and a novel dataset derived from 214
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Model POS Tagging GSD NER People’s Daily CWS GSD

Baseline RP RP (Oracle) Baseline RP Baseline RP

GPT-3.5 59.08 64.62(+5.5) 67.56(+8.5) 56.89 55.97(-0.9) 95.68 94.87(-0.8)
GPT-4 71.55 72.14(+0.6) 72.95(+1.4) 66.04 68.05(+2.0) 94.21 94.88(+0.7)
Claude-3 69.37 70.68(+1.3) 70.45(+1.1) 69.74 73.79(+4.1) 94.90 95.16(+0.3)
QWen 72B 62.20 65.38(+3.2) 67.32(+5.1) 62.73 59.59(-3.1) 96.59 95.57(-1.0)
ERNIE-Lite 27.06 24.97(-2.1) 32.73(+5.7) 12.10 12.99(+0.9) 88.04 88.70(+0.3)
Aya 68.86 68.91(+0.1) 70.41(+1.6) 38.24 36.36(-1.9) 87.98 89.08(+1.1)

Table 1: Comparison of model performances across various NLP tasks with baseline, radical prompting without
golden components (RP), and radical prompting with oracle information (RP (Oracle)).

500 sentences in poems form the Tang Dynasty2,215

annotated using Classical Chinese RoBERTa (Ya-216

suoka, 2023). For this task, a 5-word span from217

each sentence was selected and the model was218

tasked with predicting the tag for the central word.219

We designed two versions of the task: one that sup-220

plies the correct component and radical informa-221

tion of the central word, and another that prompts222

the model to utilize radical information without223

explicitly providing it. We use F1 score to measure224

models’ performance on this task.225

Named Entity Recognition (NER). In assessing226

NER capabilities, this study examines performance227

across two distinct datasets: the People’s Daily228

dataset (Chen, 2023), which focuses on formal Chi-229

nese text, and the Weibo NER dataset (Peng and230

Dredze, 2015), which is oriented towards casual231

and online Chinese text. Both datasets include232

tags for PER (person), LOC (location), and ORG233

(organization), with the Weibo NER dataset addi-234

tionally incorporating GPE (Geo-Political Entities).235

While the Weibo NER dataset extends to annotate236

nominal entities, this task concentrates solely on237

traditional named entities. Both datasets adhere to238

the BIO tagging standard, facilitating a consistent239

evaluation framework. Similar to POS tagging, this240

task will be evaluated using the F1 score. Unlike241

POS tagging, where the focus is on a central word,242

NER involves labeling any word in a sentence, mak-243

ing it impractical to provide radical information for244

each word and character. Therefore, we will only245

evaluate the efficacy of radical prompting without246

supplying the correct component information.247

2The Tang Dynasty is a period known for its well-preserved
and flourishing poetry. The choice of classical poems is moti-
vated by the precision and compactness of information in each
character typical of this era, suggesting that more information
is preserved at the subcharacter level—namely, in the radicals.

Chinese Word Segmentation (CWS). CWS is a 248

unique task in Chinese language processing. Dis- 249

tinguished from many other languages, Chinese 250

does not use delimiters such as spaces to separate 251

words within sentences. Accurately segmenting 252

text into individual words is critical, particularly 253

for enhancing performance in further language pro- 254

cessing tasks such as information extraction and 255

machine translation (Peng et al., 2004). In this 256

study, we utilize the same datasets as employed for 257

the POS tagging task: the GSD and PUD from the 258

Universal Dependencies collection. As the Univer- 259

sal Dependency datasets already separate sentences 260

into words to tag their pos tag and dependencies. 261

In this task, we give the whole sentence and ask 262

the model to separate the sentence by words. To 263

assess the effectiveness of models in this critical 264

task, performance is evaluated using the F1 score. 265

4.2 Method 266

In our exploration of enhancing Chinese language 267

processing through visual cues, we introduce a 268

novel prompting method termed "radical prompt- 269

ing." This technique builds upon the foundation of 270

the chain of thought (COT) prompting framework, 271

which guides models through tasks in a sequential, 272

step-by-step manner. The process begins with the 273

model identifying any unclear words within a given 274

context. Following this initial step, the model is in- 275

structed to dissect these words into their constituent 276

components, specifically focusing on radicals. It 277

then evaluates whether these components impart 278

additional, useful information that can aid in task 279

completion. Subsequently, the prompt guides the 280

model to execute specific tasks, attempting to gain 281

from radical analysis to enhance task performance. 282

A crucial aspect of radical prompting is the em- 283

phasis on cautious and judicious use of compo- 284
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nent information. This cautionary note is vital285

due to the historical evolution of Chinese charac-286

ters, where some have acquired meanings that di-287

verge significantly from their original components.288

Therefore, models are advised to critically assess289

the relevance and accuracy of the information pro-290

vided by character components, especially in cases291

where the linkage between form and meaning may292

not be straightforward. Additionally, the model is293

prompted with one example where the information294

from radicals may not be pertinent, highlighting295

the importance of discerning the applicability of296

radical information.297

A description of the radical prompting lines uti-298

lized for the Part-of-Speech (POS) tagging task is299

available in the appendix, see Section B.2.300

4.3 Experiment Setup301

In our exploration of the impact of radical prompt-302

ing on Chinese language processing, we carefully303

selected a suite of models for evaluation: GPT-3.5,304

GPT-4, Claude-3, QWen-1.5 72B Chat, Aya, and305

ERNIE-Lite-8K. To assess their performance, we306

applied these models to the specific NLP tasks de-307

scribed in Section 4.2, each associated with its own308

task-specific dataset. The experiment involved pro-309

cessing a 1,000 sentences from these datasets 5310

times for consistency and reliability of the results311

across all models, with the exception of GPT-4.312

Due to the higher operational costs associated with313

the GPT-4 and Claude-3 API, the experiment was314

adjusted to include only 500 sentences for those315

two models.316

4.4 Result and Error Analysis317

We observed a general enhancement in model per-318

formance across all tasks shown in Table 1. This319

improvement was particularly notable in POS tag-320

ging tasks, where the provision of the correct com-321

ponent for the central word further augmented per-322

formance: GPT-3.5 Turbo experience a 14% im-323

provement when implemented with radical prompt-324

ing with correct component provided.325

A detailed error analysis sheds light on the nu-326

ances behind the observed improvements in POS327

tagging tasks as illustrated in Appendix B.1. Our328

data indicates that for GPT-3.5-Turbo, whether rad-329

ical prompting was applied, the number of cases330

correctly identified where components were not ex-331

amined remained relatively stable. However, when332

the model utilize radical information by identifying333

central word as unfamiliar, an additional 81.2 cases334

were correctly identified compared to the baseline. 335

The advanced models GPT-4 and Claude-3, while 336

showing improvement, did not exhibit a large mar- 337

gin of change. This can be attributed to their less 338

frequent detection of unfamiliar words, lowering 339

tendency to leverage radical information. 340

For NER and CWS tasks, the impact of radical 341

prompting exhibited a nuanced relationship with 342

model size and capacity. Smaller models, such 343

as GPT-3.5, experienced a slight decline in perfor- 344

mance following the introduction of radical prompt- 345

ing. Conversely, more robust models like GPT-4 346

and Claude-3 demonstrated marked improvements 347

in their NER and CWS task outcomes. One plausi- 348

ble explanation for this trend is the prevalence of 349

transliterated foreign terms in Chinese—which are 350

adapted based on pronunciation rather than mean- 351

ing. Since radical information offers little to no 352

help in deciphering these terms, their frequent oc- 353

currence as entities in the text might confound the 354

model, negating the advantages of radical prompt- 355

ing in these instances. Another contributing factor 356

to the nuanced performance is the inherent com- 357

plexity of the NER and CWS tasks. These tasks 358

require the precise identification of a wide array of 359

components to accurately determine the meanings 360

of words in their specific contexts. Given the di- 361

versity of Chinese characters and the nuances of 362

context, supplying the model with complete and ac- 363

curate component information is a formidable task. 364

It is reasonable to hypothesize that, as seen with 365

POS tagging, if oracle information about compo- 366

nents could be provided, these tasks might exhibit 367

improved performance as well. 368

5 Intrinsic Evaluation on Chinese 369

Character Visuals 370

Build on previous findings, this section aims to 371

delves into the performance of LLMs on the visual 372

recognition task such as components recognition. 373

We begin with a baseline assessment of these mod- 374

els’ performance on predefined tasks, focusing on 375

their ability to process and interpret the complex vi- 376

sual structure of Chinese characters. Following this, 377

we examine the efficacy of various enhancement 378

techniques. The section will detail the tasks eval- 379

uated, describe the two experimental approaches 380

undertaken, and culminate in a comprehensive anal- 381

ysis to distill further insights into the effectiveness 382

of the visual enhancement techniques applied. 383
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Model
Structure Component

F1 Entropy 1st Pos 2nd Pos 3rd Pos Overall F1Acc Entropy Acc Entropy Acc Entropy

GPT-3.5 Few 19.71 0.84 28.55 0.52 17.74 1.16 2.45 0.85 45.29
GPT-3.5 Zero 22.82 0.88 33.61 0.79 19.09 1.40 5.48 0.69 48.86
GPT-4 Few 45.28 0.48 58.22 0.14 31.67 0.52 20.48 0.22 68.57
GPT-4 Zero 35.40 0.54 58.66 0.22 31.03 0.89 11.50 0.34 67.82
ERNIE-Lite 38.63 0.42 33.94 0.71 9.41 1.35 0.00 1.29 34.90

Yi-6B 27.42 1.17 47.31 1.72 19.19 1.56 0.00 0.80 34.21
Qwen-7B 29.31 1.28 33.42 1.82 21.34 1.51 3.42 1.50 20.13
Baichuan-13B 24.12 0.81 38.41 1.45 24.49 1.53 4.21 0.57 24.17
Mistral-7B 27.77 1.64 42.11 2.20 27.95 1.44 2.49 0.37 28.67

Table 2: LLMs’ Performance in Structure and Component recognition of Chinese characters.

Model Stroke Count

MSE MAE

GPT-3.5-Turbo Few 23.18 1.79
GPT-3.5-Turbo Zero 52.89 2.06
GPT-4 Few 23.18 1.79
GPT-4 Zero 12.17 1.99
Ernie-Lite 33.49 4.49

Yi-6B 29.49 4.24
Qwen-7B 34.16 4.62
Baichuan-13B 32.70 4.31
Mistral-7B 165.39 10.94

Table 3: LLMs’ Performance in Stroke Count Identifi-
cation.

5.1 Tasks384

Structures recognition of Chinese character.385

We assess LLMs’ ability to identify the correct386

structural arrangements of Chinese characters in387

our dataset, with performance evaluated using the388

F1 score. We categorize all Chinese characters into389

eight major structural arrangements: top-bottom,390

left-right, top-mid-bottom, left-mid-right, wrap-391

ping3, inlay, triple-stack, and single structure (those392

that cannot be further segmented), as detailed in393

Table 1. The structure of Chinese characters can394

be complex, with multiple layers of structure com-395

pounding upon each other. For example, the char-396

acter "花," as illustrated in Figure 1, primarily397

presents a top-bottom structure, segmented into398

3While the category of wrapping structures can divide
further, for clarity and due to their similar order of visual
perception, we have amalgamated all types of wrapping into
one comprehensive ’wrapping’ structure.

"艹" and "化." Upon closer inspection, "化," which 399

exhibits a left-right structure, can be further decom- 400

posed into "亻" and "七." To maintain consistency 401

in our segmentation approach, we segment char- 402

acters based on their primary structure, ensuring 403

uniformity across our dataset. 404

Components recognition of Chinese character. 405

We evaluate LLMs’ proficiency in accurately identi- 406

fying the components of Chinese characters within 407

our dataset. In this particular task, models are not 408

mandated to explicitly determine the structural ar- 409

rangement of characters. Nonetheless, they are 410

expected to recognize and output the character’s 411

components in their correct order of perception, 412

which inherently relates to the character’s struc- 413

tural arrangement. Similar to the structure task, 414

we apply a uniform segmentation principle that fo- 415

cuses on identifying characters’ primary structures 416

without delving into further sub-component break- 417

down. For instance, the character "花" exhibits a 418

top-bottom structure, with "艹" positioned at the 419

top and "化" at the bottom. Accordingly, our seg- 420

mentation isolates these two principal components 421

only, avoiding decomposition beyond this primary 422

structural division. To evaluate performance com- 423

prehensively, positional accuracy for the first, sec- 424

ond, and third components is assessed, with the 425

overall F1 score calculated focusing on correct pre- 426

dictions, regardless of their positional order. 427

Stroke count identification of Chinese character. 428

We evaluate the LLMs’ proficiency in accurately 429

determining the stroke count of Chinese characters 430

from our dataset. Here, the models are tasked with 431

producing a single integer value representing the 432

total number of strokes required to write each char- 433
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acter. The accurate assessment of stroke count is434

critical as it provides a measure of the character’s435

complexity. To quantitatively measure the models’436

performance on this task, we will use the Mean437

Absolute Error (MAE) as our metric.438

5.2 Evaluating Standard LLMs on Chinese439

Character Visual Recognition440

Setup. To explore LLMs’ abilities in recognizing441

the visual and structural intricacies of Chinese char-442

acters, 2,000 Chinese characters were randomly se-443

lected from our dataset to serve as query characters444

for three distinct tasks. This selection was strate-445

gically repeated five times to ensure the reliability446

in the performance assessment, focusing on mod-447

els’ consistency and confidence through entropy448

calculation of the results. Importantly, characters449

with a ’Single Structure’ were omitted from the450

component recognition task due to their inherent451

segmentation constraints.452

The models selected for this evaluation encom-453

pass a diverse range, including Yi-6B, Qwen-454

7B-Chat, Baichuan-13B, Mistral-7B, ERNIE-Lite,455

GPT-4, and GPT-3.5 Turbo. To thoroughly exam-456

ine the GPT models’ understanding, they were sub-457

jected to zero-shot, and few-shot testing scenarios.458

Specifically, in the few-shot setting, models were459

given a representative example for each of the eight460

structures. For the remaining models, the evalua-461

tion was only placed on the few-shot tests due to462

the challenge of task completion without example463

guidance.464

Results. Our examination of model performance465

on the visual complexities of Chinese characters,466

as shown in Tables 2 and 3, reveals GPT-4 as the467

most capable model among those tested, yet its468

performance still falls short of being considered op-469

timal. Specifically, GPT-4’s structure identification470

F1 score, which stands at 45.28, demonstrates sig-471

nificant challenges in accurately discerning charac-472

ter structures. Additionally, for component recog-473

nition, the overall F1 and accuracy for each po-474

sition is suboptimal, with entropy values indicat-475

ing varying levels of confidence across predictions.476

This decline is notably pronounced when moving477

from the first to the third component, reflecting the478

model’s difficulties in identifying all components479

of characters accurately. In stroke count estimation,480

GPT-4 demonstrates a Mean Squared Error (MSE)481

of 12.17 and a Mean Absolute Error (MAE) of 1.99.482

Given that the average stroke count of characters483

in our dataset is around 10, these error rates un- 484

derscore the models’ imprecision in capturing the 485

exact stroke count of characters. 486

Upon delving into the results across different 487

structures, as detailed in Table 8, we observe a 488

specific challenge: models struggle to differentiate 489

between structures with three components and their 490

two-component counterparts, such as distinguish- 491

ing top-bottom from top-mid-bottom arrangements. 492

Viewing the visual tasks collectively, our anal- 493

ysis revealed a significant pattern: models that 494

demonstrate proficiency in one visual aspect—be it 495

component recognition, structure identification, or 496

stroke count estimation—tend to exhibit improved 497

performance in the other areas as well. This sug- 498

gests a shared underlying ability among models to 499

process visual information effectively. 500

5.3 Advanced Techniques in Chinese 501

Character Structure Recognition 502

Setup. This experiment focuses on evaluating the 503

efficacy of various methods, such as visual-related 504

architectures, fine-tuning, and prompting, on the 505

Chinese structure recognition task. 506

We investigate two distinct architectural ap- 507

proaches aimed at enhancing task performance: 508

vision-integrated multi-modal models and pixel- 509

based encoder language models. The first approach 510

is represented by GPT-4 Vision and Claude-3 Vi- 511

sion , where we incorporate character images as 512

part of the input, assessing its performance on a 513

dataset of 2,000 randomly selected characters. The 514

second approach is embodied by the PIXEL model, 515

a pixel-based encoder language model ((Rust et al., 516

2023)), distinctively not a large language model 517

but rather a focused language model. This model 518

is trained exclusively on the English Wikipedia 519

corpus and undergoes specific fine-tuning and test- 520

ing for structure recognition within a span-based 521

question-answering (QA) framework, utilizing 70% 522

of our dataset for training and rest for evaluation. 523

Furthermore, we delve into the efficacy of 524

prompting on GPT-3.5 to capture the visual speci- 525

ficity of Chinese characters. The prompting strat- 526

egy involves guiding GPT-3.5 to identify the radical 527

of a character—leveraging the association between 528

radicals and character meanings—before prompt- 529

ing it to outline the character’s other components. 530

This method is assessed using a separate set of 531

2,000 randomly selected characters. Detailed de- 532

scriptions of the specific prompting lines employed 533

are available in the appendix 4. Finally, GPT-3.5 534
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Model Structure F1

GPT-3.5(Zero) 19.71
GPT-3.5 Fine-tuned 64.76
GPT-3.5 Structure Prompting 38.08
GPT-4 Vision 37.02
Claude-3 Vision 26.09
PIXEL Fine-tuned 84.57

Table 4: Performance Improvement on Different
Method on Structure Recognition Task

undergoes fine-tuning to assess the enhancement535

of its performance on visually specific tasks.536

Results. The comprehensive evaluation of mod-537

els on the Chinese character structure recognition538

task is encapsulated in Table 4:539

A noteworthy aspect of our comparison involves540

the performance of models incorporating visual in-541

formation processing capabilities. An interesting542

observation arises from the parallel efficiency ob-543

served between GPT-4 Vision and GPT-4 in the544

few-shot scenario. The similarity in their perfor-545

mance might hint at the vision component of the546

architecture not being specifically trained on tasks547

related to Chinese character structure recognition,548

which could limit its effectiveness in leveraging549

visual data for this purpose. On the other hand, the550

PIXEL model achieves an exceptional F1 score of551

84 after fine-tuning.552

The employment of structured reasoning553

prompts, which directed the model to engage in a554

more thorough analysis of character structures, re-555

sulted in a notable performance uptick. Specifically,556

this strategic refinement elevated the model’s F1557

score to approximately 38. Moreover, fine-tuning558

GPT-3.5 with a dataset specifically curated for this559

investigation significantly advanced the model’s560

proficiency in recognizing Chinese characters. Af-561

ter fine-tuning, the model demonstrated a remark-562

able F1 score of 62, showcasing its potential to563

adapt and master the visual intricacies of Chinese564

characters. Nonetheless, despite these substantial565

improvements, the model’s performance fell short566

of reaching the F1 score benchmark of 70.567

5.4 Encoding Analysis568

Building on the positive outcomes of fine-tuning569

GPT-3.5, we extended our research to delve into570

the model’s capacity for learning by examining the571

effects of utilizing different encoding.572

Encoding F1 score

Unicode 39.80
Stroke 43.80
PinYin 13.85
WuBi 11.81
CangJie 11.66

Table 5: GPT-3.5 Fine-tuning’ Performance on different
way of encoding.

Setup. We fine-tuned GPT-3.5 while explicitly 573

switching all Chinese characters to various encod- 574

ing—namely, Unicode, stroke, pinyin4, Wubi, and 575

Cangjie5—to evaluate the extent to which these 576

representations impact the model’s proficiency in 577

internalizing visual knowledge of Chinese charac- 578

ters. results are shown in Table 5. 579

Results. The results indicated that Unicode en- 580

coding perform comparably to stroke encoding, 581

which are rich in glyphic information, and signifi- 582

cantly outperform pinyin encoding, which are lim- 583

ited to phonetic information. This disparity sug- 584

gests that Unicode, despite its abstract nature, car- 585

ries implicit visual cues. The structured arrange- 586

ment of Chinese characters in Unicode, predicated 587

on the stroke number of the radical and subsequent 588

components, mirrors the visual characteristics in- 589

trinsic to these characters as shown in Table 9. 590

However, the full potential of Unicode is some- 591

what diminished by a multitude of exceptions and 592

a broad spectrum of extensions that complicate its 593

utility in conveying structured visual knowledge. 594

6 Conclusion 595

In this paper, we commenced our exploration with 596

an in-depth examination of radical prompting and 597

its impact on enhancing the performance of Large 598

Language Models (LLMs) in general NLP tasks. 599

This led us to evaluate the ability of LLMs to rec- 600

ognize radicals within Chinese characters, where 601

we observed their suboptimal performance, under- 602

scoring critical importance of the visual aspects of 603

Chinese characters in advancing the processing ca- 604

pabilities of LLMs for Chinese language tasks. We 605

finish our paper with point toward several promis- 606

ing directions for future research. 607

4Pinyin is the Romanization of the Chinese characters
based on their pronunciation. In Mandarin, it’s the standard
method for typing Chinese characters.

5Wubi and Cangjie are two glyph based input method that
are uncommon to use.
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Limitations608

Our study, while contributing valuable insights into609

the integration of radical prompting for Chinese610

language models, encounters several limitations611

that suggest directions for future research. First,612

the dataset employed does not encompass the full613

array of Chinese characters but is confined to com-614

monly used characters. This selective coverage615

might affect the scalability of our findings to all616

Chinese characters [especially when greater model617

meets unknown or unfamiliar character, there is a618

chance that our dataset does not cover that char-619

acter]. Additionally, the study primarily evaluates620

the effectiveness of radical prompting on a narrow621

selection of models and specific NLP tasks, which622

might not reflect its utility across different models623

or broader language processing applications.624

Furthermore, an intrinsic limitation of our625

methodology arises from the exclusive use of En-626

glish in our prompting lines. Incorporating Chinese627

in the prompting strategy could potentially enhance628

the relevance and effectiveness of prompts, align-629

ing better with the linguistic context of the target630

language.631
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A General Experiment Details721

Model Versions and Snapshots The experi-722

ments incorporated different versions of widely723

recognized models to evaluate their performance in724

processing Chinese characters. The specific snap-725

shots used for each model are as follows:726

• GPT-3.5 and GPT-4 were used with the snap-727

shot dated 2023-11-06.728

• Claude model’s evaluation utilized the 2024-729

02-29 snapshot.730

• Ernie-Lite-8K was tested using the 2023-09-731

22 snapshot.732

Temperature Settings733

• Aya, Yi-6B, Qwen-7B-Chat, Baichuan-13B,734

and Mistral-7B were set at a lower tempera-735

ture of 0.3 as recommended.736

• For other models not specifically mentioned,737

a temperature setting of 0.7 was used.738

B Detailed Radical Prompting Result739

B.1 Quantitative Analysis on POS tagging740

Accuracy741

We provide a case analysis for POS tagging in Table742

6.

Category Baseline RP (Oracle)

Correct& Comp +81.2
Correct without 608.6 611.2
Incorrect & Comp +81.2
Incorrect without 391.4 265.8

Table 6: Quantitative analysis of GPT-3.5-Turbo’s POS
tagging accuracy on the number of correct and incorrect
predictions with and without the examination of compo-
nents using radical prompting compared to the baseline.

743

B.2 Full Result of Radical Prompting744

Experiment745

We provide result of radical prompting on more746

dataset in Table 7.747

Figure 4: Prompt Line to Enhance Recognition of Chi-
nese Character Structures

B.3 Prompting Example 748

We provide our prompting lines for POS tagging 749

tasks in Figure 5. 750

C Details on Structure Recognition 751

C.1 Structure Recognition Across Structures 752

We provide detailed result for structure recognition 753

across different structures in Table 8. 754

C.2 Enhancing Structure Recognition 755

through Prompting Techniques 756

We present the prompt lines used to enhance the 757

task of structure recognition in Figure 4. 758

D Unicode Example 759

A portion of the Unicode table is presented in 9 760

to demonstrate the visual character information 761

embedded within Unicode. 762

E Responsible NLP Miscellanea 763

E.1 Intent usage 764

In response to potential inquiries regarding the 765

scope and legitimacy of our experiments, it is im- 766

portant to clarify that all aspects of our research 767

strictly adhere to the intended use cases of the 768

Large Language Models (LLMs) and the NLP task 769

datasets employed. Furthermore, our use of these 770

models and datasets complies fully with the usage 771

policies of the APIs for each model involved. 772

E.2 Computational Experiments Cost 773

In our research, we utilized vLLMs for evaluation 774

on Yi 6B, Mistral 7B, Baichuan 13B, and Qwen 775
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Task Model Baseline Radical Prompting Radical Prompting
(No Gold) (Oracle)

POS Tagging PUD

GPT-3.5 62.61 69.90 73.46
GPT-4 76.20 76.72 77.35

Claude-3 69.37 70.45 70.68
QWen 72B 62.20 65.38 67.32
Ernie-Lite 30.35 30.29 41.29

Aya 73.87 77.21 76.95

POS Tagging Poem

GPT-3.5 53.51 59.22 61.39
GPT-4 66.94 67.11 67.57

Claude-3 65.53 66.20 66.71
QWen 72B 55.63 57.78 59.54
Ernie-Lite 44.19 42.17 49.07

Aya 65.53 66.19 66.71

NER Weibo

GPT-3.5 36.65 36.64
GPT-4 43.83 44.68

Claude-3 45.64 46.86
QWen 72B 31.78 35.83
Ernie-Lite 6.72 6.90

Aya 37.88 30.83

CWS PUD

GPT-3.5 93.91 93.70
GPT-4 94.24 95.63

Claude-3 94.12 94.96
QWen 72B 89.79 91.94
Ernie-Lite 69.54 73.57

Aya 88.68 91.05

Table 7: Comparison of model performances across various NLP tasks with baseline, radical prompting without
golden components, and radical prompting with oracle information.

7B with a single a40 GPU. For other models, we776

accessed them through their respective APIs. The777

cost and running time for each model varied sig-778

nificantly. Specifically, the time required to run a779

single evaluation ranged from approximately 2 to780

8 hours.781

E.3 Avoid Data Leakage782

For all NLP tasks assessed in this study, evalua-783

tions were exclusively conducted on the develop-784

ment sets of the respective datasets to prevent data785

leakage.786

E.4 Personally Identifying Info787

The dataset we created for evaluating the visual788

information of Chinese characters does not contain789

any offensive content or personally identifying in-790

formation. However, we acknowledge the presence791

of individual names in the Weibo NER dataset that792

we use for evaluation.793

E.5 Evaluation Tools and Methodologies 794

To evaluate our Named Entity Recognition (NER) 795

tasks, we used a Perl script: conlleval.pl. 796

For other tasks, we calculated F1 score using 797

Scikit-learn. 798

E.6 AI Assistants 799

We acknowledge the use of GPT-4 for grammar 800

checking and assisting with coding throughout our 801

research process. 802
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Model Top-Bottom Top-Mid-Bottom Left-Right Left-Mid-Right Wrapping Inlay Triple-Stack Single

GPT-3.5 Few 23.1 22.00 20.14 15.56 9.74 14.29 7.14 21.00
GPT-3.5 Zero 24.01 16.00 25.17 2.00 3.59 0.00 0.00 57.00
GPT-4 Few 35.33 0.00 64.92 7.78 4.18 28.57 21.43 32.00
GPT-4 Zero 17.26 2.00 54.94 2.00 7.17 14.29 7.14 29.50
Ernie-Lite 21.70 12.00 52.20 2.00 7.17 14.29 66.67 67.50

Yi-6B 47.34 16.86 27.54 9.32 25.11 25.00 57.14 33.18
Qwen-7B 33.21 5.56 29.12 11.32 14.56 25.00 42.86 42.95
Baichuan-13B 35.27 11.38 22.45 3.44 28.34 25.00 42.86 37.12
Mistral-7B 27.48 14.56 33.45 12.34 30.43 25.00 28.57 51.46

Table 8: Accuracy of models across different structure types of Chinese characters.

Unicode Character Structure Unicode Character Structure

U+4EBF 亿 LR U+4ED9 仙 LR
U+4EC0 什 LR U+4EE3 代 LR
U+4EC1 仁 LR U+4EEA 仪 LR
U+4EC3 仃 LR U+4EEB 仫 LR
U+4EC4 仄 WRP U+4EF0 仰 LR
U+4EC7 仇 LR U+4EF2 仲 LR
U+4ECE 从 LR U+4EF5 仵 LR
U+4ED1 仑 TB U+4EFB 任 LR
U+4ED3 仓 TB U+4EFD 份 LR
U+4ED5 仕 LR U+4F01 企 TB
U+4ED6 他 LR U+4F0A 伊 LR
U+4ED7 仗 LR U+4F0D 伍 LR
U+4ED8 付 LR U+4F0E 伎 LR

Table 9: This table showcases a randomly selected range of Unicode characters in dataset along with their respective
structures. This representation provides a snapshot of the structural information inherent in the Unicode.

Figure 5: Radical Prompting for Chinese Part-of-Speech Tagging
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