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ABSTRACT

Large Audio Language Models (LALMs) mainly fail for two errors: percep-
tual errors. To address these issues, we propose an adaptive framework that
couples perceptual grounding with computation that expands only when needed.
First, we introduce PAQA, a Perceptually grounded Audio QA dataset of 7,470
multiple-choice items that pairs multi-speaker, background-rich audio with step-
wise reasoning and reflection annotations, enabling supervision of verifiable
audio-grounded rationales. On the modeling side, we propose ConfAudio, which
unifies explicit, reflective reasoning (fine-tuned on PAQA) with implicit, pause-
driven latent computation trained via GRPO. A confidence-aware controller moni-
tors lowest-group-confidence (LGC) during decoding to insert pauses when uncer-
tainty rises and to abort unstable trajectories, thereby reallocating compute toward
hard perceptual segments. To stabilize the training process, we design a com-
posite reward that balances answer correctness, reasoning–answer consistency
with perceptual robustness, and output format. Across PAQA, MMAU-mini, and
MMAR, ConfAudio consistently improves both accuracy and consistency, partic-
ularly in noisy, multi-speaker conditions. Our results demonstrate that confidence-
guided, adaptive reasoning—grounded in verifiable acoustic evidence—mitigates
the dominant perceptual and reasoning failure modes in Audio-QA.

1 INTRODUCTION

Large language models (LLMs) have made notable progress in reasoning via chain-of-thought (CoT)
prompting and reinforcement-learning (RL) post-training (OpenAI, 2024; Guo et al., 2025), and
similar advances have extended to visual modalities (Huang et al., 2025; Feng et al., 2025). Unlike
text, audio introduces unique challenges such as overlapping speakers, pronoun ambiguity, shifting
emotions, and variable, noisy acoustic conditions. These factors often induce perceptual errors that
are among the most prevalent failure modes of current models (Ma et al., 2025b).

Recent audio-capable LLMs (e.g., Qwen2-Audio (Chu et al., 2024), Audio Flamingo (Kong et al.,
2024), SALMONN (Tang et al., 2024)) still tend to address audio question answering (Audio-QA)
by mapping transcripts directly to answers, with limited verification against the underlying acoustic
evidence. Prior audio CoT efforts (Xie et al., 2025; Ma et al., 2025a) supervise long free-form
rationales but do not consistently yield improvements on challenging problems. Moreover, RL-only
pipelines (Li et al., 2025b; Xie et al., 2025; Wu et al., 2025; Zhong et al., 2025) improve answer
accuracy, yet the explicit reasoning process itself has not shown consistent benefits for Audio-QA.

Previous work (Ma et al., 2025b) shows that dominant failures on the MMAR benchmark arise
from perceptual errors and downstream reasoning mistakes. This underscores the need to first es-
tablish a strong perceptual foundation by explicitly incorporating verifiable evidence, especially in
two high-frequency scenarios: (i) distinguishing environmental sounds, and (ii) accurately transcrib-
ing multi-speaker conditions. Importantly for audio reasoning, many acoustic cues (e.g., rhythmic
density, timbre) cannot be faithfully translated into free-form text, so enforcing text-only rationales
risks losing critical granularity. In real-world speech comprehension, humans often reflect on their
reasoning process and, when uncertain, pause briefly to deliberate before responding. Inspired by
these observations, we pose the central research question: Can an audio–language model be en-
dowed with adaptive deep reasoning, combining perceptually grounded and verifiable CoT with
pause-driven latent computation, to robustly overcome audio perceptual errors?
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Hard Audio Question-Answering Simple Audio Reasoning

         Answer: C. Friday night.

Question: When did the students finally decide to 
hold the project meeting?

Options:
A. Tuesday afternoon         B. Wednesday night
C. Friday night                   D. Thursday morning

BGM (background music): 
Pop song “Friday night”repeatedly playing, the 
volume is low but continuous; occasionally there 
is the sound of the coffee machine's steam.

Can we move it? Tuesday at 5 PM 
won’t work because of the lab demo.

And Wednesday 3 PM clashes with my 
internship seminar. What about Friday night?

The song keeps saying Friday night, but 
honestly, I can’t on Friday evening—I’ve got 
family plans.

Order ready for table 5! Bye.(background)

Then what about 
Thursday, 9 AM?

Okay！

Ours: Reflective Audio Reasoning

<THINK> in Simple 
Audio Reasoning 

BGM ASR
Trasncript

The wrong reasoning over-relied on repetition, treating 
“Friday night” in the background music as agreement.  
... Proposal + agreement: Thursday 9 AM (S1 proposes, 
S2 confirms).  Discard BGM lyrics as noise. By 
carefully tracing which times are rejected versus 
accepted, and separating conversation from BGM 
noise, the correct conclusion emerges: Thursday 
morning at 9 AM.  

Answer: D. Thursday morning
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   <PLANNING>·····························</PLANNING>
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   </CAPTION>    
  <REASONING>···············································
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  <PLANNING>·····························</PLANNING>
  <CAPTION>·······················································

    </CAPTION>
  <REASONING>··························</REASONING>
  <SUMMARY>·······························</SUMMARY>
</THINK>
<REFLECT>····························································

</REFLECT>
<REFLECT>·······································</REFLECT>
<FINAL_ANSWER>
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<BGM>Pop song, chorus repeats “Friday night” → 
Distraction, not actual meeting time.   </BGM>
<ASR> (Raw transcript.)                     </ASR>
<SPEAKER> ... Speaker 3 (female): Notes the 
“Friday night” but she says cannot that evening with 
a upset tone<PAUSE>. ...            </SPEAKER>
<DESC> (Other information.)            </DESC>

The audio contains several references to different times: ...  
• Speaker 1: Mentions Tuesday at 5 PM as the likely 

meeting time.  
• Speaker 2: Brings up Wednesday                                     

at 3 PM and Friday night as possibilities.  
• Speaker 3: Mentions “Friday night,” and the phrase is 

repeated multiple times throughout the audio, 
suggesting emphasis.  

• Speaker 4: Say goodbye.  

...**Compare to options**:  
(A) Tuesday afternoon → only briefly noted.  
(B) Wednesday night → not mentioned.  
(C) Friday night → repeated strongly, so this is the 
final decision.  
(D) Thursday morning→ not clearly part of the final 
discussion.  ...

❌ Influenced
 by BGM

❕ Noise,
irrelevant speaker

(If necessary)
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Figure 1: A challenging audio QA case with perceptual errors. Repeated lyrics in the background
sound/music and multi-speaker overlaps mislead simple reasoning. Although the CAPTION in-
cludes background sound and cues, the model reaches the correct answer after REFLECT reason-
ing which takes advantage of perceptual information. In particular, when enough acoustic features
are encountered, the decoder emits a special PAUSE token to allocate additional latent compute.

Interference from background sound and disambiguating multiple speakers are central challenges in
real-world audio understanding, yet they remain underrepresented in existing datasets. To address
this gap, we construct PAQA, the first Perceptually grounded Audio QA dataset, coupling multi-
speaker, background-rich audio with stepwise reasoning and reflection annotations. PAQA contains
7,470 multiple-choice Audio-QA pairs. Each example provides structured annotations—including
background-music separation, speaker analysis, and multi-turn reflections—and records both an in-
ternal answer and a final response. As illustrated in Fig. 1, a model with simple reasoning incorrectly
selects “Friday night” due to overreliance on repeated mentions, failing to distinguish background
sound from actual conversation. In contrast, a model equipped with reflective reasoning isolates
background sound and irrelevant speakers and aligns evidence to arrive at the correct answer.

To handle non-textualizable acoustic signals, we propose ConfAudio, an adaptive reasoning frame-
work that unifies explicit reflective reasoning with implicit latent computation. Explicit reasoning is
realized through fine-tuning on our curated dataset, while implicit reasoning is enabled by a learned
<pause> token trained with Group Relative Policy Optimization (GRPO). A confidence-aware
module monitors the lowest group confidence (LGC) during decoding and adaptively inserts a pause
token when confidence falls below a threshold; it also aborts unstable trajectories to ensure stability.
This mechanism encourages the model to attend more deeply to acoustic evidence and to re-segment
speakers when necessary. In addition, we design a composite reward that jointly balances answer
correctness, reasoning consistency, and output format. We evaluate ConfAudio on the test sets of
PAQA, MMAU-mini, and MMAR, where it consistently outperforms strong baselines.

(1) We construct PAQA, the first dataset that integrates multi-speaker and background-rich audio
with stepwise reasoning and reflection annotations. It covers multi-speaker QA, noisy speech-to-
text translation, and environment-centric QA, encouraging models to ground decisions in acoustic
evidence rather than transcript shortcuts.

(2) We propose ConfAudio, an adaptive reasoning framework that combines explicit audio-
grounded reflective reasoning with implicit latent computation. The latter is realized through a
learned pause token triggered by a lowest group confidence (LGC) score, enabling the model to
silently allocate additional computation when uncertain or abort unstable trajectories.

(3) We design a composite reward that jointly optimizes answer accuracy, format compliance, acous-
tic consistency, and length control, discouraging unnecessary verbosity. Experiments demonstrate
that ConfAudio enhances adaptive reasoning, effectively reducing perceptual and reasoning errors.

2 DATA COLLECTION

2.1 COMPLEX AUDIO UNDERSTANDING

R1-AQA (Li et al., 2025b) and Omni-R1 (Zhong et al., 2025) show that requiring the model to read
write out step by step text does not guarantee improvements in Audio QA (AQA). In several AQA
settings, explicit CoT provides only marginal or no gains over answer-only decoding, sometimes
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even increasing latency. For simple ASR tasks, we also observed that models tend to overfit sur-
face transcripts rather than perform robust reasoning over acoustic evidence (see Fig. 6). Unlike
text-only scenarios, audio understanding requires grounding in acoustic cues (e.g. speaker turns,
overlapping speech regions) and careful attention to scenarios. Motivated by this, we further analyze
Qwen2-Audio’s bad cases on the CoTA (Xie et al., 2025) benchmark and identify two major chal-
lenges:(1)difficulties in handling multi-speaker conversations, where insufficient speaker diarization
under overlapping leads to incorrect attribution of utterances and a consequent loss of dialogue;
(2)failures in environmental-sound discrimination, whereby non-speech events and nonsignificant
background sound are classified as evidence.

MUSAN
(background sound source)

BGS ASR
Trasncript

Our Dataset: PAQA

MELD LibriSpeech

Mix

Percetual Info.
Annotation

I. Dataset Collection II. Supervised 
Fine-tuneing (LoRA)

Audio Multi-choice 
Problems in CoTA 

III. Adaptive Reinforcemnet Learning

Policy Model 
(able to produce formated 
perceptual information)
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Pause Trigger
·enough acoustic perception
·low confidence

r1

r2

rG

... G
ro

up
C

om
pu

ta
tio

nComposite
Reward 

Rules

Pause/Reflect/Abort
Controller

<PAUSE>: latent reasoning step
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Figure 2: An overview of our work. First, we collected PAQA dataset, with annotating perceptual
information like background sound(BGS) and ASR transcript. Secondly, we fine-tuned on PAQA
as the policy model in the reinforcement learning. The reinforcement learning mechanism includes
pause trigger and controller, and composite reward rules to better performance.
To advance speaker-aware modeling and noise-resilient perception, we construct a dataset that inte-
grates multi-speaker and background-rich audio with stepwise reasoning and reflection annotations.

Background-rich augmentation We sample background audio from publicly licensed environ-
mental categories in MUSAN (Snyder et al., 2015) (e.g. alarms, typing, rain, cafeteria, street traffic,
soft instrumental music). For a clean speech clip s and a background clip n, we first RMS-normalize
both and then scale the background so that the power ratio satisfies SNRdB = 10, ensuring that the
speech remains ten times stronger than the background, audibly present but not dominant. Each
item is annotated with a tag indicating the presence and type of background (e.g., ’Soft instrumental
music – please ignore.’), which discourages unnecessary reliance on background cues.

Multi-speaker Alignment To discourage models from shortcutting on global transcripts and to
encourage speaker-localized reasoning, we annotate turn structures in a <SPEAKER> section using
a compact, ordered format such as “Speaker 1: ...”. We then apply Qwen3-ASR (Team, 2025)
to each audio sample to generate a verbatim raw transcript. To mitigate hallucination and drift
between summaries and verbatim text, we introduce a quote-presence test (QPT), which measures
fuzzy overlap between <ASR> snippets A = ai and <SPEAKER> sentences S = si. Specifically,
SeqRatio is defined as the standard difflib ratio on normalized strings. Items with QPT < 0.85 are
flagged for revision. The formulation is given by:

QPT =
1

M

M∑
i=1

max
1≤j≤N

SeqRatio
(
norm(si), norm(aj)

)
. (1)

2.2 REFLECTION TO CORRECT WRONG INITIAL RESPONSES

In natural conversation, speakers frequently self-monitor and revise their utterances. Building on
prior work showing that reflection-driven self-correction improves model performance in reasoning
tasks (Shinn et al., 2023; Madaan et al., 2023; Wang et al., 2023), we adopt a reflection-augmented
pipeline for complex audio understanding. Concretely, a lightweight baseline model first generates
an initial <RESPONSE> for each audio-QA item, as illustrated in the third column of Fig. 1. We
then automatically detect errors—such as option mismatches, speaker attribution mistakes, hallu-
cinated content inconsistent with ASR transcripts, or misinterpretation of noise cues—and prompt
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the model to produce a grounded diagnostic analysis <REFLECT>. This analysis explicitly refer-
ences <BGM>, <SPEAKER>, and <ASR> to explain the failure and localize the supporting evidence.
Conditioned on this analysis, the model is guided to generate a corrected <FINAL ANSWER>. For
training, we store the triplet (<RESPONSE>, <REFLECT>, <FINAL ANSWER>), which provides
explicit reflection supervision and, from each original audio item, yields an additional corrected ex-
ample, effectively doubling the supervised data while enriching them with interpretable, perception,
grounded self-correction signals. For detailed prompt template, see Appendix C.

The dataset supports a range of tasks, including multi-speaker QA, speech-to-text translation under
noise, and environment-centric QA. An in-depth analysis of the final PAQA dataset is provided in
Appendix A, while a detailed statistical overview is summarized in Table 1.

Table 1: Dataset Source and Statistics.

Dataset Source Main Skills Learning BGM Used Quantity Reflection
Multi-Speaker (Xie et al., 2025) Multi-speaker Speech QA Free Sound 1.5k 1.4k

MELD (Poria et al., 2019) Speech Emotion QA Sound Bible 1.5k 1.4k
CoVoST2 (Wang et al., 2020) Speech-to-Text Translation No 1.5k No

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW

In real-world speech comprehension, humans often reflect on their reasoning process and, when
uncertain, pause briefly to deliberate internally before responding (Meyer, 2023). To mirror the
sophisticated human ability to process complex audio environments through both explicit explana-
tion and implicit contemplation Boomer (1970); Shriberg (2001), we propose a dual-mechanism,
confidence-gated adaptive reasoning training pipeline, with an internal confidence score deter-
mining the model’s reasoning path: an explicit Chain-of-Thought with <REFLECT>, or an implicit
latent thinking to handle uncertainty with the <PAUSE> token. The whole framework is presented
in Fig. 3. Our methodology first employs Supervised Fine-Tuning (SFT) to teach the model a spe-
cific response structure, compelling it to generate answers that include both an analysis of perceptual
audio information and a reflective reasoning process(with <REFLECT> in the chain-of-thought).
Second, to move beyond simple pattern imitation and enhance the model’s adaptive reasoning ca-
pabilities, we utilize an advanced reinforcement learning algorithm, Generalized Reward Policy
Optimization (GRPO). Within this RL stage, we introduce a key innovation: when low confidence
triggers the <PAUSE> mechanism, the model activates an implicit latent reasoning module to bet-
ter process ambiguous, non-textual audio cues. This entire process is guided by a specialized reward
function designed to optimize the quality and grounding of the final response.

3.2 SFT FOR STRUCTURED EXPLICIT GENERATION WITH REFLECTIVE REASONING

Using the specialized dataset detailed in Section 2.2, we explicitly train the model to output a dedi-
cated <REFLECT> segment following its initial chain-of-thought reasoning. This structured output
ensures that for each prompt, the model produces a transparent analysis of background sound and
speaker, and reflection that allows for direct inspection before a final answer is given. We aim to
teach the model to generate its responses in a specific, structured format, it lays the groundwork for
the subsequent reinforcement learning phase.

3.3 RL WITH ADAPTIVE REASONING

3.3.1 GRPO ON FINE-TUNED MODELS

We observed that fine-tuning instruction-tuned models on PAQA leads to performance improve-
ments, although these gains are not significant (see Table 2). While the Supervised Fine-Tuning
(SFT) stage effectively establishes a foundation by teaching the model to generate more complex
chain-of-thought reasoning, its potential may be inherently constrained by the nature of imitation
learning. To transcend these limitations, we introduce a second stage based on GRPO.

4
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Inputs Audio starts
with

Layer 1

Layer 2

Targets Ignore
Output Speaker

#1 .

...

(a) Standard. (b) Reflective. (c) Pause-triggerred.

Audio starts
with

Ignore
Outputa man,

...

sorry,
a girl

<REFL
ECT>

Speaker
#1a man,

Speaker
#1

<REFL
ECT>a man,

Speaker
#1a man,

...

Audio starts
with

Ignore
Output

a girl, 

Speaker
#1

<PAUSE> <PAUSE>

Ignore
Output a girl, 

Figure 3: Standard vs. reflective-inference vs. pause-inference (and finetuning). Similar to Goyal
et al. (2024), the rounded squares denote one Transformer operation (a self-attention and MLP) in
a 2-layer Transformer. Any Ignore Output denotes that during inference, the corresponding output
token is not extracted and thus, not fed back autoregressively.

Starting from the SFT checkpoint (reference policy πref frozen), we generate groupwise rollouts,
compute R(z) via equation 8, and update πθ with GRPO (Shao et al., 2024). We partition rollouts
by task group g ∈ {PAQA,AVQA} and difficulty bucket (low/med/high). Within each group, we
compute groupwise baselines to reduce variance:

R̃(i) = R(i) − 1

mg

∑
j∈g

R(j). (2)

To process and reason upon non-textual audio cues that are often lost in pure text representations, we
incorporate confidence into GRPO by using the lowest group confidence (LGC) as a sample weight
(see in 3.3.2). For a trajectory i with task reward rtask

i (covering accuracy, formatting, consistency,
and length penalties) and group baseline r̄, the advantage is calculated as Ai = wi (r

task
i − r̄), where

wi is a clipped, standardized function of the trajectory’s LGC, and wi = 0 for filtered samples.
The final reward may also include recovery and leak terms when pause control is enabled: ri =
rtask
i +η ·max(0,LGCpost−LGCpre)−λleak ·1{leak}, where η, λleak are selected to balance accuracy,

formatting, and robustness.

3.3.2 IMPLICIT LATENT THINKING

Beyond explicit reflection, the model can also perform hidden computation via implicit pauses.
This mechanism is particularly vital when processing complex audio data. Audio streams contain a
wealth of perceptual, non-verbal cues—such as speaker intonation, overlapping speech, or ambient
noise—that are often difficult to articulate fully in explicit text. An implicit pause allows the model
to internally process and weigh these subtle audio features before committing to a textual output,
enabling a deeper, more grounded reasoning process.

To govern this behavior, we introduce a confidence-based gating mechanism with two distinct
thresholds: τpause for outright termination and a softer threshold τpause > τabort. At each decoding
step t, a specific action is selected based on the model’s internal confidence score Ck(t):

action(t) =


abort if Ck(t) < τabort,

pause if τabort ≤ Ck(t) < τpause,

continue otherwise.

(3)

where continue is the default action to normal generation. When confidence falls into the inter-
mediate range, the model triggers an internal deliberation step. When a pause is triggered at t⋆, the
model emits a <PAUSE> special token and generates up to Kp latent tokens ẑ1:L (where L ≤ Kp).
These ”pause tokens” are not surfaced in the final visible output and are explicitly excluded from
the gradient calculations during parameter optimization. Their sole function is to iteratively update
the model’s internal hidden state, allowing it to ”think” and process complex information before
resuming the generation of visible tokens. Formally, the full token sequence and visible output are
defined as (⊕ means concatenation):

ỹ = y1:t⋆ ⊕ <PAUSE> ⊕ ẑ1:L, yvis = y1:t⋆ . (4)

To encourage pausing specifically in text involving speech-only, non-textual cues (where extra
acoustic reasoning may be beneficial), we maintain a keyword setA, such as ”tone”, ”pitch”, when-
ever any word w ∈ A appears in the recent context, we add a positive logit bias βac > 0 to the
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<PAUSE> token:
ℓ<PAUSE> ← ℓ<PAUSE> + βac · I

[
∃w∈A in context

]
. (5)

Token confidence Ci means the negative average log-probability of the top-k tokens at position i.

Ci = −
1

k

k∑
j=1

logPi(j) (6)

where k denotes the number of top tokens considered. Lower confidence means uncertainty in
token prediction. During training, we use lowest group confidence to govern the runtime policy
above (pause vs. continue vs. abort), yielding a coherent control scheme. If the confidence score
is extremely low (Ck(t) < τabort), it indicates a high likelihood that further deliberation will be
unproductive. The abort prevents the model from getting stuck in prolonged, unnecessary pause
loops and significantly accelerates overall inference speed by pruning unpromising trajectories early.

3.3.3 LOWEST GROUP CONFIDENCE (LGC)

We consider the lowest group confidence metric to provide sufficient signals for estimating the
quality of reasoning trajectory. Group confidence averages token confidence over overlapping spans
of the reasoning trace. Each token t is linked to a sliding window group Ki, consisting of n previous
tokens. In particular, we identify its bottom 15% group confidence. For each window, we compute
a normalized mean probability:

CKi
=

1

|Ki|
∑
t∈Ki

Ct (7)

where |Ki| is the number of tokens in group Ki. The LGC of the trajectory is then defined as
the minimum of these window confidence scores, LGC(y) = mink=1,...,K CKi

. This definition
emphasizes the weakest local segment within the reasoning trajectory: even a small cluster of highly
uncertain tokens can significantly reduce LGC, making it a sensitive indicator of detecting local
reasoning collapse, a phenomenon effectively demonstrated by Fu et al. (2025).

3.4 COMPOSITE REWARD FUNCTION

To produce correct answers but also generate interpretable and well-organized reasoning, we intro-
duce a novel composite reward function R defined as the weighted sum of four components: besides
the accuracy reward and a format reward, we designed a consistency reward for reasoning coherence
and explanation quality, and length reward when accurate for stablize the training.

R = waccRacc + wfmtRfmt + wconsRcons(ŷ, ŷCoT) + wlen (Racc ×Rlen), (8)

where Racc measures the correctness of the final answer, the format reward, denoted as Rfmt, vali-
dates whether the output follows the required structured reasoning schema,Rcons(ŷ, ŷCoT) measures
the logical consistency between the final answer and the intermediate reasoning, andRlen penalizes
both under- and over-elaboration, where too short responses are heavily penalized with a score of 0
to reflect insufficient reasoning. Conversely, responses that are too long are penalized using a linear
decay function to discourage excessive reasoning.

3.4.1 ACCURACY REWARD

The accuracy reward,Racc, measures the correctness of the final answer. We parse the completion x
for the <FINAL ANSWER> (FA) tag, falling back to the <RESPONSE> (R) tag if FA is absent. Let
a completion be denoted by x. From x, we extract the predicted answer ŷ(x) ∈ {A,B,C,D} and
compare it to the ground truth label.

3.4.2 FORMAT REWARD

The Format Reward validates whether the output follows the required structured reasoning schema;
it is assigned 1.0 if all required tags are present, correctly ordered, and properly nested, and 0.0
otherwise. This reward component addresses a common challenge in Reinforcement Learning (RL)
known as reward sparsity. We distinguish between two levels of formatting:

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Strict Format (Ideal Schema): This is the ideal structure to follow a complex schema. However,
enforcing this strict format during RL training is problematic, resulting in a persistent Rfmt = 0.0,
providing no gradient for the model to learn the format.

Weak Format (RL Reward for Latent Reasoning): To overcome reward sparsity, Rfmt is imple-
mented based on a ”weak format”. This ”weak format” approach allows the model to first learn
the fundamental <THINK>...<RESPONSE> sequence. Subsequently, other rewards, such as the
consistency reward, implicitly incentivize the model to correctly populate the CoT with the neces-
sary analysis (e.g., ASR, Speaker analysis) to maximize its score, thereby progressively guiding the
model toward the ideal ”strict format”.

3.4.3 CONSISTENCY REWARD

Beyond task accuracy and format concerns, we regularize chains for internal consistency along three
axes: (i) BGM robustness blocks spurious causal use of background sound/music; (ii) Speaker–
ASR fidelity rewards quotes/snippets that appear in the ASR transcript; and (iii) Reasoning–
Answer consistency rewards agreement between the last internal choice from <THINK> and
the final answer. Let rbgs(x) ∈ {0, 1}, rspk(x) ∈ [0, 1], and rra(ŷ, ŷCoT) = 1

[
ỹL(ŷ, ŷCoT) =

ŷL(ŷ, ŷCoT)
]
∈ {0, 1}. We combine them with a hard background sound gate:

Rcons(ŷ, ŷCoT) = rbgs(ŷ, ŷCoT)
(
λspk rspk(ŷ, ŷCoT) + λra rra(ŷ, ŷCoT)

)
, λspk, λra ≥ 0, λspk+λra = 1.

(9)
In words, any offending background sound/music causal claim zeroes the consistency reward; oth-
erwise, we interpolate between sentence-level Speaker–ASR alignment and self-agreement of the
final answer. The default weights λspk = λra = 0.5 worked well in our runs.

Background sound/music robustness To prevent spurious cues from background sound, we pe-
nalize any reasoning/description sentence that uses background sound/music as causal evidence.
We set rbgs(x) = 0 if reasoning invokes background sound/music as causal evidence (e.g., “bgm”,
“background sound”, instrument names), otherwise rbgs(x) = 1.

Speaker–ASR fidelity Within <THINK>, let A = aj denote ASR sentences and S = si denote
speaker snippets (i.e., quoted spans or colon-delimited clauses). We measure how faithfully speaker-
attributed quotes in the model’s outputs appear in the ASR transcript. Let S = S(ŷ, ŷCoT) be the set
of quoted/snippet spans extracted from the chain (e.g., speaker-attributed quotes), and let A be the
set of sentences from the ASR transcript of the input audio. We softly align each snippet to its best-
matching ASR sentence via a normalized similarity sim(·, ·) ∈ [0, 1], and average over snippets:

rspk(ŷ, ŷCoT) =
1

|S|
∑

s ∈ S max
a∈A

sim
(
norm(s), norm(a)

)
∈ [0, 1]. (10)

Here, norm(·) is a deterministic text normalization (lowercasing, stripping punctuation/speaker tags,
collapsing whitespace). The similarity is a normalized edit-based score:

sim(u, v) = 1− Lev(u, v)

max{|u|, |v|}
∈ [0, 1], (11)

where Lev(·, ·) is the (character-level) Levenshtein distance.

This rewards quotes that truly occur in the ASR while tolerating minor lexical or punctuation vari-
ations; fabricated or hallucinated quotes receive low similarity. For completeness, we adopt the
following conventions for edge cases:

rspk(ŷ, ŷCoT) =

{
1, |S| = 0 (no verbatim quotes to verify);

0, |A| = 0 ∧ |S| > 0 (no ASR to support quotes);
(12)

Reasoning–Answer consistency In long, noisy chains, decoding drift can make the model “reason
to A but output C”. Therefore, we design rewarding self-agreement. From <THINK> we extract
the last declared option ỹL(x). Let ŷL(x) denote the final emitted letter (FA/R). Then we calculate
rcons(x) = 1

[
ỹL(x) = ŷL(x)

]
.
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Table 2: Performance on MMAU Test-mini (Sakshi et al., 2024) and MMAR (Ma et al., 2025b).

Method MMAU Test-mini↑ MMAR↑
Sound Music Speech Average Sound Music Speech Average

Qwen2-Audio 61.26 53.59 48.05 54.30 33.33 24.27 32.31 30.00
+SFT 62.76 44.61 55.86 54.41 41.82 34.95 45.92 40.90
+GRPO-NoThink 68.17 61.38 60.66 63.40 51.52 38.83 45.92 45.40
+GRPO + CoT 70.27 59.88 59.46 63.20 58.18 33.98 46.60 46.30
+GRPO + ExpCoT 75.07 58.98 63.66 65.90 44.85 39.81 59.86 48.20
& - weak format 72.97 61.08 63.96 66.00 42.42 43.69 61.22 49.10
Ours (ConfAudio) 75.67 62.27 64.26 67.40 58.18 45.63 62.59 55.50

Audio-CoT 62.16 55.99 56.16 58.10 35.76 25.24 34.01 31.67
Audio-Reasoner 60.06 64.30 60.70 61.71 43.64 33.50 32.99 36.71

Together, the consistency measure discourages spurious reliance on background sound/music, en-
forces alignment between speaker summaries and ASR evidence, and ensures that the internally
declared answer matches the final emitted answer.

3.4.4 LENGTH SHAPING WHEN ACCURATE

To encourage adequate evidence gathering (speaker attribution, noise filtering) without overlong
chains, we introduce a length sub-reward when the accuracy reward is 1. Let T (x) be a sim-
ple token proxy (count of non-whitespace sequences in the whole completion). With thresholds
Tmin = 300, Tmax = 600, and decay scale K > 0, we use a piecewise-linear schedule. To en-
force clean outputs, we gate by the absence of post-answer content, where any non-whitespace after
</FINAL ANSWER> leads to 0.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

All experiments fine-tune the same pretrained backbones (Qwen2-Audio-7B-Instruct), using the
framework introduced by Li et al. (2025b). Training is conducted with a batch size of 1 per GPU,
with by 2 gradient accumulation steps, resulting in an effective total batch size of 16. We adopt a
learning rate of 1e − 6, a temperature of 1.0, and configure the GRPO to sample 8 responses per
group with a KL coefficient β of 0.1. For models incorporating pause latent thinking mechanism, we
set tau pause quantile=0.50 that allows up to 8 pauses per sequence with 64 thinking tokens each,
plus recovery bonus (0.05) and leak penalty (1.0) for think token containment.

We evaluate six configurations: SFT, supervised fine-tuning only with no reasoning schema and no
<pause>; GRPO-Nothink, GRPO post-training that emits answers directly without <REFLECT>
or <pause>; GRPO+CoT, GRPO enhanced with thinking before the answer (in the weak for-
mat of <THINK><ANSWER>); GRPO+ExpCoT, GRPO enhanced with explicit <THINK> (in-
cluding <REFLECT>) but no <pause>; Ours (ConfAudio), GRPO enhanced with the explicit
schema and <pause>; and External Baselines including Audio-Reasoner (Xie et al., 2025) and
Audio-Thinker (Wu et al., 2025). We use PAQA (train set) for supervised finetuning. For RL train-
ing, we utilize 30,000 augmented samples generated upon the AQVA (Yang et al., 2022) dataset,
with each response reformulated into a <think>...</think><answer>...</answer>
reasoning–answer structure. Models are evaluated on several benchmarks, PAQA Test(hard),
MMAU (Sakshi et al., 2024), and MMAR (Ma et al., 2025b), the results are listed below.

4.2 MAIN RESULTS
Table 2 summarizes the main results across two aggregated benchmarks (MMAU, MMAR). Several
key findings emerge from the experimental analysis. A specific case study is shown in Appendix B.

SFT. vs. Baseline Injecting audio perceptual information via SFT proves beneficial, particularly in
speech, which constitute the primary focus of our study. However, as the data is heavily skewed
toward speech, some degree of domain shift is observed in music, leading to suboptimal results.

8
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RL vs. SFT GRPO-NoThink performs better than with SFT, and each introduced module in our
method improves the performance well. Although GRPO-NoThink outperforms SFT, its improve-
ment stems mainly from reinforcement rather than genuine reasoning. GRPO alone or with naive
CoT prompts fails to ensure stable learning. Only when the model is first SFT-trained on our cu-
rated audio-reasoning data, which enhances perceptual understanding and format adherence, and
then optimized by GRPO under our explicit CoT design, does it achieve coherent and perceptually
grounded reasoning across complex audio scenes.

Pause mechanism works. Ours method with explicit reflection and implicit latent reasoning sur-
passes all other baselines. Notably, it improves the Music subset, offsetting the bad performance of
just finetuning. More detailed analysis are provided in Appendix A.5.

Abort mechanism balances speed with formatting penalties. While abort (early stopping under
high uncertainty/high entropy) improves throughput and latency control, we observe that it tends to
output think-only simplified content, yielding very low format rewards. We therefore down-weight
the format reward (from 0.5 to 0.1) and make a baseline with a weak format. Even under this setting,
ConfAudio continues to outperform alternatives, suggesting that the pause mechanism remains the
principal driver of performance gains.

4.3 ABLATION STUDY

Background Sound As shown in Fig.4(a), the introduction of background sound leads to measur-
able degrades zero-shot performance. However, this drop is substantially mitigated while explicit
“ignore prompt” cues are provided. This validates that our reflection step (Section 3) substantially
improve accuracy. In Fig. 4(b), we further compare the effect of varying numbers of reflection turns,
moving from 0 to 1 round yields a large accuracy enhacement while keeping outputs mostly clean.
However, adding more rounds brings diminishing returns and “overthinking”. A similar trade-off is
identified in the use of the pause mechanism. Excessive pausing negatively affects performance(see
Fig. 5), suggesting that it is suitable to set max pause token between 1 and 3. We also evaluate
on the test set of PAQA(see Tab.3), on the category of multi-speaker and MELD (Xie et al., 2025),
ConfAudio performs the best. Furthermore, under the challenging setting with background sound
at SNR=5dB, a condition that considerably degrades most models, our ConfAudio deteriorates the
least, retaining state-of-the-art accuracy and consistency. This resilience is attributed to its pause-
driven implicit reasoning and rewards aware of background sound/music.

(a) Model perform poorer on hard test set 
with background sound disturbing. But sound 

instruction recovers accuracy.

(b) Reflection Rounds. One-turn reflection is enough. 
More rounds of reflection tend to have longer 

reasoning answer but more frequent corruption.

(c) Ablation study on multi-speaker problems. Orange 
column means adding speaker information in the prompt. 

Information of speaker analysis leads to better performance. 

Figure 4: Comparison between different audio situations.

Multi Speaker Overall, adding a short “background information” prompt improves accuracy. The
benefit is consistent across all speaker counts, and the base model is strong with 2 speakers (80.26%),
but drops sharply as speakers increase. This pattern matches the intuition that more speakers intro-
duce attribution and coreference errors. Crucially, 3–6 speaker cases benefit most from the added
context. For 7+ speakers, the improvement is modest, indicating that richer cues (explicit diarization
tags, role summaries, or brief scene summaries) are likely needed.

5 RELATED WORKS

5.1 LARGE AUDIO–LANGUAGE MODELS (LALMS)

Early LALMs such as Qwen2-Audio(Chu et al., 2024), Audio Flamingo(Kong et al., 2024), and
SALMONN(Tang et al., 2024) advanced ASR, but remained fragile in real-world reasoning tasks in-
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Model Multi-Speaker(hard) BGM-rich Acc.
Acc. Consistency ↑ SNR=10 SNR=5

Qwen2-Audio 42.2 38.5 41.0 20.1
+SFT 46.2 41.5 44.0 31.2
+GRPO-NoThink 52.7 48.3 50.2 38.4
+GRPO-ExpCoT 61.5 58.7 60.8 47.6
Ours 70.4 68.1 69.5 57.8

Audio-CoT 50.6 46.9 48.3 35.0
Audio-Reasoner 56.8 52.7 55.9 41.8

Table 3: Evaluation on the test set of PAQA. Our
model performs best in each category.

Figure 5: Abaltion study of #<PAUSE> to-
kens. Set max pause token as 1-3 is suitable.

volving overlapping speakers and non-stationary noise. On-demand CoT in Audio Flamingo 3(Goel
et al., 2025) and structured CoT in Audio-Reasoner (Xie et al., 2025)—yet models often reverted to
transcript shortcuts whenever acoustic evidence was difficult to verbalize. To address these limita-
tions, we release a structured dataset that couples multi-speaker and background-rich audio, explic-
itly guiding LALMs to ground decisions in acoustic rather than purely textual evidence.

5.2 EXPLICIT REASONING IN LARGE LANGUAGE MODELS

In LLMs, structured reasoning through CoT, reflection, and RL post-training has yielded consistent
gains beyond supervised fine-tuning (SFT) (Guo et al., 2025; Team et al., 2025). While Vision-
R1 (Huang et al., 2025) and Video-R1 (Feng et al., 2025) extended RL-based reasoning to over-
thinking suppression. In audio, GRPO-style RL underlies R1-AQA and Omni-R1 (Shao et al., 2024;
Li et al., 2025b; Zhong et al., 2025), with mixed evidence on whether RL alone suffices. More re-
cent approaches (Wen et al., 2025; Wu et al., 2025; Li et al., 2025a; Jin et al., 2025) highlight that
objectives should reward useful and concise reasoning rather than verbosity. In this work, we in-
stead unify explicit, audio-grounded reasoning with reflection, operationalized through a multi-term
reward that enforces correctness and conciseness.

5.3 IMPLICIT REASONING AND PAUSE-GATED LATENT COMPUTE

Complementary to explicit rationales, implicit computation allocates additional internal processing
before token emission. Learned <pause> tokens can trigger silent forward passes (?), echoing
earlier adaptive-computation approaches(Graves, 2017; Banino et al., 2021) that learn instance-
dependent halting policies. To our knowledge, such latent computation has not been systemati-
cally validated in audio–language reasoning. Our contribution is to extend <pause> to LALMs
and couple it with a lowest-group-confidence (LGC) controller: when confidence drops on acous-
tically inexpressible cues, ConfAudio diverts into a short, budgeted latent stream and can abort tail
trajectories under severe uncertainty.

6 CONCLUSION

In this paper, to address two entangled failure modes in Audio-QA, perceptual and reasoning er-
rors, we build PAQA to supervise verifiable, audio-grounded questions-answerings, and propose
ConfAudio, which couples explicit reflection with implicit, pause-driven latent thinking trained via
GRPO with a composite reward. Specially, a lowest-group-confidence controller inserts <pause>
or aborts unstable trajectories. ConfAudio delivers consistent gains in accuracy and consistency
under noisy, multi-speaker conditions, narrowing the gap between acoustic evidence and reasoning.

ETHICAL CONSIDERATIONS

Our dataset is constructed from publicly available corpora or controlled augmentations, with all
speech either anonymized or synthesized to avoid privacy leakage. Despite the contributions, sev-
eral limitations remain. First, while our dataset is carefully annotated with multi-speaker and
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background-rich reasoning structures, its scale is modest compared to general-purpose audio cor-
pora, which may limit coverage of rare conversational phenomena.

REPRODUCTIVITY STATEMENT

We prioritize reproducibility by releasing dataset specifications, and preprocessing scripts for back-
ground injection, speaker segmentation, and ASR alignment. All training configurations—including
optimizer settings, batch sizes, learning rate schedules, and LoRA ranks—are documented and re-
leased as YAML files. Our evaluation follows a consistent protocol across our dataset, MMAU,
and MMAR, reporting accuracy, consistency, and robustness under noise. Results are averaged over
multiple random seeds to avoid cherry-picking. Upon publication, we will release our training data,
code, inference pipelines, and checkpoints under an open-source license.
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A DATA COLLECTION OF HARD AUDIO UNDERSTANDING

A.1 LIMITATIONS OF SIMPLE ASR-CENTRIC TEXT REASONING

Early approaches to audio reasoning typically relied on converting speech into text via automatic
speech recognition (ASR) and then performing reasoning over the textual transcript. While effective
to some extent, this paradigm inevitably discards information that is uniquely embedded in the au-
dio signal itself. To probe the limitations of this pipeline, we first evaluated the ASR+text reasoning
approach on benchmarks such as CoVoST2 and MMAU. In CoVoST2, model performance is largely
determined by raw ASR accuracy, and we observed that “simple ASR” signals are quickly memo-
rized without yielding robust generalization. A case study is shown in Fig.8, which highlights several
intrinsic challenges. Homophones and proper-name ambiguities necessitate long-range semantic
modeling and external knowledge retrieval, while gendered pronouns in Chinese (e.g., “he/she”)
lack reliable acoustic cues and thus require contextual inference for disambiguation. In particular,
Paraformer’s frame-level alignment, coupled with strong language model priors, tends to induce a
“nearest-neighbor copying” effect—yielding high accuracy on in-distribution transcripts but exhibit-
ing pronounced failures under distributional shifts. Moreover, exposure to translation-oriented data
(e.g., CoVoST2) can bias models such as Qwen-Audio to mistakenly trigger translation behavior,
sometimes converting Chinese speech into other languages when acoustic cues are uncertain.

In Fig. 7(a), there is an improvement on base models if we asked them to answer questions with
thinking in the format of <THINK>...</THINK><FINAL ANSWER>...</FINAL ANSWER>.
Therefore, we collected 2,050 samples from a subset of CoVoST2 (including 50 challenging cases
reserved for the test set) and employed Kimi to generate CoT annotations. Using this data, we fine-
tuned Qwen2-Audio and evaluated them on the designated test set. However, the models exhibited
severe overfitting (see Fig. 6(b)) after only a single epoch of training: while the outputs consistently
followed the required <THINK>...</THINK><FINAL ANSWER>...</FINAL ANSWER>
format and the training loss rapidly approached zero, the test accuracy dropped below 5%. This
observation indicates that the gradients primarily optimized for surface-level grapheme mapping
and fixed output formatting, without fostering genuine cross-sentence reasoning, coreference reso-
lution, or knowledge-grounded inference.

Consequently, these observations indicate that the “Thinking” component of chain-of-thought super-
vision should be allocated primarily to more challenging audio understanding tasks, such as multi-
speaker dialogues and noisy environments—where reasoning signals genuinely drive the model to
overcome semantic ambiguities and enforce knowledge-aware interpretations, rather than merely
replicating templates on simple ASR tasks.

Figure 6: The training dynamics of a chain-of-thought (CoT) fine-tuned model (Qwen2-Audio-7B),
indicating the model overfits to the training set in simple translation tasks. This suggests that CoT
fine-tuning without additional regularization or more diverse data fails to yield robust generalization,
particularly for tasks requiring broader reasoning beyond surface transcript matching.

A.2 HARDER AUDIO REASONING TASKS

A.3 SYNTHETIC AUDIO WITH BACKGROUND SOUND

Following this, we further analyzed erroneous predictions of Qwen2-Audio on the MMAU bench-
mark. As shown in Fig.7(b), we compared fine-tuning trajectories on the MSQA dataset with and
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Figure 7: Experiments on the Exploration of Good Audio Reasoning prompt.

English
Answer

Chinese
Answer Paraformer Qwen-Audio Qwen2-Audio Qwen2-Audio+

BadThought Analysis

Cuella 库艾拉 屈埃拉 Quoi elle. Quoi elle. 屈埃拉 For very short examples, Qwen2-Audio and Qwen-
Audio will do translation automatically.

Mill Creek is an 
unincorporated 
area located in 
Pope County, 

Arkansas, 
United States.

米尔克里克市
是位于美国阿
肯色州波普县
的一个非建制

地区。

米尔克里克
市位于美国
阿肯色州波
普县的一个
非建殖力区

米尔克里克市
是位于美国阿
肯色州波普县
的一个非建制

郡。

米尔克里克是
位于美国阿肯
色州波普县的
一个非建制地

区。

米尔克里克市是
位于美国阿肯色
州波普县的一个

非建置力区。

(1) Homophones are difficult to distinguish;
(2) The results of the qwen2audio model are easily 

misled by bad answers;
The term "unincorporated county" is semantically 
contradictory; "Bopu County" has clearly defined 

its administrative level as "county", so its 
subordinate cannot be a "county".

Caul fat is a thin 
membrane 

surrounding the 
internal organs 

of animals, used 
as a cooking 
ingredient.

网油是围绕动
物内部器官的
薄膜为烹饪食

材

网游是围绕
动吴内部器
官的薄膜为

烹饪食材

网油是围绕动
物内部器官的
薄膜为烹饪食

材

网油是围绕动
物内部器官的
薄膜为烹饪食

材

网油是围绕动物
内部器官的薄膜
为烹饪食材（模
型输出正确，无

需修正）

Qwen2-Audio and Qwen-Audio are better at 
capturing contextual information compared to 

Paraformer.

Night scenery is 
really hard to 

capture 

夜景真的超难
拍

液晶真的超
难拍

液晶真的超难
拍

液晶真的超难
拍

液晶真的超难拍

But hard cases still cannot be accurately identified. 
"Night scene" and "liquid crystal" have the same 
pronunciation, but the former is more suitable for 

the context of "taking photos".

Figure 8: Bad cases of Paraformer, Qwen-Audio and Qwen2-Audio on the simple ASR task.

without ASR-augmented data. The results reveal that models trained with ASR supervision exhibit
substantially longer response lengths, which we interpret as a proxy for deeper and more structured
reasoning ability. This finding suggests that integrating ASR data into training not only improves
transcription accuracy but also enhances the reasoning capacity of audio-language models. There-
fore, in the first stage of fine-tuning, we deliberately incorporated the ASR-enriched data described
in the previous section to further consolidate the model’s ASR capability as a foundation for down-
stream reasoning.

Moreover, we processed the audio with MUSAN(Snyder et al., 2015), which satisfies target 10 dB
SNR, according to

SNRdB = 10 log 10

(
Ps

Pn,scaled

)
= 10.

Let Ps =
1
T

∑
t s

2
t and Pn = 1

T

∑
t n

2
t . The background gain is

k =

√
Ps

Pn · 10SNRdB/10
=

√
Ps

Pn · 10
.

A.4 AUDIO QUESTION-ANSWERING WITH MULTI SPEAKERS

We use the subset of Multi-Speaker Dataset in CoTA (Xie et al., 2025), which is generated by
TTS to navigate intricate speaker interactions. First, we generated diverse conversational texts with
LLMs. Next, using timbres from LibriSpeech as prompts, we synthesized high-quality speech via
the CosyVoice2 framework. Finally, these distinct speech samples were combined into a rich dataset.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 9: GRPO Training. Overall, the RL training progressed well, but there is a clear collapse
around 200 steps. The trigger was the length-reward design: during exploration, longer completions
earned higher scores, but once a response exceeded 600 tokens, a linear decay penalty kicked in.
The policy reacted by abruptly shortening completions to 200 tokens; these outputs were often
incomplete, so the format reward dropped to 0, and the accuracy reward fell to 0.5. After this
shock, training recovered and stabilized, indicating the policy adapted to the length constraint.

A.5 PROPER RESPONSE LENGTH AFTER LATENT REASONING

Though more stable during training, introducing pause-based latent tokens increases training time,
raising max pause token from 1 to 3 roughly doubles training time. See more details in Fig.9. There-
fore, we set a length reward in the design of whole reward function. We also observe some findings
about the design of length-reward Sec. 3.4.4. Overall, the RL training progressed well, but there
is often a clear performance drop about 200 steps. The instability can be attributed to the length-
reward: during RL exploration, the model received higher scores for generating longer responses,
but once a response exceeded 600 tokens, a linear decay penalty kicked in. In reaction, the pol-
icy abruptly shifted to producing shorter outputs; these truncated responses were often incomplete,
leading to a format reward drop to zero and a reduction in accuracy reward to 0.5. Following this
disruption, the training process gradually recovered and ultimately stabilized, indicating the policy
capacity to adjust its generation in response to complex reward signals (See Fig. 9).

B CASE STUDY

As shown in Fig.1, the case highlights two failure modes: perceptual misbinding and salience-
driven rationale drift. The naive system exhibits this by prioritizing the surface frequency of ”Fri-
day” while overlooking its negated polarity and the logical flow of the proposal-to-confirmation
sequence. Conversely, the reflective controller rectifies this by enforcing evidence typing (differ-
entiating background sounds from linguistic turns) and ensuring dialogue-act alignment, ultimately
restoring causal fidelity to the acoustic evidence.

B.1 MULTI SPEAKERS TRACKING

Bad Case A

[ASR excerpt] [S1] “Ship date is the 12th if QA passes.” [S3] “QA won’t finish by the 12th.” [S4] “Set the
launch to the 15th.” [S2] “Not the 5th—I said the 15th.” [S1] “Agreed.”
[Question] What is the final launch date?
[Choices] A 5th · B 12th · C 13th · D 15th
[Audio context] Meeting room; steady HVAC hum as BGM; frequent interruptions.
[Ground truth] D
[Simple model response] B
[Reflection] <REFLECT> S3 explicitly negates the initial “12th” suggestion, S4 introduces a new proposal
“15th,” S2 clarifies that it is “15th” rather than “5th,” and S1 provides team confirmation; taken together
these turns establish the final launch date as the 15th.

This case tests how well the model can follow a conversation in a realistic, noisy meeting. The
audio includes a constant low hum from an air conditioner (HVAC) in the background, and the
speakers often interrupt each other. These challenges make it difficult to follow the flow of the
conversation. The simple model’s failure wasn’t about hearing the words; it was about failing to
understand the process of the discussion. The reflective model succeeded because it built a step-by-

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

step understanding of the conversation’s logic. It correctly handled the disagreements and changes,
proving it can reason reliably even in a noisy and dynamic group setting.

B.2 EXPLICIT REFLECTION

Bad Case B
<THINK>
<PLANNING>
The user’s question is: Based on the conversation, what are the speakers trying to assemble? I need to
analyze the dialogue between the speakers to identify the item they are constructing. The audio provides
the audio clip, and I should analyze it for details related to the assembly activity. </PLANNING>
<CAPTION>
The audio features a conversation among three individuals in what sounds like a workspace. They are
discussing an instruction manual and the assembly process. - Speaker 1: Expresses frustration with the
instruction manual, stating that it’s difficult to distinguish pieces A and B.
- Speaker 2: Proposes that piece B has a slightly beveled edge, but concedes that it’s similar.
- Speaker 3: Agrees that it looks like Bevel Edge and expresses hope that it’s correct.
- Speaker 1: States it is Bevel Edge B, and declares they can complete the assembly.
- Speaker 2: Hope is right and doesn’t want to misassemble again.
- Speaker 1: Confirms it is Bevel Edge B and asks everyone to take deep breaths and move on.

The core task is assembling an item where they are currently putting together parts, such as bevel edges.
</CAPTION>
<REASONING>
1. Analyzing the Dialogue: The dialogue revolves around distinguishing parts (A and B) and confirming a
beveled edge.
2. Identifying the Assembly Activity: The key element is Bevel Edge, suggesting the speakers are
assembling something with beveled sides.
3. Evaluating Options: - (a) A table: While a table might require beveling, the central focus isn’t just about
assembling a table. - (b) A chair: Similarly, a chair might require beveling, but it isn’t their primary focus.
- (c) A bed: A bed typically features beveled edges, aligning perfectly with the conversation. This is the
most likely scenario. - (d) A bookshelf: A bookshelf is less likely to have beveled edges.
4. Concluding the Item: Based on the bevel edges and the distinct focus on distinguishing them, it can be
inferred that the speakers are assembling a bed. </REASONING>
<SUMMARY>
The speakers are differentiated by focusing on the Bevel Edge assembly of a bed. By eliminating other less
relevant options through reasoning, the final conclusion is that they are assembling a bed. </SUMMARY>
</THINK>

Here is the reflection of this case.

Reflection of Bad Case A

<REFLECT> Evidence available from the dialogue is generic to many flat-pack builds: “piece A vs. B,”
“bevel(ed) edge,” “don’t misassemble,” and “let’s move on.” No category-specific anchors are heard (e.g.,
for a bed: headboard/footboard/rails/slats; for a bookshelf: shelf/upright/back panel/bracket; for a table:
tabletop/apron; for a chair: backrest/seat/armrest). Given absent anchors, the safest policy is to avoid over-
commitment. If forced to choose among the four, “bookshelf” is the most compatible with beveled front
edges on shelves and frequent A/B part distinctions during shelf panel assembly. Confidence remains low;
with an “uncertain” option, I would state insufficient evidence. </REFLECT>
<ANSWER>Bookshelf.</ANSWER>

B.3 PAUSE MECHANISM

This case tests the model’s ability to understand meaning that isn’t in the words themselves, but in
the way they are spoken (the ”tone,” or prosody). The audio is a phone call with background noise
from rain and static (line hiss). The challenge is to see if the model can spot sarcasm or reluctance,
even when the words seem positive. Therefore, this case highlights a major flaw in models that
only read text. They can be easily fooled when a speaker’s tone changes the meaning of their words
(like in sarcasm or politeness). The reflective model’s success shows it can listen, not just read. It
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integrates how something is said with what is said to find the true meaning, which is crucial for
understanding human conversation.

Bad Case C

[ASR excerpt] [S1] “Can you present Friday?” [S2] “Yeah, Friday. . . great.” (F0 downward; reduced en-
ergy; elongated final syllable) [S2] “Actually, I’m not available Friday evening.” [S1] “Then Thursday
morning?”
[Question] Is S2 willing to present on Friday?
[Choices] A Yes · B No · C Unsure · D Only afternoon
[Audio context] steady rain and mild line hiss
[Ground truth] B
[Simple model response] A
[Reflection] <REFLECT> ...”Yeah, Friday. . . great” ¡PAUSE¿ check tone/intonation. ¡/PAUSE¿ The phrase
“Yeah, Friday. . . great” is produced with a downward F0 contour and reduced energy consistent with reluc-
tance or irony, and a subsequent turn states explicit unavailability on Friday evening; integrating prosodic
and semantic cues indicates S2 is not willing to present on Friday.
</REFLECT>

In sum, the Multi-speaker Tracking matters speaker attribution (”who”), the Pause Mechanism
addresses the transition from rapid, text-centric processing to a more computationally intensive,
multi-modal analysis, and Reflection focuses on the ground truth by deploying targeted evidence
re-querying, contextual anchoring to disambiguate local hypotheses (as in ASR N-best lists), and
integrating conflicting cross-modal data. The convergence of these mechanisms allows the model
to emulate human-like cognitive robustness in complex, ambiguous, and multi-participant acoustic
environments, distinguishing its performance from that of a passive, deterministic system.
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C PROMPT TEMPLATE

A Sample Case of Our PAQA Data

<THINK>
<PLANNING>
The user wants to understand the dynamic changes ...... </PLANNING>
<CAPTION>
<BGM>Street noise; intermittent car horns.</BGM>
<SPEAKER>A: adult F; B: adult M; alternating turns.</SPEAKER>
<ASR></ASR>
<DESCRIPTION>The audio clip predominantly features static noise. ...... similar to that of a detuned
television or a device failing to receive a signal.</DESCRIPTION>
</CAPTION>
<REASONING>
1. Identify changes in Intensity (Volume): ...... struggling to maintain a consistent output, adding to the
impression of something malfunctioning or broken. </REASONING>
<SUMMARY>
The static noise in the audio is highly dynamic. ... leading to a sense of disorder and instability.
</SUMMARY>
</THINK>
<RESPONSE>
The audio presents a static noise, ...... is one of energetic chaos, preventing any possibility of calm or
predictability. </RESPONSE>

<REFLECT1> Does ”A” mention the cake, not B? Check turn 3.</REFLECT1>
<NEW RESPONSE>A</NEW RESPONSE>
<REFLECT2> Does ”A” mention the cake, not B? Check turn 3.</REFLECT2>
<NEW RESPONSE>B</NEW RESPONSE>

Prompt template of Refelection Sample

After producing the <RESPONSE>, you must perform a structured self-reflection step.
1. Compare the <RESPONSE> with the overall task requirements and check for issues such as: - Missing
or incomplete coverage of the audio content (did it stop too early? were some speakers/segments missed?).
- Repetition or redundant phrasing that should be removed or marked clearly. - Speaker attribution or di-
arization errors (wrong speaker assignment, merged speakers, or split speakers). - Prosody/tone/intonation
mistakes or overemphasis on irrelevant details. - Inconsistent reasoning or labels (final choice must align
with the reasoning and context). - Overly simplistic or single-hypothesis reasoning when alternatives exist.
2. Inside <REFLECT>...</REFLECT>, explicitly list: - The problems found in <RESPONSE>. - The
corrections or adjustments needed (without referencing or leaking the gold standard answer text). - Any
uncertainties or low-confidence areas.
3. Then rewrite the improved answer inside <FINAL ANSWER>...</FINAL ANSWER>, ensuring: - All
necessary content is covered. - No hallucinated details are added beyond the given <CAPTION>, <ASR>,
and <DESCRIPTION>. - Speaker attributions and reasoning are consistent. - The final answer matches the
reasoning and is labeled correctly with confidence if required.
Format strictly as: <REFLECT> [Your structured reflection here] </REFLECT>
<FINAL ANSWER> [Your corrected, high-quality final answer here] </FINAL ANSWER>
Here is the original bad answer: Turn0 Here is the golden answer: Golden Ans

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In order to reduce typos during the writing process and to optimize complex sentence structures
so that the article becomes simpler and easier to read, we use mainstream large language models
to refine certain paragraphs. For example, we use prompts such as “Help me correct the typos
and grammatical errors in the above text, and streamline the logic to make it clear and easy to
understand.”
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E CODE

Algorithm 1 Pseudocode of Pause/Abort/Reflect Mechaiam in ConfAudio.
Require: query q, audio a; policy model πθ , reference model πref; window K; max pauses M ; max length L;

thresholds (pause τp, abort τa, and reflect τr)
1: function CONF(ℓ, ℓref, a) ▷ inputs are logits, entropy↓ + KL↓ + audio-uncertainty↓
2: π ← softmax(ℓ/T ); πref ← softmax(ℓref/T )

3: Hn ←
−
∑

v∈V πv log πv

log |V | , KLn ←

∑
v∈V πv log

πv
πref,v

log |V | ▷ normalized entropy, and KL in [0, 1]

4: un ← norm
(
u(a)

)
∈ [0, 1] ▷ audio uncertainty (e.g., SNR/ASR confidence)

5: return clip
(
w1(1−Hn) + w2(1−KLn) + w3(1−un), 0, 1

)
6: end function
7: function MELTDOWN(y) ▷ e.g., high n-gram repeat or abrupt entropy drop
8: return

(
Repeat(y) > γ

)
9: end function

10: function CONFAUDIOGENERATE(q, a)
11: y ← [ ], h← [ ], p← 0, low ← 0
12: Ctok ← [ ], G← [ ] ▷ per-token confidence trace, and per-group averaged confidences
13: g sum← 0, g len← 0 ▷ running stats for current group
14: for t = 1 to L do
15: ℓ← πθ.NEXTLOGITS(q, a, y); ℓref ← πref.NEXTLOGITS(q, a, y)
16: Ct ← CONF(ℓ, ℓref, a) ▷ step confidence
17: Ctok.APPEND(Ct); g sum←g sum+Ct; g len←g len+1
18: LGCt ← min

(
(G = ∅ ? 1 : min(G) ), g sum/g len

)
▷ lowest group conf so far

19: if (LGCt < τa) ∧ (low ≥ K ∨ MELTDOWN(y)) then
20: y.APPEND(<EOS>); break
21: else if (Ct < τp) ∧ (p < M) then
22: y.APPEND(<PAUSE>); p← p+ 1
23: h← h ∥πθ.LATENTREASON(q, a, y) ▷ generate until </PAUSE>
24: continue
25: else
26: tkn← SAMPLE(ℓ); y.APPEND(tkn)
27: low ← (Ct < τp) ? (low+1) : 0
28: if tkn ∈ {<PAUSE>,</PAUSE>} then
29: G.APPEND(g sum/g len); g sum← 0; g len← 0 ▷ close current group
30: end if
31: if tkn = <EOS> then break
32: end if
33: end if
34: end for
35: k ← max(1, ⌊ρ|C|⌋); Cg ← 1

k

∑
c∈mink()

c ▷ get global confidence Cg

36: if (Cg < τr) ∨ ¬Rcons(q, y) then ▷ need explicit reflection
37: ypre ← y; (yrefl, y)← πθ. REFLECT(q, a, ypre)
38: else
39: yrefl ← ∅, ypre ← ∅
40: end if
41: return y, { ypre, yrefl, pauses = p, aborted = (y[−1] = <EOS>) }
42: end function
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