Under review as a conference paper at ICLR 2026

THINK OUT LOUD, PAUSE IN SILENCE:
CONFIDENCE-GUIDED REFLECT-PAUSE—ABORT FOR
ROBUST AUDIO PERCEPTUAL UNDERSTANDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Audio Language Models (LALMs) mainly fail for two errors: percep-
tual errors. To address these issues, we propose an adaptive framework that
couples perceptual grounding with computation that expands only when needed.
First, we introduce PAQA, a Perceptually grounded Audio QA dataset of 7,470
multiple-choice items that pairs multi-speaker, background-rich audio with step-
wise reasoning and reflection annotations, enabling supervision of verifiable
audio-grounded rationales. On the modeling side, we propose ConfAudio, which
unifies explicit, reflective reasoning (fine-tuned on PAQA) with implicit, pause-
driven latent computation trained via GRPO. A confidence-aware controller moni-
tors lowest-group-confidence (LGC) during decoding to insert pauses when uncer-
tainty rises and to abort unstable trajectories, thereby reallocating compute toward
hard perceptual segments. To stabilize the training process, we design a com-
posite reward that balances answer correctness, reasoning—answer consistency
with perceptual robustness, and output format. Across PAQA, MMAU-mini, and
MMAR, ConfAudio consistently improves both accuracy and consistency, partic-
ularly in noisy, multi-speaker conditions. Our results demonstrate that confidence-
guided, adaptive reasoning—grounded in verifiable acoustic evidence—mitigates
the dominant perceptual and reasoning failure modes in Audio-QA.

1 INTRODUCTION

Large language models (LLMs) have made notable progress in reasoning via chain-of-thought (CoT)
prompting and reinforcement-learning (RL) post-training (OpenAl, 2024} |Guo et al.l 2025), and
similar advances have extended to visual modalities (Huang et al.,|2025}; Feng et al., [2025). Unlike
text, audio introduces unique challenges such as overlapping speakers, pronoun ambiguity, shifting
emotions, and variable, noisy acoustic conditions. These factors often induce perceptual errors that
are among the most prevalent failure modes of current models (Ma et al., [2025b)).

Recent audio-capable LLMs (e.g., Qwen2-Audio (Chu et al., 2024), Audio Flamingo (Kong et al.,
2024), SALMONN (Tang et al.| 2024)) still tend to address audio question answering (Audio-QA)
by mapping transcripts directly to answers, with limited verification against the underlying acoustic
evidence. Prior audio CoT efforts (Xie et al., 2025; [Ma et al.l |2025a) supervise long free-form
rationales but do not consistently yield improvements on challenging problems. Moreover, RL-only
pipelines (L1 et al.l 2025bj Xie et al.| [2025; [Wu et al., |2025; [Zhong et al., [2025) improve answer
accuracy, yet the explicit reasoning process itself has not shown consistent benefits for Audio-QA.

Previous work (Ma et al., [2025b) shows that dominant failures on the MMAR benchmark arise
from perceptual errors and downstream reasoning mistakes. This underscores the need to first es-
tablish a strong perceptual foundation by explicitly incorporating verifiable evidence, especially in
two high-frequency scenarios: (i) distinguishing environmental sounds, and (ii) accurately transcrib-
ing multi-speaker conditions. Importantly for audio reasoning, many acoustic cues (e.g., rhythmic
density, timbre) cannot be faithfully translated into free-form text, so enforcing text-only rationales
risks losing critical granularity. In real-world speech comprehension, humans often reflect on their
reasoning process and, when uncertain, pause briefly to deliberate before responding. Inspired by
these observations, we pose the central research question: Can an audio—language model be en-
dowed with adaptive deep reasoning, combining perceptually grounded and verifiable CoT with
pause-driven latent computation, to robustly overcome audio perceptual errors?
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Figure 1: A challenging audio QA case with perceptual errors. Repeated lyrics in the background
sound/music and multi-speaker overlaps mislead simple reasoning. Although the CAPTION in-
cludes background sound and cues, the model reaches the correct answer after REFLECT reason-
ing which takes advantage of perceptual information. In particular, when enough acoustic features
are encountered, the decoder emits a special PAUSE token to allocate additional latent compute.

Interference from background sound and disambiguating multiple speakers are central challenges in
real-world audio understanding, yet they remain underrepresented in existing datasets. To address
this gap, we construct PAQA, the first Perceptually grounded Audio QA dataset, coupling multi-
speaker, background-rich audio with stepwise reasoning and reflection annotations. PAQA contains
7,470 multiple-choice Audio-QA pairs. Each example provides structured annotations—including
background-music separation, speaker analysis, and multi-turn reflections—and records both an in-
ternal answer and a final response. As illustrated in Fig.[I] a model with simple reasoning incorrectly
selects “Friday night” due to overreliance on repeated mentions, failing to distinguish background
sound from actual conversation. In contrast, a model equipped with reflective reasoning isolates
background sound and irrelevant speakers and aligns evidence to arrive at the correct answer.

To handle non-textualizable acoustic signals, we propose ConfAudio, an adaptive reasoning frame-
work that unifies explicit reflective reasoning with implicit latent computation. Explicit reasoning is
realized through fine-tuning on our curated dataset, while implicit reasoning is enabled by a learned
<pause> token trained with Group Relative Policy Optimization (GRPO). A confidence-aware
module monitors the lowest group confidence (LGC) during decoding and adaptively inserts a pause
token when confidence falls below a threshold; it also aborts unstable trajectories to ensure stability.
This mechanism encourages the model to attend more deeply to acoustic evidence and to re-segment
speakers when necessary. In addition, we design a composite reward that jointly balances answer
correctness, reasoning consistency, and output format. We evaluate ConfAudio on the test sets of
PAQA, MMAU-mini, and MMAR, where it consistently outperforms strong baselines.

(1) We construct PAQA, the first dataset that integrates multi-speaker and background-rich audio
with stepwise reasoning and reflection annotations. It covers multi-speaker QA, noisy speech-to-
text translation, and environment-centric QA, encouraging models to ground decisions in acoustic
evidence rather than transcript shortcuts.

(2) We propose ConfAudio, an adaptive reasoning framework that combines explicit audio-
grounded reflective reasoning with implicit latent computation. The latter is realized through a
learned pause token triggered by a lowest group confidence (LGC) score, enabling the model to
silently allocate additional computation when uncertain or abort unstable trajectories.

(3) We design a composite reward that jointly optimizes answer accuracy, format compliance, acous-
tic consistency, and length control, discouraging unnecessary verbosity. Experiments demonstrate
that ConfAudio enhances adaptive reasoning, effectively reducing perceptual and reasoning errors.

2 DATA COLLECTION

2.1 COMPLEX AUDIO UNDERSTANDING

R1-AQA (Li et al.,[2025b)) and Omni-R1 (Zhong et al.|[2025) show that requiring the model to read
write out step by step text does not guarantee improvements in Audio QA (AQA). In several AQA
settings, explicit CoT provides only marginal or no gains over answer-only decoding, sometimes
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even increasing latency. For simple ASR tasks, we also observed that models tend to overfit sur-
face transcripts rather than perform robust reasoning over acoustic evidence (see Fig. [6). Unlike
text-only scenarios, audio understanding requires grounding in acoustic cues (e.g. speaker turns,
overlapping speech regions) and careful attention to scenarios. Motivated by this, we further analyze
Qwen2-Audio’s bad cases on the CoTA (Xie et al., [2025) benchmark and identify two major chal-
lenges:(1)difficulties in handling multi-speaker conversations, where insufficient speaker diarization
under overlapping leads to incorrect attribution of utterances and a consequent loss of dialogue;
(2)failures in environmental-sound discrimination, whereby non-speech events and nonsignificant
background sound are classified as evidence.

1. Dataset Collection 11. Supervised
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Figure 2: An overview of our work. First, we collected PAQA dataset, with annotating perceptual
information like background sound(BGS) and ASR transcript. Secondly, we fine-tuned on PAQA
as the policy model in the reinforcement learning. The reinforcement learning mechanism includes
pause trigger and controller, and composite reward rules to better performance.

To advance speaker-aware modeling and noise-resilient perception, we construct a dataset that inte-
grates multi-speaker and background-rich audio with stepwise reasoning and reflection annotations.

Background-rich augmentation We sample background audio from publicly licensed environ-
mental categories in MUSAN (Snyder et al.| [2015)) (e.g. alarms, typing, rain, cafeteria, street traffic,
soft instrumental music). For a clean speech clip s and a background clip n, we first RMS-normalize
both and then scale the background so that the power ratio satisfies SNRgg = 10, ensuring that the
speech remains ten times stronger than the background, audibly present but not dominant. Each
item is annotated with a tag indicating the presence and type of background (e.g., ’Soft instrumental
music — please ignore.”), which discourages unnecessary reliance on background cues.

Multi-speaker Alignment To discourage models from shortcutting on global transcripts and to
encourage speaker-localized reasoning, we annotate turn structures in a <SPEAKER> section using
a compact, ordered format such as “Speaker 1: ..””. We then apply Qwen3-ASR (Team, 2025)
to each audio sample to generate a verbatim raw transcript. To mitigate hallucination and drift
between summaries and verbatim text, we introduce a quote-presence test (QPT), which measures
fuzzy overlap between <ASR> snippets A = a; and <SPEAKER> sentences S = s;. Specifically,
SeqRatio is defined as the standard difflib ratio on normalized strings. Items with QPT" < 0.85 are
flagged for revision. The formulation is given by:

M
1 .
QPT = i §:1 max SeqRatio(norm(s; ), norm(a;)). (1)

2.2  REFLECTION TO CORRECT WRONG INITIAL RESPONSES

In natural conversation, speakers frequently self-monitor and revise their utterances. Building on
prior work showing that reflection-driven self-correction improves model performance in reasoning
tasks (Shinn et al., [2023; Madaan et al., [2023; Wang et al.| |2023), we adopt a reflection-augmented
pipeline for complex audio understanding. Concretely, a lightweight baseline model first generates
an initial <RESPONSE> for each audio-QA item, as illustrated in the third column of Fig. E} We
then automatically detect errors—such as option mismatches, speaker attribution mistakes, hallu-
cinated content inconsistent with ASR transcripts, or misinterpretation of noise cues—and prompt
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the model to produce a grounded diagnostic analysis <REFLECT>. This analysis explicitly refer-
ences <BGM>, <SPEAKER>, and <ASR> to explain the failure and localize the supporting evidence.
Conditioned on this analysis, the model is guided to generate a corrected <F INAL_ANSWER>. For
training, we store the triplet (KRESPONSE>, <REFLECT>, <FINAL_ANSWER>), which provides
explicit reflection supervision and, from each original audio item, yields an additional corrected ex-
ample, effectively doubling the supervised data while enriching them with interpretable, perception,
grounded self-correction signals. For detailed prompt template, see Appendix [C}

The dataset supports a range of tasks, including multi-speaker QA, speech-to-text translation under
noise, and environment-centric QA. An in-depth analysis of the final PAQA dataset is provided in
Appendix [A] while a detailed statistical overview is summarized in Table[T}

Table 1: Dataset Source and Statistics.

Dataset Source Main Skills Learning BGM Used Quantity Reflection
Multi-Speaker (Xie et al., 2025) Multi-speaker Speech QA Free Sound 1.5k 1.4k
MELD (Poria et al.,|2019)  Speech Emotion QA Sound Bible 1.5k 1.4k
CoVoST2 (Wang et al.|[2020) Speech-to-Text Translation No 1.5k No

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW

In real-world speech comprehension, humans often reflect on their reasoning process and, when
uncertain, pause briefly to deliberate internally before responding (Meyer} [2023). To mirror the
sophisticated human ability to process complex audio environments through both explicit explana-
tion and implicit contemplation Boomer] (1970); |Shriberg| (2001, we propose a dual-mechanism,
confidence-gated adaptive reasoning training pipeline, with an internal confidence score deter-
mining the model’s reasoning path: an explicit Chain-of-Thought with <REFLECT>, or an implicit
latent thinking to handle uncertainty with the <PAUSE> token. The whole framework is presented
in Fig. ] Our methodology first employs Supervised Fine-Tuning (SFT) to teach the model a spe-
cific response structure, compelling it to generate answers that include both an analysis of perceptual
audio information and a reflective reasoning process(with <REFLECT> in the chain-of-thought).
Second, to move beyond simple pattern imitation and enhance the model’s adaptive reasoning ca-
pabilities, we utilize an advanced reinforcement learning algorithm, Generalized Reward Policy
Optimization (GRPO). Within this RL stage, we introduce a key innovation: when low confidence
triggers the <PAUSE> mechanism, the model activates an implicit latent reasoning module to bet-
ter process ambiguous, non-textual audio cues. This entire process is guided by a specialized reward
function designed to optimize the quality and grounding of the final response.

3.2 SFT FOR STRUCTURED EXPLICIT GENERATION WITH REFLECTIVE REASONING

Using the specialized dataset detailed in Section[2.2] we explicitly train the model to output a dedi-
cated <REFLECT> segment following its initial chain-of-thought reasoning. This structured output
ensures that for each prompt, the model produces a transparent analysis of background sound and
speaker, and reflection that allows for direct inspection before a final answer is given. We aim to
teach the model to generate its responses in a specific, structured format, it lays the groundwork for
the subsequent reinforcement learning phase.

3.3 RL WITH ADAPTIVE REASONING
3.3.1 GRPO ON FINE-TUNED MODELS

We observed that fine-tuning instruction-tuned models on PAQA leads to performance improve-
ments, although these gains are not significant (see Table [2). While the Supervised Fine-Tuning
(SFT) stage effectively establishes a foundation by teaching the model to generate more complex
chain-of-thought reasoning, its potential may be inherently constrained by the nature of imitation
learning. To transcend these limitations, we introduce a second stage based on GRPO.
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Figure 3: Standard vs. reflective-inference vs. pause-inference (and finetuning). Similar to |Goyal
et al.| (2024), the rounded squares denote one Transformer operation (a self-attention and MLP) in
a 2-layer Transformer. Any Ignore Output denotes that during inference, the corresponding output
token is not extracted and thus, not fed back autoregressively.

Starting from the SFT checkpoint (reference policy . frozen), we generate groupwise rollouts,
compute R(z) via equation 8} and update my with GRPO (Shao et al., 2024). We partition rollouts
by task group g € {PAQA, AVQA} and difficulty bucket (low/med/high). Within each group, we

compute groupwise baselines to reduce variance:
RO = pG _ 1 Z R )
Mg~

Jj€g

To process and reason upon non-textual audio cues that are often lost in pure text representations, we
1ncorp0rate confidence into GRPO by using the lowest group confidence (LGC) as a sample weight

(see in u For a trajectory ¢ with task reward r‘a‘k (covering accuracy, formatting, consistency,
and length penalties) and group baseline 7, the advantage is calculated as A; = w; (r'®™* —7), where
w; is a clipped, standardized function of the trajectory’s LGC, and w; = 0 for filtered samples.

The final reward may also include recovery and leak terms when pause control is enabled: r; =
rk 4. max (0, LGCP* —LGCP™) — A\jeak - 1 {leak }, where 7, Ak are selected to balance accuracy,
formatting, and robustness.

3.3.2 IMPLICIT LATENT THINKING

Beyond explicit reflection, the model can also perform hidden computation via implicit pauses.
This mechanism is particularly vital when processing complex audio data. Audio streams contain a
wealth of perceptual, non-verbal cues—such as speaker intonation, overlapping speech, or ambient
noise—that are often difficult to articulate fully in explicit text. An implicit pause allows the model
to internally process and weigh these subtle audio features before committing to a textual output,
enabling a deeper, more grounded reasoning process.

To govern this behavior, we introduce a confidence-based gating mechanism with two distinct
thresholds: Tpayee for outright termination and a softer threshold Tpaue > Taport- At €ach decoding
step ¢, a specific action is selected based on the model’s internal confidence score Cl):

abort if Cle)y < Tavort,

action(t) = < pause if Tabort < Ch() < Tpause, 3)
continue otherwise.

where cont inue is the default action to normal generation. When confidence falls into the inter-
mediate range, the model triggers an internal deliberation step. When a pause is triggered at t*, the
model emits a <PAUSE> special token and generates up to K, latent tokens Z,.7, (where L < K,).
These “pause tokens” are not surfaced in the final visible output and are explicitly excluded from
the gradient calculations during parameter optimization. Their sole function is to iteratively update
the model’s internal hidden state, allowing it to “’think” and process complex information before
resuming the generation of visible tokens. Formally, the full token sequence and visible output are
defined as (6 means concatenation):

5’ = Y1+ & <PAUSE> & icha Yvis = Y1+ €]

To encourage pausing specifically in text involving speech-only, non-textual cues (where extra

acoustic reasoning may be beneficial), we maintain a keyword set .4, such as "tone”, ”pitch”, when-
ever any word w € A appears in the recent context, we add a positive logit bias 3, > 0 to the
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<PAUSE> token:

lepauses — Lepnuses + Dac - ]I[ﬂ weAin Context}. 3)
Token confidence C; means the negative average log-probability of the top-k tokens at position s.
k
1 .
Ci = —%;logPi(]) (6)

where k denotes the number of top tokens considered. Lower confidence means uncertainty in
token prediction. During training, we use lowest group confidence to govern the runtime policy
above (pause vs. continue vs. abort), yielding a coherent control scheme. If the confidence score
is extremely low (Cj ;) < Taport), it indicates a high likelihood that further deliberation will be
unproductive. The abort prevents the model from getting stuck in prolonged, unnecessary pause
loops and significantly accelerates overall inference speed by pruning unpromising trajectories early.

3.3.3 LOWEST GROUP CONFIDENCE (LGC)

We consider the lowest group confidence metric to provide sufficient signals for estimating the
quality of reasoning trajectory. Group confidence averages token confidence over overlapping spans
of the reasoning trace. Each token t is linked to a sliding window group K;, consisting of n previous
tokens. In particular, we identify its bottom 15% group confidence. For each window, we compute

a normalized mean probability: 1
O = 57 2 O )
"ltek i

where | K;| is the number of tokens in group K;. The LGC of the trajectory is then defined as
the minimum of these window confidence scores, LGC(y) = ming—1, x Ck,. This definition
emphasizes the weakest local segment within the reasoning trajectory: even a small cluster of highly
uncertain tokens can significantly reduce LGC, making it a sensitive indicator of detecting local
reasoning collapse, a phenomenon effectively demonstrated by [Fu et al.| (2025).

3.4 COMPOSITE REWARD FUNCTION

To produce correct answers but also generate interpretable and well-organized reasoning, we intro-
duce a novel composite reward function R defined as the weighted sum of four components: besides
the accuracy reward and a format reward, we designed a consistency reward for reasoning coherence
and explanation quality, and length reward when accurate for stablize the training.

R= Wace 7zacc + Weme Rfmt + Weons Rcons (ga QCOT) + Wien (Racc X Rlen)7 (8)

where R,.. measures the correctness of the final answer, the format reward, denoted as R, vali-
dates whether the output follows the required structured reasoning schema, R cons (4, Jcor) measures
the logical consistency between the final answer and the intermediate reasoning, and R, penalizes
both under- and over-elaboration, where too short responses are heavily penalized with a score of 0
to reflect insufficient reasoning. Conversely, responses that are too long are penalized using a linear
decay function to discourage excessive reasoning.

3.4.1 ACCURACY REWARD

The accuracy reward, R,.., measures the correctness of the final answer. We parse the completion x
for the <FINAL_ANSWER> (FA) tag, falling back to the <RESPONSE> (R) tag if FA is absent. Let
a completion be denoted by x. From z, we extract the predicted answer 9,y € {A, B,C, D} and
compare it to the ground truth label.

3.4.2 FORMAT REWARD

The Format Reward validates whether the output follows the required structured reasoning schema;
it is assigned 1.0 if all required tags are present, correctly ordered, and properly nested, and 0.0
otherwise. This reward component addresses a common challenge in Reinforcement Learning (RL)
known as reward sparsity. We distinguish between two levels of formatting:
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Strict Format (Ideal Schema): This is the ideal structure to follow a complex schema. However,
enforcing this strict format during RL training is problematic, resulting in a persistent Ry = 0.0,
providing no gradient for the model to learn the format.

Weak Format (RL Reward for Latent Reasoning): To overcome reward sparsity, Ry is imple-
mented based on a “weak format”. This ”weak format” approach allows the model to first learn
the fundamental <THINK>. . .<RESPONSE> sequence. Subsequently, other rewards, such as the
consistency reward, implicitly incentivize the model to correctly populate the CoT with the neces-
sary analysis (e.g., ASR, Speaker analysis) to maximize its score, thereby progressively guiding the
model toward the ideal “strict format”.

3.4.3 CONSISTENCY REWARD

Beyond task accuracy and format concerns, we regularize chains for internal consistency along three
axes: (i) BGM robustness blocks spurious causal use of background sound/music; (ii) Speaker—
ASR fidelity rewards quotes/snippets that appear in the ASR transcript; and (iii) Reasoning—
Answer consistency rewards agreement between the last internal choice from <THINK> and
the final answer. Let ryes(2) € {0,1}, rogi(z) € [0,1], and ru (9, fcor) = 1[gL(g,gCOT) =
1.(7, QcoT)] € {0,1}. We combine them with a hard background sound gate:

Reons (@7 gCoT) = Thbgs (ga QCOT) ()\spk Tspk(yv gCoT) + A rra(:gv gCOT))a /\spk7 Am >0, )\spk'i')\ra =1

)
In words, any offending background sound/music causal claim zeroes the consistency reward; oth-
erwise, we interpolate between sentence-level Speaker—ASR alignment and self-agreement of the
final answer. The default weights A = Ay = 0.5 worked well in our runs.

Background sound/music robustness To prevent spurious cues from background sound, we pe-
nalize any reasoning/description sentence that uses background sound/music as causal evidence.
We set rpgs(2) = 0 if reasoning invokes background sound/music as causal evidence (e.g., “bgm”,
“background sound”, instrument names), otherwise rpgs(2) = 1.

Speaker—ASR fidelity Within <THINK>, let A = a; denote ASR sentences and S = s; denote
speaker snippets (i.e., quoted spans or colon-delimited clauses). We measure how faithfully speaker-
attributed quotes in the model’s outputs appear in the ASR transcript. Let S = S(7, §CoT) be the set
of quoted/snippet spans extracted from the chain (e.g., speaker-attributed quotes), and let A be the
set of sentences from the ASR transcript of the input audio. We softly align each snippet to its best-
matching ASR sentence via a normalized similarity sim(-,-) € [0, 1], and average over snippets:

1
rspk (9, Gcot) = Sl Z seS max sim(norm(s), norm(a)) € [0, 1]. (10)

Here, norm(-) is a deterministic text normalization (lowercasing, stripping punctuation/speaker tags,
collapsing whitespace). The similarity is a normalized edit-based score:

Lev(u,v)

sim(u,v) =1 € [0,1], (11)

max{ul, [v[}
where Lev(+, -) is the (character-level) Levenshtein distance.

This rewards quotes that truly occur in the ASR while tolerating minor lexical or punctuation vari-
ations; fabricated or hallucinated quotes receive low similarity. For completeness, we adopt the
following conventions for edge cases:

1, |S| =0 (no verbatim quotes to verify);

12
0, |A =0 A |S|>0 (no ASR to support quotes); (12

Tspk(?jv?)CoT) = {

Reasoning—Answer consistency Inlong, noisy chains, decoding drift can make the model “reason
to A but output C”. Therefore, we design rewarding self-agreement. From <THINK> we extract
the last declared option (). Let gz (x) denote the final emitted letter (FA/R). Then we calculate

Tcons(x) = 1[?]L(x) = gL(x)} .
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Table 2: Performance on MMAU Test-mini (Sakshi et al.,|[2024) and MMAR (Ma et al., 2025b).

Method MMAU Test-minit MMART

Sound Music Speech  Average Sound Music Speech  Average
Qwen2-Audio 61.26 5359  48.05 54.30 3333 2427 3231 30.00
+SFT 62.76  44.61 55.86 54.41 41.82 3495 4592 40.90
+GRPO-NoThink 68.17 61.38  60.66 63.40 5152 38.83 4592 45.40
+GRPO + CoT 70.27  59.88  59.46 63.20 58.18 3398  46.60 46.30

+GRPO + ExpCoT  75.07 5898  63.66 65.90 4485 39.81 59.86 48.20
& - weak format 7297 61.08  63.96 66.00 4242  43.69 61.22 49.10
Ours (ConfAudio) 75.67 62.27  64.26 67.40 58.18 45.63  62.59 55.50

Audio-CoT 62.16  55.99 56.16 58.10 3576 2524 34.01 31.67
Audio-Reasoner 60.06 64.30 60.70 61.71 43.64 33.50 32.99 36.71

Together, the consistency measure discourages spurious reliance on background sound/music, en-
forces alignment between speaker summaries and ASR evidence, and ensures that the internally
declared answer matches the final emitted answer.

3.4.4 LENGTH SHAPING WHEN ACCURATE

To encourage adequate evidence gathering (speaker attribution, noise filtering) without overlong
chains, we introduce a length sub-reward when the accuracy reward is 1. Let T'(x) be a sim-
ple token proxy (count of non-whitespace sequences in the whole completion). With thresholds
Thin = 300, Tinax = 600, and decay scale K > 0, we use a piecewise-linear schedule. To en-
force clean outputs, we gate by the absence of post-answer content, where any non-whitespace after
</FINAL_ANSWER> leads to 0.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

All experiments fine-tune the same pretrained backbones (Qwen2-Audio-7B-Instruct), using the
framework introduced by [Li et al.| (2025b). Training is conducted with a batch size of 1 per GPU,
with by 2 gradient accumulation steps, resulting in an effective total batch size of 16. We adopt a
learning rate of le — 6, a temperature of 1.0, and configure the GRPO to sample 8 responses per
group with a KL coefficient 5 of 0.1. For models incorporating pause latent thinking mechanism, we
set tau_pause_quantile=0.50 that allows up to 8 pauses per sequence with 64 thinking tokens each,
plus recovery bonus (0.05) and leak penalty (1.0) for think token containment.

We evaluate six configurations: SFT, supervised fine-tuning only with no reasoning schema and no
<pause>; GRPO-Nothink, GRPO post-training that emits answers directly without <REFLECT>
or <pause>; GRPO+CoT, GRPO enhanced with thinking before the answer (in the weak for-
mat of <THINK><ANSWER>); GRPO+ExpCoT, GRPO enhanced with explicit <THINK> (in-
cluding <REFLECT>) but no <pause>; Ours (ConfAudio), GRPO enhanced with the explicit
schema and <pause>; and External Baselines including Audio-Reasoner (Xie et al., 2025) and
Audio-Thinker (Wu et al., 2025). We use PAQA (train set) for supervised finetuning. For RL train-
ing, we utilize 30,000 augmented samples generated upon the AQVA (Yang et al., 2022)) dataset,
with each response reformulated into a <think>...</think><answer>...</answer>
reasoning—answer structure. Models are evaluated on several benchmarks, PAQA Test(hard),
MMAU (Sakshi et al.| [2024)), and MMAR (Ma et al.| 2025b), the results are listed below.

4.2  MAIN RESULTS
Table 2] summarizes the main results across two aggregated benchmarks (MMAU, MMAR). Several

key findings emerge from the experimental analysis. A specific case study is shown in Appendix B]

SFT. vs. Baseline Injecting audio perceptual information via SFT proves beneficial, particularly in
speech, which constitute the primary focus of our study. However, as the data is heavily skewed
toward speech, some degree of domain shift is observed in music, leading to suboptimal results.
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RL vs. SFT GRPO-NoThink performs better than with SFT, and each introduced module in our
method improves the performance well. Although GRPO-NoThink outperforms SFT, its improve-
ment stems mainly from reinforcement rather than genuine reasoning. GRPO alone or with naive
CoT prompts fails to ensure stable learning. Only when the model is first SFT-trained on our cu-
rated audio-reasoning data, which enhances perceptual understanding and format adherence, and
then optimized by GRPO under our explicit CoT design, does it achieve coherent and perceptually
grounded reasoning across complex audio scenes.

Pause mechanism works. Ours method with explicit reflection and implicit latent reasoning sur-
passes all other baselines. Notably, it improves the Music subset, offsetting the bad performance of
just finetuning. More detailed analysis are provided in Appendix [A-3]

Abort mechanism balances speed with formatting penalties. While abort (early stopping under
high uncertainty/high entropy) improves throughput and latency control, we observe that it tends to
output think-only simplified content, yielding very low format rewards. We therefore down-weight
the format reward (from 0.5 to 0.1) and make a baseline with a weak format. Even under this setting,
ConfAudio continues to outperform alternatives, suggesting that the pause mechanism remains the
principal driver of performance gains.

4.3 ABLATION STUDY

Background Sound  As shown in Fig[Ja), the introduction of background sound leads to measur-
able degrades zero-shot performance. However, this drop is substantially mitigated while explicit
“ignore prompt” cues are provided. This validates that our reflection step (Section [3) substantially
improve accuracy. In Fig. f[b), we further compare the effect of varying numbers of reflection turns,
moving from O to 1 round yields a large accuracy enhacement while keeping outputs mostly clean.
However, adding more rounds brings diminishing returns and “overthinking”. A similar trade-off is
identified in the use of the pause mechanism. Excessive pausing negatively affects performance(see
Fig. [3), suggesting that it is suitable to set max pause token between 1 and 3. We also evaluate
on the test set of PAQA(see Tab[3), on the category of multi-speaker and MELD 2025),
ConfAudio performs the best. Furthermore, under the challenging setting with background sound
at SNR=5dB, a condition that considerably degrades most models, our ConfAudio deteriorates the
least, retaining state-of-the-art accuracy and consistency. This resilience is attributed to its pause-
driven implicit reasoning and rewards aware of background sound/music.
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instruction recovers accuracy. reasoning answer but more frequent corruption. Information of speaker analysis leads to better performance.

Figure 4: Comparison between different audio situations.

Multi Speaker Overall, adding a short “background information” prompt improves accuracy. The
benefit is consistent across all speaker counts, and the base model is strong with 2 speakers (80.26%),
but drops sharply as speakers increase. This pattern matches the intuition that more speakers intro-
duce attribution and coreference errors. Crucially, 3—6 speaker cases benefit most from the added
context. For 7+ speakers, the improvement is modest, indicating that richer cues (explicit diarization
tags, role summaries, or brief scene summaries) are likely needed.

5 RELATED WORKS

5.1 LARGE AUDIO-LANGUAGE MODELS (LALMS)

Early LALMs such as Qwen2-Audio(Chu et al)} 2024), Audio Flamingo(Kong et al, [2024), and
SALMONN(Tang et al.| 2024)) advanced ASR, but remained fragile in real-world reasoning tasks in-




Under review as a conference paper at ICLR 2026

80

- MMAU
75 Format Reward

Multi-Speaker(hard) BGM-rich Acc.

Model Acc. Consistency 1 SNR=10 SNR=5

e
®

70

Qwen2-Audio  42.2 38.5 41.0  20.1

+SFT 46.2 415 4.0 312 ‘
+GRPO-NoThink 52.7 48.3 502 384 *
+GRPO-ExpCoT 61.5 58.7 60.8  47.6 55 ‘
Ours 70.4 68.1 69.5 57.8 50
Audio-CoT 50.6 46.9 483  35.0 o
Audio-Reasoner 56.8 52.7 559 41.8 40 . ’ . * 0.0

Number of Max PAUSE Token

MMAU Accuracy (%)
° o
s >
Avg. Format Reward (0-1)

)
~

Table 3: Evaluation on the test set of PAQA. Our Figure 5: Abaltion study of #<PAUSE> to-
model performs best in each category. kens. Set max pause token as 1-3 is suitable.

volving overlapping speakers and non-stationary noise. On-demand CoT in Audio Flamingo 3(Goel
et al.,[2025)) and structured CoT in Audio-Reasoner (Xie et al., 2025)—yet models often reverted to
transcript shortcuts whenever acoustic evidence was difficult to verbalize. To address these limita-
tions, we release a structured dataset that couples multi-speaker and background-rich audio, explic-
itly guiding LALMs to ground decisions in acoustic rather than purely textual evidence.

5.2 EXPLICIT REASONING IN LARGE LANGUAGE MODELS

In LLMs, structured reasoning through CoT, reflection, and RL post-training has yielded consistent
gains beyond supervised fine-tuning (SFT) (Guo et al.| 2025; Team et al.| 2025). While Vision-
R1 (Huang et al., 2025) and Video-R1 (Feng et al., 2025) extended RL-based reasoning to over-
thinking suppression. In audio, GRPO-style RL underlies RI-AQA and Omni-R1 (Shao et al.,[2024;
Li et al [2025b} |[Zhong et al.l [2025)), with mixed evidence on whether RL alone suffices. More re-
cent approaches (Wen et al., 2025; Wu et al., [2025; |Li et al., [2025a; [Jin et al., [2025) highlight that
objectives should reward useful and concise reasoning rather than verbosity. In this work, we in-
stead unify explicit, audio-grounded reasoning with reflection, operationalized through a multi-term
reward that enforces correctness and conciseness.

5.3 IMPLICIT REASONING AND PAUSE-GATED LATENT COMPUTE

Complementary to explicit rationales, implicit computation allocates additional internal processing
before token emission. Learned <pause> tokens can trigger silent forward passes (?), echoing
earlier adaptive-computation approaches(Graves, [2017; Banino et al., |2021) that learn instance-
dependent halting policies. To our knowledge, such latent computation has not been systemati-
cally validated in audio-language reasoning. Our contribution is to extend <pause> to LALMs
and couple it with a lowest-group-confidence (LGC) controller: when confidence drops on acous-
tically inexpressible cues, ConfAudio diverts into a short, budgeted latent stream and can abort tail
trajectories under severe uncertainty.

6 CONCLUSION

In this paper, to address two entangled failure modes in Audio-QA, perceptual and reasoning er-
rors, we build PAQA to supervise verifiable, audio-grounded questions-answerings, and propose
ConfAudio, which couples explicit reflection with implicit, pause-driven latent thinking trained via
GRPO with a composite reward. Specially, a lowest-group-confidence controller inserts <pause>
or aborts unstable trajectories. ConfAudio delivers consistent gains in accuracy and consistency
under noisy, multi-speaker conditions, narrowing the gap between acoustic evidence and reasoning.

ETHICAL CONSIDERATIONS

Our dataset is constructed from publicly available corpora or controlled augmentations, with all
speech either anonymized or synthesized to avoid privacy leakage. Despite the contributions, sev-
eral limitations remain. First, while our dataset is carefully annotated with multi-speaker and

10



Under review as a conference paper at ICLR 2026

background-rich reasoning structures, its scale is modest compared to general-purpose audio cor-
pora, which may limit coverage of rare conversational phenomena.

REPRODUCTIVITY STATEMENT

We prioritize reproducibility by releasing dataset specifications, and preprocessing scripts for back-
ground injection, speaker segmentation, and ASR alignment. All training configurations—including
optimizer settings, batch sizes, learning rate schedules, and LoRA ranks—are documented and re-
leased as YAML files. Our evaluation follows a consistent protocol across our dataset, MMAU,
and MMAR, reporting accuracy, consistency, and robustness under noise. Results are averaged over
multiple random seeds to avoid cherry-picking. Upon publication, we will release our training data,
code, inference pipelines, and checkpoints under an open-source license.

REFERENCES

Andrea Banino, Samuel Ritter, et al. Pondernet: Learning to ponder. In ICML, 2021.

Donald S. Boomer. Psycholinguistics; experiments in spontaneous speech: Frieda goldman eisler
academic press, london new york 1968. viii, 169 pp. 50 s. Lingua, 25:152-164, 1970.
ISSN 0024-3841. doi: https://doi.org/10.1016/0024-3841(70)90028-8. URL https://www.
sciencedirect.com/science/article/pii/0024384170900288.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Ly,
Jinzheng He, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen2-audio technical report. 2024.
URL https://arxiv.orqg/abs/2407.10759.

Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Junfei Wu,
Xiaoying Zhang, Benyou Wang, and Xiangyu Yue. Video-rl: Reinforcing video reasoning in
mllms, 2025. URL https://arxiv.org/abs/2503.21776.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025.
URLhttps://arxiv.org/abs/2508.15260.

Arushi Goel, Sreyan Ghosh, Jaehyeon Kim, Sonal Kumar, Zhifeng Kong, Sang gil Lee, Chao-
Han Huck Yang, Ramani Duraiswami, Dinesh Manocha, Rafael Valle, and Bryan Catanzaro.
Audio flamingo 3: Advancing audio intelligence with fully open large audio language models,
2025. URL https://arxiv.org/abs/2507.08128\

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens, 2024. URL
https://arxiv.org/abs/2310.02226.

Alex Graves. Adaptive computation time for recurrent neural networks, 2017. URL https://
arxiv.org/abs/1603.08983.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. 2025. URL https://arxiv.org/abs/2501.12948.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
Shaohui Lin. Vision-rl: Incentivizing reasoning capability in multimodal large language models,
2025. URL https://arxiv.org/abs/2503.067409.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-rl: Training llms to reason and leverage search engines with reinforcement
learning, 2025. URL https://arxiv.org/abs/2503.09516,

Zhifeng Kong, Arushi Goel, Rohan Badlani, Wei Ping, Rafael Valle, and Bryan Catanzaro. Audio
flamingo: A novel audio language model with few-shot learning and dialogue abilities, 2024.
URL https://arxiv.org/abs/2402.01831.

11


https://www.sciencedirect.com/science/article/pii/0024384170900288
https://www.sciencedirect.com/science/article/pii/0024384170900288
https://arxiv.org/abs/2407.10759
https://arxiv.org/abs/2503.21776
https://arxiv.org/abs/2508.15260
https://arxiv.org/abs/2507.08128
https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2503.06749
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2402.01831

Under review as a conference paper at ICLR 2026

Gang Li, Jizhong Liu, Heinrich Dinkel, Yadong Niu, Junbo Zhang, and Jian Luan. Reinforcement
learning outperforms supervised fine-tuning: A case study on audio question answering, 2025a.
URL https://arxiv.org/abs/2503.11197.

Gang Li, Jizhong Liu, Heinrich Dinkel, Yadong Niu, Junbo Zhang, and Jian Luan. Reinforcement
learning outperforms supervised fine-tuning: A case study on audio question answering. arXiv
preprint arXiv:2503.11197, 2025b. URL https://github.com/xiaomi-research/
rl-aga;https://huggingface.co/mispeech/rl-agal

Ziyang Ma, Zhuo Chen, Yuping Wang, Eng Siong Chng, and Xie Chen. Audio-cot: Exploring
chain-of-thought reasoning in large audio language model, 2025a. URL https://arxiv.
org/abs/2501.07246l

Ziyang Ma, Yinghao Ma, Yanqiao Zhu, Chen Yang, Yi-Wen Chao, Ruiyang Xu, Wenxi Chen,
Yuanzhe Chen, Zhuo Chen, Jian Cong, Kai Li, Keliang Li, Siyou Li, Xinfeng Li, Xiquan Li,
Zheng Lian, Yuzhe Liang, Minghao Liu, Zhikang Niu, Tianrui Wang, Yuping Wang, Yuxuan
Wang, Yihao Wu, Guanrou Yang, Jianwei Yu, Ruibin Yuan, Zhisheng Zheng, Ziya Zhou, Haina
Zhu, Wei Xue, Emmanouil Benetos, Kai Yu, Eng-Siong Chng, and Xie Chen. Mmar: A chal-
lenging benchmark for deep reasoning in speech, audio, music, and their mix, 2025b. URL
https://arxiv.org/abs/2505.13032.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
refine: Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/
2303.17651.

Antje S Meyer. Timing in conversation. Journal of Cognition, 6(1):20, 2023.

OpenAl. Learning to reason with LLMs, 2024. URL https://openai.com/index/
learning-to-reason—-with—-11ms/l [Accessed 19-09-2024].

Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
Mihalcea. MELD: A multimodal multi-party dataset for emotion recognition in conversations.
In Anna Korhonen, David Traum, and Lluis Marquez (eds.), Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 527-536, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1050. URL https:
//aclanthology.org/P19-1050/l

S Sakshi, Utkarsh Tyagi, Sonal Kumar, Ashish Seth, Ramaneswaran Selvakumar, Oriol Nieto, Ra-
mani Duraiswami, Sreyan Ghosh, and Dinesh Manocha. Mmau: A massive multi-task audio
understanding and reasoning benchmark, 2024. URL https://arxiv.org/abs/2410.
19168.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2023. URL |https://arxiv.org/abs/
2303.11366.

Elizabeth Shriberg. To ‘errrr’is human: ecology and acoustics of speech disfluencies. Journal of the
international phonetic association, 31(1):153-169, 2001.

David Snyder, Guoguo Chen, and Daniel Povey. Musan: A music, speech, and noise corpus, 2015.
URLhttps://arxiv.org/abs/1510.08484.

Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and
Chao Zhang. Salmonn: Towards generic hearing abilities for large language models, 2024. URL
https://arxiv.org/abs/2310.13289.

12


https://arxiv.org/abs/2503.11197
https://github.com/xiaomi-research/r1-aqa; https://huggingface.co/mispeech/r1-aqa
https://github.com/xiaomi-research/r1-aqa; https://huggingface.co/mispeech/r1-aqa
https://arxiv.org/abs/2501.07246
https://arxiv.org/abs/2501.07246
https://arxiv.org/abs/2505.13032
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://aclanthology.org/P19-1050/
https://aclanthology.org/P19-1050/
https://arxiv.org/abs/2410.19168
https://arxiv.org/abs/2410.19168
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/1510.08484
https://arxiv.org/abs/2310.13289

Under review as a conference paper at ICLR 2026

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
Ilms. 2025. URL https://arxiv.org/abs/2501.12599.

Qwen Team. Qwen3 technical report. Technical report, Qwen Team, 2025. URL https://
github.com/QwenLM/Qwen3/blob/main/Qwen3_Technical_Report.pdfl Ac-
cessed: 2025-09-25.

Changhan Wang, Anne Wu, and Juan Pino. Covost 2 and massively multilingual speech-to-text
translation, 2020. URL https://arxiv.org/abs/2007.10310.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171l

Cheng Wen, Tingwei Guo, Shuaijiang Zhao, Wei Zou, and Xiangang Li. Sari: Structured audio
reasoning via curriculum-guided reinforcement learning, 2025. URL https://arxiv.org/
abs/2504.15900.

Shu Wu, Chenxing Li, Wenfu Wang, Hao Zhang, Hualei Wang, Meng Yu, and Dong Yu. Audio-
thinker: Guiding audio language model when and how to think via reinforcement learning, 2025.
URLhttps://arxiv.org/abs/2508.080309.

Zhifei Xie, Mingbao Lin, Zihang Liu, Pengcheng Wu, Shuicheng Yan, and Chunyan Miao. Audio-
reasoner: Improving reasoning capability in large audio language models, 2025. URL https:
//arxiv.org/abs/2503.02318.

Pinci Yang, Xin Wang, Xuguang Duan, Hong Chen, Runze Hou, Cong Jin, and Wenwu Zhu. Avqa:
A dataset for audio-visual question answering on videos. In Proceedings of the 30th ACM Inter-
national Conference on Multimedia, pp. 3480-3491, 2022.

Hao Zhong, Muzhi Zhu, Zongze Du, Zheng Huang, Canyu Zhao, Mingyu Liu, Wen Wang, Hao
Chen, and Chunhua Shen. Omni-rl: Reinforcement learning for omnimodal reasoning via two-
system collaboration, 2025. URL https://arxiv.org/abs/2505.20256.

13


https://arxiv.org/abs/2501.12599
https://github.com/QwenLM/Qwen3/blob/main/Qwen3_Technical_Report.pdf
https://github.com/QwenLM/Qwen3/blob/main/Qwen3_Technical_Report.pdf
https://arxiv.org/abs/2007.10310
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2504.15900
https://arxiv.org/abs/2504.15900
https://arxiv.org/abs/2508.08039
https://arxiv.org/abs/2503.02318
https://arxiv.org/abs/2503.02318
https://arxiv.org/abs/2505.20256

Under review as a conference paper at ICLR 2026

A DATA COLLECTION OF HARD AUDIO UNDERSTANDING

A.1 LIMITATIONS OF SIMPLE ASR-CENTRIC TEXT REASONING

Early approaches to audio reasoning typically relied on converting speech into text via automatic
speech recognition (ASR) and then performing reasoning over the textual transcript. While effective
to some extent, this paradigm inevitably discards information that is uniquely embedded in the au-
dio signal itself. To probe the limitations of this pipeline, we first evaluated the ASR-+text reasoning
approach on benchmarks such as CoVoST2 and MMAU. In CoVoST2, model performance is largely
determined by raw ASR accuracy, and we observed that “simple ASR” signals are quickly memo-
rized without yielding robust generalization. A case study is shown in Fig[8] which highlights several
intrinsic challenges. Homophones and proper-name ambiguities necessitate long-range semantic
modeling and external knowledge retrieval, while gendered pronouns in Chinese (e.g., “he/she”)
lack reliable acoustic cues and thus require contextual inference for disambiguation. In particular,
Paraformer’s frame-level alignment, coupled with strong language model priors, tends to induce a
“nearest-neighbor copying” effect—yielding high accuracy on in-distribution transcripts but exhibit-
ing pronounced failures under distributional shifts. Moreover, exposure to translation-oriented data
(e.g., CoVoST?2) can bias models such as Qwen-Audio to mistakenly trigger translation behavior,
sometimes converting Chinese speech into other languages when acoustic cues are uncertain.

In Fig. [/(a), there is an improvement on base models if we asked them to answer questions with
thinking in the format of <THINK>. . .</THINK><FINAL ANSWER>...</FINAL_ANSWER>.
Therefore, we collected 2,050 samples from a subset of CoVoST?2 (including 50 challenging cases
reserved for the test set) and employed Kimi to generate CoT annotations. Using this data, we fine-
tuned Qwen2-Audio and evaluated them on the designated test set. However, the models exhibited
severe overfitting (see Fig. [6(b)) after only a single epoch of training: while the outputs consistently
followed the required <THINK>...</THINK><FINAL_ANSWER>...</FINAL_ANSWER>
format and the training loss rapidly approached zero, the test accuracy dropped below 5%. This
observation indicates that the gradients primarily optimized for surface-level grapheme mapping
and fixed output formatting, without fostering genuine cross-sentence reasoning, coreference reso-
lution, or knowledge-grounded inference.

Consequently, these observations indicate that the “Thinking” component of chain-of-thought super-
vision should be allocated primarily to more challenging audio understanding tasks, such as multi-
speaker dialogues and noisy environments—where reasoning signals genuinely drive the model to
overcome semantic ambiguities and enforce knowledge-aware interpretations, rather than merely
replicating templates on simple ASR tasks.

B gl N anana
eldatn _— \ — ewaned |y — mooined

] 100 200 00 0 550 [ 100 200 00 00 500 600 0 200 00 600 800 1000 1200
step step step

(a) Overfitting on Simple Translation Tasks of (b) Training loss on ASR of CoT
CoT fine-tuned model. fine-tuned model.

Figure 6: The training dynamics of a chain-of-thought (CoT) fine-tuned model (Qwen2-Audio-7B),
indicating the model overfits to the training set in simple translation tasks. This suggests that CoT
fine-tuning without additional regularization or more diverse data fails to yield robust generalization,
particularly for tasks requiring broader reasoning beyond surface transcript matching.

A.2 HARDER AUDIO REASONING TASKS

A.3  SYNTHETIC AUDIO WITH BACKGROUND SOUND

Following this, we further analyzed erroneous predictions of Qwen2-Audio on the MMAU bench-

mark. As shown in Fig[7(b), we compared fine-tuning trajectories on the MSQA dataset with and
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Figure 7: Experiments on the Exploration of Good Audio Reasoning prompt.
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Figure 8: Bad cases of Paraformer, Qwen-Audio and Qwen2-Audio on the simple ASR task.

without ASR-augmented data. The results reveal that models trained with ASR supervision exhibit
substantially longer response lengths, which we interpret as a proxy for deeper and more structured
reasoning ability. This finding suggests that integrating ASR data into training not only improves
transcription accuracy but also enhances the reasoning capacity of audio-language models. There-
fore, in the first stage of fine-tuning, we deliberately incorporated the ASR-enriched data described
in the previous section to further consolidate the model’s ASR capability as a foundation for down-
stream reasoning.

Moreover, we processed the audio with MUSAN(Snyder et al.| 2015)), which satisfies target 10 dB
SNR, according to

P,
SNRAB = 10log 10 <—> = 10.
Pn scaled

Let Py = 7 Y, s? and P, = £ >, n?. The background gain is

P B
P’n . IOSNRdB/lo -

A.4 AUDIO QUESTION-ANSWERING WITH MULTI SPEAKERS

We use the subset of Multi-Speaker Dataset in CoTA 2025), which is generated by
TTS to navigate intricate speaker interactions. First, we generated diverse conversational texts with
LLMs. Next, using timbres from LibriSpeech as prompts, we synthesized high-quality speech via
the Cosy Voice2 framework. Finally, these distinct speech samples were combined into a rich dataset.
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train/rewards/format_reward train/rewards/accuracy_reward train/completion_length

P i

Figure 9: GRPO Training. Overall, the RL training progressed well, but there is a clear collapse
around 200 steps. The trigger was the length-reward design: during exploration, longer completions
earned higher scores, but once a response exceeded 600 tokens, a linear decay penalty kicked in.
The policy reacted by abruptly shortening completions to 200 tokens; these outputs were often
incomplete, so the format reward dropped to O, and the accuracy reward fell to 0.5. After this
shock, training recovered and stabilized, indicating the policy adapted to the length constraint.

A.5 PROPER RESPONSE LENGTH AFTER LATENT REASONING

Though more stable during training, introducing pause-based latent tokens increases training time,
raising max_pause_token from 1 to 3 roughly doubles training time. See more details in Fig[0] There-
fore, we set a length reward in the design of whole reward function. We also observe some findings
about the design of length-reward Sec.[3:4.4] Overall, the RL training progressed well, but there
is often a clear performance drop about 200 steps. The instability can be attributed to the length-
reward: during RL exploration, the model received higher scores for generating longer responses,
but once a response exceeded 600 tokens, a linear decay penalty kicked in. In reaction, the pol-
icy abruptly shifted to producing shorter outputs; these truncated responses were often incomplete,
leading to a format reward drop to zero and a reduction in accuracy reward to 0.5. Following this
disruption, the training process gradually recovered and ultimately stabilized, indicating the policy
capacity to adjust its generation in response to complex reward signals (See Fig.[9).

B CASE STUDY

As shown in Fig[l] the case highlights two failure modes: perceptual misbinding and salience-
driven rationale drift. The naive system exhibits this by prioritizing the surface frequency of “Fri-
day” while overlooking its negated polarity and the logical flow of the proposal-to-confirmation
sequence. Conversely, the reflective controller rectifies this by enforcing evidence typing (differ-
entiating background sounds from linguistic turns) and ensuring dialogue-act alignment, ultimately
restoring causal fidelity to the acoustic evidence.

B.1 MULTI SPEAKERS TRACKING

Bad Case A

[ASR excerpt] [S1] “Ship date is the 12th if QA passes.” [S3] “QA won’t finish by the 12th.” [S4] “Set the
launch to the 15th.” [S2] “Not the 5th—I said the 15th.” [S1] “Agreed.”

[Question] What is the final launch date?

[Choices] A 5th - B 12th - C 13th - D 15th

[Audio context] Meeting room; steady HVAC hum as BGM; frequent interruptions.

[Ground truth] D

[Simple model response] B

[Reflection] <REFLECT> S3 explicitly negates the initial “12th” suggestion, S4 introduces a new proposal
“15th,” S2 clarifies that it is “15th” rather than “5th,” and S1 provides team confirmation; taken together
these turns establish the final launch date as the 15th.

\ J

This case tests how well the model can follow a conversation in a realistic, noisy meeting. The
audio includes a constant low hum from an air conditioner (HVAC) in the background, and the
speakers often interrupt each other. These challenges make it difficult to follow the flow of the
conversation. The simple model’s failure wasn’t about hearing the words; it was about failing to
understand the process of the discussion. The reflective model succeeded because it built a step-by-

16



Under review as a conference paper at ICLR 2026

step understanding of the conversation’s logic. It correctly handled the disagreements and changes,
proving it can reason reliably even in a noisy and dynamic group setting.

B.2 EXPLICIT REFLECTION

Bad Case B

<THINK>

<PLANNING>

The user’s question is: Based on the conversation, what are the speakers trying to assemble? I need to
analyze the dialogue between the speakers to identify the item they are constructing. The audio provides
the audio clip, and I should analyze it for details related to the assembly activity. </PLANNING>
<CAPTION>

The audio features a conversation among three individuals in what sounds like a workspace. They are
discussing an instruction manual and the assembly process. - Speaker 1: Expresses frustration with the
instruction manual, stating that it’s difficult to distinguish pieces A and B.

- Speaker 2: Proposes that piece B has a slightly beveled edge, but concedes that it’s similar.

- Speaker 3: Agrees that it looks like Bevel Edge and expresses hope that it’s correct.

- Speaker 1: States it is Bevel Edge B, and declares they can complete the assembly.

- Speaker 2: Hope is right and doesn’t want to misassemble again.

- Speaker 1: Confirms it is Bevel Edge B and asks everyone to take deep breaths and move on.

The core task is assembling an item where they are currently putting together parts, such as bevel edges.
</CAPTION>

<REASONING>

1. Analyzing the Dialogue: The dialogue revolves around distinguishing parts (A and B) and confirming a
beveled edge.

2. Identifying the Assembly Activity: The key element is Bevel Edge, suggesting the speakers are
assembling something with beveled sides.

3. Evaluating Options: - (a) A table: While a table might require beveling, the central focus isn’t just about
assembling a table. - (b) A chair: Similarly, a chair might require beveling, but it isn’t their primary focus.
- (c) A bed: A bed typically features beveled edges, aligning perfectly with the conversation. This is the
most likely scenario. - (d) A bookshelf: A bookshelf is less likely to have beveled edges.

4. Concluding the Item: Based on the bevel edges and the distinct focus on distinguishing them, it can be
inferred that the speakers are assembling a bed. </REASONING>

<SUMMARY >

The speakers are differentiated by focusing on the Bevel Edge assembly of a bed. By eliminating other less
relevant options through reasoning, the final conclusion is that they are assembling a bed. </SUMMARY>
</THINK>

\ J

Here is the reflection of this case.

Reflection of Bad Case A

<REFLECT> Evidence available from the dialogue is generic to many flat-pack builds: “piece A vs. B’
“bevel(ed) edge,” “don’t misassemble,” and “let’s move on.” No category-specific anchors are heard (e.g.,
for a bed: headboard/footboard/rails/slats; for a bookshelf: shelf/upright/back panel/bracket; for a table:
tabletop/apron; for a chair: backrest/seat/armrest). Given absent anchors, the safest policy is to avoid over-
commitment. If forced to choose among the four, “bookshelf” is the most compatible with beveled front
edges on shelves and frequent A/B part distinctions during shelf panel assembly. Confidence remains low;
with an “uncertain” option, I would state insufficient evidence. </REFLECT>
<ANSWER>Bookshelf.</ANSWER>

L J

B.3 PAUSE MECHANISM

This case tests the model’s ability to understand meaning that isn’t in the words themselves, but in
the way they are spoken (the “tone,” or prosody). The audio is a phone call with background noise
from rain and static (line hiss). The challenge is to see if the model can spot sarcasm or reluctance,
even when the words seem positive. Therefore, this case highlights a major flaw in models that
only read text. They can be easily fooled when a speaker’s tone changes the meaning of their words
(like in sarcasm or politeness). The reflective model’s success shows it can listen, not just read. It
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integrates how something is said with what is said to find the true meaning, which is crucial for
understanding human conversation.

[ASR excerpt] [S1] “Can you present Friday?” [S2] “Yeah, Friday... great.” (FO downward; reduced en-
ergy; elongated final syllable) [S2] “Actually, I'm not available Friday evening.” [S1] “Then Thursday
morning?”

[Question] Is S2 willing to present on Friday?

[Choices] A Yes - B No - C Unsure - D Only afternoon

[Audio context] steady rain and mild line hiss

[Ground truth] B

[Simple model response] A

[Reflection] <REFLECT> ...”Yeah, Friday. .. great” jPAUSE; check tone/intonation. j/PAUSE; The phrase
“Yeah, Friday... great” is produced with a downward FO contour and reduced energy consistent with reluc-
tance or irony, and a subsequent turn states explicit unavailability on Friday evening; integrating prosodic
and semantic cues indicates S2 is not willing to present on Friday.

</REFLECT>

. J

In sum, the Multi-speaker Tracking matters speaker attribution ("who”), the Pause Mechanism
addresses the transition from rapid, text-centric processing to a more computationally intensive,
multi-modal analysis, and Reflection focuses on the ground truth by deploying targeted evidence
re-querying, contextual anchoring to disambiguate local hypotheses (as in ASR N-best lists), and
integrating conflicting cross-modal data. The convergence of these mechanisms allows the model
to emulate human-like cognitive robustness in complex, ambiguous, and multi-participant acoustic
environments, distinguishing its performance from that of a passive, deterministic system.
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C PROMPT TEMPLATE

A Sample Case of Our PAQA Data

<THINK>

<PLANNING>

The user wants to understand the dynamic changes ...... </PLANNING>
<CAPTION>

<BGM>Street noise; intermittent car horns.</BGM>

<SPEAKER>A: adult F; B: adult M; alternating turns.</SPEAKER>

<ASR></ASR>

<DESCRIPTION>The audio clip predominantly features static noise. ...... similar to that of a detuned
television or a device failing to receive a signal.</DESCRIPTION>

</CAPTION>

<REASONING>

1. Identify changes in Intensity (Volume): ...... struggling to maintain a consistent output, adding to the
impression of something malfunctioning or broken. </REASONING>

<SUMMARY>

The static noise in the audio is highly dynamic. ... leading to a sense of disorder and instability.
</SUMMARY>

</THINK>

<RESPONSE>

The audio presents a static noise, ...... is one of energetic chaos, preventing any possibility of calm or

predictability. </RESPONSE>

<REFLECT1> Does ”A” mention the cake, not B? Check turn 3.</REFLECT1>
<NEW_RESPONSE>A</NEW_RESPONSE>
<REFLECT2> Does ”A” mention the cake, not B? Check turn 3.</REFLECT2>
<NEW_RESPONSE>B</NEW_RESPONSE>

\ J

Prompt template of Refelection Sample

After producing the <RESPONSE>, you must perform a structured self-reflection step.

1. Compare the <RESPONSE> with the overall task requirements and check for issues such as: - Missing
or incomplete coverage of the audio content (did it stop too early? were some speakers/segments missed?).
- Repetition or redundant phrasing that should be removed or marked clearly. - Speaker attribution or di-
arization errors (wrong speaker assignment, merged speakers, or split speakers). - Prosody/tone/intonation
mistakes or overemphasis on irrelevant details. - Inconsistent reasoning or labels (final choice must align
with the reasoning and context). - Overly simplistic or single-hypothesis reasoning when alternatives exist.
2. Inside <REFLECT>...</REFLECT>, explicitly list: - The problems found in <RESPONSE>. - The
corrections or adjustments needed (without referencing or leaking the gold standard answer text). - Any
uncertainties or low-confidence areas.

3. Then rewrite the improved answer inside <FINAL _ANSWER>...</FINAL_ANSWER>, ensuring: - All
necessary content is covered. - No hallucinated details are added beyond the given <CAPTION>, <ASR>,
and <DESCRIPTION>. - Speaker attributions and reasoning are consistent. - The final answer matches the
reasoning and is labeled correctly with confidence if required.

Format strictly as: <REFLECT> [Your structured reflection here] </REFLECT>

<FINAL_ANSWER> [Your corrected, high-quality final answer here] </FINAL_ANSWER>

Here is the original bad answer: TurnO Here is the golden answer: Golden_Ans

\ J

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In order to reduce typos during the writing process and to optimize complex sentence structures
so that the article becomes simpler and easier to read, we use mainstream large language models
to refine certain paragraphs. For example, we use prompts such as “Help me correct the typos
and grammatical errors in the above text, and streamline the logic to make it clear and easy to
understand.”
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E CODE

Algorithm 1 Pseudocode of Pause/Abort/Reflect Mechaiam in ConfAudio.

Require: query g, audio a; policy model 7y, reference model 7yr; window K'; max pauses M ; max length L;
thresholds (pause 75, abort 74, and reflect 7.)

1: function CONF(Y, lyet, a)

2: 7 <— softmax(€/T); et < softmax(rer/T")

> inputs are logits, entropy]. + KL| + audio-uncertainty.

_ T log =2
3: H, + M, KL, + M > normalized entropy, and KL in [0, 1]
log [V og V]
4: un < norm(u(a)) € [0,1] > audio uncertainty (e.g., SNR/ASR confidence)
5: return clip(wl(l—Hn) +w2(1—KLy) +ws(l—un), 0, 1)
6: end function
7: function MELTDOWN(y) > e.g., high n-gram repeat or abrupt entropy drop
8: return (Repeat(y) > 7)
9: end function
10: function CONFAUDIOGENERATE(q, a)
11: y<|[LLh+<[].p+ 0, low+0
12: Ciok < [, G+ ] > per-token confidence trace, and per-group averaged confidences
13: g-sum < 0, glen < 0 > running stats for current group
14: fort =1to L do
15: £+ 7wg.NEXTLOGITS(q, a,y); Lret < Tret. NEXTLOGITS(q, a, y)
16: Ct + CONF(L, bret, a) > step confidence
17: Ciok.-APPEND(C});  g-sum<—g_sum~+Cy; g-len<glen+1
18: LGCy + min ( (G =271 :min(G)), g-sum/g-len) > lowest group conf so far
19: if (LGC, < 74) A (low > K Vv MELTDOWN(y)) then
20: y.APPEND(<EOS>); break
21: elseif (C; < 7,) A (p < M) then
22: y.APPEND(<PAUSE>);p ¢ p+1
23: h < h|| m¢.LATENTREASON(q, a, y) > generate until </PAUSE>
24: continue
25: else
26: tkn < SAMPLE({); y.APPEND(tkn)
27: low + (Cy < 1) 7 (low+1) : 0
28: if tkn € {<PAUSE>, </PAUSE>} then
29: G.APPEND(g-sum/g_-len); g_sum < 0; g_len < 0 > close current group
30: end if
31: if tkn = <EOS> then break
32: end if
33: end if
34: end for

35: k < max(1, [p|C]); Cg4 <+ %ZCGmink() ¢
36: if (Og < an) \Y _‘Rcons(qzy) then

37: Ypre <= Y5 (Yren, y) = . REFLECT(q, @, Ypre)
38: else

39: Yrefl < T, Ypre <

40: end if

41: return y, { Ypre, Yrefi, pauses = p, aborted = (y[—1] = <E0S>) }

42: end function

> get global confidence C
> need explicit reflection
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