

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THINK OUT LOUD, PAUSE IN SILENCE: CONFIDENCE-GUIDED REFLECT-PAUSE-ABORT FOR ROBUST AUDIO PERCEPTUAL UNDERSTANDING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Large Audio Language Models (LALMs) mainly fail for two errors: perceptual errors. To address these issues, we propose an adaptive framework that
014 couples perceptual grounding with computation that expands only when needed.
015 First, we introduce PAQA, a Perceptually grounded Audio QA dataset of 7,470
016 multiple-choice items that pairs multi-speaker, background-rich audio with step-
017 wise reasoning and reflection annotations, enabling supervision of verifiable
018 audio-grounded rationales. On the modeling side, we propose ConfAudio, which
019 unifies explicit, reflective reasoning (fine-tuned on PAQA) with implicit, pause-
020 driven latent computation trained via GRPO. A confidence-aware controller moni-
021 tors lowest-group-confidence (LGC) during decoding to insert pauses when uncer-
022 tainty rises and to abort unstable trajectories, thereby reallocating compute toward
023 hard perceptual segments. To stabilize the training process, we design a com-
024 posite reward that balances answer correctness, reasoning–answer consistency
025 with perceptual robustness, and output format. Across PAQA, MMAU-mini, and
026 MMAR, ConfAudio consistently improves both accuracy and consistency, partic-
027 ularly in noisy, multi-speaker conditions. Our results demonstrate that confidence-
028 guided, adaptive reasoning—grounded in verifiable acoustic evidence—mitigates
029 the dominant perceptual and reasoning failure modes in Audio-QA.

1 INTRODUCTION

030 Large language models (LLMs) have made notable progress in reasoning via chain-of-thought (CoT)
031 prompting and reinforcement-learning (RL) post-training (OpenAI, 2024; Guo et al., 2025), and
032 similar advances have extended to visual modalities (Huang et al., 2025; Feng et al., 2025). Unlike
033 text, audio introduces unique challenges such as overlapping speakers, pronoun ambiguity, shifting
034 emotions, and variable, noisy acoustic conditions. These factors often induce perceptual errors that
035 are among the most prevalent failure modes of current models (Ma et al., 2025b).

036 Recent audio-capable LLMs (e.g., Qwen2-Audio (Chu et al., 2024), Audio Flamingo (Kong et al.,
037 2024), SALMONN (Tang et al., 2024)) still tend to address audio question answering (Audio-QA)
038 by mapping transcripts directly to answers, with limited verification against the underlying acoustic
039 evidence. Prior audio CoT efforts (Xie et al., 2025; Ma et al., 2025a) supervise long free-form
040 rationales but do not consistently yield improvements on challenging problems. Moreover, RL-only
041 pipelines (Li et al., 2025b; Xie et al., 2025; Wu et al., 2025; Zhong et al., 2025) improve answer
042 accuracy, yet the explicit reasoning process itself has not shown consistent benefits for Audio-QA.

043 Previous work (Ma et al., 2025b) shows that dominant failures on the MMAR benchmark arise
044 from perceptual errors and downstream reasoning mistakes. This underscores the need to first es-
045 tablish a strong perceptual foundation by explicitly incorporating verifiable evidence, especially in
046 two high-frequency scenarios: (i) distinguishing environmental sounds, and (ii) accurately transcrib-
047 ing multi-speaker conditions. Importantly for audio reasoning, many acoustic cues (e.g., rhythmic
048 density, timbre) cannot be faithfully translated into free-form text, so enforcing text-only rationales
049 risks losing critical granularity. In real-world speech comprehension, humans often reflect on their
050 reasoning process and, when uncertain, pause briefly to deliberate before responding. Inspired by
051 these observations, we pose the central research question: *Can an audio–language model be en-
052 dowed with adaptive deep reasoning, combining perceptually grounded and verifiable CoT with
053 pause-driven latent computation, to robustly overcome audio perceptual errors?*

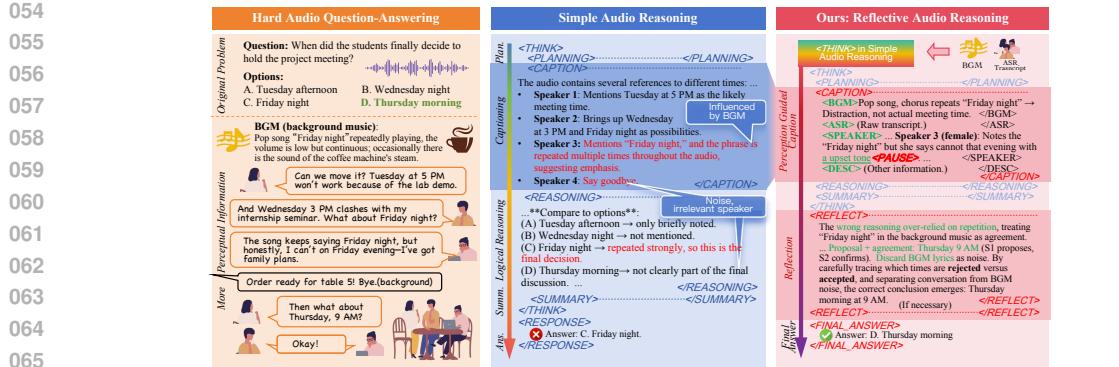


Figure 1: A challenging audio QA case with **perceptual errors**. Repeated lyrics in the background sound/music and multi-speaker overlaps mislead simple reasoning. Although the **CAPTION** includes background sound and cues, the model reaches the correct answer after **REFLECT** reasoning which takes advantage of perceptual information. In particular, when enough acoustic features are encountered, the decoder emits a special **PAUSE** token to allocate additional latent compute.

Interference from background sound and disambiguating multiple speakers are central challenges in real-world audio understanding, yet they remain underrepresented in existing datasets. To address this gap, we construct **PAQA**, the first **Perceptually grounded Audio QA** dataset, coupling multi-speaker, background-rich audio with stepwise reasoning and reflection annotations. PAQA contains 7,470 multiple-choice Audio-QA pairs. Each example provides structured annotations—including background-music separation, speaker analysis, and multi-turn reflections—and records both an internal answer and a final response. As illustrated in Fig. 1, a model with simple reasoning incorrectly selects “Friday night” due to overreliance on repeated mentions, failing to distinguish background sound from actual conversation. In contrast, a model equipped with reflective reasoning isolates background sound and irrelevant speakers and aligns evidence to arrive at the correct answer.

To handle non-textualizable acoustic signals, we propose **ConfAudio**, an adaptive reasoning framework that unifies explicit reflective reasoning with implicit latent computation. Explicit reasoning is realized through fine-tuning on our curated dataset, while implicit reasoning is enabled by a learned `<pause>` token trained with Group Relative Policy Optimization (GRPO). A confidence-aware module monitors the lowest group confidence (LGC) during decoding and adaptively inserts a pause token when confidence falls below a threshold; it also aborts unstable trajectories to ensure stability. This mechanism encourages the model to attend more deeply to acoustic evidence and to re-segment speakers when necessary. In addition, we design a composite reward that jointly balances answer correctness, reasoning consistency, and output format. We evaluate ConfAudio on the test sets of PAQA, MMAU-mini, and MMAR, where it consistently outperforms strong baselines.

(1) We construct **PAQA**, the first dataset that integrates multi-speaker and background-rich audio with stepwise reasoning and reflection annotations. It covers multi-speaker QA, noisy speech-to-text translation, and environment-centric QA, encouraging models to ground decisions in acoustic evidence rather than transcript shortcuts.

(2) We propose **ConfAudio**, an adaptive reasoning framework that combines explicit audio-grounded reflective reasoning with implicit latent computation. The latter is realized through a learned pause token triggered by a lowest group confidence (LGC) score, enabling the model to silently allocate additional computation when uncertain or abort unstable trajectories.

(3) We design a composite reward that jointly optimizes answer accuracy, format compliance, acoustic consistency, and length control, discouraging unnecessary verbosity. Experiments demonstrate that ConfAudio enhances adaptive reasoning, effectively reducing perceptual and reasoning errors.

2 DATA COLLECTION

2.1 COMPLEX AUDIO UNDERSTANDING

R1-AQA (Li et al., 2025b) and Omni-R1 (Zhong et al., 2025) show that requiring the model to read *write out* step by step text does not guarantee improvements in Audio QA (AQA). In several AQA settings, explicit CoT provides only marginal or no gains over answer-only decoding, sometimes

even increasing latency. For simple ASR tasks, we also observed that models tend to overfit surface transcripts rather than perform robust reasoning over acoustic evidence (see Fig. 6). Unlike text-only scenarios, audio understanding requires grounding in acoustic cues (e.g. speaker turns, overlapping speech regions) and careful attention to scenarios. Motivated by this, we further analyze Qwen2-Audio’s bad cases on the CoTA (Xie et al., 2025) benchmark and identify two major challenges: (1) difficulties in handling multi-speaker conversations, where insufficient speaker diarization under overlapping leads to incorrect attribution of utterances and a consequent loss of dialogue; (2) failures in environmental-sound discrimination, whereby non-speech events and nonsignificant background sound are classified as evidence.

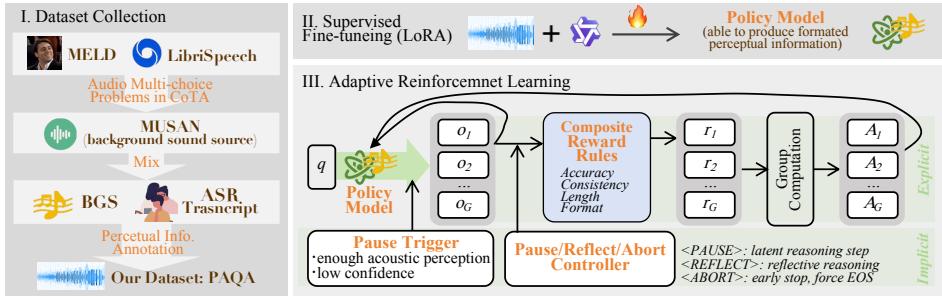


Figure 2: An overview of our work. First, we collected PAQA dataset, with annotating perceptual information like background sound(BGS) and ASR transcript. Secondly, we fine-tuned on PAQA as the policy model in the reinforcement learning. The reinforcement learning mechanism includes pause trigger and controller, and composite reward rules to better performance.

To advance speaker-aware modeling and noise-resilient perception, we construct a dataset that integrates multi-speaker and background-rich audio with stepwise reasoning and reflection annotations.

Background-rich augmentation We sample background audio from publicly licensed environmental categories in MUSAN (Snyder et al., 2015) (e.g. alarms, typing, rain, cafeteria, street traffic, soft instrumental music). For a clean speech clip s and a background clip n , we first RMS-normalize both and then scale the background so that the power ratio satisfies $\text{SNR}_{\text{dB}} = 10$, ensuring that the speech remains ten times stronger than the background, audibly present but not dominant. Each item is annotated with a tag indicating the presence and type of background (e.g., 'Soft instrumental music – please ignore.'), which discourages unnecessary reliance on background cues.

Multi-speaker Alignment To discourage models from shortcircuiting on global transcripts and to encourage speaker-localized reasoning, we annotate turn structures in a `<SPEAKER>` section using a compact, ordered format such as "**Speaker 1:** ...". We then apply Qwen3-ASR (Team, 2025) to each audio sample to generate a verbatim raw transcript. To mitigate hallucination and drift between summaries and verbatim text, we introduce a quote-presence test (QPT), which measures fuzzy overlap between `<ASR>` snippets $A = a_i$ and `<SPEAKER>` sentences $S = s_i$. Specifically, SeqRatio is defined as the standard difflib ratio on normalized strings. Items with $QPT < 0.85$ are flagged for revision. The formulation is given by:

$$\text{QPT} = \frac{1}{M} \sum_{i=1}^M \max_{1 \leq j \leq N} \text{SeqRatio}(\text{norm}(s_i), \text{norm}(a_j)). \quad (1)$$

2.2 REFLECTION TO CORRECT WRONG INITIAL RESPONSES

In natural conversation, speakers frequently self-monitor and revise their utterances. Building on prior work showing that reflection-driven self-correction improves model performance in reasoning tasks (Shinn et al., 2023; Madaan et al., 2023; Wang et al., 2023), we adopt a reflection-augmented pipeline for complex audio understanding. Concretely, a lightweight baseline model first generates an initial `<RESPONSE>` for each audio-QA item, as illustrated in the third column of Fig. 1. We then automatically detect errors—such as option mismatches, speaker attribution mistakes, hallucinated content inconsistent with ASR transcripts, or misinterpretation of noise cues—and prompt

162 the model to produce a grounded diagnostic analysis <REFLECT>. This analysis explicitly refers-
 163 ences <BGM>, <SPEAKER>, and <ASR> to explain the failure and localize the supporting evidence.
 164 Conditioned on this analysis, the model is guided to generate a corrected <FINAL_ANSWER>. For
 165 training, we store the triplet (<RESPONSE>, <REFLECT>, <FINAL_ANSWER>), which provides
 166 explicit reflection supervision and, from each original audio item, yields an additional corrected ex-
 167 ample, effectively doubling the supervised data while enriching them with interpretable, perception,
 168 grounded self-correction signals. For detailed prompt template, see Appendix C.

169 The dataset supports a range of tasks, including multi-speaker QA, speech-to-text translation under
 170 noise, and environment-centric QA. An in-depth analysis of the final PAQA dataset is provided in
 171 Appendix A, while a detailed statistical overview is summarized in Table 1.

172
173 Table 1: Dataset Source and Statistics.
174

175 Dataset Source	176 Main Skills Learning	177 BGM Used	178 Quantity	179 Reflection
176 Multi-Speaker (Xie et al., 2025)	177 Multi-speaker Speech QA	178 Free Sound	179 1.5k	1.4k
176 MELD (Poria et al., 2019)	177 Speech Emotion QA	178 Sound Bible	179 1.5k	1.4k
176 CoVoST2 (Wang et al., 2020)	177 Speech-to-Text Translation	178 No	179 1.5k	179 No

180
181

3 METHODOLOGY

182
183

3.1 FRAMEWORK OVERVIEW

184 In real-world speech comprehension, humans often reflect on their reasoning process and, when
 185 uncertain, pause briefly to deliberate internally before responding (Meyer, 2023). To mirror the
 186 sophisticated human ability to process complex audio environments through both explicit explana-
 187 tion and implicit contemplation Boomer (1970); Shriberg (2001), we propose a **dual-mechanism**,
 188 **confidence-gated adaptive reasoning training pipeline**, with an internal confidence score deter-
 189 mining the model’s reasoning path: an **explicit** Chain-of-Thought with <REFLECT>, or an **implicit**
 190 latent thinking to handle uncertainty with the <PAUSE> token. The whole framework is presented
 191 in Fig. 3. Our methodology first employs **Supervised Fine-Tuning (SFT)** to teach the model a spe-
 192 cific response structure, compelling it to generate answers that include both an analysis of perceptual
 193 audio information and a reflective reasoning process (with <REFLECT> in the chain-of-thought).
 194 Second, to move beyond simple pattern imitation and enhance the model’s adaptive reasoning
 195 capabilities, we utilize an advanced reinforcement learning algorithm, **Generalized Reward Policy**
 196 **Optimization (GRPO)**. Within this RL stage, we introduce a key innovation: when low confidence
 197 triggers the <PAUSE> mechanism, the model activates an **implicit latent reasoning module** to bet-
 198 ter process ambiguous, non-textual audio cues. This entire process is guided by a specialized reward
 199 function designed to optimize the quality and grounding of the final response.

200
201

3.2 SFT FOR STRUCTURED EXPLICIT GENERATION WITH REFLECTIVE REASONING

202 Using the specialized dataset detailed in Section 2.2, we explicitly train the model to output a dedi-
 203 cated <REFLECT> segment following its initial chain-of-thought reasoning. This structured output
 204 ensures that for each prompt, the model produces a transparent analysis of background sound and
 205 speaker, and reflection that allows for direct inspection before a final answer is given. We aim to
 206 teach the model to generate its responses in a specific, structured format, it lays the groundwork for
 207 the subsequent reinforcement learning phase.

208
209

3.3 RL WITH ADAPTIVE REASONING

210
211

3.3.1 GRPO ON FINE-TUNED MODELS

212 We observed that fine-tuning instruction-tuned models on PAQA leads to performance improve-
 213 ments, although these gains are not significant (see Table 2). While the Supervised Fine-Tuning
 214 (SFT) stage effectively establishes a foundation by teaching the model to generate more complex
 215 chain-of-thought reasoning, its potential may be inherently constrained by the nature of imitation
 learning. To transcend these limitations, we introduce a second stage based on GRPO.

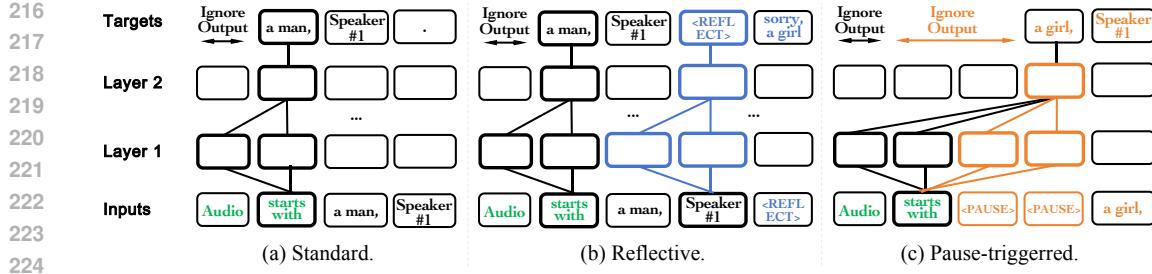


Figure 3: Standard vs. reflective-inference vs. pause-inference (and finetuning). Similar to Goyal et al. (2024), the rounded squares denote one Transformer operation (a self-attention and MLP) in a 2-layer Transformer. Any Ignore Output denotes that during inference, the corresponding output token is not extracted and thus, not fed back autoregressively.

Starting from the SFT checkpoint (reference policy π_{ref} frozen), we generate groupwise rollouts, compute $R(\mathbf{z})$ via equation 8, and update π_{θ} with GRPO (Shao et al., 2024). We partition rollouts by task group $g \in \{\text{PAQA}, \text{AVQA}\}$ and difficulty bucket (low/med/high). Within each group, we compute groupwise baselines to reduce variance:

$$\tilde{R}^{(i)} = R^{(i)} - \frac{1}{m_g} \sum_{j \in g} R^{(j)}. \quad (2)$$

To process and reason upon non-textual audio cues that are often lost in pure text representations, we incorporate confidence into GRPO by using the lowest group confidence (LGC) as a sample weight (see in 3.3.2). For a trajectory i with task reward r_i^{task} (covering accuracy, formatting, consistency, and length penalties) and group baseline \bar{r} , the advantage is calculated as $A_i = w_i (r_i^{\text{task}} - \bar{r})$, where w_i is a clipped, standardized function of the trajectory’s LGC, and $w_i = 0$ for filtered samples. The final reward may also include recovery and leak terms when pause control is enabled: $r_i = r_i^{\text{task}} + \eta \cdot \max(0, \text{LGC}^{\text{post}} - \text{LGC}^{\text{pre}}) - \lambda_{\text{leak}} \cdot \mathbf{1}\{\text{leak}\}$, where $\eta, \lambda_{\text{leak}}$ are selected to balance accuracy, formatting, and robustness.

3.3.2 IMPLICIT LATENT THINKING

Beyond explicit reflection, the model can also perform hidden computation via implicit pauses. This mechanism is particularly vital when processing complex audio data. Audio streams contain a wealth of perceptual, non-verbal cues—such as speaker intonation, overlapping speech, or ambient noise—that are often difficult to articulate fully in explicit text. An implicit pause allows the model to internally process and weigh these subtle audio features before committing to a textual output, enabling a deeper, more grounded reasoning process.

To govern this behavior, we introduce a confidence-based gating mechanism with two distinct thresholds: τ_{pause} for outright termination and a softer threshold $\tau_{\text{pause}} > \tau_{\text{abort}}$. At each decoding step t , a specific action is selected based on the model’s internal confidence score $C_{k(t)}$:

$$\text{action}(t) = \begin{cases} \text{abort} & \text{if } C_{k(t)} < \tau_{\text{abort}}, \\ \text{pause} & \text{if } \tau_{\text{abort}} \leq C_{k(t)} < \tau_{\text{pause}}, \\ \text{continue} & \text{otherwise.} \end{cases} \quad (3)$$

where `continue` is the default action to normal generation. When confidence falls into the intermediate range, the model triggers an internal deliberation step. When a pause is triggered at t^* , the model emits a `<PAUSE>` special token and generates up to K_p latent tokens $\hat{\mathbf{z}}_{1:L}$ (where $L \leq K_p$). These “pause tokens” are not surfaced in the final visible output and are explicitly excluded from the gradient calculations during parameter optimization. Their sole function is to iteratively update the model’s internal hidden state, allowing it to “think” and process complex information before resuming the generation of visible tokens. Formally, the full token sequence and visible output are defined as (\oplus means concatenation):

$$\tilde{\mathbf{y}} = \mathbf{y}_{1:t^*} \oplus \text{<PAUSE>} \oplus \hat{\mathbf{z}}_{1:L}, \quad \mathbf{y}_{\text{vis}} = \mathbf{y}_{1:t^*}. \quad (4)$$

To encourage pausing specifically in text involving speech-only, non-textual cues (where extra acoustic reasoning may be beneficial), we maintain a keyword set \mathcal{A} , such as “tone”, “pitch”, whenever any word $w \in \mathcal{A}$ appears in the recent context, we add a positive logit bias $\beta_{\text{ac}} > 0$ to the

270

<PAUSE> token:

271

$$\ell_{\text{PAUSE}} \leftarrow \ell_{\text{PAUSE}} + \beta_{\text{ac}} \cdot \mathbb{I}[\exists w \in \mathcal{A} \text{ in context}]. \quad (5)$$

272

Token confidence C_i means the negative average log-probability of the top- k tokens at position i .

273

274

$$C_i = -\frac{1}{k} \sum_{j=1}^k \log P_i(j) \quad (6)$$

275

276

277

where k denotes the number of top tokens considered. Lower confidence means uncertainty in token prediction. During training, we use lowest group confidence to govern the runtime policy above (pause vs. continue vs. abort), yielding a coherent control scheme. If the confidence score is extremely low ($C_{k(t)} < \tau_{\text{abort}}$), it indicates a high likelihood that further deliberation will be unproductive. The `abort` prevents the model from getting stuck in prolonged, unnecessary pause loops and significantly accelerates overall inference speed by pruning unpromising trajectories early.

278

279

280

281

282

283

284

3.3.3 LOWEST GROUP CONFIDENCE (LGC)

285

We consider the lowest group confidence metric to provide sufficient signals for estimating the quality of reasoning trajectory. Group confidence averages token confidence over overlapping spans of the reasoning trace. Each token t is linked to a sliding window group K_i , consisting of n previous tokens. In particular, we identify its bottom 15% group confidence. For each window, we compute a normalized mean probability:

286

287

$$C_{K_i} = \frac{1}{|K_i|} \sum_{t \in K_i} C_t \quad (7)$$

288

289

290

291

292

where $|K_i|$ is the number of tokens in group K_i . The LGC of the trajectory is then defined as the minimum of these window confidence scores, $\text{LGC}(y) = \min_{i=1, \dots, K} C_{K_i}$. This definition emphasizes the weakest local segment within the reasoning trajectory: even a small cluster of highly uncertain tokens can significantly reduce LGC, making it a sensitive indicator of detecting local reasoning collapse, a phenomenon effectively demonstrated by Fu et al. (2025).

293

294

295

296

297

298

299

3.4 COMPOSITE REWARD FUNCTION

300

301

302

303

To produce correct answers but also generate interpretable and well-organized reasoning, we introduce a novel composite reward function R defined as the weighted sum of four components: besides the accuracy reward and a format reward, we designed a consistency reward for reasoning coherence and explanation quality, and length reward when accurate for stablize the training.

304

305

306

where \mathcal{R}_{acc} measures the correctness of the final answer, the format reward, denoted as \mathcal{R}_{fmt} , validates whether the output follows the required structured reasoning schema, $\mathcal{R}_{\text{cons}}(\hat{y}, \hat{y}_{\text{CoT}})$ measures the logical consistency between the final answer and the intermediate reasoning, and \mathcal{R}_{len} penalizes both under- and over-elaboration, where too short responses are heavily penalized with a score of 0 to reflect insufficient reasoning. Conversely, responses that are too long are penalized using a linear decay function to discourage excessive reasoning.

307

308

309

310

311

312

313

3.4.1 ACCURACY REWARD

314

The accuracy reward, \mathcal{R}_{acc} , measures the correctness of the final answer. We parse the completion x for the <FINAL_ANSWER> (FA) tag, falling back to the <RESPONSE> (R) tag if FA is absent. Let a completion be denoted by x . From x , we extract the predicted answer $\hat{y}_{(x)} \in \{A, B, C, D\}$ and compare it to the ground truth label.

315

316

317

318

319

320

3.4.2 FORMAT REWARD

The Format Reward validates whether the output follows the required structured reasoning schema; it is assigned 1.0 if all required tags are present, correctly ordered, and properly nested, and 0.0 otherwise. This reward component addresses a common challenge in Reinforcement Learning (RL) known as reward sparsity. We distinguish between two levels of formatting:

324 Strict Format (Ideal Schema): This is the ideal structure to follow a complex schema. However,
 325 enforcing this strict format during RL training is problematic, resulting in a persistent $\mathcal{R}_{\text{fmt}} = 0.0$,
 326 providing no gradient for the model to learn the format.
 327

328 Weak Format (RL Reward for Latent Reasoning): To overcome reward sparsity, \mathcal{R}_{fmt} is imple-
 329 mented based on a "weak format". This "weak format" approach allows the model to first learn
 330 the fundamental <THINK> . . . <RESPONSE> sequence. Subsequently, other rewards, such as the
 331 consistency reward, implicitly incentivize the model to correctly populate the CoT with the nec-
 332 esary analysis (e.g., ASR, Speaker analysis) to maximize its score, thereby progressively guiding the
 333 model toward the ideal "strict format".
 334

334 3.4.3 CONSISTENCY REWARD

336 Beyond task accuracy and format concerns, we regularize chains for *internal consistency* along three
 337 axes: (i) **BGM robustness** blocks spurious causal use of background sound/music; (ii) **Speaker-
 338 ASR fidelity** rewards quotes/snippets that appear in the ASR transcript; and (iii) **Reasoning-
 339 Answer consistency** rewards agreement between the last internal choice from <THINK> and
 340 the final answer. Let $r_{\text{bgs}}(x) \in \{0, 1\}$, $r_{\text{spk}}(x) \in [0, 1]$, and $r_{\text{ra}}(\hat{y}, \hat{y}_{\text{CoT}}) = \mathbf{1}[\tilde{y}_L(\hat{y}, \hat{y}_{\text{CoT}}) =$
 341 $\hat{y}_L(\hat{y}, \hat{y}_{\text{CoT}})] \in \{0, 1\}$. We combine them with a hard background sound gate:

$$342 \mathcal{R}_{\text{cons}}(\hat{y}, \hat{y}_{\text{CoT}}) = r_{\text{bgs}}(\hat{y}, \hat{y}_{\text{CoT}}) \left(\lambda_{\text{spk}} r_{\text{spk}}(\hat{y}, \hat{y}_{\text{CoT}}) + \lambda_{\text{ra}} r_{\text{ra}}(\hat{y}, \hat{y}_{\text{CoT}}) \right), \quad \lambda_{\text{spk}}, \lambda_{\text{ra}} \geq 0, \quad \lambda_{\text{spk}} + \lambda_{\text{ra}} = 1. \quad (9)$$

344 In words, any offending background sound/music causal claim zeroes the consistency reward; oth-
 345 erwise, we interpolate between sentence-level Speaker-ASR alignment and self-agreement of the
 346 final answer. The default weights $\lambda_{\text{spk}} = \lambda_{\text{ra}} = 0.5$ worked well in our runs.
 347

348 **Background sound/music robustness** To prevent spurious cues from background sound, we pe-
 349 nalize any reasoning/description sentence that *uses background sound/music as causal evidence*.
 350 We set $r_{\text{bgs}}(x) = 0$ if reasoning invokes background sound/music as causal evidence (e.g., "bgm",
 351 "background sound", instrument names), otherwise $r_{\text{bgs}}(x) = 1$.
 352

353 **Speaker-ASR fidelity** Within <THINK>, let $\mathcal{A} = a_j$ denote ASR sentences and $\mathcal{S} = s_i$ denote
 354 speaker snippets (i.e., quoted spans or colon-delimited clauses). We measure how faithfully speaker-
 355 attributed quotes in the model's outputs appear in the ASR transcript. Let $\mathcal{S} = \mathcal{S}(\hat{y}, \hat{y}_{\text{CoT}})$ be the set
 356 of quoted/snippet spans extracted from the chain (e.g., speaker-attributed quotes), and let \mathcal{A} be the
 357 set of sentences from the ASR transcript of the input audio. We softly align each snippet to its best-
 358 matching ASR sentence via a normalized similarity $\text{sim}(\cdot, \cdot) \in [0, 1]$, and average over snippets:

$$359 r_{\text{spk}}(\hat{y}, \hat{y}_{\text{CoT}}) = \frac{1}{|\mathcal{S}|} \sum s \in \mathcal{S} \max_{a \in \mathcal{A}} \text{sim}(\text{norm}(s), \text{norm}(a)) \in [0, 1]. \quad (10)$$

361 Here, $\text{norm}(\cdot)$ is a deterministic text normalization (lowercasing, stripping punctuation/speaker tags,
 362 collapsing whitespace). The similarity is a normalized edit-based score:
 363

$$364 \text{sim}(u, v) = 1 - \frac{\text{Lev}(u, v)}{\max\{|u|, |v|\}} \in [0, 1], \quad (11)$$

366 where $\text{Lev}(\cdot, \cdot)$ is the (character-level) Levenshtein distance.
 367

368 This rewards quotes that truly occur in the ASR while tolerating minor lexical or punctuation vari-
 369 ations; fabricated or hallucinated quotes receive low similarity. For completeness, we adopt the
 370 following conventions for edge cases:

$$371 r_{\text{spk}}(\hat{y}, \hat{y}_{\text{CoT}}) = \begin{cases} 1, & |\mathcal{S}| = 0 \text{ (no verbatim quotes to verify);} \\ 0, & |\mathcal{A}| = 0 \wedge |\mathcal{S}| > 0 \text{ (no ASR to support quotes);} \end{cases} \quad (12)$$

375 **Reasoning-Answer consistency** In long, noisy chains, decoding drift can make the model "reason
 376 to A but output C ". Therefore, we design rewarding self-agreement. From <THINK> we extract
 377 the last declared option $\tilde{y}_L(x)$. Let $\hat{y}_L(x)$ denote the final emitted letter (FA/R). Then we calculate
 $r_{\text{cons}}(x) = \mathbf{1}[\tilde{y}_L(x) = \hat{y}_L(x)]$.

378 Table 2: Performance on MMAU Test-mini (Sakshi et al., 2024) and MMAR (Ma et al., 2025b).
379

380 Method	381 MMAU Test-mini ↑				382 MMAR ↑			
	383 Sound	384 Music	385 Speech	386 Average	387 Sound	388 Music	389 Speech	390 Average
Qwen2-Audio	61.26	53.59	48.05	54.30	33.33	24.27	32.31	30.00
+SFT	62.76	44.61	55.86	54.41	41.82	34.95	45.92	40.90
+GRPO-NoThink	68.17	61.38	60.66	63.40	51.52	38.83	45.92	45.40
+GRPO + CoT	70.27	59.88	59.46	63.20	58.18	33.98	46.60	46.30
+GRPO + ExpCoT	75.07	58.98	63.66	65.90	44.85	39.81	59.86	48.20
& - weak format	72.97	61.08	63.96	66.00	42.42	43.69	61.22	49.10
Ours (ConfAudio)	75.67	62.27	64.26	67.40	58.18	45.63	62.59	55.50
Audio-CoT	62.16	55.99	56.16	58.10	35.76	25.24	34.01	31.67
Audio-Reasoner	60.06	64.30	60.70	61.71	43.64	33.50	32.99	36.71

391
392
393 Together, the consistency measure discourages spurious reliance on background sound/music, en-
394 forces alignment between speaker summaries and ASR evidence, and ensures that the internally
395 declared answer matches the final emitted answer.

396 3.4.4 LENGTH SHAPING WHEN ACCURATE

397 To encourage adequate evidence gathering (speaker attribution, noise filtering) without overlong
398 chains, we introduce a length sub-reward when the accuracy reward is 1. Let $T(x)$ be a sim-
399 ple token proxy (count of non-whitespace sequences in the whole completion). With thresholds
400 $T_{\min} = 300$, $T_{\max} = 600$, and decay scale $K > 0$, we use a piecewise-linear schedule. To en-
401 force clean outputs, we gate by the absence of post-answer content, where any non-whitespace after
402 </FINAL_ANSWER> leads to 0.

403 4 EXPERIMENTS

404 4.1 EXPERIMENTAL SETUP

405 All experiments fine-tune the same pretrained backbones (Qwen2-Audio-7B-Instruct), using the
406 framework introduced by Li et al. (2025b). Training is conducted with a batch size of 1 per GPU,
407 with by 2 gradient accumulation steps, resulting in an effective total batch size of 16. We adopt a
408 learning rate of $1e - 6$, a temperature of 1.0, and configure the GRPO to sample 8 responses per
409 group with a KL coefficient β of 0.1. For models incorporating pause latent thinking mechanism, we
410 set `tau_pause_quantile=0.50` that allows up to 8 pauses per sequence with 64 thinking tokens each,
411 plus recovery bonus (0.05) and leak penalty (1.0) for think token containment.

412 We evaluate six configurations: **SFT**, supervised fine-tuning only with no reasoning schema and no
413 `<pause>`; **GRPO-Nothink**, GRPO post-training that emits answers directly without `<REFLECT>`
414 or `<pause>`; **GRPO+CoT**, GRPO enhanced with thinking before the answer (in the weak for-
415 mat of `<THINK><ANSWER>`); **GRPO+ExpCoT**, GRPO enhanced with explicit `<THINK>` (in-
416 cluding `<REFLECT>`) but no `<pause>`; **Ours (ConfAudio)**, GRPO enhanced with the explicit
417 schema and `<pause>`; and **External Baselines** including Audio-Reasoner (Xie et al., 2025) and
418 Audio-Thinker (Wu et al., 2025). We use PAQA (train set) for supervised finetuning. For RL train-
419 ing, we utilize 30,000 augmented samples generated upon the AQVA (Yang et al., 2022) dataset,
420 with each response reformulated into a `<think>...</think><answer>...</answer>`
421 reasoning–answer structure. Models are evaluated on several benchmarks, **PAQA Test**(hard),
422 **MMAU** (Sakshi et al., 2024), and **MMAR** (Ma et al., 2025b), the results are listed below.

423 4.2 MAIN RESULTS

424 Table 2 summarizes the main results across two aggregated benchmarks (MMAU, MMAR). Several
425 key findings emerge from the experimental analysis. A specific case study is shown in Appendix B.

426 **SFT. vs. Baseline** Injecting audio perceptual information via SFT proves beneficial, particularly in
427 speech, which constitute the primary focus of our study. However, as the data is heavily skewed
428 toward speech, some degree of domain shift is observed in music, leading to suboptimal results.

RL vs. SFT GRPO-NoThink performs better than with SFT, and each introduced module in our method improves the performance well. Although GRPO-NoThink outperforms SFT, its improvement stems mainly from reinforcement rather than genuine reasoning. GRPO alone or with naive CoT prompts fails to ensure stable learning. Only when the model is first SFT-trained on our curated audio-reasoning data, which enhances perceptual understanding and format adherence, and then optimized by GRPO under our explicit CoT design, does it achieve coherent and perceptually grounded reasoning across complex audio scenes.

Pause mechanism works. Ours method with explicit reflection and implicit latent reasoning surpasses all other baselines. Notably, it improves the Music subset, offsetting the bad performance of just finetuning. More detailed analysis are provided in Appendix A.5.

Abort mechanism balances speed with formatting penalties. While abort (early stopping under high uncertainty/high entropy) improves throughput and latency control, we observe that it tends to output think-only simplified content, yielding very low format rewards. We therefore down-weight the format reward (from 0.5 to 0.1) and make a baseline with a weak format. Even under this setting, ConfAudio continues to outperform alternatives, suggesting that the pause mechanism remains the principal driver of performance gains.

4.3 ABLATION STUDY

Background Sound As shown in Fig.4(a), the introduction of background sound leads to measurable degrades zero-shot performance. However, this drop is substantially mitigated while explicit “ignore prompt” cues are provided. This validates that our reflection step (Section 3) substantially improve accuracy. In Fig. 4(b), we further compare the effect of varying numbers of reflection turns, moving from 0 to 1 round yields a large accuracy enhancement while keeping outputs mostly clean. However, adding more rounds brings diminishing returns and “overthinking”. A similar trade-off is identified in the use of the pause mechanism. Excessive pausing negatively affects performance(see Fig. 5), suggesting that it is suitable to set max pause token between 1 and 3. We also evaluate on the test set of PAQA(see Tab.3), on the category of multi-speaker and MELD (Xie et al., 2025), ConfAudio performs the best. Furthermore, under the challenging setting with background sound at SNR=5dB, a condition that considerably degrades most models, our ConfAudio deteriorates the least, retaining state-of-the-art accuracy and consistency. This resilience is attributed to its pause-driven implicit reasoning and rewards aware of background sound/music.

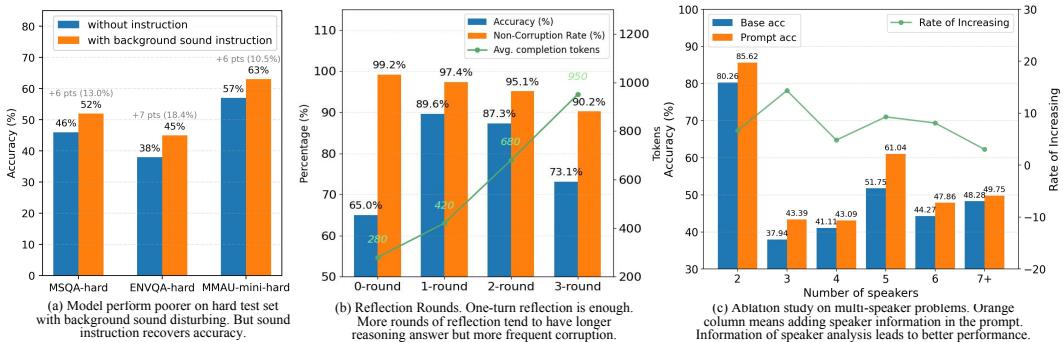


Figure 4: Comparison between different audio situations.

Multi Speaker Overall, adding a short “background information” prompt improves accuracy. The benefit is consistent across all speaker counts, and the base model is strong with 2 speakers (80.26%), but drops sharply as speakers increase. This pattern matches the intuition that more speakers introduce attribution and coreference errors. Crucially, 3–6 speaker cases benefit most from the added context. For 7+ speakers, the improvement is modest, indicating that richer cues (explicit diarization tags, role summaries, or brief scene summaries) are likely needed.

5 RELATED WORKS

5.1 LARGE AUDIO–LANGUAGE MODELS (LALMs)

Early LALMs such as Qwen2-Audio(Chu et al., 2024), Audio Flamingo(Kong et al., 2024), and SALMONN(Tang et al., 2024) advanced ASR, but remained fragile in real-world reasoning tasks in-

Model	Multi-Speaker(hard)	BGM-rich Acc.	Acc. Consistency ↑	SNR=10 SNR=5
Qwen2-Audio	42.2	38.5	41.0	20.1
+SFT	46.2	41.5	44.0	31.2
+GRPO-NoThink	52.7	48.3	50.2	38.4
+GRPO-ExpCoT	61.5	58.7	60.8	47.6
Ours	70.4	68.1	69.5	57.8
Audio-CoT	50.6	46.9	48.3	35.0
Audio-Reasoner	56.8	52.7	55.9	41.8

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 3: Evaluation on the test set of PAQA. Our model performs best in each category.

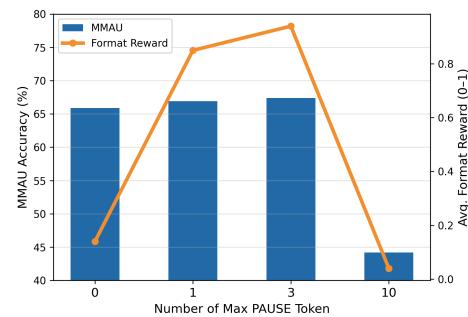


Figure 5: Abaltion study of #<PAUSE> tokens. Set max pause token as 1-3 is suitable.

volving overlapping speakers and non-stationary noise. On-demand CoT in Audio Flamingo 3(Goel et al., 2025) and structured CoT in Audio-Reasoner (Xie et al., 2025)—yet models often reverted to transcript shortcuts whenever acoustic evidence was difficult to verbalize. To address these limitations, we release a structured dataset that couples multi-speaker and background-rich audio, explicitly guiding LALMs to ground decisions in acoustic rather than purely textual evidence.

5.2 EXPLICIT REASONING IN LARGE LANGUAGE MODELS

In LLMs, structured reasoning through CoT, reflection, and RL post-training has yielded consistent gains beyond supervised fine-tuning (SFT) (Guo et al., 2025; Team et al., 2025). While Vision-R1 (Huang et al., 2025) and Video-R1 (Feng et al., 2025) extended RL-based reasoning to over-thinking suppression. In audio, GRPO-style RL underlies R1-AQA and Omni-R1 (Shao et al., 2024; Li et al., 2025b; Zhong et al., 2025), with mixed evidence on whether RL alone suffices. More recent approaches (Wen et al., 2025; Wu et al., 2025; Li et al., 2025a; Jin et al., 2025) highlight that objectives should reward useful and concise reasoning rather than verbosity. In this work, we instead unify explicit, audio-grounded reasoning with reflection, operationalized through a multi-term reward that enforces correctness and conciseness.

5.3 IMPLICIT REASONING AND PAUSE-GATED LATENT COMPUTE

Complementary to explicit rationales, implicit computation allocates additional internal processing before token emission. Learned <pause> tokens can trigger silent forward passes (?), echoing earlier adaptive-computation approaches(Graves, 2017; Banino et al., 2021) that learn instance-dependent halting policies. To our knowledge, such latent computation has not been systematically validated in audio-language reasoning. Our contribution is to extend <pause> to LALMs and couple it with a lowest-group-confidence (LGC) controller: when confidence drops on acoustically inexpressible cues, ConfAudio diverts into a short, budgeted latent stream and can abort tail trajectories under severe uncertainty.

6 CONCLUSION

In this paper, to address two entangled failure modes in Audio-QA, perceptual and reasoning errors, we build **PAQA** to supervise verifiable, audio-grounded questions-answerings, and propose **ConfAudio**, which couples explicit reflection with implicit, pause-driven latent thinking trained via GRPO with a composite reward. Specially, a lowest-group-confidence controller inserts <pause> or aborts unstable trajectories. ConfAudio delivers consistent gains in accuracy and consistency under noisy, multi-speaker conditions, narrowing the gap between acoustic evidence and reasoning.

ETHICAL CONSIDERATIONS

Our dataset is constructed from publicly available corpora or controlled augmentations, with all speech either anonymized or synthesized to avoid privacy leakage. Despite the contributions, several limitations remain. First, while our dataset is carefully annotated with multi-speaker and

540 background-rich reasoning structures, its scale is modest compared to general-purpose audio cor-
 541 pora, which may limit coverage of rare conversational phenomena.
 542

543 **REPRODUCTIVITY STATEMENT**

544 We prioritize reproducibility by releasing dataset specifications, and preprocessing scripts for back-
 545 ground injection, speaker segmentation, and ASR alignment. All training configurations—including
 546 optimizer settings, batch sizes, learning rate schedules, and LoRA ranks—are documented and re-
 547 leased as YAML files. Our evaluation follows a consistent protocol across our dataset, MMAU,
 548 and MMAR, reporting accuracy, consistency, and robustness under noise. Results are averaged over
 549 multiple random seeds to avoid cherry-picking. Upon publication, we will release our training data,
 550 code, inference pipelines, and checkpoints under an open-source license.
 551

552 **REFERENCES**

553

554 Andrea Banino, Samuel Ritter, et al. Pondernet: Learning to ponder. In *ICML*, 2021.

555

556 Donald S. Boomer. Psycholinguistics; experiments in spontaneous speech: Frieda goldman eisler
 557 academic press, london new york 1968. viii, 169 pp. 50 s. *Lingua*, 25:152–164, 1970.
 558 ISSN 0024-3841. doi: [https://doi.org/10.1016/0024-3841\(70\)90028-8](https://doi.org/10.1016/0024-3841(70)90028-8). URL <https://www.sciencedirect.com/science/article/pii/0024384170900288>.

557

558 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
 559 Jinzheng He, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen2-audio technical report. 2024.
 560 URL <https://arxiv.org/abs/2407.10759>.

561

562 Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Junfei Wu,
 563 Xiaoying Zhang, Benyou Wang, and Xiangyu Yue. Video-r1: Reinforcing video reasoning in
 564 mllms, 2025. URL <https://arxiv.org/abs/2503.21776>.

565

566 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025.
 567 URL <https://arxiv.org/abs/2508.15260>.

568

569 Arushi Goel, Sreyan Ghosh, Jaehyeon Kim, Sonal Kumar, Zhifeng Kong, Sang gil Lee, Chao-
 570 Han Huck Yang, Ramani Duraiswami, Dinesh Manocha, Rafael Valle, and Bryan Catanzaro.
 571 Audio flamingo 3: Advancing audio intelligence with fully open large audio language models,
 572 2025. URL <https://arxiv.org/abs/2507.08128>.

573

574 Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnav
 575 Nagarajan. Think before you speak: Training language models with pause tokens, 2024. URL
 576 <https://arxiv.org/abs/2310.02226>.

577

578 Alex Graves. Adaptive computation time for recurrent neural networks, 2017. URL <https://arxiv.org/abs/1603.08983>.

579

580 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 581 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 582 via reinforcement learning. 2025. URL <https://arxiv.org/abs/2501.12948>.

583

584 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 585 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models,
 586 2025. URL <https://arxiv.org/abs/2503.06749>.

587

588 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 589 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 590 learning, 2025. URL <https://arxiv.org/abs/2503.09516>.

591

592 Zifeng Kong, Arushi Goel, Rohan Badlani, Wei Ping, Rafael Valle, and Bryan Catanzaro. Audio
 593 flamingo: A novel audio language model with few-shot learning and dialogue abilities, 2024.
 594 URL <https://arxiv.org/abs/2402.01831>.

594 Gang Li, Jizhong Liu, Heinrich Dinkel, Yadong Niu, Junbo Zhang, and Jian Luan. Reinforcement
 595 learning outperforms supervised fine-tuning: A case study on audio question answering, 2025a.
 596 URL <https://arxiv.org/abs/2503.11197>.

597 Gang Li, Jizhong Liu, Heinrich Dinkel, Yadong Niu, Junbo Zhang, and Jian Luan. Reinforcement
 598 learning outperforms supervised fine-tuning: A case study on audio question answering. *arXiv
 599 preprint arXiv:2503.11197*, 2025b. URL <https://github.com/xiaomi-research/r1-aqa>; <https://huggingface.co/mispeech/r1-aqa>.

600 Ziyang Ma, Zhuo Chen, Yuping Wang, Eng Siong Chng, and Xie Chen. Audio-cot: Exploring
 601 chain-of-thought reasoning in large audio language model, 2025a. URL <https://arxiv.org/abs/2501.07246>.

602 Ziyang Ma, Yinghao Ma, Yanqiao Zhu, Chen Yang, Yi-Wen Chao, Ruiyang Xu, Wenxi Chen,
 603 Yuanzhe Chen, Zhuo Chen, Jian Cong, Kai Li, Keliang Li, Siyou Li, Xinfeng Li, Xiquan Li,
 604 Zheng Lian, Yuzhe Liang, Minghao Liu, Zhikang Niu, Tianrui Wang, Yuping Wang, Yuxuan
 605 Wang, Yihao Wu, Guanrou Yang, Jianwei Yu, Ruibin Yuan, Zhisheng Zheng, Ziya Zhou, Haina
 606 Zhu, Wei Xue, Emmanouil Benetos, Kai Yu, Eng-Siong Chng, and Xie Chen. Mmar: A chal-
 607 lenging benchmark for deep reasoning in speech, audio, music, and their mix, 2025b. URL
 608 <https://arxiv.org/abs/2505.13032>.

609 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 610 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
 611 Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
 612 refine: Iterative refinement with self-feedback, 2023. URL <https://arxiv.org/abs/2303.17651>.

613 Antje S Meyer. Timing in conversation. *Journal of Cognition*, 6(1):20, 2023.

614 OpenAI. Learning to reason with LLMs, 2024. URL <https://openai.com/index/learning-to-reason-with-llms/>. [Accessed 19-09-2024].

615 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 616 Mihalcea. MELD: A multimodal multi-party dataset for emotion recognition in conversations.
 617 In Anna Korhonen, David Traum, and Lluís Márquez (eds.), *Proceedings of the 57th Annual
 618 Meeting of the Association for Computational Linguistics*, pp. 527–536, Florence, Italy, July
 619 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1050. URL <https://aclanthology.org/P19-1050/>.

620 S Sakshi, Utkarsh Tyagi, Sonal Kumar, Ashish Seth, Ramaseswaran Selvakumar, Oriol Nieto, Ra-
 621 mani Duraiswami, Sreyan Ghosh, and Dinesh Manocha. Mmau: A massive multi-task audio
 622 understanding and reasoning benchmark, 2024. URL <https://arxiv.org/abs/2410.19168>.

623 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 624 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 625 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

626 Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
 627 Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. In *Advances in
 628 Neural Information Processing Systems (NeurIPS)*, 2023. URL <https://arxiv.org/abs/2303.11366>.

629 Elizabeth Shriberg. To ‘errrr’ is human: ecology and acoustics of speech disfluencies. *Journal of the
 630 international phonetic association*, 31(1):153–169, 2001.

631 David Snyder, Guoguo Chen, and Daniel Povey. Musan: A music, speech, and noise corpus, 2015.
 632 URL <https://arxiv.org/abs/1510.08484>.

633 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and
 634 Chao Zhang. Salmonn: Towards generic hearing abilities for large language models, 2024. URL
 635 <https://arxiv.org/abs/2310.13289>.

648 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 649 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 650 llms. 2025. URL <https://arxiv.org/abs/2501.12599>.

651 Qwen Team. Qwen3 technical report. Technical report, Qwen Team, 2025. URL https://github.com/QwenLM/Qwen3/blob/main/Qwen3_Technical_Report.pdf. Accessed: 2025-09-25.

652 Changhan Wang, Anne Wu, and Juan Pino. Covost 2 and massively multilingual speech-to-text
 653 translation, 2020. URL <https://arxiv.org/abs/2007.10310>.

654 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 655 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
 656 2023. URL <https://arxiv.org/abs/2203.11171>.

657 Cheng Wen, Tingwei Guo, Shuaijiang Zhao, Wei Zou, and Xiangang Li. Sari: Structured audio
 658 reasoning via curriculum-guided reinforcement learning, 2025. URL <https://arxiv.org/abs/2504.15900>.

659 Shu Wu, Chenxing Li, Wenfu Wang, Hao Zhang, Hualei Wang, Meng Yu, and Dong Yu. Audio-
 660 thinker: Guiding audio language model when and how to think via reinforcement learning, 2025.
 661 URL <https://arxiv.org/abs/2508.08039>.

662 Zhifei Xie, Mingbao Lin, Zihang Liu, Pengcheng Wu, Shuicheng Yan, and Chunyan Miao. Audio-
 663 reasoner: Improving reasoning capability in large audio language models, 2025. URL <https://arxiv.org/abs/2503.02318>.

664 Pinci Yang, Xin Wang, Xuguang Duan, Hong Chen, Runze Hou, Cong Jin, and Wenwu Zhu. Avqa:
 665 A dataset for audio-visual question answering on videos. In *Proceedings of the 30th ACM Inter-
 666 national Conference on Multimedia*, pp. 3480–3491, 2022.

667 Hao Zhong, Muzhi Zhu, Zongze Du, Zheng Huang, Canyu Zhao, Mingyu Liu, Wen Wang, Hao
 668 Chen, and Chunhua Shen. Omni-r1: Reinforcement learning for omnimodal reasoning via two-
 669 system collaboration, 2025. URL <https://arxiv.org/abs/2505.20256>.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

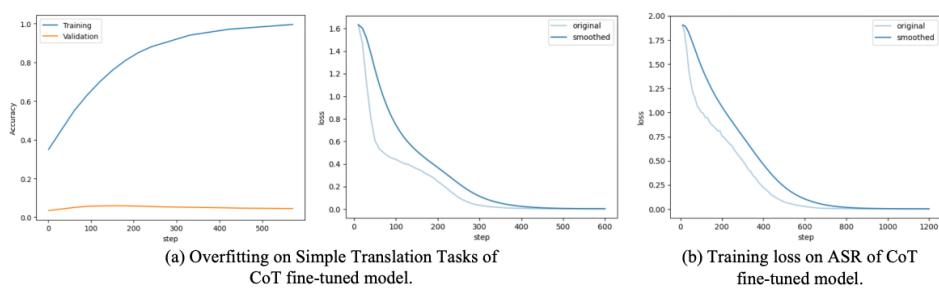
701

702 **A DATA COLLECTION OF HARD AUDIO UNDERSTANDING**
703704 **A.1 LIMITATIONS OF SIMPLE ASR-CENTRIC TEXT REASONING**
705

706 Early approaches to audio reasoning typically relied on converting speech into text via automatic
707 speech recognition (ASR) and then performing reasoning over the textual transcript. While effective
708 to some extent, this paradigm inevitably discards information that is uniquely embedded in the au-
709 dio signal itself. To probe the limitations of this pipeline, we first evaluated the ASR+text reasoning
710 approach on benchmarks such as CoVoST2 and MMAU. In CoVoST2, model performance is largely
711 determined by raw ASR accuracy, and we observed that “simple ASR” signals are quickly memo-
712 rized without yielding robust generalization. A case study is shown in Fig.8, which highlights several
713 intrinsic challenges. Homophones and proper-name ambiguities necessitate long-range semantic
714 modeling and external knowledge retrieval, while gendered pronouns in Chinese (e.g., “he/she”)
715 lack reliable acoustic cues and thus require contextual inference for disambiguation. In particular,
716 Paraformer’s frame-level alignment, coupled with strong language model priors, tends to induce a
717 “nearest-neighbor copying” effect—yielding high accuracy on in-distribution transcripts but exhibit-
718 ing pronounced failures under distributional shifts. Moreover, exposure to translation-oriented data
719 (e.g., CoVoST2) can bias models such as Qwen-Audio to mistakenly trigger translation behavior,
720 sometimes converting Chinese speech into other languages when acoustic cues are uncertain.

721 In Fig. 7(a), there is an improvement on base models if we asked them to answer questions with
722 thinking in the format of <THINK>...</THINK><FINAL_ANSWER>...</FINAL_ANSWER>. Therefore, we collected 2,050 samples from a subset of CoVoST2 (including 50 challenging cases
723 reserved for the test set) and employed Kimi to generate CoT annotations. Using this data, we fine-
724 tuned Qwen2-Audio and evaluated them on the designated test set. However, the models exhibited
725 severe overfitting (see Fig. 6(b)) after only a single epoch of training: while the outputs consistently
726 followed the required <THINK>...</THINK><FINAL_ANSWER>...</FINAL_ANSWER> format and the training loss rapidly approached zero, the test accuracy dropped below 5%. This
727 observation indicates that the gradients primarily optimized for surface-level grapheme mapping
728 and fixed output formatting, without fostering genuine cross-sentence reasoning, coreference reso-
729 lution, or knowledge-grounded inference.

730 Consequently, these observations indicate that the “Thinking” component of chain-of-thought super-
731 vision should be allocated primarily to more challenging audio understanding tasks, such as multi-
732 speaker dialogues and noisy environments—where reasoning signals genuinely drive the model to
733 overcome semantic ambiguities and enforce knowledge-aware interpretations, rather than merely
734 replicating templates on simple ASR tasks.



746 Figure 6: The training dynamics of a chain-of-thought (CoT) fine-tuned model (Qwen2-Audio-7B),
747 indicating the model overfits to the training set in simple translation tasks. This suggests that CoT
748 fine-tuning without additional regularization or more diverse data fails to yield robust generalization,
749 particularly for tasks requiring broader reasoning beyond surface transcript matching.

750 **A.2 HARDER AUDIO REASONING TASKS**
751753 **A.3 SYNTHETIC AUDIO WITH BACKGROUND SOUND**
754

755 Following this, we further analyzed erroneous predictions of Qwen2-Audio on the MMAU bench-
mark. As shown in Fig.7(b), we compared fine-tuning trajectories on the MSQA dataset with and

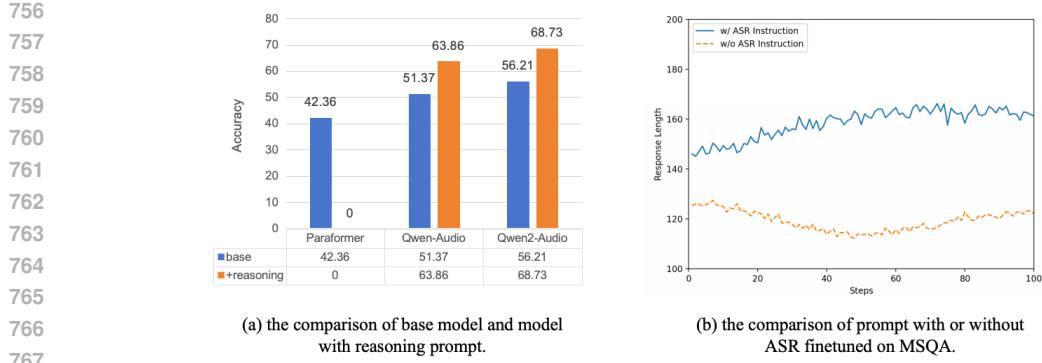


Figure 7: Experiments on the Exploration of Good Audio Reasoning prompt.

English Answer	Chinese Answer	Paraformer	Qwen-Audio	Qwen2-Audio	Qwen2-Audio+BadThought	Analysis
Cuella	库艾拉	届埃拉	Quoi elle.	Quoi elle.	届埃拉	For very short examples, Qwen2-Audio and Qwen-Audio will do translation automatically.
Mill Creek is an unincorporated area located in Pope County, Arkansas, United States.	米尔克里克市是位于美国阿肯色州波普县的一个非建制地区。	米尔克里克市位于美国阿肯色州波普县的一个非建制地区。	米尔克里克市是位于美国阿肯色州波普县的一个非建制郡。	米尔克里克是位于美国阿肯色州波普县的一个非建制地区。	米尔克里克市是位于美国阿肯色州波普县的一个非建制地区。	(1) Homophones are difficult to distinguish; (2) The results of the qwen2audio model are easily misled by bad answers; The term "unincorporated county" is semantically contradictory; "Bopo County" has clearly defined its administrative level as "county", so its subordinate cannot be a "county".
Caul fat is a thin membrane surrounding the internal organs of animals, used as a cooking ingredient.	网油是围绕动物内部器官的薄膜为烹饪食材	网游是围绕动物内部器官的薄膜为烹饪食材	网油是围绕动物内部器官的薄膜为烹饪食材	网油是围绕动物内部器官的薄膜为烹饪食材	网油是围绕动物内部器官的薄膜为烹饪食材 (模型输出正确, 无需修正)	Qwen2-Audio and Qwen-Audio are better at capturing contextual information compared to Paraformer.
Night scenery is really hard to capture	夜景真的超难拍	液晶真的超难拍	液晶真的超难拍	液晶真的超难拍	液晶真的超难拍	But hard cases still cannot be accurately identified. "Night scene" and "liquid crystal" have the same pronunciation, but the former is more suitable for the context of "taking photos".

Figure 8: Bad cases of Paraformer, Qwen-Audio and Qwen2-Audio on the simple ASR task.

without ASR-augmented data. The results reveal that models trained with ASR supervision exhibit substantially longer response lengths, which we interpret as a proxy for deeper and more structured reasoning ability. This finding suggests that integrating ASR data into training not only improves transcription accuracy but also enhances the reasoning capacity of audio-language models. Therefore, in the first stage of fine-tuning, we deliberately incorporated the ASR-enriched data described in the previous section to further consolidate the model’s ASR capability as a foundation for downstream reasoning.

Moreover, we processed the audio with MUSAN(Snyder et al., 2015), which satisfies target 10 dB SNR, according to

$$\text{SNRdB} = 10 \log 10 \left(\frac{P_s}{P_{n,\text{scaled}}} \right) = 10.$$

Let $P_s = \frac{1}{T} \sum_t s_t^2$ and $P_n = \frac{1}{T} \sum_t n_t^2$. The background gain is

$$k = \sqrt{\frac{P_s}{P_n \cdot 10^{\text{SNRdB}/10}}} = \sqrt{\frac{P_s}{P_n \cdot 10}}.$$

A.4 AUDIO QUESTION-ANSWERING WITH MULTI SPEAKERS

We use the subset of Multi-Speaker Dataset in CoTA (Xie et al., 2025), which is generated by TTS to navigate intricate speaker interactions. First, we generated diverse conversational texts with LLMs. Next, using timbres from LibriSpeech as prompts, we synthesized high-quality speech via the CosyVoice2 framework. Finally, these distinct speech samples were combined into a rich dataset.

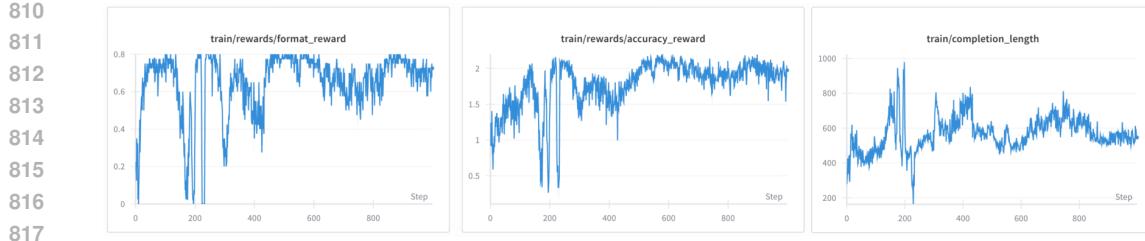


Figure 9: GRPO Training. Overall, the RL training progressed well, but there is a clear collapse around 200 steps. The trigger was the length-reward design: during exploration, longer completions earned higher scores, but once a response exceeded 600 tokens, a linear decay penalty kicked in. The policy reacted by abruptly shortening completions to 200 tokens; these outputs were often incomplete, so the format reward dropped to 0, and the accuracy reward fell to 0.5. After this shock, training recovered and stabilized, indicating the policy adapted to the length constraint.

A.5 PROPER RESPONSE LENGTH AFTER LATENT REASONING

Though more stable during training, introducing pause-based latent tokens increases training time, raising `max_pause_token` from 1 to 3 roughly doubles training time. See more details in Fig.9. Therefore, we set a length reward in the design of whole reward function. We also observe some findings about the design of length-reward Sec. 3.4.4. Overall, the RL training progressed well, but there is often a clear performance drop about 200 steps. The instability can be attributed to the length-reward: during RL exploration, the model received higher scores for generating longer responses, but once a response exceeded 600 tokens, a linear decay penalty kicked in. In reaction, the policy abruptly shifted to producing shorter outputs; these truncated responses were often incomplete, leading to a format reward drop to zero and a reduction in accuracy reward to 0.5. Following this disruption, the training process gradually recovered and ultimately stabilized, indicating the policy capacity to adjust its generation in response to complex reward signals (See Fig. 9).

B CASE STUDY

As shown in Fig.1, the case highlights two failure modes: perceptual misbinding and salience-driven rationale drift. The naive system exhibits this by prioritizing the surface frequency of "Friday" while overlooking its negated polarity and the logical flow of the proposal-to-confirmation sequence. Conversely, the reflective controller rectifies this by enforcing evidence typing (differentiating background sounds from linguistic turns) and ensuring dialogue-act alignment, ultimately restoring causal fidelity to the acoustic evidence.

B.1 MULTI SPEAKERS TRACKING

Bad Case A

[ASR excerpt] [S1] "Ship date is the 12th if QA passes." [S3] "QA won't finish by the 12th." [S4] "Set the launch to the 15th." [S2] "Not the 5th—I said the 15th." [S1] "Agreed."
 [Question] What is the final launch date?
 [Choices] A 5th · B 12th · C 13th · D 15th
 [Audio context] Meeting room; steady HVAC hum as BGM; frequent interruptions.
 [Ground truth] D
 [Simple model response] B
 [Reflection] <REFLECT> S3 explicitly negates the initial "12th" suggestion, S4 introduces a new proposal "15th," S2 clarifies that it is "15th" rather than "5th," and S1 provides team confirmation; taken together these turns establish the final launch date as the 15th.

This case tests how well the model can follow a conversation in a realistic, noisy meeting. The audio includes a constant low hum from an air conditioner (HVAC) in the background, and the speakers often interrupt each other. These challenges make it difficult to follow the flow of the conversation. The simple model's failure wasn't about hearing the words; it was about failing to understand the process of the discussion. The reflective model succeeded because it built a step-by-

864 step understanding of the conversation's logic. It correctly handled the disagreements and changes,
 865 proving it can reason reliably even in a noisy and dynamic group setting.
 866

867 **B.2 EXPLICIT REFLECTION**

868 **Bad Case B**

869
 870 <THINK>
 871 <PLANNING>

872 The user's question is: Based on the conversation, what are the speakers trying to assemble? I need to
 873 analyze the dialogue between the speakers to identify the item they are constructing. The audio provides
 874 the audio clip, and I should analyze it for details related to the assembly activity. </PLANNING>
 875 <CAPTION>

876 The audio features a conversation among three individuals in what sounds like a workspace. They are
 877 discussing an instruction manual and the assembly process. - Speaker 1: Expresses frustration with the
 878 instruction manual, stating that it's difficult to distinguish pieces A and B.
 879 - Speaker 2: Proposes that piece B has a slightly beveled edge, but concedes that it's similar.
 880 - Speaker 3: Agrees that it looks like Bevel Edge and expresses hope that it's correct.
 881 - Speaker 1: States it is Bevel Edge B, and declares they can complete the assembly.
 882 - Speaker 2: Hope is right and doesn't want to misassemble again.
 883 - Speaker 1: Confirms it is Bevel Edge B and asks everyone to take deep breaths and move on.

884 The core task is assembling an item where they are currently putting together parts, such as bevel edges.
 885 </CAPTION>

886 <REASONING>

887 1. Analyzing the Dialogue: The dialogue revolves around distinguishing parts (A and B) and confirming a
 888 beveled edge.
 889 2. Identifying the Assembly Activity: The key element is Bevel Edge, suggesting the speakers are
 890 assembling something with beveled sides.
 891 3. Evaluating Options: - (a) A table: While a table might require beveling, the central focus isn't just about
 892 assembling a table. - (b) A chair: Similarly, a chair might require beveling, but it isn't their primary focus.
 893 - (c) A bed: A bed typically features beveled edges, aligning perfectly with the conversation. This is the
 894 most likely scenario. - (d) A bookshelf: A bookshelf is less likely to have beveled edges.
 895 4. Concluding the Item: Based on the bevel edges and the distinct focus on distinguishing them, it can be
 896 inferred that the speakers are assembling a bed. </REASONING>

897 <SUMMARY>

898 The speakers are differentiated by focusing on the Bevel Edge assembly of a bed. By eliminating other less
 899 relevant options through reasoning, the final conclusion is that they are assembling a bed. </SUMMARY>
 900 </THINK>

901 Here is the reflection of this case.

902 **Reflection of Bad Case A**

903 <REFLECT> Evidence available from the dialogue is generic to many flat-pack builds: "piece A vs. B,"
 904 "bevel(ed) edge," "don't misassemble," and "let's move on." No category-specific anchors are heard (e.g.,
 905 for a bed: headboard/footboard/rails/slats; for a bookshelf: shelf/upright/back panel/bracket; for a table:
 906 tabletop/apron; for a chair: backrest/seat/armrest). Given absent anchors, the safest policy is to avoid over-
 907 commitment. If forced to choose among the four, "bookshelf" is the most compatible with beveled front
 908 edges on shelves and frequent A/B part distinctions during shelf panel assembly. Confidence remains low;
 909 with an "uncertain" option, I would state insufficient evidence. </REFLECT>

910 <ANSWER>Bookshelf.</ANSWER>

911 **B.3 PAUSE MECHANISM**

912 This case tests the model's ability to understand meaning that isn't in the words themselves, but in
 913 the way they are spoken (the "tone," or prosody). The audio is a phone call with background noise
 914 from rain and static (line hiss). The challenge is to see if the model can spot sarcasm or reluctance,
 915 even when the words seem positive. Therefore, this case highlights a major flaw in models that
 916 only read text. They can be easily fooled when a speaker's tone changes the meaning of their words
 917 (like in sarcasm or politeness). The reflective model's success shows it can listen, not just read. It

918 integrates how something is said with what is said to find the true meaning, which is crucial for
 919 understanding human conversation.
 920

921 **Bad Case C**

922 [ASR excerpt] [S1] “Can you present Friday?” [S2] “Yeah, Friday... great.” (F0 downward; reduced en-
 923 ergy; elongated final syllable) [S2] “Actually, I’m not available Friday evening.” [S1] “Then Thursday
 924 morning?”

925 [Question] Is S2 willing to present on Friday?

926 [Choices] A Yes · B No · C Unsure · D Only afternoon

927 [Audio context] steady rain and mild line hiss

928 [Ground truth] B

929 [Simple model response] A

930 [Reflection] <REFLECT> ...”Yeah, Friday... great” ;PAUSE; check tone/intonation. ;PAUSE; The phrase
 931 “Yeah, Friday... great” is produced with a downward F0 contour and reduced energy consistent with reluc-
 932 tance or irony, and a subsequent turn states explicit unavailability on Friday evening; integrating prosodic
 933 and semantic cues indicates S2 is not willing to present on Friday.

934 </REFLECT>

935 In sum, the Multi-speaker Tracking matters speaker attribution (“who”), the Pause Mechanism
 936 addresses the transition from rapid, text-centric processing to a more computationally intensive,
 937 multi-modal analysis, and Reflection focuses on the ground truth by deploying targeted evidence
 938 re-querying, contextual anchoring to disambiguate local hypotheses (as in ASR N-best lists), and
 939 integrating conflicting cross-modal data. The convergence of these mechanisms allows the model
 940 to emulate human-like cognitive robustness in complex, ambiguous, and multi-participant acoustic
 941 environments, distinguishing its performance from that of a passive, deterministic system.

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 C PROMPT TEMPLATE
973

974 A Sample Case of Our PAQA Data
975

```

976 <THINK>
977 <PLANNING>
978 The user wants to understand the dynamic changes ..... </PLANNING>
979 <CAPTION>
980 <BGM>Street noise; intermittent car horns.</BGM>
981 <SPEAKER>A: adult F; B: adult M; alternating turns.</SPEAKER>
982 <ASR></ASR>
983 <DESCRIPTION>The audio clip predominantly features static noise. ..... similar to that of a detuned
984 television or a device failing to receive a signal.</DESCRIPTION>
985 </CAPTION>
986 <REASONING>
987 1. Identify changes in Intensity (Volume): ..... struggling to maintain a consistent output, adding to the
988 impression of something malfunctioning or broken. </REASONING>
989 <SUMMARY>
990 The static noise in the audio is highly dynamic. ... leading to a sense of disorder and instability.
991 </SUMMARY>
992 </THINK>
993 <RESPONSE>
994 The audio presents a static noise, ..... is one of energetic chaos, preventing any possibility of calm or
995 predictability. </RESPONSE>
996
997 <REFLECT1> Does "A" mention the cake, not B? Check turn 3.</REFLECT1>
998 <NEW_RESPONSE>A</NEW_RESPONSE>
999 <REFLECT2> Does "A" mention the cake, not B? Check turn 3.</REFLECT2>
1000 <NEW_RESPONSE>B</NEW_RESPONSE>

```

500 Prompt template of Refelection Sample

501 After producing the <RESPONSE>, you must perform a structured self-reflection step.
502 1. Compare the <RESPONSE> with the overall task requirements and check for issues such as: - Missing
503 or incomplete coverage of the audio content (did it stop too early? were some speakers/segments missed?).
504 - Repetition or redundant phrasing that should be removed or marked clearly. - Speaker attribution or di-
505 arization errors (wrong speaker assignment, merged speakers, or split speakers). - Prosody/tone/intonation
506 mistakes or overemphasis on irrelevant details. - Inconsistent reasoning or labels (final choice must align
507 with the reasoning and context). - Overly simplistic or single-hypothesis reasoning when alternatives exist.
508 2. Inside <REFLECT>...</REFLECT>, explicitly list: - The problems found in <RESPONSE>. - The
509 corrections or adjustments needed (without referencing or leaking the gold standard answer text). - Any
510 uncertainties or low-confidence areas.
511 3. Then rewrite the improved answer inside <FINAL_ANSWER>...</FINAL_ANSWER>, ensuring: - All
512 necessary content is covered. - No hallucinated details are added beyond the given <CAPTION>, <ASR>,
513 and <DESCRIPTION>. - Speaker attributions and reasoning are consistent. - The final answer matches the
514 reasoning and is labeled correctly with confidence if required.
515 Format strictly as: <REFLECT> [Your structured reflection here] </REFLECT>
516 <FINAL_ANSWER> [Your corrected, high-quality final answer here] </FINAL_ANSWER>
517 Here is the original bad answer: Turn0 Here is the golden answer: Golden_Ans

1015 D THE USE OF LARGE LANGUAGE MODELS (LLMs)
1016

1018 In order to reduce typos during the writing process and to optimize complex sentence structures
1019 so that the article becomes simpler and easier to read, we use mainstream large language models
1020 to refine certain paragraphs. For example, we use prompts such as "Help me correct the typos
1021 and grammatical errors in the above text, and streamline the logic to make it clear and easy to
1022 understand."

1023
1024
1025

1026 E CODE
10271028 **Algorithm 1 Pseudocode of Pause/Abort/Reflect Mechaiam in ConfAudio.**

1029 **Require:** query q , audio a ; policy model π_θ , reference model π_{ref} ; window K ; max pauses M ; max length L ;
1030 thresholds (pause τ_p , abort τ_a , and reflect τ_r)

1031 1: **function** $\text{CONF}(\ell, \ell_{\text{ref}}, a)$ ▷ inputs are logits, entropy↓ + KL↓ + audio-uncertainty↓
1032 2: $\pi \leftarrow \text{softmax}(\ell/T)$; $\pi_{\text{ref}} \leftarrow \text{softmax}(\ell_{\text{ref}}/T)$
1033 3: $H_n \leftarrow \frac{-\sum_{v \in V} \pi_v \log \pi_v}{\log |V|}$, $KL_n \leftarrow \frac{\sum_{v \in V} \pi_v \log \frac{\pi_v}{\pi_{\text{ref},v}}}{\log |V|}$ ▷ normalized entropy, and KL in [0, 1]
1034 4: $u_n \leftarrow \text{norm}(u(a)) \in [0, 1]$ ▷ audio uncertainty (e.g., SNR/ASR confidence)
1035 5: **return** $\text{clip}(w_1(1 - H_n) + w_2(1 - KL_n) + w_3(1 - u_n), 0, 1)$
1036 6: **end function**
1037 7: **function** $\text{MELTDOWN}(y)$ ▷ e.g., high n-gram repeat or abrupt entropy drop
1038 8: **return** $(\text{Repeat}(y) > \gamma)$
1039 9: **end function**
1040
1041 10: **function** $\text{CONFAUDIOGENERATE}(q, a)$
1042 11: $y \leftarrow [], h \leftarrow [], p \leftarrow 0, low \leftarrow 0$
1043 12: $C_{\text{tok}} \leftarrow [], G \leftarrow []$ ▷ per-token confidence trace, and per-group averaged confidences
1044 13: $g_sum \leftarrow 0, g_len \leftarrow 0$ ▷ running stats for current group
1045 14: **for** $t = 1$ **to** L **do**
1046 15: $\ell \leftarrow \pi_\theta.\text{NEXTLOGITS}(q, a, y)$; $\ell_{\text{ref}} \leftarrow \pi_{\text{ref}}.\text{NEXTLOGITS}(q, a, y)$
1047 16: $C_t \leftarrow \text{CONF}(\ell, \ell_{\text{ref}}, a)$ ▷ step confidence
1048 17: $C_{\text{tok}}.\text{APPEND}(C_t)$; $g_sum \leftarrow g_sum + C_t$; $g_len \leftarrow g_len + 1$
1049 18: $LGC_t \leftarrow \min((G = \emptyset ? 1 : \min(G)), g_sum/g_len)$ ▷ lowest group conf so far
1050 19: **if** $(LGC_t < \tau_a) \wedge (low \geq K \vee \text{MELTDOWN}(y))$ **then**
1051 20: $y.\text{APPEND}(<\text{EOS}>)$; **break**
1052 21: **else if** $(C_t < \tau_p) \wedge (p < M)$ **then**
1053 22: $y.\text{APPEND}(<\text{PAUSE}>)$; $p \leftarrow p + 1$
1054 23: $h \leftarrow h \parallel \pi_\theta.\text{LATENTREASON}(q, a, y)$ ▷ generate until </PAUSE>
1055 24: **continue**
1056 25: **else**
1057 26: $tkn \leftarrow \text{SAMPLE}(\ell)$; $y.\text{APPEND}(tkn)$
1058 27: $low \leftarrow (C_t < \tau_p) ? (low + 1) : 0$
1059 28: **if** $tkn \in \{<\text{PAUSE}>, </\text{PAUSE}>\}$ **then**
1060 29: $G.\text{APPEND}(g_sum/g_len)$; $g_sum \leftarrow 0$; $g_len \leftarrow 0$ ▷ close current group
1061 30: **end if**
1062 31: **if** $tkn = <\text{EOS}>$ **then break**
1063 32: **end if**
1064 33: **end if**
1065 34: **end for**
1066 35: $k \leftarrow \max(1, \lfloor \rho |C| \rfloor)$; $C_g \leftarrow \frac{1}{k} \sum_{c \in \min_k()} c$ ▷ get global confidence C_g
1067 36: **if** $(C_g < \tau_r) \vee \neg \mathcal{R}_{\text{cons}}(q, y)$ **then** ▷ need explicit reflection
1068 37: $y_{\text{pre}} \leftarrow y$; $(y_{\text{refl}}, y) \leftarrow \pi_\theta.\text{REFLECT}(q, a, y_{\text{pre}})$
1069 38: **else**
1070 39: $y_{\text{refl}} \leftarrow \emptyset$, $y_{\text{pre}} \leftarrow \emptyset$
1071 40: **end if**
1072 41: **return** $y, \{y_{\text{pre}}, y_{\text{refl}}, \text{pauses} = p, \text{aborted} = (y[-1] = <\text{EOS}>)\}$
1073 42: **end function**

1074
1075
1076
1077
1078
1079