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ABSTRACT

Digital quantum computing promises to offer computational capabilities beyond
the reach of classical systems, yet its capabilities are often challenged by scarce
quantum resources. A critical bottleneck in this context is how to load classical
or quantum data into quantum circuits efficiently. Approximate quantum loaders
(AQLs) provide a viable solution to this problem by balancing fidelity and circuit
complexity. However, most existing AQL methods are either heuristic or provide
guarantees only for specific input types, and a general theoretical framework is still
lacking. To address this gap, here we reformulate most AQL methods into a unified
framework and establish information-theoretic bounds on their approximation error.
Our analysis reveals that the achievable infidelity between the prepared state and
target state scales linearly with the total entanglement entropy across subsystems
when the loading circuit is applied to the target state. In light of this, we develop
AQER, a scalable AQL method that constructs the loading circuit by systematically
reducing entanglement in target states. We conduct systematic experiments to
evaluate the effectiveness of AQER, using synthetic datasets, classical image and
language datasets, and a quantum many-body state datasets with up to 50 qubits.
The results show that AQER consistently outperforms existing methods in both
accuracy and gate efficiency. Our work paves the way for scalable quantum data
processing and real-world quantum computing applications.

1 INTRODUCTION

Digital quantum computers (Feynman, 1982) promise to deliver computational capabilities that
surpass those of classical systems in diverse fields (Shor, 1994; Huang et al., 2022). After four
decades of exploration, substantial progress has been achieved, with superconducting (Acharya et al.,
2025) and neutral atom platforms (Xu et al., 2025) demonstrating quantum advantages on synthetic
benchmarks. Nevertheless, the available quantum resources, such as the number of high-quality
qubits and coherence time, would remain severely constrained in the foreseeable future (Jiang et al.,
2025). This limitation underscores the need to consistently improve the efficiency of the three
foundational modules of quantum computing: quantum state preparation (Girolami, 2019), quantum
processing (Bharti et al., 2022), and readout (Schreiber et al., 2025). Maximizing resource utilization
across these stages is essential to advancing the practical utility of quantum computers. In this context,
efficient quantum state preparation, which amounts to constructing quantum gate sequences that
encode classical or quantum inputs into quantum states, emerges as a critical prerequisite (Ranga
et al., 2024). This step remains notoriously challenging, as theoretical results indicate that in the
worst case, preparing an arbitrary quantum state within a provable error tolerance may require an
exponential number of quantum gates or ancillary qubits (Zhang et al., 2022; Gui et al., 2024).

Recently, a new concept known as the approximate quantum loader (AQL) (Iaconis and Johri, 2023)
has emerged, offering a promising direction for efficient quantum state preparation. Unlike earlier
approaches that aimed to achieve provable accuracy guarantees, AQL embraces a trade-off between
preparation fidelity and circuit complexity. The central insight driving this paradigm is that many
quantum algorithms can tolerate some imprecision in the input state, which allows substantial re-
ductions in gate count and resource overhead. For instance, in quantum machine learning, small
perturbations in input features often have negligible impact on classification accuracy (Nguyen et al.,
2020) and do not compromise the demonstration of quantum advantage, particularly in terms of
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sample complexity (Huang et al., 2023). Motivated by this observation, considerable effort has been
devoted to designing efficient AQL schemes for various data types. These methods broadly fall into
two categories: tensor network (TN)–based approaches (Jobst et al., 2024; Iaconis et al., 2024), which
employ matrix product state (MPS) and other TN representations, and circuit-based approaches (Mit-
suda et al., 2024; Shirakawa et al., 2024), which directly optimize quantum gate sequences (see
Fig. 1 for a general framework and Sec. 3.1 for details). Despite this progress, most existing
techniques are either heuristic or provide theoretical guarantees only under restrictive scenarios. Con-
sequently, a systematic understanding of the fundamental limits on approximation error achievable
by AQL remains elusive. Addressing this question would provide critical insights for the principled
development of AQL algorithms and for the resource-efficient use of digital quantum computers.

Figure 1: The general framework of AQL. Typical
AQLs are separated into two categories: TN–based meth-
ods and circuit-based methods, both of which aim to
construct quantum circuits from a given gate set U that
approximately prepare the target state.

Here we narrow the above knowledge gap by
first reformulating a wide range of AQL meth-
ods into a unified framework. An intuition is
illustrated in Fig. 1, where the AQL construction
amounts to identifying a sequence of (tunable)
quantum gates that minimizes the distance be-
tween the state evolved by this sequence and the
target quantum state. Building on this frame-
work, we derive information-theoretic lower
and upper bounds for the approximation er-
ror of AQL (Theorem 3.1), which are indepen-
dent of specific AQL strategies. Specifically,
we demonstrate that the approximation error de-
creases linearly with the newly proposed entan-
glement measure, which amounts to the sum-
mation of the single-qubit entanglement entropy
of the target quantum states after the inverse of
the AQL gate sequence. This result provides
the key insight that AQL performance can be
fundamentally characterized by the degree of entanglement reduction achievable during the AQL,
with a larger entanglement reduction leading to more accurate loading.

Motivated by the theoretical importance of entanglement in determining the performance of AQL, we
develop AQER, a scalable and efficient AQL method that constructs the gate sequence guided by the
principle of maximal Entanglement Reduction. In particular, AQER leverages this principle to reduce
the entanglement of target states by progressively adding parameterized single- and two-qubit gates,
and employs an explicitly constructed single-qubit gate sequence to further reduce the approximation
error. Compared to existing AQL methods, AQER offers two key advantages. First, AQER is flexible
and universal, supporting efficient approximate loading of both classical data and unknown quantum
states. Second, AQER is robust and easy to optimize. Guided by entanglement-reduction optimization,
it not only achieves low approximation error but also mitigates vanishing gradient problems during
the parameter training (Larocca et al., 2025), thereby ensuring scalability to large-qubit systems. To
validate the effectiveness of AQER, we conduct systematic experiments to benchmark its performance
on different quantum state loading tasks, ranging from synthetic quantum states, real-world image
and language datasets, to quantum many-body systems with up to 50 qubits. The achieved results
reveal that AQER consistently outperforms existing methods. Our work paves the way for scalable
quantum data processing and practical applications of quantum computing in real-world tasks.

In summary, our contributions are threefold. (i) We propose a unified framework for a wide range
of AQL methods and derive two information-theoretic bounds on the approximation error of AQL
with respect to the entanglement measure. To the best of our knowledge, this is the first study to
establish theoretical limits for AQL from an information-theoretic perspective. (ii) Motivated by these
theoretical results, we develop AQER, a scalable and efficient AQL method that features principled
entanglement reduction optimization to efficiently utilize gate resources. (iii) We conduct extensive
numerical simulations across diverse datasets with up to 50 qubits, and compare AQER against
reference AQL methods. The results validate the effectiveness of AQER, demonstrating superior
performance with lower approximation error and reduced gate count. The corresponding code is
available at GitHub for reproducibility and benchmarking purposes.
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2 PRELIMINARY

Here, we introduce the basics of quantum computing, quantum entanglement, and variational quantum
algorithms, followed by reviewing typical AQL methods. Refer to Appendix A for more details.

Basics of quantum computing. The pure state of a qubit can be written as |ψ⟩ = a|0⟩+ b|1⟩, where
a, b ∈ C satisfy |a|2 + |b|2 = 1, and |0⟩ = (1, 0)T , |1⟩ = (0, 1)T . The N -qubit space is formed by
the tensor product of N single-qubit spaces. For a pure state |ψ⟩, the corresponding density matrix
is defined as ρ = |ψ⟩⟨ψ|, where ⟨ψ| = (|ψ⟩)†. Mixed states are represented by density matrices of
the form ρ =

∑
k ck|ψk⟩⟨ψk|, where ck ≥ 0 and

∑
k ck = 1. For an N -qubit state |ψ⟩, the reduced

density matrix of a subsystem A ⊆ [N ] is obtained by the partial trace ρA = Tr[N ]\A[|ψ⟩⟨ψ|]. A
quantum gate is represented by a unitary matrix acting on the state, and can be depicted in the circuit
model as in quantum circuit notation. Typical quantum operations include fixed gates such
as CZ := diag(1, 1, 1,−1), and tunable single-qubit rotation gates given by Rσ(θ) = e−iθσ/2 with
σ ∈ {X,Y, Z} and X = ( 0 1

1 0 ), Y = ( 0 −i
i 0 ), Z = ( 1 0

0 −1 ) being Pauli-X, -Y, -Z operators. The
rotation gate could be generalized to the two-qubit case, for example RZZ with ZZ = Z ⊗ Z. The
quantum measurement refers to the procedure of extracting classical information from a quantum
state. It is mathematically specified by a Hermitian matrix H called the observable. Measuring the
state |ψ⟩ or ρ with the observableH yields a random variable whose expectation value is ⟨ψ|H |ψ⟩ or
Tr[Hρ], respectively. To quantify the similarity between two quantum states, we use fidelity defined
as F = |⟨ψ1|ψ2⟩|2 or F = Tr[ρ1ρ2], with the corresponding infidelity given by 1− F Nielsen and
Chuang (2010). Both of them can be evaluated by taking the density matrix of either |ψ1⟩ or |ψ2⟩ as
the observable.

Quantum entanglement. Quantum entanglement is a unique property of quantum systems that
distinguishes them from classical systems and serves as a pivotal quantum resource for achieving
quantum computational advantages. Specifically, anN -qubit quantum state |ψ⟩ of a composite system
is called entangled across two subsystems A,B ⊂ [N ] if it cannot be written as a tensor product
of states of the subsystems, i.e., |ψ⟩ ≠ |ψA⟩ ⊗ |ψB⟩ for any states |ψA⟩ , |ψB⟩ in the respective
subsystems. Various metrics have been developed to quantify the degree of entanglement in quantum
states. One commonly used measure is the Renyi-2 entropy, defined as SA(|ψ⟩) = − log2 Tr[ρ

2
A],

where ρA is the reduced density matrix of |ψ⟩ on the subsystem A. When SA(|ψ⟩) = 0, the quantum
state |ψ⟩ is separable and can be written as a product state |ψ⟩ = |ψA⟩ ⊗ |ψB⟩.
Variational quantum algorithm (VQA). VQA (Cerezo et al., 2021) is a hybrid quantum-classical
framework that employs a parameterized quantum circuit V (θ) = Vm(θm) · · ·V1(θ1). The param-
eters θ are optimized to minimize a cost function defined with respect to a quantum observable O
and an input state ρin, i.e., f(θ) = Tr[OV (θ)ρinV (θ)†]. The parameters are updated by a classical
optimizer such as gradient descent or Adam. Gradients can be obtained in different ways depending
on the execution setting. When the variational circuit is simulated on a classical computer, the
gradient can be computed directly using automatic differentiation techniques (Bergholm et al., 2018).
When executed on a quantum device, gradients are estimated by the parameter-shift rule (Wierichs
et al., 2022): ∂f

∂θj
= 1

2f(θ+)−
1
2f(θ−), where θ± differ from θ by ±π/2 on the j-th parameter.

2.1 RELATED WORK

Existing approaches to AQL can be broadly categorized into TN-based and circuit-based methods.

TN-based methods. TN-based methods exploit tensor networks to efficiently represent and prepare
low-entanglement quantum states. For example, matrix product states (MPS) with bond dimension
k can be prepared exactly with O(Nk2) two-qubit gates (Schön et al., 2005), and approximate
encoding is feasible for states with compact MPS representations (Ran, 2020). In light of this,
TN-based strategies have been applied to construct approximate quantum state encodings for classical
data (Holmes and Matsuura, 2020; Iaconis and Johri, 2023; Jobst et al., 2024; Iaconis et al., 2024).
These approaches provide a principled framework with controlled approximation error for low-
entanglement inputs, but their utility to quantum data or highly entangled classical data is limited.

Circuit-based methods. Circuit-based methods directly optimize the quantum gates that generate
the target state, often without relying on an explicit low-entanglement representation. These methods
can be broadly categorized into variational and non-variational strategies. Variational approaches
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train parameterized circuits to minimize infidelity with respect to the target state (Nakaji et al., 2022;
Rudolph et al., 2023b; Mitsuda et al., 2024), while non-variational methods iteratively optimize
local two-qubit gates along the circuit, progressively improving accuracy without explicit parameter
training (Rudolph et al., 2023a; Shirakawa et al., 2024). Circuit-based methods are flexible and
broadly applicable, but lack rigorous theoretical guarantees and suffer from barren plateaus.

3 APPROXIMATE QUANTUM LOADER

In this section, we first reformulate the main AQL approaches within a unified optimization framework
and derive two information-theoretical bounds of the approximation error of AQLs in Sec. 3.1. We
then present the implementation details of AQER in Sec. 3.2.

3.1 UNIFIED FRAMEWORK OF AQL AND THEORETICAL ANALYSIS

Existing AQL methods can be broadly categorized into TN-based methods and circuit-based methods.
For clarity, we first elucidate a unified framework for AQL and explain how different methods can
be formulated within this framework. Building on this framework, we then provide an information-
theoretic analysis of the approximation error achievable by AQL.

A unified framework of AQL. We begin by recalling the fundamental definition of approximate
quantum loader (AQL). An AQL amounts to preparing the target state with controllable accuracy
by generating quantum gate sequences from a given gate set U , as shown in Fig. 1. Specifically, let
U(θ;A) ∈ Um denote a circuit composed of m gates, where θ and A represent tunable parameters
and the circuit architecture, respectively. With the aim of identifying the optimal θ and A, AQL can
be reformulated as a unified framework for solving the following optimization problem

argmin
θ,A

[
1− |⟨vtarget|U(θ;A)|ψproduct⟩|2

]
, (1)

where |vtarget⟩ is the target quantum state and |ψproduct⟩ is an easily preparable product state. Within
this framework, various AQL methods differ in how they construct the circuit U(θ;A), either by the
way of updating θ, the design of A, or adjusting both. A brief overview of how TN- and circuit-based
methods fall into Eq. (1) is provided below, with further details given in Appendix A.3.

TN-based methods. For these methods (Ran, 2020), the circuit U(θ,A) is constructed incrementally
by sequentially appending local unitaries obtained from the TN representation. Each unitary is further
decomposed into hardware-available gates using the KAK decomposition (Tucci, 2005), which
yields the final circuit. In terms of Eq. (1), the optimization proceeds by extending the circuit as
U(θ;A) → U(θ ∪ θnew;A ∪Anew), while keeping the previous parameters and architecture fixed.

Circuit-based methods. Circuit-based AQL methods can be divided into variational and non-
variational approaches. In variational approaches (Nakaji et al., 2022; Rudolph et al., 2023b; Mitsuda
et al., 2024), the circuit U(θ;A) is constructed by optimizing a variational quantum circuit with
cost function ℓ(θ) = 1 − |⟨vtarget|U(θ;A) |ψproduct⟩ |2, where θ are tunable and A is fixed. By
contrast, non-variational approaches (Rudolph et al., 2023a; Shirakawa et al., 2024) gradually update
all two-qubit unitaries in a prescribed circuit following a zigzag schedule. This involves sequentially
adjusting both the parameters θ and the architecture A of the circuit U(θ;A), and thus fits within the
general optimization framework in Eq. (1).

Information-theoretic analysis. A benefit of the unified framework in Eq. (1) is that it enables an
algorithm-independent theoretical analysis of AQL. Here, we establish two information-theoretical
bounds of the approximation error achievable by AQL using an entanglement measure, as stated in
the following theorem with the proof deferred to Appendix B.2.

Theorem 3.1. Denote the entanglement measure for an N -qubit state |ψ⟩ as S(|ψ⟩) =∑N
i=1 S{i}(|ψ⟩). Then, for the state |vtarget⟩ and a circuit U with S(U†|vtarget⟩) = S, the

infidelity between |vtarget⟩ and the state generated from U on any product state |ψproduct⟩ is

lower bounded as 1 − |⟨vtarget|U |ψproduct⟩|2 ≥ f1(S) :=
1
2

(
1−

√
21−S/N − 1

)
. Moreover,

given access to ρ, we can construct a product state |ψ′
product⟩ such that the infidelity is upper
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Figure 2: The workflow of the AQER algorithm. (a) An overview of AQER, which consists of three steps.
(b) Step I: entanglement reduction. This step iteratively appends two-qubit gate blocks to progressively reduce
the entanglement of the input |vtarget⟩ with the circuit VT (α). (c) Step II: product state approximation. This
step approximates the low-entanglement state |vT ⟩ by applying single-qubit rotations {RZ(βn)}Nn=1 and
{RY (γn)}Nn=1 to the initial state |0⟩⊗N . (d) Step III: parameter refinement. This step finetunes all circuit
parameters in θ = (α,β,γ) to minimize the infidelity and obtain the final AQL UAQER(θ

∗).

bounded as 1−|⟨vtarget|U |ψ′
product⟩|2 ≤ f2(S) :=

1
2

(
1−

√
21−S+⌊S⌋ − 1 + ⌊S⌋

)
. When S → 0,

f1(S) → ln 2
2N S +O(S3) and f2(S) → ln 2

2 S +O(S3).

The above results indicate that the approximation error of AQL is fundamentally governed by the
entanglement measure S of the evolved states U†|vtarget⟩. In particular, the infidelity between the
target state |vtarget⟩ and the prepared stateU |ψproduct⟩ scales linearly with the entanglement measure
value S. Hence, a smaller S guarantees lower infidelity and smaller approximation error. Since S
depends on both |vtarget⟩ and the circuit U , reducing infidelity through parameter and architecture
optimization in AQL is equivalent to minimizing the entanglement measure S.

3.2 AQER: AN EFFICIENT AND SCALABLE AQL

The theoretical role of the entanglement measure S in determining the approximation error suggests
that it can serve as a practical indicator of the quality of an AQL. Driven by this insight, we propose
AQER, an efficient and scalable AQL that solves the optimization problem in Eq. (1) by constructing
the gate sequence guided by the principle of maximal entanglement reduction. In the remainder of
this subsection, we present the implementation of AQER.

Overview of AQER: As illustrated in Fig. 2(a), AQER consists of three key components: (I)
suppressing the entanglement measure S in the input data by incrementally adding quantum gates;
(II) applying single-qubit rotation gates for correcting leading errors; and (III) optimizing the circuit
parameters for further refinement. Next, we explain these procedures separately.

Step I: Entanglement Reduction. The goal of this step is to construct a gate sequence that reduces
the entanglement of the target input by monitoring the entanglement measure S. As illustrated in
Fig. 2(b), this is achieved by iteratively appending two-qubit gate blocks VIt

(αt), where the tunable
variables include the acting qubit pair It = (jt, kt) with 1 ≤ jt ̸= kt ≤ N and the gate parameters
αt. Specifically, the blocks {VIt

(αt)} have the identical structure RZZRYRZ with single-qubit
rotation gates applied to both qubits. Let Vt−1(α1:t−1) = VIt−1(αt−1) · · ·VI1(α1) be the gate
sequence generated after (t − 1) iterations. At the t-th iteration, the acting qubit pair It and gate
parameters αt of the block VIt(αt) are obtained by solving the following optimization problem

It,αt = argmin
Ĩ,α̃

S (VĨ(α̃)|vt−1⟩) , (2)
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where S is the entanglement measure defined in Theorem 3.1 and |vt−1⟩ := Vt−1(α1:t−1)|vtarget⟩.
This iterative process is repeated for T times such that the entanglement of the state |vT ⟩ =
VT (α)|vtarget⟩ is sufficiently small, where α := α1:T = (α1, · · · ,αT ).
Step II: Product State Approximation. After Step I, AQER aims to further suppress the approximation
error by applying single-qubit rotation gates, as illustrated in Fig. 2(c). The motivation for this step is
that, as suggested in Theorem 3.1, the state |vT ⟩ with low entanglement can be well approximated by a
product state. To prepare such a product state from a standard initial state |0⟩⊗N , we apply additional
single-qubit rotations W (β,γ) = ⊗Ni=1(RZ(βi)RY (γi)). Note that the optimal parameters β =
(β1, · · · ,βN ) and γ = (γ1, · · · ,γN ) can be explicitly derived without numerical optimization, as
indicated in the corollary below. Refer to Appendix B.1 for the explicit form and derivation.
Corollary 3.2 (informal). Given constant access to the quantum state |vT ⟩ with reduced entanglement,
the explicit form of each parameter in (β,γ) can be derived without optimization.

Step III: Parameter Refinement. The final step of AQER further enhances the accuracy by fine-tuning
the parameters of the gate sequences constructed in Steps I and II, as illustrated in Fig. 2(d). For
clarity, we denote the combined circuit as UAQER(θ) = VT (α)†W (β,γ), where θ = (α,β,γ)
collects all tunable parameters. Parameter refinement then amounts to minimizing the infidelity
between the target state |vtarget⟩ and the state UAQER(θ)|0⟩⊗N , i.e.

θ∗ = argmin
θ

(
1− |⟨vtarget|UAQER(θ)|0⟩⊗N |2

)
. (3)

After the optimization of Eq. (3), we obtain the AQL: |vload⟩ = e−igUAQER(θ
∗)|0⟩⊗N , where g is a

global phase that does not affect any measurement outcomes.

Remark. (i) An important feature of AQER is the usage of the entanglement measure S as a proxy for
the approximation error. For quantum data, evaluating and optimizing S is efficient since it involves
only local measurements. For classical data, AQER can be simulated classically to construct UAQER.
(ii) By first suppressing the entanglement measure S , AQER not only reduces the approximation error
but also distinguishes itself from prior circuit-based methods by mitigating barren plateau issues,
thereby enhancing trainability and scalability. See Appendix D for more discussions.

4 EXPERIMENTS

We conduct extensive numerical simulations to evaluate the performance of AQER in loading both
classical and quantum datasets. Further implementation details and additional results are provided in
Appendices E and F, respectively.

4.1 DATASET CONSTRUCTION FOR AQL

We briefly introduce datasets used in this work with more details in Appendix E.1.

Classical data. We use three standard classical datasets: MNIST (Lecun et al., 1998), CIFAR-
10 (Krizhevsky et al., 2009), and SST-2 (Socher et al., 2013). These datasets have been widely
employed to benchmark AQL methods on diverse data types across vision and language tasks.
Specifically, MNIST contains 28 × 28 grayscale handwritten digits; CIFAR-10 includes 32 × 32
RGB images of natural objects such as cats and cars; and SST-2 is a sentiment classification dataset,
for which we use a pretrained Sentence-BERT model (Reimers and Gurevych, 2019) to obtain
1024-dimensional sentence embeddings. Each dataset is preprocessed into M = 50 normalized
vectors, which are then encoded as target states using either amplitude encoding |v⟩ =

∑2N

j=1 vj |j⟩
or compact encoding (Blank et al., 2022) |v⟩ =

∑2N

j=1(vj + ıvj+2N )|j⟩ with N ∈ {10, 11} qubits.

Quantum data. We construct two types of quantum datasets: (i) synthetic states generated from
random quantum circuits (RQCs); and (ii) ground states of the one-dimensional transverse-field
Ising model (1D TFIM) (Pfeuty, 1970), denoted as S-RQC and GS-TFIM, respectively. These
datasets represent typical examples of states arising from quantum circuit evolutions and many-body
quantum systems. S-RQC contains M = 50 states generated by applying different RQCs to the state
|0⟩⊗N Each RQC is sampled from the set RandomShuffle

(
{CZpk,qk}Wk=1 ∪ {Rpk}4Wk=W+1

)
, which

includes W CZ gates and 3W single-qubit rotations on randomly chosen qubits {pk, qk}. Here,
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Table 1: Infidelity (↓) of different AQL methods on MNIST, CIFAR-10, SST-2, S-RQC, and GS-TFIM datasets.
We compare AQER with G ∈ {20, 40, 80} against reference methods, where the latter use equal or slightly
larger G due to feasibility constraints detailed in Appendix E.2. Values are reported with the mean (and standard
deviation) over M samples. The best and second-best results are highlighted in blue and orange, respectively.

MNIST CIFAR-10 SST-2 S-RQC GS-TFIM

MPS
G 36 54 90

0.330 0.287 0.237
(0.101) (0.089) (0.076)

G 30 60 90

0.068 0.056 0.049
(0.038) (0.031) (0.028)

G 36 54 90

0.901 0.870 0.814
(0.022) (0.022) (0.022)

G 27 54 81

0.746 0.663 0.605
(0.100) (0.118) (0.127)

G 36 72 90

0.056 0.039 0.041
(0.004) (0.003) (0.002)

HEC
G 20 40 80

0.430 0.234 0.103
(0.089) (0.079) (0.042)

G 22 44 88

0.081 0.050 0.030
(0.039) (0.026) (0.016)

G 20 40 80

0.892 0.759 0.546
(0.016) (0.012) (0.007)

G 20 40 80

0.731 0.484 0.367
(0.097) (0.133) (0.161)

G 20 40 80

0.168 0.020 0.007
(0.090) (0.013) (0.002)

AQCE
G 20 40 80

0.296 0.145 0.051
(0.083) (0.053) (0.023)

G 30 45 90

0.068 0.048 0.024
(0.036) (0.026) (0.014)

G 20 40 80

0.891 0.761 0.518
(0.017) (0.018) (0.013)

G 30 45 90

0.534 0.363 0.267
(0.149) (0.156) (0.110)

G 20 40 80

0.108 0.068 0.056
(0.026) (0.024) (0.015)

AQER
(Ours)

G 20 40 80

0.195 0.090 0.034
(0.060) (0.034) (0.015)

G 20 40 80

0.043 0.029 0.018
(0.023) (0.016) (0.010)

G 20 40 80

0.819 0.652 0.406
(0.017) (0.013) (0.008)

G 20 40 80

0.285 0.128 0.067
(0.152) (0.106) (0.069)

G 20 40 80

0.028 0.009 0.003
(0.011) (0.006) (0.001)

we set N = 10 and NRQC = 40. GS-TFIM contains ground states of the 1D TFIM Hamiltonian
H = −

∑N−1
i=1 JZiZi+1−

∑N
i=1 gXi. We consider coefficients g = 1 and J ∈ {0.8, 0.9, 1, 1.1, 1.2}

to construct datasets of size M = 5 for each N ∈ {10, 20, 30, 40, 50}.

4.2 EXPERIMENTAL SETTINGS

Reference AQL methods. We select three typical reference AQL methods to provide a comprehensive
comparison with AQER. The three reference methods are: (i) TN method based on 1D MPS (Iaconis
and Johri, 2023), which represents approaches with guarantees on low-entanglement data; (ii)
hardware-efficient circuit (HEC)-based method (Nakaji et al., 2022), where the circuit is commonly
used in VQAs; (iii) automatic quantum circuit encoding (AQCE) (Shirakawa et al., 2024), which
illustrates recent advances in non-variational AQL.

Evaluation metrics. To quantify the accuracy of an AQL, we use infidelity 1− |⟨vload|vtarget⟩|2 as
the measure of approximation error. The infidelity ranges from 0 to 1, with smaller values indicating
lower approximation error and higher accuracy. To evaluate the efficiency of an AQL, we consider
the quantum resources to prepare the state from the encoding circuit. In particular, we record the
number of employed two-qubit gates (e.g., CZ and RZZ) in the encoding circuit. This quantity,
denoted by G, serves as the measure of quantum resource consumption, since it dominates the circuit
runtime (Ma and Li, 2024). A smaller G corresponds to a more efficient AQL.

Hyperparameter settings of AQER. The number of iterations in Step I of AQER is set to T ∈
{5, 10, 20, 40, 60, 80, 100} by default. For GS-TFIM with large qubit numbers (N ≥ 20), we use
T ∈ {20, 40, 60, 80, 100, 120, 160, 200}, since larger systems generally require more gates to capture
quantum correlations. In AQER, the iteration count T controls the two-qubit gate count G, with one
iteration introducing one two-qubit gate. In the t-th iteration of Step I, the parameters αt in Eq. (2)
are first initialized to zero and then optimized using the Nelder–Mead method with a convergence
tolerance of 10−4. The qubit index set It is optimized by selecting the qubit pair that minimizes
S through adjusting αt. Step III performs optimization using the Adam optimizer with a learning
rate of 10−2 for T3 = 2000 iterations. For quantum datasets, quantities such as S and gradients are
estimated from 105 simulated measurement shots by default.

4.3 EXPERIMENTAL RESULTS

We evaluate AQER on both classical and quantum datasets to verify its accuracy and efficiency,
as well as its trainability and scalability on large systems, and to compare its performance against
existing AQL methods. Additional numerical results are provided in Appendix F.

AQER outperforms all reference AQL methods for both classical and quantum data. We
first compare the performance of various AQL methods by measuring their approximation errors
(infidelity) for different two-qubit gate counts G across multiple datasets. Table 1 lists these results
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Figure 3: Performance of AQER across MNIST, CIFAR-10, SST-2, S-RQC, and GS-TFIM datasets, distin-
guished by different colors and markers. (a) Infidelity versus the entanglement measure value S after Step II of
AQER, averaged over M samples. Color bars from light to dark indicate increasing T . Dashed lines indicate the
linearized upper (U.B.) and lower (L.B.) bounds in Theorem 3.1, which neglect higher-order terms. (b) Infidelity
versus different T values after Step III of AQER across all datasets. (c) Infidelity versus different measurement
shots for the GS-TFIM dataset, with different T ∈ {10, 20, 40, 100}.

for MNIST, CIFAR-10, SST-2, S-RQC, and GS-TFIM (with N = 10). Results for AQER are shown
with G ∈ {20, 40, 80}. For the referenced AQL methods, G is set to the same or slightly larger
values, as determined by the feasibility constraints explained in Appendix E.2. It can be observed that
AQER consistently surpasses existing AQL methods by achieving the lowest infidelity with the same
or even smaller G. The most pronounced improvement is observed on S-RQC, where AQER reduces
the infidelity by more than 60% relative to the second-best method (AQCE) for G ∈ {40, 80}, and
further achieves lower infidelity while using 50% fewer two-qubit gates than other methods. These
results validate the advantage of AQER, which achieves lower infidelity with equal or even fewer
two-qubit gates than existing AQL methods.

AQER consistently decreases the infidelity by reducing the entanglement measure S. We
next examine the effectiveness of the entanglement entropy reduction of Step I in decreasing the
approximation error of AQER. To do this, we record the value of the entanglement measure S in Step
I with different settings of the iteration times T ∈ {5, 10, 20, 40, 60, 80, 100}, and also record the
corresponding approximation error after Step II. These results are shown in Fig. 3(a). For all datasets,
increasing T generally shifts points toward lower S and infidelity, which stay within the theoretical
upper and lower bounds given by Theorem 3.1, demonstrating that AQER progressively expands the
circuit to reduce entanglement and improve AQL accuracy. For example, increasing T from 5 to 100
reduces S by roughly fourfold for the MNIST dataset, with the corresponding infidelity decreasing
by a similar factor, which validates the effect of entanglement reduction on lowering infidelity.

Effect of two-qubit gate count and shot number on AQER performance. We further investigate
how the number of two-qubit gates and measurement shots influence AQER. In particular, we conduct
experiments with varying T ∈ {5, 10, 20, 40, 60, 80, 100} and shots in {102, 103, 104, 105}. The
infidelity versus varying T after Step III of AQER for different datasets is shown in Fig. 3(b), while
the effect of different measurement shots for the GS-TFIM dataset is illustrated in Fig. 3(c). Larger T
values lead to a significant reduction in infidelity. For example, increasing T from 5 to 100 decreases
the infidelity for the GS-TFIM dataset from above 2−2 to below 2−8. Similarly, increasing the
number of shots generally reduces infidelity by suppressing statistical noise in circuit generation and
optimization. This effect is more pronounced for larger T , with the reduction being less than 4 for
T = 10 and more than 16 for T = 100. These results quantitatively demonstrate that larger circuits
combined with sufficient measurement shots effectively improve AQER performance.

The trainability of AQER. We then demonstrate the trainability of AQER on large systems via
experiments on the GS-TFIM dataset with N = 50 qubits. The parameter optimization in Step III
of AQER for varying T ∈ {20, 40, 60, 100, 200} is shown in Fig. 4(a). The optimization curves do
not exhibit barren plateaus, which would otherwise trap the process at high infidelity near 1. The
initial infidelity is already far from 1, consistent with Theorem 3.1. For instance, with T = 200, the
infidelity starts around 0.3 and decreases effectively to around 0.1. These results demonstrate that the
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Figure 4: Performance of AQER on the GS-TFIM dataset. (a) Infidelity during Step III optimization across
different T values with N = 50 qubits. (b) Infidelity for different qubit numbers N and Step I iteration times
T . (c) Expectation values of the averaged magnetization ⟨X⟩ measured on AQER-loaded GS-TFIM states for
different g/J values with N = 10. Each curve corresponds to a different T ∈ {10, 20, 40}.

entanglement-reduction mechanism in AQER successfully mitigates barren plateau effects in Step III,
ensuring trainability and serving as a prerequisite for its scalability.

Scalability of AQER. To validate the scalability of AQER, we conduct experiments on the GS-TFIM
dataset with varying qubit numbers N ∈ {20, 30, 40, 50} and T ∈ {40, 80, 120, 160, 200}. As
illustrated in Fig. 4(b), for all system sizes, infidelity consistently decreases as T increases. In
particular, AQER maintains roughly constant infidelity across different N when T scales linearly
with N , specifically following T = 4N − 40, highlighting favorable scalability with respect to both
qubit number and two-qubit gate count.

23 25 27
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2 3

2 2
Er

ro
r

ExactT = 20

T = 40

T = 80

Target

(a) (b)

Figure 5: Downstream performance of AQER on classical
data. (a) Reconstructed MNIST and CIFAR-10 images using
AQER with T ∈ {20, 40, 80}. (b) Binary classification error
on the SST-2 dataset using AQER-loaded states with T ∈
{10, 20, 40, 60, 80, 100}, compared to exact loading (black
dashed line).

Downstream performance of AQER. Fi-
nally, we evaluate the performance of
AQER in downstream tasks on both quan-
tum and classical datasets. We begin with
the detection of quantum phase transitions
in the TFIM, which is measured by the aver-
aged magnetization ⟨X⟩ := 1

N

∑N
n=1⟨Xn⟩

of the ground state as the order param-
eter. We record the values of ⟨X⟩ for
the AQER-loaded states with varying T
values as a function of g/J as shown in
Fig. 4(c). These results demonstrate that
AQER-loaded states can capture the tran-
sition from the ferromagnetic phase with
g/J < 1 to the paramagnetic phase with
g/J > 1, with a rapid change near the crit-
ical point at g/J = 1. Increasing T generally results in a more accurate approximation of exact
values, indicating that larger circuits can encode more correlations relevant for the order parameter.
Notably, even states with moderate T = 10 capture the overall trend, suggesting that AQER-loaded
states can effectively capture quantum phase transitions with limited quantum resources. Next, for
classical data, we reconstruct MNIST and CIFAR-10 images with AQER using varying T values. As
illustrated in Fig. 5(a), reconstructions approach the targets as T increases. We also evaluate binary
classification on SST-2 using a quantum support vector machine with details in Appendix E.3. As
shown in Fig. 5(b), the error decreases with larger T and approaches near the exact-loading error of
2−3 at T = 100. These results demonstrate improved downstream performance with larger T .

5 CONCLUSION

In this work, we introduced a unified framework for AQLs and derived information-theoretic bounds
showing that the infidelity is fundamentally controlled by the entanglement of quantum states. Based
on this insight, we proposed AQER, a scalable and efficient method that systematically reduces
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entanglement to achieve low infidelity with efficient gate usage. Extensive benchmarks on classical
and quantum datasets show that AQER consistently outperforms existing methods in both accuracy
and circuit efficiency. These results provide both theoretical guarantees and a practical approach for
efficient quantum data loading, enabling broader applications in data-dependent quantum algorithms.
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A PRELIMINARY

A.1 NOTATIONS

Here, we unify the notations used throughout this manuscript. We denote by [N ] the set {1, · · · , N}.
The symbol aj denotes the j-th component of a vector a. The tensor product operation is denoted as
“⊗”. The conjugate transpose of a matrix A is denoted as A†. The trace of a matrix A is denoted as
Tr[A]. The notation ⌊x⌋ denotes the largest integer that is smaller than or equal to x. We employ O
to describe complexity notions. The phase of a complex value x is denoted by arg(x).

For vectors, the notation ∥ · ∥2 represents the ℓ2 norm. We use Schatten norms for operators: the trace
norm ∥X∥1 := Tr

√
X†X and the operator norm ∥X∥∞ := sup∥ψ∥2=1 ∥Xψ∥2, which equals the

largest singular value of X . In particular, any density operator ρ satisfies ∥ρ∥1 = 1 and ∥ρ∥∞ ≤ 1.

For a linear map (quantum channel) Φ acting on operators, we denote its diamond norm by ∥Φ∥⋄,
∥Φ∥⋄ := supd≥1 supX ̸=0

∥(Φ⊗idd)(X)∥1

∥X∥1

, where idd denotes the identity channel on a d-dimensional
ancilla system. We use I (or Id) to denote the identity matrix and id to denote the identity channel on
the underlying system. A quantum channel E is completely positive and trace-preserving (CPTP).

A.2 RELATED WORK

The problem of quantum data loading has been extensively studied across multiple lines of research.
For example, early investigations established that exact amplitude loading of an arbitrary N -qubit
pure state requires exponentially many quantum resources. Specifically, it was shown that without
assuming prior structure, O(2N ) single- and two-qubit gates are necessary for generic state prepara-
tion (Grover, 2000; Kaye and Mosca, 2001; Long and Sun, 2001; Bergholm et al., 2005; Plesch and
Brukner, 2011). This scaling matches the intrinsic complexity of generic states: an N -qubit pure state
corresponds to a normalized vector in C2N

with 2N+1 − 1 degrees of freedom. Even with auxiliary
qubits introduced to reduce circuit depth (Sun et al., 2023), the total gate count remains exponential.
For structured instances, more efficient constructions are possible: for instance, an S-sparse vector
can be exactly loaded using O(SN) CNOT gates (Gleinig and Hoefler, 2021). However, most states
derived from classical datasets, such as images (Lecun et al., 1998; Krizhevsky et al., 2009), are
neither sparse nor unstructured, motivating approximate approaches.

Tensor-Network (TN)-Based Approximate Loading. Tensor-network methods leverage low-
entanglement structure to efficiently represent quantum states and construct corresponding loading
circuits. The most widely applied TN family for quantum data loading is the matrix product state
(MPS), which provides a sequential representation of an N -qubit state using a bond dimension k.
Given an MPS, one can construct a circuit of O(Nk2) two-qubit gates that exactly prepares the
state (Schön et al., 2005), while truncated singular value decomposition (SVD) allows controlled
approximation for more general target states (Schollwöck, 2011; Ran, 2020). Recent works have
applied MPS-based methods to both synthetic distributions and real-world classical datasets. For
example, Iaconis and Johri (2023) presented a method to convert MPS representations of images into
quantum circuits with logarithmic scaling in the number of pixels, experimentally demonstrating
amplitude encoding of complex images on a trapped-ion device. Jobst et al. (2024) exploited the
decaying Fourier spectrum of classical images to construct approximate MPS encodings, which
reduce quantum circuit complexity and can be further refined using simple sequential circuits inspired
by MPS structure. Other works have focused on efficiently preparing real-valued smooth probability
distributions with linear-depth circuits derived from MPS (Holmes and Matsuura, 2020; Iaconis et al.,
2024). These procedures combine classical preprocessing (e.g., Fourier feature compression) with
MPS-based circuit synthesis to achieve high-fidelity state loading suitable for near-term quantum
hardware. While TN-based methods offer principled and resource-efficient constructions for low-
entanglement states, their applicability is limited when the target state exhibits high entanglement
or strong long-range correlations, as the required bond dimension, which corresponds to the circuit
depth and two-qubit gate count, can grow rapidly.

Circuit-based Approximate Loading. Circuit-based methods directly construct quantum circuits
to approximate a target state. These methods can be broadly categorized into variational and non-
variational approaches.
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Variational approaches. Variational methods employ parameterized quantum circuits (PQCs), such
as hardware-efficient or sequential ansatzes, and optimize their parameters to minimize infidelity
with respect to the target state (Nakaji et al., 2022; Mitsuda et al., 2024; Rudolph et al., 2023b).
For real-valued data vectors, classical routines and measurements in the computational basis and,
when necessary, in the Hadamard-transformed basis are used to capture both amplitude and sign
information (Nakaji et al., 2022). For complex-valued data vectors, fidelity can be used directly as the
cost function, with classical shadow techniques employed to efficiently estimate the fidelity and its
gradient during optimization (Mitsuda et al., 2024). Moreover, hybrid strategies are proposed to utilize
TN-based initialization: the target state is first approximated using a tensor-network representation
(e.g., MPS), mapped to a parameterized circuit, and then variationally fine-tuned (Rudolph et al.,
2023b). This approach retains the structural advantages of TNs while extending applicability beyond
strictly low-entanglement states.

Non-variational approaches. Non-variational methods iteratively refine local gates to approximate
the target state. Shirakawa et al. (Shirakawa et al., 2024) introduced the AQCE algorithm, which
sequentially updates two-qubit unitaries to improve fidelity. Rudolph et al. (Rudolph et al., 2023a)
enhanced this framework by initializing AQCE with an MPS approximation rather than a trivial
identity, demonstrating faster convergence and higher accuracy. Hybrid workflows that start from an
MPS-based circuit and perform local iterative refinement combine the controlled approximation of
TNs with the adaptive flexibility of circuit-level updates, providing efficient and accurate loading for
moderately entangled datasets.

Despite their flexibility and broad applicability, they can suffer from barren plateaus and optimization
traps, and unfavorable scaling for large qubit numbers or highly entangled target states. Moreover,
circuit-based methods remain heuristic. Rigorous theoretical guarantees on fidelity and resource costs
are generally absent, limiting systematic design and predictability for practical quantum data loading.

A.3 OVERVIEW OF TYPICAL AQL METHODS

In this section, we summarize several representative methods for approximate quantum loading (AQL)
and show how they can be unified within the general AQL framework introduced in Section 3.1 in the
main text. Recall that in this framework, an AQL procedure constructs a quantum circuit U(θ;A) that
loads the target state |vtarget⟩ from an initial product state |ψproduct⟩, and optimizes it by adjusting
the parameters θ, or the architecture A, or both.

A.3.1 TENSOR-NETWORK (TN) BASED METHODS

Here we introduce the AQL method based on the matrix product state (MPS) (Ran, 2020), which forms
a one-dimensional tensor network. The MPS method iteratively constructs an MPS approximation of
the current state with bond dimension 2. From this approximation, a sequence of N − 1 two-qubit
unitaries is obtained, which are inverted and applied to the current state to generate an updated state.
Specifically, in the (i+ 1)-th iteration, the MPS method considers the current state

|ψ(i)
MPS⟩ = G†

(N−1)i · · ·G
†
1|vtarget⟩, (4)

from which a new set of two-qubit unitaries

G(N−1)(i+1), . . . , G(N−1)i+1 (5)

is extracted and appended to the existing circuit. By repeating this procedure sufficiently many times,
the state in Eq. (4) approaches the product state |0⟩⊗N . Consequently, the collection {Gi} defines
the encoding circuit for AQL. We note that each two-qubit unitary Gi is further decomposed into
hardware-native gates via the KAK decomposition (Tucci, 2005), resulting in 2 CNOT (or CZ) gates
for real matrices and 3 gates for general complex matrices.

Within our framework, MPS-based AQL corresponds to sequentially updating both the circuit
architecture and parameters:

U(θ;A) → U(θ ∪ θnew;A ∪Anew), (6)

while previously added gates remain fixed. Increasing the number of iterations systematically reduces
the infidelity with respect to the target state.
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A.3.2 CIRCUIT-BASED METHODS

Variational: Here we provide an example of the variational methods, i.e., Hardware-Efficient (HE)
circuits (Nakaji et al., 2022), which are commonly used as AQL circuits. The HE circuit UHE(θ)
consists of repeated layers of parameterized single-qubit rotations and CNOT gates acting on adjacent
qubits. Each layer i applies a rotation layer RY followed by RZ , and then a CNOT layer. The
CNOT pattern alternates between even-odd and odd-even qubit pairs: in the i-th layer, CNOT gates
are applied on pairs (2n, (2n + 1)%N) for i mod 2 = 0 and on pairs (2n + 1, (2n + 2)%N) for
i mod 2 = 1, where 0 ≤ 2n ≤ N − 1 or 0 ≤ 2n ≤ N − 2 as appropriate. The parameters θ are
typically updated using gradient-based optimizers to minimize the loss function

ℓ(θ) = 1− |⟨vtarget|UHE(θ)|ψ0⟩|2. (7)

Within our general framework, HE circuits represent a variational approach in which only the
parameters θ are optimized, while the circuit architecture A is fixed.

Non-variational: The Automatic Quantum Circuit Encoding (AQCE) method (Shirakawa et al.,
2024) is a non-variational approach that iteratively updates two-qubit unitaries in a prescribed circuit
in a forward-backward fashion. Suppose the current encoding unitary list is {G1, . . . , GM}. The
locally optimal update for the m-th two-qubit gate is obtained as follows. For a given choice of the
two-qubit subsystem Qm, define

Fm = Tr
[N ]\Qm

[
G†
m+1 · · ·G

†
M |vtarget⟩⟨ψ0|G†

1 · · ·G
†
m−1

]
, (8)

where |ψ0⟩ is the initial product state. Performing a singular value decomposition (SVD)
Fm = XDY, (9)

the updated two-qubit unitary is
Gnew
m = XY. (10)

In practice, the algorithm considers all possible choices of the two-qubit subsystem Qm and selects
the one that maximizes |Tr[D]|. This choice can be understood as follows: the fidelity between the
encoding state corresponding to the updated unitary and the target state is

F =
∣∣∣⟨ψ0|G†

1 · · ·G
†
m−1G

new
m

†G†
m+1 · · ·G

†
M |vtarget⟩

∣∣∣2
=
∣∣∣Tr [Gnew

m
†G†

m+1 · · ·G
†
M |vtarget⟩⟨ψ0|G†

1 · · ·G
†
m−1

]∣∣∣2
=
∣∣∣TrQm

[
Gnew
m

†Tr[N ]\Qm

[
G†
m+1 · · ·G

†
M |vtarget⟩⟨ψ0|G†

1 · · ·G
†
m−1

]]∣∣∣2
=
∣∣∣TrQm

[
Gnew
m

†Fm

]∣∣∣2
=
∣∣Tr [Y †X†XDY

]∣∣2
= |Tr [D]|2 .

Thus, maximizing |Tr[D]| corresponds to maximizing the fidelity F .

After several forward-backward sweeps, new gates are added to the circuit following the same
procedure by treating GM+1 = I . The final sequence of two-qubit unitaries {Gi} is then further
decomposed into hardware-friendly gates via the KAK decomposition (Tucci, 2005), resulting in 2
CNOT (or CZ) gates for real matrices and 3 gates for general complex matrices.

Within our framework, AQCE fits naturally as a non-variational method that sequentially updates both
the circuit parameters θ, obtained from the KAK decomposition of the updated two-qubit unitaries,
and the circuit architecture A, determined by the qubit pairs on which the updated unitaries act.

B PROOF OF THEOREMS

B.1 TECHNICAL LEMMAS

Before the proof of main theorems, we provide a technical lemma, which gives the maximum fidelity
to approximate a mixed single-qubit state by any single-qubit pure state.
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Lemma B.1. Denote by ρ a single-qubit mixed state. Then

max
|ϕ⟩

Tr[|ϕ⟩⟨ϕ|ρ] = 1 +
√
21−S(ρ) − 1

2
, (11)

where S(ρ) denotes the Renyi-2 entropy of the state ρ.

Proof. For convenience, we denote by ρ =
∑2

j=1 λj |ψj⟩⟨ψj | the spectral decomposition of ρ, where
λ1,2 ∈ R and λ1 + λ2 = Tr[ρ] = 1 due to the density matrix property. Without loss of generality, we
assume λ1 ≥ λ2. Thus, the left side of Eq. (11) achieves the largest value when |ϕ⟩ = |ψ1⟩, i.e.

max
|ϕ⟩

Tr[|ϕ⟩⟨ϕ|ρ] = Tr[|ψ1⟩⟨ψ1|ρ] = λ1. (12)

Additionally, the spectral decomposition could also be employed in the Renyi entropy

S(ρ) = − log2 Tr[ρ
2]

= − log2 Tr

[
2∑
j=1

2∑
k=1

λjλk|ψj⟩⟨ψj |ψk⟩⟨ψk|

]

= − log2 Tr

[
2∑
j=1

λ2
j |ψj⟩⟨ψj |

]
= − log2

(
λ2
1 + λ2

2

)
. (13)

By combining Eq. (13) with λ1 + λ2 = 1, we could obtain the formulation of λ1 with respect to the
Renyi entropy S(ρ) as follows,

λ1 =
1 +

√
21−S(ρ) − 1

2
. (14)

Comparing Eqs.(12) and (14), we have

max
|ϕ⟩

Tr[|ϕ⟩⟨ϕ|ρ] = 1 +
√
21−S(ρ) − 1

2
.

Thus, Lemma B.1 is proved.

Lemma B.2. Denote by ρij the (i, j)-th element in the density matrix form of ρ. Then, the maximum
fidelity in Lemma B.1 could be achieved by |ϕ⟩ = RZ(β)RY (γ)|0⟩, where β = arg(ρ10) and
γ = π

2
− arcsin ρ00−ρ11√

4|ρ10|2+(ρ00−ρ11)2
.

Proof. First, we expand the state |ϕ⟩ in terms of β and γ:

|ϕ⟩ = e−βZ/2e−γY/2|0⟩ =
[
e−i

β

2 0
0 ei

β

2

] [
cos γ

2
− sin γ

2
sin γ

2
cos γ

2

] [
1
0

]
=

[
e−i

β

2 cos γ
2

ei
β

2 sin γ
2

]
. (15)

Then, the fidelity between ρ and |ϕ⟩ is

Tr[|ϕ⟩⟨ϕ|ρ] = Tr

[[
1
2
+ 1

2
cos γ 1

2
e−iβ sin γ

1
2
eiβ sin γ 1

2
− 1

2
cos γ

] [
ρ00 ρ01
ρ10 ρ11

]]
=

(
1

2
+

1

2
cos γ

)
ρ00 +

1

2
e−iβ sin γρ10 +

1

2
eiβ sin γρ01 +

(
1

2
− 1

2
cos γ

)
ρ11

=
1

2
+
ρ00 − ρ11

2
cos γ +Re

[
e−iβρ10

]
sin γ, (16)
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where Eq. (16) follows from density matrix properties Tr[ρ] = 1 and ρ = ρ†. Subsequently, by
considering the formulation of β and γ with respect to ρ, we have

Tr[|ϕ⟩⟨ϕ|ρ] = 1

2
+
ρ00 − ρ11

2
cos γ + |ρ10| sin γ

=
1

2
+

√(
ρ00 − ρ11

2

)2

+ |ρ10|2. (17)

Moreover, the Renyi entropy S(ρ) could be formulated in terms of ρ as follows

S(ρ) = − log2 Tr[ρ
2]

= − log2
(
ρ200 + ρ211 + 2|ρ10|2

)
.

Therefore, we have

21−S(ρ) − 1 = 2
(
ρ200 + ρ211 + 2|ρ10|2

)
− 1

= 2ρ200 + 2ρ211 − (ρ00 + ρ11)
2
+ 4|ρ10|2

= (ρ00 − ρ11)
2
+ 4|ρ10|2. (18)

Thus, the Lemma B.2 is proved by combining Eqs. (17) and (18) with the maximum fidelity value in
Lemma B.1.

Lemma B.3. Let N be an N -qubit CPTP map and let Uℓ(ρ) := UℓρU
†
ℓ denote the unitary channel

associated with an N -qubit unitary Uℓ for each ℓ ∈ [L]. Given an initial state ρ0, define the ideal
and noisy output states by

ρ :=
(
UL ◦ · · · ◦ U1

)
(ρ0), (19)

ρ̂ :=
(
N ◦ UL ◦ N ◦ · · · ◦ N ◦ U1 ◦ N

)
(ρ0), (20)

where ρ̂ is obtained from ρ0 by inserting L+ 1 layers of noise N alternating with the L unitaries.
Then,

∥ρ̂− ρ∥1 ≤ (L+ 1) ∥N − id∥⋄, (21)
where id denotes the identity channel and ∥ · ∥⋄ is the diamond norm.

Proof. For convenience, we denote the noiseless channel by

E (L)
0 := UL ◦ · · · ◦ U1 (22)

and the fully noisy channel by

E (L)
N := N ◦ UL ◦ N ◦ · · · ◦ N ◦ U1 ◦ N . (23)

By definition,
ρ = E (L)

0 (ρ0), ρ̂ = E (L)
N (ρ0). (24)

Thus,
∥ρ̂− ρ∥1 =

∥∥E (L)
N (ρ0)− E (L)

0 (ρ0)
∥∥
1
≤
∥∥E (L)

N − E (L)
0

∥∥
⋄, (25)

where the inequality follows from the definition of the diamond norm, which upper bounds the
trace-norm difference of the outputs on any input state.

In the following, we derive an upper bound on
∥∥E (L)

N − E (L)
0

∥∥
⋄. There are L+ 1 noise positions in

the noisy channel E (L)
N : one before U1, one between each consecutive pair Uj and Uj+1, and one after

UL. We construct a sequence of intermediate channels {Φ(k)}L+1
k=0 such that

Φ(0) = E (L)
0 , Φ(L+1) = E (L)

N , (26)

and for each k ∈ {1, . . . , L}, the channel Φ(k) is obtained by applying the first k noise layers.
Accordingly, we have the telescoping decomposition

E (L)
N − E (L)

0 = Φ(L+1) − Φ(0) =

L+1∑
k=1

(
Φ(k) − Φ(k−1)

)
. (27)
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Each Φ(k) −Φ(k−1) corresponds to replacing a single identity channel by N , while all other positions
remain unchanged. Therefore, there exist CPTP maps Λ

(k)
L and Λ

(k)
R (given by compositions of

unitary channels Uℓ and noise/identity channels) such that

Φ(k) − Φ(k−1) = Λ
(k)
R ◦ (N − id) ◦ Λ(k)

L . (28)

Since both Λ
(k)
L and Λ

(k)
R are CPTP maps, their diamond norms satisfy

∥Λ(k)
L ∥⋄ = ∥Λ(k)

R ∥⋄ = 1. (29)

Thus, we have ∥∥Φ(k) − Φ(k−1)
∥∥
⋄ ≤ ∥Λ(k)

R ∥⋄ ∥N − id∥⋄ ∥Λ(k)
L ∥⋄ = ∥N − id∥⋄. (30)

Using the triangle inequality and summing over all (L+ 1) noise positions, we obtain

∥∥E (L)
N − E (L)

0

∥∥
⋄ ≤

L+1∑
k=1

∥∥Φ(k) − Φ(k−1)
∥∥
⋄

≤ (L+ 1) ∥N − id∥⋄. (31)

Combining Eqs. (25) and (31), we obtain

∥ρ̂− ρ∥1 ≤
∥∥E (L)

N − E (L)
0

∥∥
⋄ ≤ (L+ 1) ∥N − id∥⋄. (32)

Thus, we have proved Lemma B.3.

B.2 PROOF OF MAIN THEOREM

Here we present the full versions of the theorem in the main text along with their proofs.
Theorem B.4. Denote the entanglement measure for a N -qubit state |ψ⟩ as S(|ψ⟩) =∑N

i=1 S{i}(|ψ⟩). Then for the state |vtarget⟩ and the circuit U with S(U †|vtarget⟩) = S, the in-
fidelity between |vtarget⟩ and the state generated from U on any product state |ψproduct⟩ is lower
bounded as

1− |⟨vtarget|U |ψproduct⟩|2 ≥ f1(S) :=
1−

√
21−

1

N
S − 1

2
. (33)

Moreover, given access to U †|vtarget⟩, we can construct a product state |ψ′
product⟩, such that the

infidelity is upper bounded as

1−
∣∣⟨vtarget|U |ψ′

product⟩
∣∣2 ≤ f2(S) :=

1

2

(
1−

√
21−S+⌊S⌋ − 1 + ⌊S⌋

)
, (34)

where ⌊·⌋ denotes the floor function. We remark that f1(S) = ln 2
2N
S +O(S3) and f2(S) = ln 2

2
S +

O(S3) by calculating the Taylor expansion.

Proof. For convenience, we denote by ρ the density matrix formulation of the state U †|vtarget⟩. We
denote by ρn := Tr[N ]/{n} [ρ] the density matrix of the n-th single-qubit subsystem of ρ and denote
the Renyi entropy Sn := S(ρn) for simplicity. Since ρn is a single-qubit density matrix, Sn ∈ [0, 1].
We construct a general set of single-qubit projectors {|ψn⟩}Nn=1 with |ψ⟩ = ⊗N

n=1|ψn⟩. Accordingly,
we define a set of random variables {yn}Nn=1, where yn = 1 if the measurement on the n-th qubit
yields |ψn⟩ and yn = 0 otherwise. Thus, we can reformulate the infidelity between |vtarget⟩ and
U |ψ⟩ as

1− |⟨vtarget|U |ψ⟩|2 = 1− Tr
[
ρ
(
⊗N
n=1|ψn⟩⟨ψn|

)]
= 1− Pr

(
yn = 1, ∀n ∈ [N ]

)
. (35)

First, we derive the lower bound on the infidelity in Eq. (35) as follows. We have

1− Pr
(
yn = 1, ∀n ∈ [N ]

)
≥ 1− min

n∈[N ]
Pr
(
yn = 1

)
= 1− min

n∈[N ]
Tr
[
ρ
(
I⊗(n−1) ⊗ |ψn⟩⟨ψn| ⊗ I⊗(N−n))]
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= 1− min
n∈[N ]

Tr [ρn|ψn⟩⟨ψn|]

≥ 1− min
n∈[N ]

1 +
√
21−Sn − 1

2
, (36)

where the last inequality follows from Lemma B.1. We further proceed to deal with the terms in
Eq. 36. In particular, the function f(x) =

√
21−x − 1 decreases for x ∈ [0, 1]. Thus,

min
n∈[N ]

√
21−Sn − 1 = min

n∈[N ]
f(Sn) ≤ f

(
1

N

N∑
n=1

Sn

)
= f

(
S

N

)
=
√
21−

S

N − 1. (37)

Combining Eqs. (36) and (37), we obtain

1− |⟨vtarget|U |ψ⟩|2 ≥ 1−
√
21−

S

N − 1

2
. (38)

For the case of S → 0, Eq. (38) tends to ln 2
2N
S +O(S3) by calculating the Taylor expansion.

Next, we derive the upper bound of the infidelity. We consider a specific choice of projectors
{|ϕn⟩}Nn=1, where each |ϕn⟩ is the pure state approximation of ρ{n} with the largest fidelity given
by Lemmas B.1 and B.2. Similarly, we define a set of random variables {xn}Nn=1, where xn = 1 if
measuring the n-th qubit of ρ yields the state |ϕn⟩ and xn = 0 otherwise. Based on Lemma B.1, we
have

Pr
(
xn = 1

)
=

1 +
√
21−Sn − 1

2
, Pr

(
xn = 0

)
=

1−
√
21−Sn − 1

2
. (39)

Thus, the infidelity between states |vtarget⟩ and U |ϕ⟩ = U(⊗N
n=1|ϕn⟩) can be reformulated as

1− |⟨vtarget|U |ϕ⟩|2 = 1− Tr
[
ρ
(
⊗N
n=1|ϕn⟩⟨ϕn|

)]
= 1− Pr

(
xn = 1, ∀n ∈ [N ]

)
. (40)

In the following, we proceed with the derivation from the probability in Eq. (40) to obtain the upper
bound of the infidelity. We have

Pr
(
xn = 1, ∀n ∈ [N ]

)
= 1− Pr

(
∃ n ∈ [N ], s.t. xn = 0

)
≥ 1−

N∑
n=1

Pr
(
xn = 0

)
= 1−

N∑
n=1

1−
√
21−Sn − 1

2
, (41)

where Eq. (41) yields from Eq. (39). The function f(x) =
√
21−x − 1 is concave for x ∈ [0, 1] since

it has the second-order derivative f ′′(x) = (ln 2)2 21−x(21−x−2)

4(21−x−1)
3/2 ≤ 0 for x ∈ [0, 1]. Therefore, we have

f(a) + f(b) ≥
{

f(0) + f(a+ b) when a, b, a+ b ∈ [0, 1],

f(a+ b− 1) + f(1) when a, b ∈ [0, 1] and a+ b ∈ [1, 2].
(42)

due to the property of concave functions. Eq. (42) can be employed to Eq. (41) by selecting qubit pair
(i, j) such that Si, Sj /∈ {0, 1} and pushing the new value S′

i, S
′
j towards the boundary of [0, 1]. By

conducting the above procedure for at most N − 1 times, we could bound the probability as follows

Pr
(
xn = 1, ∀n ∈ [N ]

)
≥ 1− N

2
+

1

2

(
⌊Sθ⌋f(1) + f(S − ⌊S⌋) + (N − ⌊S⌋ − 1) f(0)

)
=

1

2

(√
21−S+⌊S⌋ − 1− ⌊S⌋+ 1

)
, (43)

where Eq. (43) yields from calculating the value of function f . Thus, we obtain the upper bound for
the infidelity:

1− |⟨vtarget|U |ϕ⟩|2 = 1− Pr
(
xn = 1, ∀n ∈ [N ]

)
≤ 1

2

(
1−

√
21−S+⌊S⌋ − 1 + ⌊S⌋

)
. (44)

For the case of S → 0, Eq. (44) tends to ln 2
2
S +O(S3) by calculating the Taylor expansion. Thus,

we have proved Theorem B.4.
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C THEORETICAL RESULTS OF NOISY CASES

While AQL is designed for both noiseless and noisy regimes, its behavior in the noisy case is
particularly critical for near-term applications. In practical NISQ settings, hardware noise perturbs
the circuit evolution, and its impact on the error beyond the noiseless bounds needs to be analyzed.
Here, we extend the results in Theorem B.4 into the general CPTP channel case.

Theorem C.1. Denote the entanglement measure for an N -qubit (pure or mixed) state ρ as S(ρ) =∑N
n=1 S{n}(ρ). Let S(E(ρtarget)) = S, where E is a CPTP map. Then, for any product state

|ψproduct⟩, the infidelity between E(ρtarget) and |ψproduct⟩ is lower bounded as

1− ⟨ψproduct|E(ρtarget)|ψproduct⟩ ≥ f1(S) :=
1−

√
21−

1

N
S − 1

2
. (45)

Moreover, given access to E(ρtarget), we can construct a product state |ψ′
product⟩, such that the

infidelity is upper bounded as

1− ⟨ψ′
product|E(ρtarget)|ψ′

product⟩ ≤ f2(S) :=
1

2

(
1−

√
21−S+⌊S⌋ − 1 + ⌊S⌋

)
, (46)

where ⌊·⌋ denotes the floor function. We remark that f1(S) = ln 2
2N
S +O(S3) and f2(S) = ln 2

2
S +

O(S3) by calculating the Taylor expansion.

Next, we consider a layered noisy circuit model and derive noise-dependent bounds, as stated in
Theorem C.2.

Theorem C.2. Denote the entanglement measure for an N -qubit state ρ as S(ρ) =
∑N

n=1 S{n}(ρ).
Let |vtarget⟩ be an N -qubit pure target state and set ρtarget = |vtarget⟩⟨vtarget|. Let M,N be two
CPTP noise channels and Uℓ(ρ) := UℓρU

†
ℓ for unitary Uℓ. Consider two L-layer noisy circuits

E (L) := M◦ UL ◦M ◦ · · · ◦M ◦ U1 ◦M and F (L) := N ◦ U†
1 ◦ N ◦ · · · ◦ N ◦ U†

L ◦ N . Suppose
S(F (L)(ρtarget)) = S. Then for any product state |ψproduct⟩, the infidelity between the target ρtarget
and the state E (L)(|ψproduct⟩⟨ψproduct|) is lower bounded as

1− Tr[ρtargetE (L)(|ψproduct⟩⟨ψproduct|)] ≥ f1(S)− (L+ 1) (∥M− id∥⋄ + ∥N − id∥⋄) . (47)

Moreover, given access to F (L)(ρtarget), we can construct a product state |ψ′
product⟩, such that the

infidelity is upper bounded as

1− Tr[ρtargetE (L)(|ψ′
product⟩⟨ψ′

product|)] ≤ f2(S) + (L+ 1) (∥M− id∥⋄ + ∥N − id∥⋄) . (48)

Functions f1 and f2 follow the definitions in Theorem C.1.

The above results show that the entanglement-governed terms in Theorem B.4 persist in the noisy
setting, with an additional noise term that scales linearly with the depth L and the noise strength. More
precisely, the noise strength is captured by the accumulated quantity (L+1)

(
∥M−id∥⋄+∥N−id∥⋄

)
.

For concrete CPTP noise models, this correction is easy to interpret. For example, a depolarizing
channel Dp(ρ) = (1−p)ρ+pI/dwith error rate p satisfies ∥Dp−id∥⋄ = O(p), leading to a correction
of order (L+ 1)p. Similar linear scalings hold for other common noise models such as dephasing
and amplitude-damping channels. When both the entanglement measure and the accumulated noise
remain moderate, AQL can achieve a small approximation error on NISQ hardware.

We remark that for noisy quantum channels, the entanglement measure S is generally higher than
that in the corresponding noiseless case. Here we provide an example of the depolarizing channel in
Theorem C.3. Therefore, due to the exactly same bounds formulations in Theorems B.4 and C.1, the
infidelity achieved by noisy circuits would be worse than that of noiseless circuits.

Theorem C.3. Denote the entanglement measure for an N -qubit (pure or mixed) state ρ as S(ρ) =∑N
n=1 S{n}(ρ). Let Dpρ = (1− p)ρ+ pI/d be the depolarizing channel with error rate p. Then(

1− p

ln 4

)
S(ρ) + Np

ln 4
≤ S(Dp(ρ)) ≤ S(ρ) +N log2

2

1 + (1− p)2
. (49)
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C.1 PROOF OF THEOREM C.1.

Proof. For convenience, we denote by ρ the N -qubit state E(ρtarget) and by ρn := Tr[N ]/{n} [ρ] the
density matrix of the n-th single-qubit subsystem of ρ. We denote the Renyi entropy Sn := S(ρn)
for simplicity. Since ρn is a single-qubit density matrix, Sn ∈ [0, 1]. We construct a general set
of single-qubit projectors {|ψn⟩}Nn=1 with |ψproduct⟩ = ⊗N

n=1|ψn⟩. Accordingly, we define a set of
random variables {yn}Nn=1, where yn = 1 if the measurement on the n-th qubit yields |ψn⟩ and
yn = 0 otherwise. Thus, we can reformulate the infidelity between ρ and |ψproduct⟩ as

1− ⟨ψproduct|ρ|ψproduct⟩ = 1− Tr
[
ρ
(
⊗N
n=1|ψn⟩⟨ψn|

)]
= 1− Pr

(
yn = 1, ∀n ∈ [N ]

)
. (50)

First, we derive the lower bound on the infidelity in Eq. (50) as follows. We have

1− Pr
(
yn = 1, ∀n ∈ [N ]

)
≥ 1− min

n∈[N ]
Pr
(
yn = 1

)
= 1− min

n∈[N ]
Tr
[
ρ
(
I⊗(n−1) ⊗ |ψn⟩⟨ψn| ⊗ I⊗(N−n))]

= 1− min
n∈[N ]

Tr [ρn|ψn⟩⟨ψn|]

≥ 1− min
n∈[N ]

1 +
√
21−Sn − 1

2
, (51)

where the last inequality follows from Lemma B.1, which gives the maximal fidelity between a
single-qubit density matrix and a pure state in terms of its Rényi entropy.

We further proceed to deal with the terms in Eq. (51). In particular, the function f(x) =
√
21−x − 1

decreases for x ∈ [0, 1]. Thus,

min
n∈[N ]

√
21−Sn − 1 = min

n∈[N ]
f(Sn) ≤ f

(
1

N

N∑
n=1

Sn

)
= f

(
S

N

)
=
√
21−

S

N − 1. (52)

Combining Eqs. (51) and (52), we obtain

1− ⟨ψproduct|ρ|ψproduct⟩ ≥
1−

√
21−

S

N − 1

2
=: f1(S). (53)

For the case of S → 0, Eq. (53) tends to ln 2
2N
S +O(S3) by calculating the Taylor expansion.

Next, we derive the upper bound of the infidelity. We consider a specific choice of projectors
{|ϕn⟩}Nn=1, where each |ϕn⟩ is the pure-state approximation of ρ{n} with the largest fidelity given by
Lemmas B.1 and B.2. That is, |ϕn⟩ is chosen to maximize Tr[ρn|ϕn⟩⟨ϕn|]. Similarly, we define a set
of random variables {xn}Nn=1, where xn = 1 if measuring the n-th qubit of ρ yields the state |ϕn⟩
and xn = 0 otherwise. Based on Lemma B.1, we have

Pr
(
xn = 1

)
=

1 +
√
21−Sn − 1

2
, Pr

(
xn = 0

)
=

1−
√
21−Sn − 1

2
. (54)

Thus, the infidelity between ρ and the product state |ϕ⟩ = ⊗N
n=1|ϕn⟩ can be reformulated as

1− ⟨ϕ|ρ|ϕ⟩ = 1− Tr
[
ρ
(
⊗N
n=1|ϕn⟩⟨ϕn|

)]
= 1− Pr

(
xn = 1, ∀n ∈ [N ]

)
. (55)

In the following, we proceed with the derivation from the probability in Eq. (55) to obtain the upper
bound of the infidelity. We have

Pr
(
xn = 1, ∀n ∈ [N ]

)
= 1− Pr

(
∃ n ∈ [N ], s.t. xn = 0

)
≥ 1−

N∑
n=1

Pr
(
xn = 0

)
= 1−

N∑
n=1

1−
√
21−Sn − 1

2
, (56)
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where Eq. (56) follows from Eq. (54) and the union bound.

The function f(x) =
√
21−x − 1 is concave for x ∈ [0, 1] since it has the second-order derivative

f ′′(x) =
(ln 2)2 21−x (21−x − 2)

4 (21−x − 1)
3/2

≤ 0 (57)

for x ∈ [0, 1]. Therefore, we have

f(a) + f(b) ≥
{

f(0) + f(a+ b) when a, b, a+ b ∈ [0, 1],

f(a+ b− 1) + f(1) when a, b ∈ [0, 1] and a+ b ∈ [1, 2],
(58)

due to the property of concave functions. Eq. (58) can be employed to Eq. (56) by selecting a qubit
pair (i, j) such that Si, Sj /∈ {0, 1} and pushing the new values S′

i, S
′
j towards the boundary of [0, 1]

while keeping S′
i + S′

j = Si + Sj . By conducting the above procedure for at most N − 1 times, we
can bound the probability as follows:

Pr
(
xn = 1, ∀n ∈ [N ]

)
≥ 1− N

2
+

1

2

(
⌊S⌋f(1) + f(S − ⌊S⌋) + (N − ⌊S⌋ − 1) f(0)

)
=

1

2

(√
21−S+⌊S⌋ − 1− ⌊S⌋+ 1

)
, (59)

where Eq. (59) yields from calculating the value of the function f at 0 and 1. Thus, we obtain the
upper bound for the infidelity:

1− ⟨ϕ|ρ|ϕ⟩ = 1− Pr
(
xn = 1, ∀n ∈ [N ]

)
≤ 1

2

(
1−

√
21−S+⌊S⌋ − 1 + ⌊S⌋

)
=: f2(S). (60)

For the case of S → 0, Eq. (60) tends to ln 2
2
S +O(S3) by calculating the Taylor expansion. Thus,

we have proved Theorem C.1.

C.2 PROOF OF THEOREM C.2.

Proof. For convenience, we denote by ρ̂ := F (L)(ρtarget) and ρ := U†
1 ◦ · · · ◦ U†

L(ρtarget) the state
obtained from ρtarget with and without noise channels, respectively. Next, we focus on the lower
bound in Eq. (47), while the upper bound in Eq. (48) can be derived similarly. By employing
Theorem C.1, we have

1− ⟨ψproduct|ρ̂|ψproduct⟩ = 1− Tr[ρ̂σproduct] ≥ f1(S) (61)
for all product state |ψproduct⟩, where σproduct := |ψproduct⟩⟨ψproduct|. Thus, the infidelity between
the target state ρtarget and the state recovered by E (L) is

1− Tr[ρtargetE (L)(σproduct)]

= 1− Tr[ρ̂σproduct] + Tr[ρ̂σproduct]− Tr[ρσproduct] + Tr[ρσproduct]− Tr[ρtargetE (L)(σproduct)]

≥ f1(S)− |Tr[ρ̂σproduct]− Tr[ρσproduct]| −
∣∣Tr[ρσproduct]− Tr[ρtargetE (L)(σproduct)]

∣∣ . (62)

The second term in Eq. (62) can be bounded as
|Tr[ρ̂σproduct]− Tr[ρσproduct]| ≤ ∥ρ̂− ρ∥1∥σproduct∥∞ ≤ (L+ 1)∥N − id∥⋄, (63)

where the last inequality yields from Lemma B.3 and the operator norm ∥σ∥∞ ≤ 1.

The third term in Eq. (62) is bounded in the similar way∣∣Tr[ρσproduct]− Tr[ρtargetE (L)(σproduct)]
∣∣

=
∣∣∣Tr[U†

1 ◦ · · · ◦ U†
L(ρtarget)σproduct]− Tr[ρtargetE (L)(σproduct)]

∣∣∣
=
∣∣Tr[ρtargetUL ◦ · · · ◦ U1(σproduct)]− Tr[ρtargetE (L)(σproduct)]

∣∣
≤
∥∥UL ◦ · · · ◦ U1(σproduct)− E (L)(σproduct)

∥∥
1
∥ρtarget∥∞

≤ (L+ 1)∥M− id∥⋄. (64)
Combining Eqs. (63) and (64) with Eq. (62), we obtain

1− Tr[ρtargetE (L)(σproduct)] ≥ f1(S)− (L+ 1) (∥M− id∥⋄ + ∥N − id∥⋄) ,
which is Eq. (47). Eq. (48) can be derived similarly. Thus, we have proved Theorem C.2.
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C.3 PROOF OF THEOREM C.3

Proof. For convenience, we denote by ρn and σn the reduced density matrix of ρ and σ = Dp(ρ) at
the n-th qubit, respectively. Then, we have

σn = Tr[N ]/{n} [Dp(ρ)] = Tr[N ]/{n}
[
(1− p)ρ+ pI/2N

]
= (1− p)ρn +

p

2
I. (65)

Thus, the Renyi entropy of the state σn can be obtained as

S(σn) = − log2 Tr[σ
2
n] = − log2 Tr

[
((1− p)ρn +

p

2
I)2
]

= − log2

{
(1− p)2Tr[ρ2n] + p(1− p)Tr[ρn] +

p2

4
Tr[I]

}
= − log2

{
(1− p)2Tr[ρ2n] + p

(
1− p

2

)}
. (66)

Next, we derive inequalities for S(σn) based on Eq. (66). We have

S(σn) = − log2

{
(1− p)2Tr[ρ2n] + p

(
1− p

2

)}
≤ − log2

{
(1− p)2Tr[ρ2n] + p

(
1− p

2

)
Tr[ρ2n]

}
= S(ρn)− log2

(
1− p+

1

2
p2
)

= S(ρn) + log2
2

1 + (1− p)2
, (67)

where the inequality follows from Tr[ρ2n] ≤ 1.

On the other side,

S(σn) = − log2

{
(1− p)2Tr[ρ2n] + p

(
1− p

2

)}
= − log2 Tr[ρ

2
n]− log2

{
(1− p)2 +

p
(
1− p

2

)
Tr[ρ2n]

}

= S(ρn)− log2

{
1− p

(
1− p

2

)(
2− 1

Tr[ρ2n]

)}
≥ S(ρn) +

1

ln 2
p
(
1− p

2

)(
2− 1

Tr[ρ2n]

)
≥ S(ρn) +

p

ln 4

(
2− 1

Tr[ρ2n]

)
= S(ρn) +

p

ln 4

(
2− 2S(ρn)

)
≥ S(ρn) +

p

ln 4
(2− (1 + S(ρn)))

=
(
1− p

ln 4

)
S(ρn) +

p

ln 4
, (68)

where the first inequality follows from log2(1 − x) ≤ − x
ln 2

, the second inequality follows from
p ∈ [0, 1], and the third inequality follows from 2x ≤ 1 + x for x ∈ [0, 1]. By summing Eqs. (66)
and (68) over n ∈ [N ], respectively, we obtain Eq. (49).

D MORE IMPLEMENTATION DETAILS OF THE AQER ALGORITHM

In this section, we provide a detailed discussion of the technical aspects of AQER, including the
computation and optimization of the entanglement measure S, the explicit construction of product-
state approximations, and the trainability of variational circuit optimization in AQER. We also discuss
why S serves as an efficient proxy for the global approximation error and how it facilitates scalable
training on large quantum systems. Finally, we explain how to employ AQER with classical data.
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D.1 STEP I: COMPUTATION AND OPTIMIZATION OF S

The computation and optimization of the entanglement measure S in Step I of AQER requires only a
limited amount of quantum resources. Since S, which is defined as the sum of single-qubit Renyi
entropies, consists solely of local terms, it can be efficiently evaluated using local measurements.
Specifically, the Renyi entanglement entropy of any subsystem of constant size can be estimated via
quantum state tomography on its reduced density matrix, which requires only O(1/ϵ2) measurements
to achieve an ϵ-precision estimate. Besides, for a candidate 2-qubit gate block in each iteration of
Step I, only the single-qubit Renyi entropies of the two involved qubits are affected. Therefore, the
change in S due to adding a new gate block equals the change in the sum of these two single-qubit
entropies. Thus, in each iteration of Step I, the gate block that induces the largest decrease in the
relevant single-qubit entropies is selected as the new structure. The parameters within these blocks
is optimized using classical methods such as the Nelder-Mead algorithm. Through this procedure,
entanglement is systematically reduced using only local information. This reduction allows efficient
scaling to large quantum systems.

D.2 STEP II: PARAMETER COMPUTATION

The parameters for single-qubit rotations in Step II of AQER can be computed explicitly and efficiently
via single-qubit state tomography. Based on Theorem 3.1, the state |vT ⟩ after Step I has reduced
entanglement and can be well approximated by a product state, which is prepared from |0⟩⊗N
by using single-qubit rotations. In Step II, the parameters (βi,γi) for the single-qubit rotations
RZ(βi)RY (γi) can be explicitly computed from the elements of the single-qubit reduced density
matrices obtained via tomography. Specifically, according to Lemma B.2, each βi and γi is directly
computed from the matrix elements ρ00, ρ11, and ρ10 of the corresponding reduced density matrix.
As mentioned in the discussion regarding Step I, the tomography for each qubit requires O(1/ϵ2)
measurements to achieve an ϵ-precision estimate, which is independent of the total system size N .
Once obtained, these parameters provide an explicit product-state approximation of |vT ⟩ without any
iterative optimization. This yields a high-fidelity initialization for Step III.

D.3 STEP III: THE TRAINABILITY OF PARAMETER OPTIMIZATION

By reducing entanglement in Step I and explicitly constructing single-qubit gates in Step II, AQER
mitigates the effects of barren plateaus on subsequent parameter optimization in Step III. Generally,
in the training of VQAs, barren plateau phenomena occur when the loss function is initialized near
its average value with exponentially small gradients. This makes parameter optimization extremely
challenging. For loss functions defined as the infidelity with respect to an N -qubit target state, the
average loss for randomly initialized parameterized circuits scales as 1−O(1/2N ). In contrast, in
Step III of AQER, the entanglement measure S is suppressed before full optimization. As guaranteed
by Theorem 3.1, lower S values correspond to states with smaller infidelity loss. Therefore, the
initial point of the variational circuit is effectively positioned away from the barren plateau region.
This ensures that subsequent optimization starts from a well-conditioned region where gradients are
meaningful, mitigating the impact of barren plateaus and improving trainability.

D.4 AQER: S AS A PROXY FOR APPROXIMATION ERROR

Using S as a proxy for the global approximation error provides multiple advantages. Directly
optimizing the infidelity loss requires global measurements, which are computationally expensive
and sensitive to statistical variance, especially in large systems. In contrast, S can be efficiently
evaluated and reduced using only local measurements. By first reducing S , AQER not only lowers the
approximation error but also prepares the circuit in a favorable regime for further global optimization.
This strategy enhances both the efficiency of evaluation and the overall trainability and scalability of
AQER on large-qubit quantum systems.

D.5 AQER WITH CLASSICAL DATA

For classical data, AQER is implemented through classical simulation while maintaining the same
three-step structure. In particular, the quantum state corresponding to classical data is represented in
the form of classical vectors or tensor networks.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Classical Simulation: In Step I, the entanglement measure S is computed by classically evaluating
reduced density matrices and their Renyi entropies. Gate optimization proceeds through classical
simulation of candidate blocks, with parameters optimized using gradient-based methods with exact
gradient information. In Step II, single-qubit rotation parameters (βi,γi) are extracted directly from
computed reduced density matrices according to Lemma B.2. Step III utilizes classical simulation for
exact loss evaluation and gradient computation without statistical noise.

E EXPERIMENTAL SETUP

In this section, we first describe the construction and preprocessing of both classical and quantum
datasets. We then present the hyperparameter configurations of the reference quantum data loaders
employed in our experiments.

Numerical simulation settings. All experiments presented in this work were performed using
classical simulators. For computational tasks involving fewer than 20 qubits, we employed Penny-
Lane (Bergholm et al., 2018), a Python-based package. For larger quantum systems with 20 or more
qubits, we utilized PastaQ (Torlai and Fishman, 2020), a Julia-based package that employs tensor
network techniques to support efficient simulation of large-scale quantum systems.

E.1 CONSTRUCTION OF CLASSICAL AND QUANTUM DATASETS

Classical data. For MNIST, each image is zero-padded to 32× 32, flattened into a 1024-dimensional
vector v, and normalized to have unit ℓ2 norm. The corresponding target state is defined by the
amplitude encoding |v⟩ =

∑2N

j=1 vj |j⟩ withN = 10 qubits. For CIFAR-10, each 32×32 RGB image
is flattened by concatenating the three color channels into a 3072-dimensional vector, zero-padded
to 4096 dimensions, and then normalized. The second half of the vector is further treated as the
imaginary part and combined with the first half to construct the compact encoding (Blank et al.,
2022): |v⟩ =

∑2N

j=1(vj + ivj+2048)|j⟩ with N = 11 qubits, which serves as the target to evaluate
AQER under different encoding schemes. For SST-2, each sentence is initially represented by a 1024-
dimensional embedding vector obtained from a pretrained Sentence-BERT model. The embeddings
are then normalized, and the corresponding target states are defined via amplitude encoding using
N = 10 qubits.

Quantum data. We consider two types of quantum datasets: synthetic states generated from random
quantum circuits (RQCs) and ground states of the one-dimensional transverse-field Ising model
(1D TFIM). These datasets serve as typical examples of physically relevant states arising from
quantum circuit evolutions or quantum many-body systems. Specifically, the first dataset is consists
of M = 50 states generated from different RQCs on the state |0⟩. Each RQC is sampled from the set
RandomShuffle

(
{CZpk,qk

}Wk=1 ∪ {Rσk,pk
(θk)}4Wk=W+1

)
, where 1 ≤ pk ̸= qk ≤ N are randomly

sampled from [N ]. EachRσ,pk
is a single-qubit rotation on the qubit pk with σk ∼ Uniform{X,Y, Z}

and θk ∼ Uniform[0, 2π]. Such circuits produce highly entangled states when the number of two-
qubit gates W ≥ O(N) that serve as representative synthetic quantum data. In practice, we use
N = 10 and W = 40. The second dataset consists of ground states of the 1D TFIM, which is defined
by the Hamiltonian HTFIM = −

∑N−1
i=1 JZiZi+1 −

∑N
i=1 gXi. We consider coefficients near the

phase transition point, i.e. g = 1 and J ∈ {0.8, 0.9, 1, 1.1, 1.2} to construct datasets with the size
M = 5 for N ∈ {10, 20, 30, 40, 50}.

E.2 HYPERPARAMETER SETTINGS OF REFERENCE QUANTUM DATA LOADERS

Here, we provide the hyperparameter settings of the reference quantum data loaders used in our
experiments. The descriptions of these methods can be found in Section A.3.

Automatic quantum circuit encoding (AQCE). The AQCE method performs the two-qubit unitary
updation sequentially in a forward–backward manner several times before adding new gates into the
circuit. In the experiment, we add 5 new unitaries for each adding-gate step, followed by 200 rounds
of forward–backward gate updation.

Hardware-efficient circuits (HEC). We adopt a layered hardware-efficient (HE) architecture,
where each layer consists of an RY rotation layer, an RZ rotation layer, and a CNOT layer act-
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Table 2: Feasible numbers of CNOT/CZ gates used in different encoding methods. The term N is the
number of qubits, and the term k ∈ N can be any positive integer.

Method two-qubit gate count G

AQCE (C)
AQCE (R)
MPS (C)
MPS (R)
HEC

G = 15k
G = 10k
G = 3(N − 1)k
G = 2(N − 1)k
G = ⌈ 1

2
Nk⌉

AQER (Ours) G = k

ing on adjacent qubit pairs. Specifically, for the i-th layer, CNOT gates are applied to qubit pairs
(2n, (2n+ 1)%N) , 0 ≤ 2n ≤ N−1 when i%2 = 0 and (2n+ 1, (2n+ 2)%N) , 0 ≤ 2n ≤ N−2
when i%2 = 1. Parameters in HEC are initialized randomly from the uniform distribution over
[0, 2π]. Training is performed using the Adam optimizer for 2000 iterations, which is consistent with
the setting in AQER.

We remark that reference AQL methods introduce different constraints on the number of hardware-
available two-qubit gates, such as CNOT and CZ. We summarize the feasible two-qubit gate count
under these methods in Tab. 2. Specifically, the decomposition of an arbitrary two-qubit unitary
requires two and three CNOT/CZ gates in the real and general complex cases, respectively (Vatan
and Williams, 2004).

E.3 QUANTUM SVM WITH CROSS-VALIDATION

We employ the Quantum Support Vector Machine (QSVM) (Rebentrost et al., 2014) for binary
classification. QSVM employs a quantum feature map to embed classical input vectors x(i) into
quantum states |ψ(x(i))⟩, which are used to construct a kernel matrix Kij = |⟨ψ(x(i))|ψ(x(j))⟩|2
that quantifies pairwise similarities between data points. Denote by yi ∈ {−1, 1} the label of data
x(i). Then, the training of SVM corresponds to solving the dual optimization problem

max
α

[∑
i

αi −
1

2

∑
ij

αiαjyiyjKij

]
, s.t. 0 ≤ αi ≤ C,

∑
i

αiyi = 0,

where C is the penalty parameter that is set to 1 by default. Once the parameter α of the QSVM is
trained, the predicted label for a new sample x is computed using the decision function

ŷ = sign

[
N∑
i=1

αiyiK(x(i),x)

]
,

where K(x(i),x) = |⟨ψ(x(i))|ψ(x)⟩|2 is the kernel between the training sample x(i) and the new
sample x.

In the experiment, we compare the approximate encoding from AQER with the exact amplitude
encoding. We employ stratified k-fold cross-validation (with k = 5) on the dataset with size 200 to
estimate classification performance. For each fold, the SVM is trained on the training subset using
the precomputed kernel matrix, and predictions are made on the held-out validation subset using the
corresponding submatrix of K. The reported error is the mean over all folds.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional numerical results about the performance of the AQER on both
classical and quantum datasets.

Step I of AQER effectively reduces entanglement with increasing iteration times. We first
examine how AQER progressively lowers the entanglement measure value S for MNIST, CIFAR-10,
SST-2, S-RQC, and GS-TFIM datasets. Fig. 6(a) shows S after Step III of AQER for all datasets with
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Figure 6: Performance of AQER on entanglement suppression across MNIST, CIFAR-10, SST-2,
S-RQC, and GS-TFIM datasets, distinguished by different colors and markers. (a) Entanglement
measure value S versus different T ∈ {5, 10, 20, 40, 60, 80, 100} after Step III of AQER across all
datasets. (b) Entanglement measure value S versus different measurement shots for the GS-TFIM
dataset, with different T ∈ {10, 20, 40, 100}.
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Figure 7: AQER infidelity with different optimization iterations in Step III, i.e. T3 ∈
{40, 80, 160, 320, 640, 1280, 2000}. Each subfigure corresponds to T = 10, 20, 40, and 100, re-
spectively.

varying T ∈ {5, 10, 20, 40, 60, 80, 100}. For most datasets, increasing T consistently decreases S,
indicating that AQER effectively reduces the entanglement of the target state by gradually expanding
the circuit. The GS-TFIM dataset exhibits minor fluctuations due to statistical noise caused by
a limited number of measurements, but the overall decreasing trend remains clear. These results
corroborate the effectiveness of AQER in progressively mitigating entanglement as T grows.

Effect of shot number on entanglement reduction. We next study the effect of different mea-
surement shots on entanglement reduction. Fig. 6(b) illustrates the entanglement measure S for the
GS-TFIM dataset, with T ∈ {10, 20, 40, 100}. Increasing the number of shots generally reduces S,
mirroring the trend observed in the main text for infidelity. This reduction is more pronounced for
larger T . For instance, increasing the measurement shots from 102 to 105 reduces S by roughly a
factor of 2 for T = 10, whereas for T = 100 the reduction reaches approximately 16-fold. These
results indicate that sufficient measurement shots significantly enhance the capability of AQER to
suppress entanglement.
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Figure 8: Binary classification error on MNIST digits 0 vs 1 using AQER-loaded states with
T ∈ {5, 10, 20, 40, 60, 80, 100}, compared to exact loading (black dashed line).
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Figure 9: Infidelity as the function of metrics for different AQL methods on the S-RQC dataset. We
consider four metrics: the circuit depth, the parameter count, the number of measurement shots, and
the training cost in seconds. Each data point is the average over 5 samples.

Step III of AQER effectively reduces infidelity with increasing iteration steps. We then investigate
the effect of different numbers of Step III iterations T3 ∈ {40, 80, 160, 320, 640, 1280, 2000} on
AQER performance. Fig. 7 shows the infidelity for MNIST, CIFAR-10, SST-2, S-RQC, and GS-TFIM
datasets, with each subfigure corresponding to T = 10, 20, 40, and 100. For all cases, increasing T3

steadily decreases the infidelity, indicating that longer Step III optimization effectively improves the
approximation quality. This reduction is more pronounced for larger T , demonstrating that AQER
benefits from combining a larger initial circuit with more extensive optimization in Step III.

Binary classification with AQER. We further examine the classification performance of QSVM
using AQER-loaded states. Specifically, we consider a binary task on MNIST digits 0 vs 1 using
AQER-loaded states with different T values. The results are shown in Fig. 8, where the error
rates for T ∈ {5, 10, 20, 40, 60, 80, 100} are compared against exact loading. We observe that the
classification error decreases steadily as T increases, and from T ≥ 20 onward the performance
already matches the exact-loading error. This indicates that AQER can achieve near-exact downstream
performance on classification tasks with relatively small circuit sizes.

Resource–accuracy trade-offs of AQER versus AQL baselines. We further compare the accu-
racy–resource trade-offs of different AQL methods on the S-RQC dataset. Fig. 9 plots the infidelity
achieved by AQER, HEC, AQCE, and MPS as a function of four resource metrics: circuit depth,
number of trainable parameters, total number of measurement shots, and classical training time in
seconds. Specifically, the circuit depth is defined as the number of sequential gate layers in the
compiled quantum circuit under full parallelization of commuting gates on different qubits. We count
only layers that contain at least one two-qubit gate, since in practice two-qubit gates are typically
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Figure 10: Scaling of AQER gradient norms with the number of qubits for the TFIM dataset. The
plot shows the gradient norm at the initial stage of Step III training, as a function of system size
N ∈ {10, 20, 30, 40, 50}, for different circuit sizes T ∈ {10, 20, 40, 60, 100}. The black dashed line
depicts an exponentially decaying reference curve proportional to 2−N .

an order of magnitude slower than single-qubit gates. The parameter count is the number of all
independent continuous parameters in the quantum circuit (e.g., rotation angles). The measurement
shots are the number of quantum measurements used in the entire AQL procedure. The training time
is measured on a laptop equipped with an Apple M2 chip and 8 GB of RAM. Overall, AQER achieves
lower infidelity than the other methods under comparable or lower circuit depth and parameter counts,
indicating a more efficient use of circuit expressivity. For measurement shots and training time, the
behavior is more nuanced. The MPS baseline, owing to the simplicity of its algorithm, requires fewer
shots and shorter training time, but this comes at the cost of substantially worse performance in terms
of circuit depth, two-qubit gate count, and parameter count when realized as a circuit, as well as
significantly higher infidelity. When compared against circuit-based baselines (AQCE and HEC),
AQER consistently achieves lower infidelity with comparable or lower measurement overhead and
training cost. Therefore, AQER achieves a favorable resource-accuracy trade-off among circuit-based
AQL methods.

Gradient scaling of AQER with large qubit number. We analyze the scaling of AQER gradient
norms on the TFIM dataset with large qubit numbers to demonstrate that the Step III optimization
in AQER is free from the barren plateau issue. For system sizes N ∈ {10, 20, 30, 40, 50} and
circuit sizes T ∈ {10, 20, 40, 60, 100}, we compute the gradient norm with respect to all trainable
parameters at the beginning of the optimization. The result is shown in Fig. 10. Across all system
sizes and circuit sizes, the initial gradient norms remain on the order of 10−2 and do not exhibit
any exponential decay with N , in clear contrast to the exponentially vanishing reference curve 2−N

shown in the figure. These observations provide numerical evidence that the trainability of AQER
remains stable as the system size increases from N = 10 to N = 50.

Robustness of AQER under noisy channels. We perform noisy simulations on the N = 10
TFIM task to assess the performance of AQER in realistic NISQ regimes. In particular, after
each single-qubit and two-qubit gate layer, we apply a depolarizing channel with error rates p1 ∈
{10−3, 3 × 10−4, 10−4} and p2 = 10p1, respectively, which corresponds to representative error
ranges reported for current quantum devices. For each noise setting and two-qubit gate count T ∈
{5, 7, 10, 12, 15, 20, 24, 28, 32, 36, 40, 50, 60, 80, 100}, we run AQER and record the final infidelity.
The result is shown in Fig. 11. Across all three noise levels, we observe a noise-dependent optimal
circuit size T ∗: as T increases from very small values, the infidelity decreases, which indicates
that entanglement-guided circuit growth improves approximation quality before noise accumulation
becomes dominant. Beyond T ∗, further increasing T leads to a gradual increase in infidelity as the
effect of noise outweighs the expressivity gains. Moreover, as the physical error rates decrease from
(p1, p2) = (10−3, 10−2) to (10−4, 10−3), the best achievable infidelity improves from above 2−3 to
around 2−5, and the optimal T ∗ increases. Altogether, these results demonstrate that AQER remains
effective and robust in NISQ-level noise regimes.
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Figure 11: Infidelity of AQER under global depolarizing noise for the N = 10 TFIM task. The
plot shows the final infidelity as a function of the two-qubit gate count T for three noise levels,
where single-qubit and two-qubit gate error rates are (p1, p2) ∈ {(10−3, 10−2), (3 × 10−4, 3 ×
10−3), (10−4, 10−3)}.
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Figure 12: Performance of AQER on the N = 10 GHZ state. (a) Entanglement measure S as a
function of the two-qubit gate count T . (b) Infidelity as a function of T .

AQER for preparing the GHZ state. We evaluate AQER on the N = 10 GHZ state as a case
study of its performance on highly entangled yet structurally simple states. The GHZ state is highly
entangled in the sense that each single-qubit reduced density matrix is maximally mixed and the initial
entanglement measure satisfies S = N . Nonetheless, AQER is able to reduce this entanglement
very efficiently. As shown in Fig. 12, the entanglement measure S decays rapidly with the two-qubit
gate count T and drops below 2−3 already at T = 9. The corresponding infidelity is reduced to
below 2−12 using only 9 two-qubit gates. This example highlights that a quantum state can be highly
entangled while still being structurally simple, and that in such cases AQER can efficiently find
low-depth circuits that achieve very low infidelity despite the large initial value of S.

AQER for preparing 2D random circuit states. We consider preparing 2D random circuit states on
rectangular lattices to evaluate AQER on physically relevant targets. The target state is generated
by a depth-4 circuit composed of alternating single-qubit and CZ layers. In each single-qubit layer,
every qubit is acted on by a randomly chosen rotation from {RX , RY , RZ} with a uniformly sampled
angle. In each CZ layer, CZ gates are applied to nearest neighbors along horizontal or vertical
directions according to one of four distinct tilings of the 2D grid (two horizontal and two vertical
patterns). These four CZ patterns are cycled over the four layers so that, across the entire circuit, all
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Figure 13: Performance of AQER on 2D random circuit states. Target states are generated by a
depth-4 nearest-neighbor circuit on 4 × 4, 4 × 5, and 5 × 5 lattices. (a) Entanglement measure S
versus the two-qubit gate count T ∈ {10, 20, 40, 60, 80, 100}. (b) Infidelity versus T for the same
set of 2D random circuit states.
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Figure 14: Performance of AQER on 2D XXZ ground states at the critical point. (a) Entanglement
measure S as the function of the two-qubit gate count T ∈ {10, 20, 40, 60, 80, 100} for 4× 4, 4× 5,
and 5× 5 lattices. (b) The infidelity as the function of T .

nearest-neighbor couplings are activated. We consider 4×4, 4×5, and 5×5 lattices and apply AQER
with two-qubit gate counts T ∈ {10, 20, 40, 60, 80, 100}. The resulting entanglement measures and
infidelities are shown in Fig. 13. For all lattice sizes, the entanglement measure S decreases by at
least a factor of 8 as T increases from 10 to 100, indicating that the entanglement-reduction strategy
remains effective for the 2D random circuit state. The corresponding infidelities also decrease as T
increases. For example, on the 4× 4 lattice the infidelity drops from above 2−3 at T = 10 to around
2−6 at T = 100, and on the 5 × 5 lattice it decreases from above 2−1 to below 2−4. These results
demonstrate that AQER can substantially and consistently decrease both the entanglement measure
and the approximation error for shallow 2D random circuit states as the circuit size T increases.

AQER for preparing 2D XXZ ground states at the critical point. We consider preparing the
ground state of the spin- 1

2
XXZ model on lattices to evaluate AQER on 2D many-body quantum

states. The Hamiltonian is given by

HXXZ =
∑
⟨i,j⟩

[
Jxy
(
σxi σ

x
j + σyi σ

y
j

)
+ Jz σ

z
i σ

z
j

]
, (69)

where ⟨i, j⟩ runs over nearest-neighbor pairs on the 2D grid and σx,y,z denote Pauli matrices. We
focus on the critical point Jxy = Jz and consider 4× 4, 4× 5, and 5× 5 lattices. For each lattice, we
apply AQER with two-qubit gate counts T ∈ {10, 20, 40, 60, 80, 100}. The entanglement measures
and infidelities are shown in Fig. 14. For all lattice sizes, the entanglement measure S decreases
steadily as T increases, typically by a factor of about 2–3 when T grows from 10 to 100 (e.g., from
above 23 to below 22 on the 4× 4 lattice and from above 24 to below 23 on the 5× 5 lattice). The
corresponding infidelities also decrease monotonically with T by more that a factor of 2. These
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Figure 15: Loading circuits generated from AQER with T = 20 for the MNIST dataset. Green and
red blocks denote RY and RZ gates, respectively. Blue circles connected by lines denote RZZ gates.

results show that, AQER can reliably compress entanglement and reduce the approximation error for
2D quantum many-body systems, with both S and the infidelity decrease systematically as the circuit
size T increases.

Quantum circuit visualization. We visualize the quantum circuits generated by the AQER algorithm
with T = 10 for the MNIST, CIFAR-10, SST-2, S-RQC, and GS-TFIM datasets in Figures 15-19,
respectively. Each figure shows the circuit layouts of five examples, including single-qubit rotation
gates RY , RZ and two-qubit RZZ gates.

G COMPUTATIONAL COMPLEXITY OF AQER

Here we provide the computational complexity of AQER. We separate the analysis into the classical
data setting, where the target state is represented explicitly as a state vector on a classical computer,
and the quantum data setting, where one has access only to copies of a target quantum state prepared
on a quantum device. Throughout, we denote by N the number of qubits and by d = 2N the
dimension of classical data vector. The number of iterations in the Step I of AQER is denoted by T ,
and the number of iterations in the Step III of AQER is denoted by T3.
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Figure 16: Loading circuits generated from AQER with T = 20 for the CIFAR-10 dataset. Green and
red blocks denote RY and RZ gates, respectively. Blue circles connected by lines denote RZZ gates.

G.1 CLASSICAL DATA

We first analyze the cost of AQER when the target state is given as an explicit state vector v ∈ Cd
on a classical computer. In this regime, all quantities required by AQER (reduced density matrices,
entropies, gradients) can be computed exactly from v.

Cost of applying gates. Each gate used in AQER is either diagonal (RZ and RZZ) or 2-sparse (for
RY ). Therefore, applying a single- or two-qubit gate U to the state vector v ∈ Cd can be implemented
as a matrix-vector multiplication with a diagonal or 2-sparse matrix, and thus costs O(d) arithmetic
operations. A forward pass of the circuit with O(T ) then costs O(dT ).

Cost of computing reduced density matrices and entropies. Let the state vector in the computa-
tional basis be written as

v =

1∑
i1=0

· · ·
1∑

iN=0

vi1,...,iN ei1,...,iN . (70)

Then, the reduced density matrix (RDM) of qubits (1, 2) is given by

ρj1,j2;k1,k2
=
∑
i3,...,iN

vj1,j2,i3,...,iNv
∗
k1,k2,i3,...,iN

, j1, j2, k1, k2 ∈ {0, 1}. (71)
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Figure 17: Loading circuits generated from AQER with T = 20 for the SST-2 dataset. Green and red
blocks denote RY and RZ gates, respectively. Blue circles connected by lines denote RZZ gates.

Computing this RDM requires summing over all 2N−2 assignments of (i3, . . . , iN ), and hence costs
O(2N ) = O(d) operations. The same complexity applies to RDMs of any constant number of qubits
and any choice of qubit indices. Once the RDMs are available, the single-qubit entropies and the
entanglement measure used in AQER can be obtained by diagonalizing constant-size matrices, which
incurs only negligible additional cost. Thus, the cost of computing the RDMs and corresponding
entropies for a constant number of qubits is O(d).

Step I: greedy entanglement reduction. In Step I, AQER greedily builds a circuit with 5T gates
by iteratively adding single- and two-qubit gates that reduce the entanglement measure. At each
iteration, the algorithm evaluates at most O(N2) candidate qubit pairs, and evaluating one candidate
requires O(d) time. Thus, the total cost of Step I is

O(d T N2). (72)

Step II: product state approximation. In Step II, AQER computes the single-qubit RDMs for all
N qubits and uses these to initialize the parameters of single-qubit rotations. The cost of computing
N single-qubit RDMs is O(dN), and the subsequent calculation of the 2N gate parameters requires
only O(N) operations. Therefore, the complexity of Step II is

O(dN). (73)
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Figure 18: Loading circuits generated from AQER with T = 20 for the S-RQC dataset. Green and
red blocks denote RY and RZ gates, respectively. Blue circles connected by lines denote RZZ gates.

Step III: gradient-based paramter fine-tuning. Step III performs T3 iterations of gradient-based
optimization over all trainable parameters in the AQER circuit. The total number of parameters is

P = 5T + 2N, (74)

where 5T comes from the single- and two-qubit rotations in the T iterations of Step I, and 2N comes
from additional single-qubit rotations determined in Step II.

To estimate the complexity of one iteration in Step III, we consider the cost of computing the gradient
of the loss function with respect to all P parameters. Using either the parameter-shift rule or automatic
differentiation on the state-vector simulation, computing each partial derivative involves two numbers
of forward evaluations of the whole circuit. Each such forward evaluation costs O(d(T +N)), so the
cost of computing one partial derivative is O(d(T +N)). Since there are P = O(T +N) parameters,
a full gradient evaluation costs O(d(T +N)2). Performing T3 gradient steps in Step III therefore
leads to a total cost of

O(d T3(T +N)2). (75)

Overall complexity for classical data. Combining Eqs. (72), (73) and (75), the overall computa-
tional complexity of AQER in the classical-data setting is

O
(
dTN2 + dN + dT3(T +N)2

)
, (76)
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Figure 19: Loading circuits generated from AQER with T = 20 for the GS-TFIM dataset (N = 10).
Green and red blocks denote RY and RZ gates, respectively. Blue circles connected by lines denote
RZZ gates.

which can be summarized as
O
(
d T3 T

2 polylog(d)
)
. (77)

This scaling is linear in the Hilbert-space dimension d (as unavoidable for exact state-vector simula-
tion), and polynomial in the Step I iteration count T and the number of gradient steps T3.

G.2 QUANTUM DATA

We now consider the quantum data setting, where the target state ρ is available on a quantum device,
and no explicit classical description of ρ is assumed. In this case, all RDMs, entropies and gradients
required by AQER are estimated from a finite number of measurement shots. For convenience, we
denote by M the number of shots used to estimate each expectation value or each entry of an RDM.

Step I and Step II for quantum data. As in the classical case, Step I adds O(T ) gates that reduce
the entanglement measure. At each iteration, the number of candidate gates is at most N2. The cost
per candidate is O(MT ), and therefore the total cost of Step I in the quantum-data setting scales as

O(MT 2N2). (78)
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In Step II, AQER estimates N single-qubit RDMs. This requires O(MN) shots and O(N) classical
operations, so the complexity of Step II is

O(MN). (79)

Step III: gradient-based parameter fine-tuning. For gradient-based optimization with quantum
data, we can use the parameter-shift rule to calculate the gradient. For each parameter, estimating
one partial derivative costs O(M(T +N)) operations. As before, the total number of parameters is
P = 5T + 2N = O(T +N). Therefore, one full gradient evaluation in Step III requires

O(M(T +N)2) (80)

operations. Performing T3 gradient steps then yields the total complexity of Step III:

O(MT3(T +N)2). (81)

Overall complexity for quantum data. Combining Eqs. (78), (79) and (81), the overall computa-
tional complexity of AQER for quantum data is

O(MT3T
2poly(N)). (82)

H THE EFFICIENT LOADING OF IQP CIRCUIT STATES VIA AQER

In this section, we analyze the performance of AQER on classical vectors or quantum states arising
from Instantaneous Quantum Polynomial (IQP) circuits. We first show in Theorem H.1 that, when
the IQP angles lie on a known discrete grid and we have classical access to the full state vector,
AQER can exactly reconstruct a loading circuit in at most |E| iterations of Step I. We then relax the
discrete-grid assumption and prove in Theorem H.2 that for generic IQP states with i.i.d. continuous
angles, AQER can, with high probability, find a loading circuit that reduces the entanglement measure
S to at most ε using at most |E| iterations of Step I in AQER. Finally, Theorem H.3 establishes an
analogous exact-loading guarantee for a discrete IQP state family with fixed angle π/8 and unknown
interaction graph, where we only have quantum access to the IQP state. Let D be the degree of the
graph E. In this case, AQER still recovers an exact loading circuit with probability at least 1 − δ
using at most |E| iterations of Step I and a total quantum access number that is polynomial in N ,
log(1/δ), 2D, and |E|.
Theorem H.1 (Exact loading of discrete IQP state vectors). Let N ≥ 2 be the number of qubits, and
let K ∈ N be a known grid size. We consider a fully-connected IQP circuit state

|v(ω)⟩ = H⊗N

 ∏
{i,j}∈E

e−iωijZiZj/2

H⊗N |0N ⟩ , (83)

where E is the unknown interaction graph of the IQP circuit, and each parameter is unknown and is
restricted to the discrete grid

ωij =
kijπ

2K + 1
, kij ∈ {−2K,−2K + 1, . . . , 2K − 1, 2K}. (84)

Assume we have classical access to the state vector of |v(ω)⟩. Then, up to an overall global phase,
the AQER algorithm can reconstruct an exact loading circuit for the IQP state using T iterations of
Step I, where T ≤ |E|.

Proof. For the case where the target state is known to be an IQP state, we restrict the optimization in
Step I of AQER as follows. For convenience, let It ⊆ [N ] denote the set of qubits involved in the new
two-qubit gate block added at the t-th iteration of Step I, and define the cumulative set Jt :=

⋃t
t′=1 It′ .

At iteration t+ 1, consider a candidate two-qubit gate block acting on a pair {i, j}. For each qubit
q ∈ {i, j}, if q ∈ Jt, we restrict the corresponding single-qubit part of the block to be the identity via
RZ(0)RY (0) = I . If q /∈ Jt, we set the single-qubit part to be RZ(π)RY (−π/2) = −iH , which
implements a Hadamard up to a global phase. For the entangling gate RZZ on {i, j}, we restrict
its rotation angle to the grid αij = aijπ/(2K + 1) with aij ∈ {−2K,−2K + 1, . . . , 2K − 1, 2K}.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Therefore, the optimization of the entanglement measure is performed by a grid search over the
choice of the qubit pair {i, j} and the discrete values of αij .

Since the entanglement measure S is defined as the sum of single-qubit Renyi entropies, it is
invariant under arbitrary single-qubit unitaries. Under the optimization rule for Step I described
above, optimizing S for the target IQP state is therefore equivalent to optimizing S for the residual
IQP state |v′(ω)⟩ defined as follows,

|v′(ω)⟩ :=

 ∏
{i,j}∈E

e−iωijZiZj/2

H⊗N |0N ⟩ =

 ∏
{i,j}∈E

e−iωijZiZj/2

 |+⟩⊗N , (85)

where |+⟩ = H |0⟩ = (|0⟩+ |1⟩)/
√
2.

Next, we focus on the first iteration of Step I. Since |E| > 0, there exists a candidate gate block on
qubits {p, q} ∈ E, and the optimization problem is

argmin
αpq

S
(
e−iαpqZpZq/2|v′(ω)⟩

)
= argmin

αpq

S

e−iαpqZpZq/2

 ∏
{i,j}∈E

e−iωijZiZj/2

 |+⟩⊗N


= argmin
αpq

S
(
e−iαpqZpZq/2−i

∑
{i,j}∈E

ωijZiZj/2 |+⟩⊗N
)

= argmin
αpq

S
(
e−i

∑
{i,j}∈E

βij(αpq)ZiZj/2 |+⟩⊗N
)
, (86)

where we define the effective angles

βij(αpq) :=

{
ωij , {i, j} ≠ {p, q},
ωij + αpq, {i, j} = {p, q}.

(87)

The entanglement measure in Eq. (86) is defined in terms of single-qubit Renyi-2 entropies S(ρ) =∑N
n=1 Sn(ρ), which depend only on the single-qubit reduced density matrices (RDMs): Sn(ρ) =

S(ρn) = − log2 Tr[ρ
2
n], where ρn is the RDM of an N -qubit state ρ on the n-th qubit. Therefore, it

suffices to compute the single-qubit RDMs of the state in Eq. (86). We remark that any single-qubit
RDM has the Bloch decomposition ρn = 1

2
(I + xnXn + ynYn + znZn), where xn = Tr(ρnXn),

yn = Tr(ρnYn), and zn = Tr(ρnZn) are the expectation values of the corresponding Pauli operators
on qubit n. Thus, computing the single-qubit RDMs reduces to evaluating xn, yn and zn. In particular,
for the state in Eq. (86), we have

xn(αpq) = ⟨+|⊗Nei
∑

{i,j}∈E
βij(αpq)ZiZj/2Xne

−i
∑

{i,j}∈E
βij(αpq)ZiZj/2|+⟩⊗N

= ⟨+|⊗Nei
∑

{i,j}∈N(n)
βij(αpq)ZiZj/2Xne

−i
∑

{i,j}∈N(n)
βij(αpq)ZiZj/2|+⟩⊗N (88)

=
∏

{i,j}∈N (n)

cos
(
βij(αpq)

)
⟨+|⊗NXn|+⟩⊗N (89)

=
∏

{i,j}∈N (n)

cos
(
βij(αpq)

)
. (90)

In Eq. (88), we define N (n) ⊆ E as the set of edges incident on n, i.e., each {i, j} ∈ N (n) satisfies
n ∈ {i, j}, and use the fact that for {i, j} /∈ N (n) the operator ZiZj commutes with Xn and hence
cancels in the conjugation without affecting the expectation value. Eq. (89) then follows from the
Heisenberg-picture identity for a single incident edge, for example eiβmnZmZn/2Xne

−iβmnZmZn/2 =
Xn cosβmn−ZmYn sinβmn, together with the fact that any term containing Zm has zero expectation
on |+⟩⊗N because ⟨+|Z|+⟩ = 0. Eq. (90) then follows from ⟨+|I|+⟩ = ⟨+|X|+⟩ = 1. A similar
analysis applied to Yn and Zn, which yields yn = zn = 0.

The entanglement measure is therefore a function of αpq and takes the form

S(αpq) = −
N∑
n=1

log2
(
Tr[ρn(αpq)

2]
)
= −

N∑
n=1

log2

(
1 + xn(αpq)

2

2

)
, (91)
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where xn(αpq) is given by Eq. (90). By construction, the effective angles βij(αpq) in Eq. (87) depend
on αpq only when {i, j} = {p, q}. Consequently, only xp(αpq) and xq(αpq) carry the dependence on
αpq:

xp(αpq) = cos
(
βpq(αpq)

)
Cp, Cp :=

∏
{p,m}∈N (p)\{{p,q}}

cosβpm,

xq(αpq) = cos
(
βpq(αpq)

)
Cq, Cq :=

∏
{q,m}∈N (q)\{{p,q}}

cosβqm,

where Cp and Cq are constants with respect to αpq and Cp, Cq ̸= 0 by the choice of the angle grid.
Plugging these expressions into Eq. (91) and grouping the constant terms, we can write

S(αpq) = const− log2

(
1 + C2

p cos
2 βpq(αpq)

2

)
− log2

(
1 + C2

q cos
2 βpq(αpq)

2

)
,

so that minimizing S(αpq) over the grid αpq ∈ {apqπ/(2K + 1)} is equivalent to minimizing the
function

g(αpq) := − log2

(
1 + C2

p cos
2 βpq(αpq)

2

)
− log2

(
1 + C2

q cos
2 βpq(αpq)

2

)
. (92)

It is easy to verify that α∗
pq = −ωpq , i.e. βpq(α

∗
pq) = ωpq + α∗

pq = 0 is the unique optimal
value of the above objective, and it can be found by a grid search over αij = aijπ/(2K + 1) with
aij ∈ {−2K,−2K + 1, . . . , 2K − 1, 2K}.

Having identified, for a fixed edge {p, q} ∈ E, the unique optimal choice α∗
pq = −ωpq such that

βpq(α
∗
pq) = ωpq + α∗

pq = 0, we now iterate this construction. At the t-th iteration of Step I, let β(t)
ij

denote the effective angles on the IQP edges and define the residual edge set

F (t) := {{i, j} ∈ E : β
(t)
ij ̸= 0}. (93)

By the discussion above, if F (t) is nonempty we can pick any {p, q} ∈ F (t) and minimize S over the
grid of angles αpq. Uniqueness of the minimizer implies that the optimal choice α(t)

pq satisfies

β(t+1)
pq = β(t)

pq + α(t)
pq = 0, (94)

while all other angles remain unchanged, i.e., β(t+1)
ij = β

(t)
ij for all {i, j} ≠ {p, q}. Therefore the

residual edge set strictly shrinks at each iteration,

|F (t+1)| = |F (t)| − 1. (95)

Since |F (0)| ≤ |E|, after T = |F (0)| ≤ |E| iterations we reach a configuration with F (T ) = ∅,
i.e., β(T )

ij = 0 for all {i, j} ∈ E. In this case all two-qubit entangling rotations are cancelled, and
the resulting state has vanishing entanglement measure S = 0. By definition of S as the sum of
single-qubit Renyi entropies, this implies that the state obtained from |v(ω)⟩ after T iterations of
Step I is a product state, which we denote by |vprod⟩.
Finally, by Lemma B.2, we can construct a single-qubit circuit composed of RZ and RY rotations
that maps |vprod⟩ exactly to the computational basis state |0N ⟩ up to a global phase. Let UI be the
product of all Step I gate blocks obtained by the above procedure and UII be the single-qubit circuit
from Lemma B.2. Then

UIIUI |v(ω)⟩ = |0N ⟩ (96)

up to a global phase. Taking adjoints and reversing the order of gates, we obtain an explicit loading
circuit

Uload = (UIIUI)
†
= U †

I U
†
II (97)

such that Uload |0N ⟩ = |v(ω)⟩ up to a global phase. This completes the proof of Theorem H.1.
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Theorem H.2 (Approximate loading for generic IQP state vectors). We follow the notations in
Theorem H.1 and consider the IQP circuit state

|v(ω)⟩ = H⊗N

 ∏
{i,j}∈E

e−iωijZiZj/2

H⊗N |0N ⟩ , (98)

where the angles {ωij}{i,j}∈E are i.i.d. random variables sampled from [−π, π] uniformly. Let D
be the maximum degree of E. We assume the classical access to the state vector of |v(ω)⟩. Then
for any δ, ϵ > 0, AQER uses at most T ≤ |E| iterations of Step I by searching the grid with size

K =
⌈
π
2

√
DN
ϵ

⌉
to produce a circuit UI satisfying S(UI|v(ω)⟩) ≤ ε with probability at least 1− δ.

Proof. First, we demonstrate that with high probability all parameters ωij satisfy a lower bound on
the cosine value. Since each ωij is sampled from [−π, π] uniformly, we have

Pr

[
| cosωij | ≥

δ

|E|

]
= 1− 2

π
arcsin

(
δ

|E|

)
≥ 1− δ

|E|
. (99)

By a union bound over all {i, j} ∈ E, it follows that with probability at least 1− δ
|E| · |E| = 1− δ

we have
| cosωij | ≥

δ

|E|
for all {i, j} ∈ E. (100)

In the following, we condition on this high-probability event.

Next, we follow the same optimization procedure of Step I as in the proof of Theorem H.1. Specifically,
the two-qubit gate on {i, j} has angle αij restricted to the grid

GK :=
{ aπ

2K + 1
: a ∈ {−2K,−2K + 1, . . . , 2K − 1, 2K}

}
,

where K =
⌈
π
2

√
DN
ϵ

⌉
. We also impose that at most one two-qubit gate block is added for each pair

{i, j} ⊆ [N ]. Under this restriction, Step I has at most one update per edge, so the total number
of iterations satisfies T ≤ |E|. For each {p, q} ∈ E, the grid search in the optimization problem
of Eq. (92) finds a value α⋆pq whose distance to −ωpq is at most π/(2K + 1). Thus, after T = |E|
iterations, the remaining residual state can be written as

|v(β)⟩ = e−i
∑

{i,j}∈E
βijZiZj/2 |+⟩⊗N , (101)

where each effective angle satisfies |βij | ≤ π/(2K + 1).

The entanglement measure of the state |v(β)⟩ can be obtained via a calculation analogous to
Eqs. (88)–(91). In particular,

S(|v(β)⟩) = −
N∑
n=1

log2

(
1 + x2n

2

)

≤
N∑
n=1

(1− x2n) (102)

= N −
N∑
n=1

∏
{i,j}∈N (n)

cos2 βij (103)

≤ N −N cos2D
(

π

2K + 1

)
(104)

≤ N −N

[
1−

(
π

2K + 1

)2
]D

(105)

≤ N −N

[
1−D

(
π

2K + 1

)2
]

(106)
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= DN

(
π

2K + 1

)2

≤ ϵ. (107)

Here Eq. (102) follows from the inequality − log2
2−x
2

≤ x for x ∈ [0, 1] by setting x = 1 − x2n.
Eq. (103) follows from Eq. (90), which gives x2n =

∏
{i,j}∈N (n) cos

2 βij . Eq. (104) is derived using
|βij | ≤ π/(2K+1) and |N (n)| ≤ D, so that each product is lower bounded by cos2D(π/(2K+1)).
Eq. (105) uses cos2 x = 1 − sin2 x ≥ 1 − x2 for |x| ≤ π/2. Eq. (106) is obtained from the
Bernoulli inequality (1− x)D ≥ 1−Dx for x ∈ [0, 1]. Finally, Eq. (107) follows from the choice

K =
⌈
π
2

√
DN
ϵ

⌉
, which ensures DN

(
π

2K+1

)2
≤ ϵ. This completes the proof of Theorem H.2.

Theorem H.3 (Exact loading of discrete IQP states). LetN ≥ 2 be the number of qubits. We consider
a fully-connected IQP circuit state

|v(E)⟩ = H⊗N

 ∏
{i,j}∈E

e−iπZiZj/8

H⊗N |0N ⟩ , (108)

where E is the unknown interaction graph of the IQP circuit, with the maximum degree D. Assume
we have quantum access to the state |v(ω)⟩. Then, up to an overall global phase, the AQER algorithm
can reconstruct an exact loading circuit for the IQP state using T iterations of Step I, where T ≤ |E|
with probability at least 1− δ by using at most O

(
|E|N22D log N 2|E|

δ

)
calls to the given IQP state.

Proof. We follow the Step I optimization as in Theorem H.1, except that we restrict the grid search
for each pair {p, q} to the two angles αpq ∈ {0,−π/4}. We remark that we now only have quantum
(rather than classical vector) access to the IQP state. Our goal is to guarantee that, in each iteration, the
grid search selects a qubit pair in E with probability at least 1− δ/|E|, where the failure probability
comes solely from the finite number of measurement shots. Consequently, after T = |E| iterations of
Step I, all qubit pairs in E are cancelled with probability at least 1− δ.

Next, we focus on the first iteration. Similar to the proof of Theorem H.1, the residual state can be
written as

|v′(E)⟩ = e−i
∑

{i,j}∈E
βij(αpq)ZiZj/2 |+⟩⊗N . (109)

For any candidate pair {p, q} and any choice of αpq, the single-qubit Bloch coefficients satisfy

xn(αpq) =
∏

{i,j}∈N (n)

cos
(
βij(αpq)

)
, yn(αpq) = 0, zn(αpq) = 0.

In Theorem H.1 we showed that Step I optimizes the entanglement measure

S(αpq) = −
N∑
n=1

log2

(
1 + xn(αpq)

2

2

)
, (110)

and that a decrease in S is achieved via an increase in |xn(αpq)|. Since |N (n)| ≤ D and βij(αpq) ∈
{0,±π/4}, we have

xn(αpq) ∈
{(√

2
2

)d
: 0 ≤ d ≤ D

}
⊆ [2−D/2, 1].

Thus, for each {p, q} ⊆ [N ], by using

O
(
2D log

N2|E|
δ

)
quantum shots, we can estimate the relevant xp(αpq) and xq(αpq) with additive error smaller than a
constant multiple of 2−D/2, and hence determine whether both |xp| and |xq| increase when switching
αpq from 0 to −π/4 with probability at least 1 − δ/(N2|E|) if {p, q} ∈ E. By going over all
{p, q} ⊆ [N ], we can then identify at least one {p, q} ∈ E with probability at least 1 − δ/|E|.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Repeating this procedure for all T = |E| iterations, a union bound implies that the overall success
probability is at least 1− δ. The total number of quantum shots is

O
(
2D log

N2|E|
δ

)
·N2 · |E| = O

(
|E|N22D log N 2|E|

δ

)
.

This completes the proof of Theorem H.3.

I THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLM) were used only as a general-purpose tool for minor
language polishing and expression refinement. The LLM did not contribute to any scientific ideas,
experiments, or results, and all content generated under its assistance was carefully reviewed and
edited by the authors. The authors take full responsibility for all contents of the paper, including
those influenced by LLM-assisted text.
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