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Abstract

World models achieve remarkable success in001
predicting future states and planning in com-002
plex environments and Large Language Mod-003
els (LLMs) serve as promising foundation to004
build general world models. However, their005
performances are usually constrained by the006
limited knowledge to the specific environments.007
Existing research attempts to enhance LLM-008
based world models through prompting or fine-009
tuning approaches, which are either requiring010
human knowledge or computational extensive.011
Therefore, we introduce Retrieval-Augmented012
World Models (RAWM), a novel framework013
that leverages retrieval-augmented generation014
to improve the LLM-based world models. Our015
main contributions are threefold: (i) We in-016
troduce a memory system and design an em-017
bedding model to retrieve and incorporate rel-018
evant experiences, significantly improving the019
world model’s predictive accuracy. (ii) We de-020
velop a reinforcement learning (RL) training021
pipeline that fine-tunes a small MLP head on022
the pre-trained embedding model using Prox-023
imal Policy Optimization (PPO), further en-024
hancing prediction performance. (iii) We con-025
duct extensive experiments across three diverse026
RL environments, i.e., Game24, BlocksWorld,027
and BabyAI, demonstrating that RAWM con-028
sistently outperforms baseline models and ex-029
hibits strong generalizability. By leveraging030
external memory and retrieval techniques and031
training embedding with RL pipeline, RAWM032
dynamically utilizes relevant historical expe-033
riences and equips LLMs with environment-034
specific knowledge without retraining, enabling035
more accurate and generalizable predictions.036

1 Introduction037

The world model (Ha and Schmidhuber, 2018)038

has demonstrated to be an important module039

in decision making due to the celebrating suc-040

cess of MuZero (Schrittwieser et al., 2020) and041

Dreamer (Hafner et al., 2019, 2021, 2023). As042

Room 1 (Current Room)

Room 2 (Next Room)

WM

What can I see if I move to 
the next room?

I don’t know.

Rawm

I saw a chair in the current 
room. As both rooms are 
similar, there may be a 
chair in the next room.

Figure 1: Why retrieval is needed?

learned accurate simulators, world models encode 043

rich representations of the complex dynamics of 044

the environment to predict the future states and 045

the rewards. World models are critical for several 046

key capabilities, such as generalization to novel 047

tasks (Byravan et al., 2020; Robey et al., 2021; 048

Young et al., 2023), efficient planning (Sekar et al., 049

2020; Hamrick et al., 2021; Schrittwieser et al., 050

2020), and offline learning (Schrittwieser et al., 051

2021; Yu et al., 2020, 2021). Beyond decision mak- 052

ing, recent works such as Genie (Bruce et al., 2024) 053

and Vista (Gao et al., 2024) demonstrate that world 054

models can serve as general-purpose world sim- 055

ulators and users can directly interact with these 056

models for playing and planning. 057

The past five years witness the remarkable suc- 058

cess of large language models (LLMs) in enormous 059

text generation and understanding tasks (Brown 060

et al., 2020; OpenAI, 2023). LLMs serve as the 061

world model explicitly in Reasoning via Planning 062

(RAP) (Hao et al., 2023) and Reason for Future, 063

Act for Now (RAFA) (Liu et al., 2023), where 064

the LLMs predict the next states based on the ac- 065

tions executed at current states, e.g., the states 066

of blocks in the BlocksWorld (Valmeekam et al., 067

2023), which is used to assist the planning methods. 068

LLMs serve as the world model implicitly in the 069

widely-used Tree of Thoughts (ToT) (Yao et al., 070

2023), as well as Graph of Thoughts (GoT) (Besta 071

et al., 2024), where the LLMs need to predict the 072

states and evaluate the thoughts to help the selec- 073

tion of the thoughts to advance the reasoning. The 074
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generalizability of LLMs presents them as promis-075

ing foundations for the world models.076

However, the pre-trained LLMs may lack the077

knowledge of the specific environments, which pro-078

hibits them to be accurate world models. For the079

example displayed in Figure 1, the LLM cannot080

provide the accurate predictions whether there is a081

chair in the next room if the next room has never082

been visited. To address this issue, we can carefully083

design the prompts to add the specific knowledge084

to help the LLMs in making predictions, e.g., the085

rules for objects and actions (Wang et al., 2024;086

Gu et al., 2024). However, these knowledge is087

even usually not available for users. Alternatively,088

we can fine-tune the LLMs on the specific envi-089

ronments (Xiang et al., 2023; Chae et al., 2025).090

However, the training of LLMs brings additional091

complexities for building the world models with092

LLMs and may also hurt the generalizability of093

LLMs across different tasks.094

To tackle these challenges, we propose retrieval-095

augmented world models (RAWM). Specifically,096

our contributions are threefold. First, inspired by097

the retrieval-augmented generation (RAG) (Lewis098

et al., 2020), we introduce the memory, which099

stores the pre-collected experiences from the en-100

vironments, and the embedding model, which is101

used for querying relevant experience to assist the102

world model to make predictions. Second, we in-103

troduce the reinforcement learning (RL) training104

pipeline, which adds a small MLP head to the pre-105

trained embedding model and trains the MLP layer106

with proximal policy optimization (PPO) (Schul-107

man et al., 2017). Third, we collect the data from108

Game24, BlocksWorld and BabyAI, and extensive109

experiments demonstrate RAWM can significantly110

outperform the world model without retrieved ex-111

periences and the pre-trained embedding models112

and demonstrate the generalizability. RAWM is an113

efficient way for LLMs to obtain the environment-114

specific knowledge to build the better world mod-115

els without training LLMs, and our RL training116

pipeline can further improve the accuracy of the117

predictions of LLM-based world models efficiently.118

2 Related Work119

World Models and LLMs. MuZero (Schrit-120

twieser et al., 2020) and Dreamer (Hafner et al.,121

2019) are the two prominent examples of the world122

model for complex decision making tasks. Tra-123

jectory transformer (Janner et al., 2021) leverages124

transformer to model the decision making as a 125

sequence modeling problem. The world models 126

trained in theses methods are environment specific 127

and cannot generalize to other environments. Re- 128

cently, researchers leverage the generalizability of 129

LLMs to build general world models for reasoning 130

and decision making (Hao et al., 2023; Wang et al., 131

2024; Yang et al., 2024b; Lin et al., 2024). Specifi- 132

cally, RAP (Hao et al., 2023) and RAFA (Liu et al., 133

2023) use LLMs to predict the next states explicitly 134

and planning methods for decision making. While 135

ToT (Yao et al., 2023) and GoT (Besta et al., 2024) 136

use LLMs as the world model implicitly to advance 137

and evaluate the different thoughts. 138

Retrieval-Augmented Generation. RAG is an 139

efficient way for LLMs to incorporate the ex- 140

ternal knowledge for generation and understand- 141

ing (Lewis et al., 2020; Gao et al., 2023). Specifi- 142

cally, RAG leverages the retrieval model to query 143

the relevant experiences from the memory, which 144

are further provided to the LLMs as the in-context 145

examples. Different from simple prompting, where 146

the external knowledge is provided by human- 147

written prompts (Wang et al., 2024), and simple 148

in-context learning, where the in-context examples 149

are randomly picked (Hao et al., 2023), RAG can 150

provide better examples for accurate predictions. 151

Compared with fine-tuning (Xiang et al., 2023), 152

RAG can provide a more efficient way of trans- 153

forming LLMs into world models. 154

RL for LLM Optimization. RL is a powerful 155

method to train the model with trial and error (Sut- 156

ton and Barto, 2018). In addition to the applica- 157

tions of RL in games and robotics (Silver et al., 158

2017) to optimize the LLMs, such as optimizing 159

the prompts (Deng et al., 2022) and the decoding 160

process (Wan et al., 2024), recent works also lever- 161

age RL to improve the reasoning capabilities of 162

LLMs (Lambert et al., 2024; Guo et al., 2025). In 163

this work, we leverage the RL method to train the 164

retriever to find the better examples to boost the 165

prediction of the world model. 166

3 Preliminaries 167

In this section, we present the preliminaries of 168

RAWM, including the formulation of the decision 169

making, the LLMs, and the world models. 170

Markov Decision Process (MDP). A decision 171

making problem is usually represented as a Markov 172

decision process (MDP) (Sutton and Barto, 2018), 173
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which is defined by the tuple M = (S,A, T,R, γ),174

where S is the state space, A is the action space,175

T : S ×A→ S is the transition dynamics, which176

specifies the next state s′ given the current state s177

and action a,R : S×A→ R is the reward function,178

which specifies the agent’s reward given the current179

state s and action a, and γ is the discount factor.180

The agent’s policy is defined by πθ : S × A →181

[0, 1], parameterized by θ, which takes the state s182

as the input and outputs the action a to be executed.183

The objective of the agent is to learn an optimal184

policy to maximize the expected return, i.e., π∗ :=185

argmaxπ Eπ
[∑∞

t=0 γ
trt|s0

]
with initial state s0.186

Large Language Models (LLMs). Large Lan-187

guage models (LLMs) learn from text data us-188

ing unsupervised learning. LLMs optimize the189

joint probabilities of variable-length symbol se-190

quences as the product of conditional probabil-191

ities by P (x) =
∏n
i=1 P (si|s1, ..., si−1), where192

(s1, s2, ..., sn) is the variable-length sequence of193

symbols. With the billions of parameters and ex-194

tensive training data, the vast amounts of common195

knowledge encoded in LLMs lead to the remark-196

able generalization across various NLP tasks with197

simple prompting and in-context learning, and with-198

out task-specific fine-tuning (Touvron et al., 2023;199

OpenAI, 2023). Among them, RAG (Lewis et al.,200

2020) is viewed as a powerful method to incorpo-201

rate external knowledge to LLMs for generation.202

Given the generalizability, LLMs present promis-203

ing foundations for general world models.204

World Models. The world model Ω is introduced205

to predict the dynamics of the environment, thus206

supporting the decision making process. Specifi-207

cally, the world model is trained or prompted to208

predict the next state s′, the reward r, and the termi-209

nal function d, given the current state s and action210

a. The world model can be one or multiple neu-211

ral networks specially trained on the environments212

for the three prediction tasks (Hafner et al., 2019;213

Schrittwieser et al., 2020), which cannot general-214

ize across different environments. Recent works215

leverage LLMs to build the general world models,216

where the prompting (Xie et al., 2024), in-context217

learning (Wang et al., 2024), and even fine-tuning218

methods (Xiang et al., 2023; Lin et al., 2024) are219

used to build the LLM-based world models. In this220

work, we primarily focus on the prediction of the221

next state, which is the most important feature, as222

both the reward and terminal are usually derived223

from the next state visited.224

4 Retrieval-Augmented World Models 225

In this section, we introduce Retrieval-Augmented 226

World Models (RAWM). We will first introduce 227

the architecture of RAWM and then introduce the 228

RL training pipeline for the retrieval process. 229

4.1 Architecture 230

Figure 2: The overview of RAWM.

The architecture of RAWM is displayed in Fig- 231

ure 2. We introduce a memory Ξ, which stores the 232

pre-collected experiences, an embedding model, 233

which is used to rank and retrieve the relevant expe- 234

riences. Specifically, given the query q = (s, a) ∈ 235

Q, where Q is the query dataset, we will use the em- 236

bedding model to query topK relevant experiences 237

c = ⟨ck⟩, where ck = (sk, ak, s
′
k), k = 1, . . . ,K. 238

The retrieved experiences c will be concatenated 239

with the query q to form the input to the world 240

model Ω. We note that for the environments where 241

the states are not texts, e.g., BabyAI (Chevalier- 242

Boisvert et al., 2019a), we need to first transform 243

them into the text representation. 244

Prompt Design. For the prompt design, any in- 245

formation related to the environments will not be 246

provided to the world model, including the tasks, 247

the object and action rules. We expect that all 248

the environment knowledge is provided by the in- 249

context examples retrieved from the memory. The 250

prompt template is displayed as follows: 251

Prompt Template

System prompt:
"After being given a current state and an action, directly
give the next state after performing the action."
Content prompt:
Current state: <text of the current state>
Action: <text of the selected action>
Next state: <text of the next state> or <for prediction>

252

The system prompt provides a general descrip- 253

tion of the prediction tasks, and the content prompt 254
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includes the query and the context examples. For255

the context examples, the next state is provided,256

while for the query, the next state is predicted by257

the world model Ω. Similarly, this content template258

is also used to get the embeddings of both query259

dataset and the memory for the retrieval process.260

Trainable Embedding of Transitions. We use261

the pre-trained embedding model ϕ to encode the262

transitions into the M -dimensional vector repre-263

sentation. Specifically, for the query dataset, we264

only encode the state and the action, and for the265

memory, we encode the state, the action and the266

next state. However, the embedding model is267

trained over general corpus, which would be not268

suitable to the specific environment, so adapting269

the embedding model is needed. There are sev-270

eral methods to adapt the embedding model to the271

specific environment: i) fine-tuning all parame-272

ters in ϕ, which is not training efficient, ii) low-273

rank adaption (LoRA) (Hu et al., 2022), which274

introduces trainable low-rank decomposition ma-275

trices for each layer to reduce the parameters to be276

trained. Though the number of trained parameters277

is reduced, LoRA still requires to leverage the full278

embedding model to inference. Besides, both full-279

parameter fine-tuning and LoRA requires that the280

access of the parameters of the pre-trained embed-281

ding model and cannot be applied to close-source282

models, e.g., text-embedding-3. Therefore, in-283

spired by the linear probe (Radford et al., 2021),284

we introduce a trainable MLP module above the285

pre-trained embedding model, which is denoted286

as ψ. Therefore, the embedding process for both287

query data and the memory can be represented as:288

eq = ψ(ϕ(s, a)),∀(s, a) ∈ Q, (1)289

ec = ψ(ϕ(s, a, s′),∀(s, a, s′) ∈ Ξ. (2)290

We will introduce the RL training pipeline of ψ in291

the next section and the parameters in ϕ are frozen.292

Compared with the full parameter fine-tuning and293

the LoRA, this method only requires the pre-trained294

embedding to encode the data in the query dataset295

and the memory once, and the number of trainable296

parameters is even significantly less than LoRA.297

Retrieval-Augmented Predictions. To query the298

relevant experiences, a similarity measure, e.g., co-299

sine similarity, is used to rank the examples in the300

memory, which is denoted as sim(·). Therefore,301

c = {ck|k ∈ topK(sim(eq, ec)),∀c ∈ Ξ}, (3)302

where topK(·) is selecting the indices with the top- 303

K maximum values. The K retrieved examples c 304

will be formed the in-context examples and append 305

before the query for the prediction. We concate- 306

nate the in-context examples with the query in a 307

reverse order, i.e., the examples with larger sim- 308

ilarities will be the later examples, and the query 309

is the last one. We found that this reverse order 310

is important for the generalization of the embed- 311

ding model in different K values, as the reverse 312

order can ensure the last several examples be the 313

same, (e.g., for K ∈ {1, 2}, the top-1 example 314

is the same, which is the last example before the 315

query in the prompt), thus leading to a more stable 316

generalization performance of the world model. 317

Evaluation Measure. The evaluation measure is 318

important for the RL training. We follow RAP (Hao 319

et al., 2023) to design the reward: given the output 320

o from the world model, which may include a set 321

of the conditions, e.g., the predicted state of blocks, 322

and s′ is the target, we will calculate the accuracy 323

of the prediction, denoted as v(o, s′). Alternatively, 324

we can calculate the log likelihood of the target s′, 325

which is used in the original RAG (Lewis et al., 326

2020). However, this may require the access of the 327

logits of the LLMs and cannot be applied to the 328

closed-source models, e.g., GPT-4o. 329

4.2 Training 330

In this section, we introduce the efficient RL 331

pipeline to train the embedding models, i.e., train- 332

ing of the MLP head ψ specifically. Typically, the 333

retriever in RAG is trained with supervised learn- 334

ing (Lewis et al., 2020). However, in RAWM, the 335

world models are not trained and we cannot com- 336

pute the gradient of the embedding directly. Be- 337

sides, as the retriever needs to explore to choose the 338

examples for the better prediction with the world 339

model, RL is one of the straightforward methods 340

to optimize the embedding model. 341

One-step Decision Making. To apply RL meth- 342

ods to optimize the embedding model, we need to 343

build the MDP Mψ for the embedding ψ1: 344

• State space Sψ : {ϕ(s, a),∀(s, a) ∈ Q} ∪ 345

{ϕ(s, a, s′), ∀(s, a, s′) ∈ Ξ}, i.e., the embed- 346

dings of all data from query dataset and the mem- 347

ory generated by the pre-trained model ϕ. 348

• Action space Aψ ∈ RM , where M ′ is the out- 349

put dimension of ψ, i.e., ψ will transform the 350

1Please distinguish Mψ with the one used for the environ-
ment M, where Mψ is introduced only for the training.

4



embeddings by ϕ to M ′-dimensional vectors.351

• Reward r = v(Ω(q, c), s′), where Ω(q, c) is the352

output of the world model Ω with the input (q, c).353

We note that Mψ is a one-step decision making354

problem, i.e., Mψ always ends after the first time355

step, so the transition function and the discount356

factor are not necessary for the RL training.357

Design of ψ. Before diving into the RL training,358

we first discuss about the design of ψ. A simple359

setting for ψ is a randomly initialized MLP, which360

means this initialization will start with the random361

embedding for the training and ignore the embed-362

dings generated by the pre-trained model ϕ. On363

the other hand, we can initialize the MLP with an364

identify matrix, i.e., ψ = I .2 Both methods have365

their own advantages and disadvantages: for the366

random initialization, we can arbitrarily choose the367

output dimension and the activation function of ψ,368

but the training will start with a relatively worse369

performance, while for the identify initialization,370

the output dimension of ψ must be the same with ϕ,371

i.e., M ′ = M , and the training will start with the372

performance of the pre-trained embedding model.373

RL Training. RL methods rely on the trail-and-374

error process to explore the solution space for375

better policies. The primary RL method is Q-376

learning (Watkins and Dayan, 1992; Mnih et al.,377

2015), which can only be used on the prob-378

lems with discrete actions, and the policy gradi-379

ent methods are proposed for the problems with380

both discrete and continuous actions (Sutton et al.,381

1999; Mnih et al., 2016; Haarnoja et al., 2018).382

PPO (Schulman et al., 2017) is an on-policy pol-383

icy gradient method, which is a simplified, but384

more data efficient and reliable, variant of Trust385

Region Policy Optimization (TRPO) (Schulman386

et al., 2015), which leverages the “trust region” to387

bound the update of the policy to avoid training388

collapse. Compared with TRPO, PPO is more data389

efficient and with more reliable performances than390

TRPO, while only using the first-order optimiza-391

tion for computational efficiency. Specifically, PPO392

is maximizing the objective393

J(ψ) = E [min (ρψ · r,394

clip(ρψ, 1− ϵ, 1 + ϵ) · r)] , (4)395

where ρψ is the importance sampling ratio condi-396

tional on ψ, r is the reward, and ϵ is the hyperpa-397

rameter which controls the boundary of the trust398

2With a slight abuse of notations, we use ψ to represent
both the MLP and the parameters.

region. We note that the advantages in the general 399

PPO implementation is replaced with the reward. 400

We only provide a short introduction of PPO in this 401

section, as we take PPO as a blackbox for optimiz- 402

ing ψ. The full training procedure is displayed in 403

Algorithm 1. Other RL methods, e.g., soft actor 404

critic (SAC) (Haarnoja et al., 2018), can also be 405

used and for more details of RL, we refer readers 406

to the book (Sutton and Barto, 2018). 407

Algorithm 1 Training of RAWM

1: Input: World model Ω, pre-trained embed-
ding model ϕ, memory M, Query dataset Q,
number of retrieval candidates K

2: Initialize the MLP ψ.
3: Computing the embeddings with ϕ, i.e.,

Qϕ = {ϕ(s, a), ∀(s, a) ∈ Q} and Mϕ =
{ϕ(s, a, s′), ∀(s, a, s′) ∈ M}.

4: for iter ∈ {1, 2, . . . } do
5: Update the memory embedding Mψ =

{ψ(ϕ(s, a, s′)),∀(s, a, s′) ∈ M}.
6: for (s, a) in Q do
7: Compute query embedding ψ(ϕ(s, a)).
8: Select top-K relevant transitions c from

M with the embedding in Mψ.
9: Generate the prediction o and compute

the reward v(o, s′).
10: end for
11: Train ψ with PPO, i.e., Eq. (4).
12: end for

5 Experiments 408

In this section, we present the extensive experi- 409

ments to evaluate the effectiveness of RAWM. We 410

will first introduce the experiment setup and then 411

the experiment results and analysis. 412

5.1 Setup 413

Environments. The environments considered in 414

this work include (as shown in Figure 3) 415

• Game24: a mathematical puzzle game where 416

four numbers are given (e.g., 10, 3, 6, and 4) 417

and the player can only use the basic arithmetic 418

operations, i.e., (+,−,×,÷), to obtain 24 (e.g., 419

10 × (6 ÷ 3) + 4). This puzzle is widely used 420

to benchmark the LLMs’ reasoning capabili- 421

ties (Yao et al., 2023) and the LLMs need to 422

generate a sequence of operations to obtain 24. 423

In this game, the world model needs to correctly 424

generate the remaining number when an opera- 425
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(a) Game24 (b) BlocksWorld (c) BabyAI

Figure 3: Environments

tion is executed, i.e., 10, 2, 4 are the remaining426

numbers when 6÷ 3 is executed.427

• BlocksWorld: a simple world of blocks where a428

set of blocks is placed on the plat and the player429

needs to perform the basic actions, i.e., pick up,430

put down, stack, and unstack, to transform431

the blocks to a target configuration (Valmeekam432

et al., 2023; Hao et al., 2023). In this game, the433

world model needs to predict the states for all434

blocks (e.g., the blue block is on top of the re435

block) after an action is executed (e.g., stack blue436

block on the red block).437

• BabyAI: a grid world with objects where the438

agent needs to complete the tasks defined with439

language instructions (Chevalier-Boisvert et al.,440

2019a) with the actions, i.e., turn left, turn441

right, move forward and pick up. We use the442

text description of the states in (Carta et al., 2023)443

for the environments. In this environment, the444

world model needs to predict the locations of the445

objects after performing the action.446

Datasets. Given the environments, we need to447

collect the datasets for the memory, query and test448

datasets, respectively. We use the query dataset449

to train the embedding with RL and use the test450

dataset to validate the performance of the trained451

models. For Game24 and BlocksWorld, the num-452

ber of all possible transitions are less than 10K,453

therefore, we use the Depth-First Search (DFS) to454

enumerate all transitions to form the full datasets.455

While for BabyAI, we cannot enumerate all tran-456

sitions due to the complexity of the environments.457

Therefore, we utilize the bot provided in (Chevalier-458

Boisvert et al., 2019b) to collect the data, where we459

enumerate all valid actions to gather the transitions460

along the action sequences generated by the bot.461

After the collection, we choose the separate subsets462

to form the three datasets without any overlapping463

to avoid any data leakage. We provide the detailed464

introduction of the environments and the protocol465

for data collection in Appendix C.466

Model Selection. We use the embedding model467

Alibaba-NLP/gte-Qwen2-1.5B-instruct as the468

pre-trained ϕ, which is the leading open-source text 469

embedding model on MTEB (Li et al., 2023). For 470

the world model, we choose the Qwen-2.5 instruct 471

model series with the model sizes as {1.5B, 3B, 472

7B} (Yang et al., 2024a)3. The AWQ quantized 473

models are chosen for efficient inference. For the 474

configuration of ψ, we consider a three layer MLP 475

with Tanh() activation function for the random ini- 476

tialization and a single layer without any activation 477

function for the identity initialization.4 We pro- 478

vide the details about the model selection and the 479

initialization in Appendix E. 480

RL Training. For the efficiency, we consider sev- 481

eral implementation tricks. i) Compared with the 482

training of the MLP ψ, the inference of the world 483

model is much more time-consuming. Therefore, 484

we enlarge the number of batch sizes and for each 485

batch, we sample multiple times, which can stabi- 486

lize the training. ii) We also consider fixing the 487

embeddings in the memory, i.e., only the embed- 488

dings of the query datasets are trained, and do not 489

observe the advantages. Therefore, we update the 490

embedding of both datasets. iii) The output dimen- 491

sion of the random initialization is much smaller 492

than the output dimension of the identity initial- 493

ization, which enjoys the training stabilities with 494

larger learning rates and smaller memory usages 495

when retrieval. The hyperparameters for the RL 496

training of ψ is provided in Appendix F. 497

Methods Evaluated. The methods evaluated in 498

the experiments are: i) zero-shot: the world models 499

give the prediction without any in-context exam- 500

ples (Wang et al., 2024), ii) random: the world 501

models give the prediction with randomly selected 502

in-context examples from M (Hao et al., 2023), iii) 503

RAWMψ,rand: RAWM with the randomly initializa- 504

tion of ψ, which differs from the previous method, 505

iv) RAWMψ,eye: RAWM with the identity initializa- 506

tion of ψ, equivalent to the pre-trained embedding 507

model ϕ, v) RAWMRL
ψ,rand: RAWM with randomly 508

initialized ψ and RL training, and vi) RAWMRL
ψ,eye: 509

RAWM with identity initialized ψ and RL training. 510

5.2 Evaluation 511

We present the extensive evaluations of RAWM in 512

this section. There are three main research ques- 513

tions (RQs) investigated: 514

3https://huggingface.co/spaces/Qwen/Qwen2.5
4We would note that RAWM can work for both close-source

and open-source embedding and world models. We choose
open-source models for efficient training and inference.
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Game24 BlocksWorld BabyAI

Model Method
K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

train test train test train test train test train test train test

1.5B

zero-shot 0.5224 0.5455 0.5224 0.5455 0.3804 0.3849 0.3804 0.3849 0.3786 0.3772 0.3786 0.3772
random 0.5586 0.5664 0.5714 0.5959 0.4848 0.4822 0.4975 0.4991 0.3851 0.3856 0.3973 0.4030

RAWMψ,rand 0.5156 0.5219 0.5322 0.5534 0.5386 0.5402 0.5597 0.5589 0.3415 0.3479 0.3527 0.3484
RAWMψ,eye 0.5352 0.5474 0.5510 0.5600 0.5659 0.5697 0.5878 0.5888 0.4427 0.4446 0.4710 0.4671

3B

zero-shot 0.4888 0.4971 0.4888 0.4971 0.3644 0.3661 0.3644 0.3661 0.3303 0.3330 0.3303 0.3330
random 0.6703 0.6719 0.6984 0.7010 0.4717 0.4706 0.5089 0.5083 0.3912 0.3908 0.4073 0.4052

RAWMψ,rand 0.7041 0.7043 0.7269 0.7292 0.5729 0.5739 0.6005 0.6019 0.3855 0.3892 0.3985 0.3991
RAWMψ,eye 0.7022 0.7179 0.7313 0.7463 0.6127 0.6102 0.6440 0.6397 0.4355 0.4297 0.4646 0.4633

7B

zero-shot 0.5957 0.6121 0.5957 0.6121 0.5215 0.5207 0.5215 0.5207 0.4201 0.4254 0.4201 0.4254
random 0.8241 0.8267 0.8712 0.8667 0.5897 0.5838 0.6021 0.6072 0.4084 0.4181 0.4178 0.4221

RAWMψ,rand 0.8362 0.8375 0.8724 0.8703 0.6274 0.6240 0.6332 0.6314 0.4301 0.4322 0.4403 0.4355
RAWMψ,eye 0.8511 0.8527 0.8781 0.8734 0.6472 0.6452 0.6556 0.6541 0.4484 0.4501 0.4633 0.4693

Table 1: Performance of RAWM with the retrieval mechanism over three environments.

• RQ1: Can the retrieved methods in RAWM im-515

prove the performance of world model?516

• RQ2: Can the RL training pipeline in RAWM517

improve the performance of the world model,518

compared with pre-trained models?519

• RQ3: Can the learned model generalize across520

different settings, e.g., different values of K?521

5.2.1 Analysis of RQ1522

To investigate the RQ1, we conduct the experi-523

ments of RAWM on the different sizes of the world524

model, i.e., 1.5B, 3B and 7B, over the three envi-525

ronments. We consider the values of K as {1, 2}.526

The experiment results are displayed in Table 1.527

From the results, we observe that the performances528

over the train and test yield the same trend, which529

avoids the over-fitting to the specific dataset.530

With more in-context examples selected, the531

performance of the world model is significantly532

improved, which is consistent with other re-533

search (Agarwal et al., 2024). Another interest-534

ing observation is that increasing the model sizes535

of LLMs does not necessarily improve the perfor-536

mance of the world models. For example, the 3B537

world model performs worse than the 1.5B world538

model in BabyAI. This is because the LLMs do not539

have the specific knowledge of the environments540

and increasing the model size cannot solve this.541

We also observe that given the same number542

of the in-context examples, the pre-trained model543

(i.e., RAWMψ,eye) can retrieve more relevant ex-544

amples for the world models across different sizes545

in BlocksWorld and BabyAI. While for the 1.5B546

world model of Game24, the pre-trained models547

perform worse than the random examples. There-548

fore, optimizing for a better embedding model can 549

potentially further improve the performance. 550

5.2.2 Analysis of RQ2 551
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Figure 4: Training curves on BlocksWorld.

We then present the results of the RL training 552

pipeline of RAWM. Due to the limitation of the 553

resource, we only conduct the training on the world 554

models with 1.5B LLMs. The results of different 555

configurations of ψ across different environments 556

are displayed in Figure 5. 557

From the results, we observe that the RL training 558

can improve upon the initialization, which indicates 559

the capability of RL to optimize the embedding 560

model through exploration. We observe that both 561

initialization can outperform the pre-trained em- 562

bedding model, i.e., RAWMψ,eye, in Game24 and 563

BlocksWorld, while the random initialization fails 564

to find a better embedding than the pre-trained one 565

in BabyAI. The training curves are displayed in 566
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Figure 5: Performance of the RL training pipeline in RAWM over three environments.

Game24 BlocksWorld BabyAI

Method
K = 3 K = 5 K = 3 K = 5 K = 3 K = 5

train test train test train test train test train test train test

random 0.5745 0.5862 0.5669 0.5866 0.5096 0.5125 0.5261 0.5228 0.4044 0.4071 0.4220 0.4165
RAWMψ,rand 0.5431 0.5443 0.5538 0.5635 0.5702 0.5711 0.5730 0.5738 0.3522 0.3551 0.3696 0.3636
RAWMψ,eye 0.5533 0.5528 0.5660 0.5765 0.6016 0.5994 0.6178 0.6149 0.4838 0.4753 0.4816 0.4860

RAWMRL
ψ,rand (K = 1) 0.5766 0.5974 0.6002 0.6106 0.6001 0.6022 0.6199 0.6200 0.4716 0.4624 0.4745 0.4702

RAWMRL
ψ,eye (K = 1) 0.5893 0.5950 0.5976 0.6053 0.6038 0.6042 0.6222 0.6220 0.4878 0.4877 0.4982 0.4872

RAWMRL
ψ,rand (K = 2) 0.6097 0.6344 0.5901 0.5999 0.6100 0.6129 0.6198 0.6202 0.4732 0.4711 0.4738 0.4741

RAWMRL
ψ,eye (K = 2) 0.5912 0.6020 0.5981 0.6067 0.6049 0.6052 0.6215 0.6205 0.4864 0.4852 0.4976 0.4888

Table 2: Shot generalization of the 1.5B world model trained with RL.

Figure 4. Typically, the random initialization will567

let the model train from a relative low performance568

and we observe a drop of the performance due to569

the exploration for better embedding model (i.e.,570

Figure 4b). And for the identity initialization, the571

training is more stable with smaller learning rates572

(i.e., Figures 4c and 4d). These results indicate the573

effectiveness of our RL training pipeline.5574

Our RL training pipeline can also be used to575

diagnose the failure of the retrieval-augmented gen-576

eration systems. If the RL pipeline cannot find a577

better embedding to improve the world model’s per-578

formance, then the user would replace the LLMs579

for the world models and the datasets.6580

5.2.3 Analysis of RQ3581

The results of shot generation are displayed in Ta-582

ble 2, where the embedding models trained with583

random and identity initializations of K ∈ {1, 2}584

are evaluated over the K ∈ {3, 5}, i.e., the gener-585

alization over shots. From the results, we observe586

that with larger values ofK, the performance of the587

world model will be further improved. The embed-588

ding models trained with RL pipeline demonstrate589

5We note that the improvement that RL training can bring
will largely be influenced by the LLMs’ capabilities.

6Different from the factual QA (Gao et al., 2023) where
we can manually check whether the retrieved examples are
correct or not, RAWM relies on the LLM’s inherit understand-
ing capabilities for the prediction and human cannot manually
check the correctness of the retrieval. Therefore, a systematic
method, e.g., RL, is needed for diagnosing the system.

to be more capable for the generalization over shots, 590

compared with the pre-trained embedding model. 591

Game24 BlocksWorld BabyAI

Method Train Test Train Test Train Test

RAWMψ,rand 0.8724 0.8703 0.6332 0.6314 0.4403 0.4355
RAWMψ,eye 0.8781 0.8734 0.6556 0.6541 0.4633 0.4693

RAWMRL
ψ,rand 0.8799 0.8829 0.6631 0.6630 0.4518 0.4484

RAWMRL
ψ,eye 0.8852 0.8812 0.6597 0.6560 0.4700 0.4721

Table 3: Model generalization of 1.5B →7B (K = 2).

We also consider the generalization over differ- 592

ent LLMs, which is more difficult than the shot 593

generalization. Table 3 displays the results of gen- 594

eralizing the RL trained embedding model from 595

1.5B to 7B. We observe that the RL trained embed- 596

ding admits better generalization performance than 597

the pre-trained embedding model. 598

6 Conclusions 599

LLMs present promising foundations to build gen- 600

eral world models. However, LLMs usually lack 601

the specific knowledge of environments. Therefore, 602

we introduce Retrieval-Augmented World Models 603

(RAWM), which leverages the retrieval-augmented 604

generation to improve LLM-based world models. 605

We then introduce an efficient RL training pipeline 606

to further improve the performance. Extensive ex- 607

periments demonstrate the effectiveness and the 608

generalizability of RAWM. RAWM is an efficient 609

method to build the highly capable LLM-based 610

world models without fine-tuning the LLMs. 611

8



Limitations612

There are several limitations of current work.613

• Current RAWM focuses on prediction and the614

prediction can be used for decision making. We615

will extend current RAWM to support the better616

decision making in future work.617

• Current RAWM is based on the pre-collected data,618

which may require a large number of data to619

achieve good performance. We will consider to620

let the model to proactively collect the data and621

improve the performance automatically.622

• Current RAWM is based on LLM and the envi-623

ronments are represented by texts. RAWM can624

also handle the multi-modal environments, e.g.,625

text and image, where both embedding models626

and world models will be multi-modal models.627

We will explore this direction in future work.628

We expect that RAWM can be a general framework629

to build highly capable multi-modal world model630

with automatically data collection and training, to631

finally support decision making in complex tasks.632

Ethics Statement633

We confirm that we have fully complied with the634

ACL Ethics Policy in this study. All the environ-635

ments are publicly available and have been exten-636

sively used in the research.637
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A Frequently Asked Questions (FAQs) 884

A.1 Advantages of RAWM 885

There are several advantages of RAWM, compared 886

with other methods for LLM-based world models: 887

• RAWM does not require the fine-tuning of LLMs, 888

where the fine-tuning of LLMs is usually time 889

and computation extensive. Besides, the fine- 890

tuning may also hurt the capabilities of LLMs 891

on other tasks. RAWM can be viewed as a plug- 892

and-play framework to transform the LLMs into 893

world models. 894

• RAWM does not require the manually design of 895

the prompts, i.e., instructions and in-context ex- 896

amples, for LLMs, which is usually labor inten- 897

sive to optimize the prompts. RAWM automati- 898

cally retrieve the in-context examples from mem- 899

ory to assist the world models for predictions. 900

• RAWM introduces the efficient RL training to 901

further improve the world models with retrieval- 902

augmented generation. We note that with the RL 903

training pipeline, RAWM can find the capability 904

limit of the memory and the world model, thus 905

can be used to diagnose the systems. 906

A.2 Why Focusing on Next State Prediction? 907

Next state prediction is the most important feature 908

for the world model (Wang et al., 2024). The re- 909

ward and the terminal can usually derived from 910

the next state. For example, for Game24 and 911

BlocksWorld, we can derive the reward to check 912

whether the remaining number is 24 and whether 913

the next state is the same as the goal state, respec- 914

tively. Therefore, we focus on next state prediction. 915

A.3 Why Not Larger LLMs? 916

We note that Qwen/Qwen2.5-1.5B-Instruct is a 917

highly capable LLM, which achieves 60.9% ac- 918

curacy on the MMLU benchmark. Therefore, we 919

choose this small LLM as the base model for the 920

RL training for the efficiency. 921

We also consider the models with sizes 3B and 922

7B for inference, which achieve 65.6% and 72.4% 923

accuracy on MMLU benchmark, respectively. 924

A.4 What If RL Training Cannot Improve? 925

RL training is a powerful framework. However, 926

due to the trail-and-error process, RL training may 927

be more complicated than the supervised learning. 928

Here we provide some guidance for the training: 929

• Smaller learning rate with the identity initial- 930

ization would be safer for the better perfor- 931
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mance than pre-trained models. While ran-932

dom initialization can potentially find better933

embedding models with longer training.934

• We would also note that the improvement of935

RL training may also depend on the data in the936

memory and the LLMs for the world model.937

Therefore, if no good hyperparameters for the938

improvement, please consider larger LLMs939

and larger memory.940

A.5 Code and Dataset Availability941

We will release all the code and datasets upon the942

paper acceptance. The anonymous code can be943

access at: https://anonymous.4open.science/944

r/rawm-acl.945

B Related Work946

World Models in Decision Making. World mod-947

els are actively explored by researchers to fur-948

ther improve the agent’s performance and the sam-949

ple efficiency (Ha and Schmidhuber, 2018; Janner950

et al., 2019; Hafner et al., 2019; Schrittwieser et al.,951

2020). Dreamer (Hafner et al., 2019) is a practical952

model-based reinforcement learning algorithm that953

introduces the belief over states as a part of the954

input to the model-free DRL algorithm used. Tra-955

jectory Transformer (Janner et al., 2021) trains the956

transformer to predict the next state and action as a957

sequence modeling problem for continuous robot958

control. MuZero (Schrittwieser et al., 2020) is a re-959

markable success of model-based RL, which learns960

the world model and conducts the planning in the961

latent space. The world model with LLM in (Xi-962

ang et al., 2023) is trained to gain the environment963

knowledge, while maintaining other capabilities of964

the LLMs. Dynalang (Lin et al., 2024) proposes the965

multi-modal world model, which unifies videos and966

texts for the future prediction in decision making.967

LLMs as World Simulators. World simula-968

tors are developed to model the dynamics of the969

world (Bruce et al., 2024). LLMs serve as the970

world simulators due to their generalizability across971

tasks. Specifically, The LLMs (i.e., GPT-3.5 and972

GPT-4) are evaluated to predict the state transi-973

tions, the game progress and scores with the given974

object, action, and score rules, where these rules975

are demonstrated to be crucial to the world model976

predictions (Wang et al., 2024). The world models977

with LLMs in (Xie et al., 2024) need to additionally978

identify the valid actions.979

World Models in LLMs. The concept of world 980

model also be explored in the deliberation reason- 981

ing of LLMs. Specifically, Reasoning via Planning 982

(RAP) (Hao et al., 2023) leverages the planning 983

methods (e.g., Monte Carlo Tree Search (MCTS)) 984

with the world model with LLMs for plan gener- 985

ation and math reasoning, where LLMs need to 986

predict the next state and the reward to guide the 987

search. Tree of Thought (ToT) (Yao et al., 2023) 988

implicitly leverages the LLMs as the world model 989

to predict the next state and the reward for the 990

search over different thoughts. Reason for future, 991

act for now (RAFA) (Liu et al., 2023) combine the 992

planning and reflection with the world model for 993

complex reasoning tasks. 994

C Environments and Data Collection 995

C.1 Game24 996

Game24 is an interesting puzzle game, where four 997

integer numbers in {1, 2, 3, . . . , 13} are given, the 998

player needs to use the basic arithmetic operators, 999

i.e., +,−,× and ÷, and use each number exactly at 1000

once to form 24. This puzzle game is used in (Yao 1001

et al., 2023) and (Liu et al., 2023) to benchmark 1002

the LLM’s reasoning capabilities. 1003

Figure 6: Game24

The instances of Game24 used in this work 1004

can be accessed at https://github.com/ 1005

princeton-nlp/tree-of-thought-llm/blob/ 1006

master/src/tot/data/24/24.csv. The state of 1007

Game24 is the remaining numbers and the action 1008

is applying the operator between two remaining 1009

numbers. Here is an example of the transition: 1010

{ 1011
"state": (1.0, 1.0, 5.0, 8.0), 1012
"action": "1.0 + 1.0", 1013
"next_state": (2.0, 5.0, 8.0), 1014
"reward": False , 1015

} 1016

We provide the python-style code to transform 1017

the transitions to natural language examples in Al- 1018

gorithm 2. 1019
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Algorithm 2 Transitions to in-context examples for
Game24

# transition is the dict with "state", "
action", "next_state" and "reward"

def transition2example_game24(
transition , is_query=False ,
is_next_state_prediction=True

):
example = ""

example += "current state: {}\n".
format(transition["state"])
example += "action: {}\n".format(
transition["action"])

if not is_query:
if is_next_state_prediction:

example += "next state: {}\n
".format(transition["next_state"])

else:
example += "reward: {}\n".

format(transition["reward"])

return example

C.2 BlocksWorld1020

Figure 7: BlocksWorld

BlocksWorld is a widely used benchmark1021

to evaluate the planning capabilities of1022

LLMs (Valmeekam et al., 2023; Hao et al.,1023

2023). All the instances of the BlocksWorld can be1024

accessed at https://github.com/karthikv792/1025

LLMs-Planning/tree/main/plan-bench/1026

instances/blocksworld. We build the envi-1027

ronment by transforming the instances to MDPs,1028

which can provide the transitions. Here is an1029

example of the transition:1030

{1031
"state": "the red block is clear ,1032
the hand is empty , the orange block1033
is on top of the yellow block , the1034
red block is on top of the orange1035
block , the yellow block is on top of1036
the blue block , and the blue block1037

is on the table.",1038
"action": "unstack the red block1039
from on top of the orange block",1040

"next_state": "the orange block is 1041
clear , the red block is in the hand , 1042
the hand is holding the red block , 1043

the orange block is on top of the 1044
yellow block , the yellow block is on 1045
top of the blue block , and the blue 1046
block is on the table.", 1047
"reward": False , 1048
"info": { 1049

"goal": "the red block is on top 1050
of the blue block , the blue block 1051

is on top of the yellow block and 1052
the yellow block is on top of the 1053
orange block" 1054
}, 1055

} 1056

We provide the python-style code to transform the 1057

transitions to natural language examples in Algo- 1058

rithm 3. 1059

Algorithm 3 Transitions to in-context examples for
BlocksWorld

# transition is the dict with "state", "
action", "next_state" and "reward"

def transition2example_bw(transition ,
is_query=False ,
is_next_state_prediction=True):
example = ""

example += "goal state: {}\n".format
(transition["info"]["goal"])
example += "current state: {}\n".
format(transition["state"])
example += "action: {}\n".format(
transition["action"])

if not is_query:
if is_next_state_prediction:

example += "next state: {}\n
".format(transition["next_state"])

else:
example += "reward: {}\n".

format(transition["reward"])

return example

C.3 BabyAI 1060

Figure 8: BabyAI

{ 1061
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"mission": "go to a red box after1062
you pick up the purple key",1063
"state": [1064

"You carry a purple key",1065
"You see a wall 2 steps left",1066
"You see a blue ball 2 steps1067

forward",1068
"You see a yellow ball 1 step1069

right and 1 step forward",1070
"You see a purple ball 2 steps1071

right and 2 steps forward",1072
"You see a red box 2 steps right1073

and 1 step forward",1074
],1075
"action": "turn right",1076
"reward": 0,1077
"done": False ,1078
"next_state": [1079

"You carry a purple key",1080
"You see a purple ball 2 steps1081

left and 2 steps forward",1082
"You see a blue ball 2 steps1083

left",1084
"You see a red box 1 step left1085

and 2 steps forward",1086
"You see a yellow ball 1 step1087

left and 1 step forward",1088
"You see a green key 4 steps1089

forward",1090
"You see a green key 1 step1091

right",1092
"You see a red box 2 steps right1093

and 1 step forward",1094
"You see a yellow key 3 steps1095

right and 3 steps forward",1096
"You see a red ball 3 steps1097

right",1098
],1099

}1100

C.4 Statistics of Datasets1101

Table 4 provides the statistics of the datasets used1102

for the RL training and testing.

Memory Query Test

Game24 2882 2882 5764
BlocksWorld 2416 2416 4833

BabyAI 3124 1562 3124

Table 4: Statistics of the datasets

1103

D Prompts1104

Design of Prompts. To make the world model1105

as general as possible, we do not specifically de-1106

sign the prompts. The system prompt of the world1107

model is "After being given a current state1108

and an action, directly give the next1109

state after performing the action." We do1110

not provide the description of the task, such as "I1111

am playing with a set of blocks where I1112

Algorithm 4 Transitions to in-context examples for
BabyAI

# transition is the dict with "state", "
action", "next_state" and "reward"

def transition2example_babyai(
transition , is_query=False ,
is_next_state_prediction=True

):
def state_to_string(state):

state_string = ""
for idx , sta in enumerate(state)

:
state_string += sta
if idx == len(state) - 1:

continue
else:

state_string += ", "
return state_string

example = ""

example += "mission: {}\n".format(
transition["mission"])

example += "current state: {}\n".
format(state_to_string(transition["
state"]))
example += "action: {}\n".format(
transition["action"])

if not is_query:
if is_next_state_prediction:

example += "next state: {}\n
".format(

state_to_string(
transition["next_state"])

)
else:

example += "reward: {}\n".
format(transition["reward"])

return example

need to arrange the blocks into stacks.", 1113

which is game specific and it needs human to write 1114

the specific prompts. 1115

Content Prompt for LLMs. We present the tem- 1116

plate for building the full prompt, i.e., the in- 1117

context examples and the query, for the LLMs in 1118

Algorithm 6. 1119

E Model Selection 1120

E.1 World Models 1121

We expect to transform the LLMs into world mod- 1122

els without any manually prompt engineering or 1123

fine-tuning of LLMs. Therefore, the world models 1124

are the general LLMs. The most capable open- 1125

source LLM models are the Qwen-2.5-instruct se- 1126

ries models (Yang et al., 2024a). Due to the limited 1127

14



Algorithm 5 Prompt template

system_prompt = (
"After being given a current state and

an action , "
"directly give the next state after

performing the action."
)
message = [

{
"role": "system",
"content": system_prompt ,

},
{"role": "user", "content": prompt},

]

resources, we only consider the models with sizes1128

in {1.5B, 3B, 7B} for inference and the 1.5B model1129

for RL training. We note that RAWM can work for1130

both open-source and close-source models.1131

For the embedding model, we choose1132

the General Text Embedding (gte) fam-1133

ily (Li et al., 2023). We choose1134

Alibaba-NLP/gte-Qwen2-1.5B-instruct1135

as the embedding model, which is the leading1136

open-source model on MTEB.1137

Emb. Model ϕ Alibaba-NLP/gte-Qwen2-1.5B-instruct

World Model Ω
Qwen/Qwen2.5-1.5B-Instruct-AWQ
Qwen/Qwen2.5-3B-Instruct-AWQ
Qwen/Qwen2.5-7B-Instruct-AWQ

Table 5: LLMs for Embedding and World Models

E.2 Architectures of MLP Head1138

Algorithm 7 presents the python implementation of1139

the two types of initialization of the MLP. Table 61140

displays the comparison of the two initializations.1141

Random Identity

Output dimension Arbitrary Same to ϕ
Initial performance Low High

Training instabilities Low High

Table 6: Comparison between two initialization

F Hyperparameters of RL Training1142

The hyperparameters of RL training are displayed1143

in Table 7 and Table 8.1144

G Additional Experiment Results1145

The training curves for Game24 and BabyAI are1146

shown in Figure 9 and Figure 10 respectively.1147

Algorithm 6 Generating prompts for LLMs

def get_query_examples_prompts(
query_transitions ,
memory_transitions=None ,
exp_name=None ,

):
query_prompts = []
for idx in range(len(
query_transitions)):

query_prompt =
transition2example(

query_transitions[idx],
is_query=True , exp_name=exp_name

)
memory_prompt = ""
if memory_transitions is not

None:
for memory_transition in

reversed(memory_transitions[idx]):
memory_prompt +=

transition2example(
memory_transition ,

exp_name=exp_name
)

query_memory_prompt =
memory_prompt + query_prompt + "next
state:"

query_prompts.append(
query_memory_prompt)

return query_prompts

Hyperparameter Value

norm_adv True
clip_coef 0.2

entropy_coef 0.2
max_grad_norm 0.2

eps 1e-5

Table 7: Fixed Hyperparameters

Env Method Hyperparameter Value

Game24
RAWMRL

ψ,rand
learning_rate 1e-4

update_epochs 10

RAWMRL
ψ,eye

learning_rate 1e-5
update_epochs 5

BlocksWorld
RAWMRL

ψ,rand
learning_rate 1e-4

update_epochs 20

RAWMRL
ψ,eye

learning_rate 1e-5
update_epochs 10

BabyAI
RAWMRL

ψ,rand
learning_rate 3e-6

update_epochs 10

RAWMRL
ψ,eye

learning_rate 5e-5
update_epochs 10

Table 8: Modified Hyperparameters
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Algorithm 7 MLP initializations

# base_emb_dim: dimension of the pre -
trained embedding model , i.e., 1536

# final_emb_dim: dimension of the MLP ,
36 for rand and 1536 for eye

def layer_init(layer , std=np.sqrt (2),
bias_const =0.0, with_diag=False):
if with_diag:

torch.nn.init.eye_(layer.weight)
torch.nn.init.constant_(layer.

bias , 0.0)
else:

torch.nn.init.orthogonal_(layer.
weight , std)

torch.nn.init.constant_(layer.
bias , bias_const)
return layer

mlp_eye = nn.Sequential(
layer_init(

nn.Linear(
base_emb_dim , final_emb_dim),
with_diag=True

),
)

mlp_rand = nn.Sequential(
layer_init(nn.Linear(

base_emb_dim , 64)),
nn.Tanh(),
layer_init(nn.Linear (64,

64)),
nn.Tanh(),
layer_init(nn.Linear (64,

final_emb_dim), std =0.01) ,
)
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Figure 9: Training curves on Game24.
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Figure 10: Training curves on BabyAI.
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