Retrieval-Augmented World Models Enhanced with
Reinforcement Learning

Anonymous ACL submission

Abstract

World models achieve remarkable success in
predicting future states and planning in com-
plex environments and Large Language Mod-
els (LLMs) serve as promising foundation to
build general world models. However, their
performances are usually constrained by the
limited knowledge to the specific environments.
Existing research attempts to enhance LLM-
based world models through prompting or fine-
tuning approaches, which are either requiring
human knowledge or computational extensive.
Therefore, we introduce Retrieval-Augmented
World Models (RAWM), a novel framework
that leverages retrieval-augmented generation
to improve the LLM-based world models. Our
main contributions are threefold: (i) We in-
troduce a memory system and design an em-
bedding model to retrieve and incorporate rel-
evant experiences, significantly improving the
world model’s predictive accuracy. (ii) We de-
velop a reinforcement learning (RL) training
pipeline that fine-tunes a small MLP head on
the pre-trained embedding model using Prox-
imal Policy Optimization (PPO), further en-
hancing prediction performance. (iii) We con-
duct extensive experiments across three diverse
RL environments, i.e., Game24, BlocksWorld,
and BabyAlI, demonstrating that RAWM con-
sistently outperforms baseline models and ex-
hibits strong generalizability. By leveraging
external memory and retrieval techniques and
training embedding with RL pipeline, RAWM
dynamically utilizes relevant historical expe-
riences and equips LLMs with environment-
specific knowledge without retraining, enabling
more accurate and generalizable predictions.

1 Introduction

The world model (Ha and Schmidhuber, 2018)
has demonstrated to be an important module
in decision making due to the celebrating suc-
cess of MuZero (Schrittwieser et al., 2020) and
Dreamer (Hafner et al., 2019, 2021, 2023). As

3 What can I see if I move to} Room 1 (Current Room)

the next room?

I don’t know. @
WM
I saw a chair in the current @
room. As both rooms are

= dam

similar, there may be a Rawm

chair in the next room. Room 2 (Next Room)

Figure 1: Why retrieval is needed?

learned accurate simulators, world models encode
rich representations of the complex dynamics of
the environment to predict the future states and
the rewards. World models are critical for several
key capabilities, such as generalization to novel
tasks (Byravan et al., 2020; Robey et al., 2021;
Young et al., 2023), efficient planning (Sekar et al.,
2020; Hamrick et al., 2021; Schrittwieser et al.,
2020), and offline learning (Schrittwieser et al.,
2021; Yu et al., 2020, 2021). Beyond decision mak-
ing, recent works such as Genie (Bruce et al., 2024)
and Vista (Gao et al., 2024) demonstrate that world
models can serve as general-purpose world sim-
ulators and users can directly interact with these
models for playing and planning.

The past five years witness the remarkable suc-
cess of large language models (LLMs) in enormous
text generation and understanding tasks (Brown
et al., 2020; OpenAl, 2023). LLMs serve as the
world model explicitly in Reasoning via Planning
(RAP) (Hao et al., 2023) and Reason for Future,
Act for Now (RAFA) (Liu et al., 2023), where
the LL.Ms predict the next states based on the ac-
tions executed at current states, e.g., the states
of blocks in the BlocksWorld (Valmeekam et al.,
2023), which is used to assist the planning methods.
LLMs serve as the world model implicitly in the
widely-used Tree of Thoughts (ToT) (Yao et al.,
2023), as well as Graph of Thoughts (GoT) (Besta
et al., 2024), where the LLMs need to predict the
states and evaluate the thoughts to help the selec-
tion of the thoughts to advance the reasoning. The

generalizability of LLMs presents them as promis-
ing foundations for the world models.

However, the pre-trained LLMs may lack the
knowledge of the specific environments, which pro-
hibits them to be accurate world models. For the
example displayed in Figure 1, the LLM cannot
provide the accurate predictions whether there is a
chair in the next room if the next room has never
been visited. To address this issue, we can carefully
design the prompts to add the specific knowledge
to help the LLMs in making predictions, e.g., the
rules for objects and actions (Wang et al., 2024;
Gu et al., 2024). However, these knowledge is
even usually not available for users. Alternatively,
we can fine-tune the LLMs on the specific envi-
ronments (Xiang et al., 2023; Chae et al., 2025).
However, the training of LLMs brings additional
complexities for building the world models with
LLMs and may also hurt the generalizability of
LLMs across different tasks.

To tackle these challenges, we propose retrieval-
augmented world models (RAWM). Specifically,
our contributions are threefold. First, inspired by
the retrieval-augmented generation (RAG) (Lewis
et al., 2020), we introduce the memory, which
stores the pre-collected experiences from the en-
vironments, and the embedding model, which is
used for querying relevant experience to assist the
world model to make predictions. Second, we in-
troduce the reinforcement learning (RL) training
pipeline, which adds a small MLP head to the pre-
trained embedding model and trains the MLP layer
with proximal policy optimization (PPO) (Schul-
man et al., 2017). Third, we collect the data from
Game?24, BlocksWorld and BabyAl, and extensive
experiments demonstrate RAWM can significantly
outperform the world model without retrieved ex-
periences and the pre-trained embedding models
and demonstrate the generalizability. RAWM is an
efficient way for LLMs to obtain the environment-
specific knowledge to build the better world mod-
els without training LLMs, and our RL training
pipeline can further improve the accuracy of the
predictions of LLM-based world models efficiently.

2 Related Work

World Models and LLMs. MuZero (Schrit-
twieser et al., 2020) and Dreamer (Hafner et al.,
2019) are the two prominent examples of the world
model for complex decision making tasks. Tra-
jectory transformer (Janner et al., 2021) leverages

transformer to model the decision making as a
sequence modeling problem. The world models
trained in theses methods are environment specific
and cannot generalize to other environments. Re-
cently, researchers leverage the generalizability of
LLMs to build general world models for reasoning
and decision making (Hao et al., 2023; Wang et al.,
2024; Yang et al., 2024b; Lin et al., 2024). Specifi-
cally, RAP (Hao et al., 2023) and RAFA (Liu et al.,
2023) use LLMs to predict the next states explicitly
and planning methods for decision making. While
ToT (Yao et al., 2023) and GoT (Besta et al., 2024)
use LLMs as the world model implicitly to advance
and evaluate the different thoughts.

Retrieval-Augmented Generation. RAG is an
efficient way for LLMs to incorporate the ex-
ternal knowledge for generation and understand-
ing (Lewis et al., 2020; Gao et al., 2023). Specifi-
cally, RAG leverages the retrieval model to query
the relevant experiences from the memory, which
are further provided to the LLMs as the in-context
examples. Different from simple prompting, where
the external knowledge is provided by human-
written prompts (Wang et al., 2024), and simple
in-context learning, where the in-context examples
are randomly picked (Hao et al., 2023), RAG can
provide better examples for accurate predictions.
Compared with fine-tuning (Xiang et al., 2023),
RAG can provide a more efficient way of trans-
forming LLMs into world models.

RL for LLM Optimization. RL is a powerful
method to train the model with trial and error (Sut-
ton and Barto, 2018). In addition to the applica-
tions of RL in games and robotics (Silver et al.,
2017) to optimize the LLMs, such as optimizing
the prompts (Deng et al., 2022) and the decoding
process (Wan et al., 2024), recent works also lever-
age RL to improve the reasoning capabilities of
LLMs (Lambert et al., 2024; Guo et al., 2025). In
this work, we leverage the RL method to train the
retriever to find the better examples to boost the
prediction of the world model.

3 Preliminaries

In this section, we present the preliminaries of
RAwWM, including the formulation of the decision
making, the LLMs, and the world models.

Markov Decision Process (MDP). A decision
making problem is usually represented as a Markov
decision process (MDP) (Sutton and Barto, 2018),

which is defined by the tuple M = (S, A, T, R,),
where S is the state space, A is the action space,
T:S5 x A— S is the transition dynamics, which
specifies the next state s’ given the current state s
and action a, R : Sx A — R is the reward function,
which specifies the agent’s reward given the current
state s and action a, and + is the discount factor.
The agent’s policy is defined by mp : S x A —
[0, 1], parameterized by 0, which takes the state s
as the input and outputs the action a to be executed.
The objective of the agent is to learn an optimal
policy to maximize the expected return, i.e., 7* :=
argmaxy Er [70 v'r¢|so| with initial state so.

Large Language Models (LLMs). Large Lan-
guage models (LLMs) learn from text data us-
ing unsupervised learning. LLMs optimize the
joint probabilities of variable-length symbol se-
quences as the product of conditional probabil-
ities by P(z) = [[, P(si|s1,...,8i—1), where
(s1,$2,...,Spn) is the variable-length sequence of
symbols. With the billions of parameters and ex-
tensive training data, the vast amounts of common
knowledge encoded in LLMs lead to the remark-
able generalization across various NLP tasks with
simple prompting and in-context learning, and with-
out task-specific fine-tuning (Touvron et al., 2023;
OpenAl, 2023). Among them, RAG (Lewis et al.,
2020) is viewed as a powerful method to incorpo-
rate external knowledge to LLLMs for generation.
Given the generalizability, LLMs present promis-
ing foundations for general world models.

World Models. The world model 2 is introduced
to predict the dynamics of the environment, thus
supporting the decision making process. Specifi-
cally, the world model is trained or prompted to
predict the next state s’, the reward r, and the termi-
nal function d, given the current state s and action
a. The world model can be one or multiple neu-
ral networks specially trained on the environments
for the three prediction tasks (Hafner et al., 2019;
Schrittwieser et al., 2020), which cannot general-
ize across different environments. Recent works
leverage LLMs to build the general world models,
where the prompting (Xie et al., 2024), in-context
learning (Wang et al., 2024), and even fine-tuning
methods (Xiang et al., 2023; Lin et al., 2024) are
used to build the LLM-based world models. In this
work, we primarily focus on the prediction of the
next state, which is the most important feature, as
both the reward and terminal are usually derived
from the next state visited.

4 Retrieval-Augmented World Models

In this section, we introduce Retrieval-Augmented
World Models (RAWM). We will first introduce
the architecture of RAWM and then introduce the
RL training pipeline for the retrieval process.

4.1 Architecture

Retrieve

= __, World %

Model —Predictions

Transitions lcompute
Reward
Query Memory i RL
= Embeddin{ﬁ !
Model +

(state, action)+——

Emb.eti:iings
Figure 2: The overview of RAWM.

The architecture of RAWM is displayed in Fig-
ure 2. We introduce a memory =, which stores the
pre-collected experiences, an embedding model,
which is used to rank and retrieve the relevant expe-
riences. Specifically, given the query ¢ = (s,a) €
Q, where Q is the query dataset, we will use the em-
bedding model to query top K relevant experiences
c = (cx), where ¢, = (sg,ar, s;), k= 1,..., K.
The retrieved experiences ¢ will be concatenated
with the query ¢ to form the input to the world
model €2. We note that for the environments where
the states are not texts, e.g., BabyAl (Chevalier-
Boisvert et al., 2019a), we need to first transform
them into the text representation.

Prompt Design. For the prompt design, any in-
formation related to the environments will not be
provided to the world model, including the tasks,
the object and action rules. We expect that all
the environment knowledge is provided by the in-
context examples retrieved from the memory. The
prompt template is displayed as follows:

Prompt Template

System prompt:

"After being given a current state and an action, directly
give the next state after performing the action."

Content prompt:

Current state: <text of the current state>

Action: <text of the selected action>

Next state: <text of the next state> or <for prediction>

The system prompt provides a general descrip-
tion of the prediction tasks, and the content prompt

includes the query and the context examples. For
the context examples, the next state is provided,
while for the query, the next state is predicted by
the world model €. Similarly, this content template
is also used to get the embeddings of both query
dataset and the memory for the retrieval process.

Trainable Embedding of Transitions. We use
the pre-trained embedding model ¢ to encode the
transitions into the M -dimensional vector repre-
sentation. Specifically, for the query dataset, we
only encode the state and the action, and for the
memory, we encode the state, the action and the
next state. However, the embedding model is
trained over general corpus, which would be not
suitable to the specific environment, so adapting
the embedding model is needed. There are sev-
eral methods to adapt the embedding model to the
specific environment: i) fine-tuning all parame-
ters in ¢, which is not training efficient, ii) low-
rank adaption (LoRA) (Hu et al., 2022), which
introduces trainable low-rank decomposition ma-
trices for each layer to reduce the parameters to be
trained. Though the number of trained parameters
is reduced, LoRA still requires to leverage the full
embedding model to inference. Besides, both full-
parameter fine-tuning and LoRA requires that the
access of the parameters of the pre-trained embed-
ding model and cannot be applied to close-source
models, e.g., text-embedding-3. Therefore, in-
spired by the linear probe (Radford et al., 2021),
we introduce a trainable MLP module above the
pre-trained embedding model, which is denoted
as 1. Therefore, the embedding process for both
query data and the memory can be represented as:

eq = Y(d(s,a)),¥(s,a) € Q, ¢))
ec = Y(é(s,a,s),V(s,a,s) € =. 2)

We will introduce the RL training pipeline of 1) in
the next section and the parameters in ¢ are frozen.
Compared with the full parameter fine-tuning and
the LoRA, this method only requires the pre-trained
embedding to encode the data in the query dataset
and the memory once, and the number of trainable
parameters is even significantly less than LoRA.

Retrieval-Augmented Predictions. To query the
relevant experiences, a similarity measure, e.g., co-
sine similarity, is used to rank the examples in the
memory, which is denoted as sim(-). Therefore,

c = {ci|k € topK(sim(eq,ec)), Ve € 2}, (3)

where topK(+) is selecting the indices with the top-
K maximum values. The K retrieved examples ¢
will be formed the in-context examples and append
before the query for the prediction. We concate-
nate the in-context examples with the query in a
reverse order, i.e., the examples with larger sim-
ilarities will be the later examples, and the query
is the last one. We found that this reverse order
is important for the generalization of the embed-
ding model in different K values, as the reverse
order can ensure the last several examples be the
same, (e.g., for K € {1,2}, the top-1 example
is the same, which is the last example before the
query in the prompt), thus leading to a more stable
generalization performance of the world model.

Evaluation Measure. The evaluation measure is
important for the RL training. We follow RAP (Hao
et al., 2023) to design the reward: given the output
o from the world model, which may include a set
of the conditions, e.g., the predicted state of blocks,
and s’ is the target, we will calculate the accuracy
of the prediction, denoted as v (o, s’). Alternatively,
we can calculate the log likelihood of the target s’,
which is used in the original RAG (Lewis et al.,
2020). However, this may require the access of the
logits of the LLMs and cannot be applied to the
closed-source models, e.g., GPT-4o.

4.2 Training

In this section, we introduce the efficient RL
pipeline to train the embedding models, i.e., train-
ing of the MLP head ¢ specifically. Typically, the
retriever in RAG is trained with supervised learn-
ing (Lewis et al., 2020). However, in RAWM, the
world models are not trained and we cannot com-
pute the gradient of the embedding directly. Be-
sides, as the retriever needs to explore to choose the
examples for the better prediction with the world
model, RL is one of the straightforward methods
to optimize the embedding model.

One-step Decision Making. To apply RL meth-
ods to optimize the embedding model, we need to
build the MDP MY for the embedding v':

* State space SY : {¢(s,a),¥(s,a) € Q} U
{¢(s,a,s),Y(s,a,s') € =}, ie., the embed-
dings of all data from query dataset and the mem-
ory generated by the pre-trained model ¢.

* Action space AY € RM, where M’ is the out-
put dimension of 1, i.e., 1 will transform the

'Please distinguish M" with the one used for the environ-
ment M, where MY is introduced only for the training.

embeddings by ¢ to M’-dimensional vectors.
» Reward r = v(Q(q, ¢), s'), where Q(q, ¢) is the
output of the world model €2 with the input (g,).
We note that MY is a one-step decision making
problem, i.e., M always ends after the first time
step, so the transition function and the discount
factor are not necessary for the RL training.

Design of). Before diving into the RL training,
we first discuss about the design of . A simple
setting for v is a randomly initialized MLP, which
means this initialization will start with the random
embedding for the training and ignore the embed-
dings generated by the pre-trained model ¢. On
the other hand, we can initialize the MLP with an
identify matrix, i.e., 1) = I.> Both methods have
their own advantages and disadvantages: for the
random initialization, we can arbitrarily choose the
output dimension and the activation function of 1),
but the training will start with a relatively worse
performance, while for the identify initialization,
the output dimension of 1) must be the same with ¢,
i.e., M’ = M, and the training will start with the
performance of the pre-trained embedding model.

RL Training. RL methods rely on the trail-and-
error process to explore the solution space for
better policies. The primary RL method is Q-
learning (Watkins and Dayan, 1992; Mnih et al.,
2015), which can only be used on the prob-
lems with discrete actions, and the policy gradi-
ent methods are proposed for the problems with
both discrete and continuous actions (Sutton et al.,
1999; Mnih et al., 2016; Haarnoja et al., 2018).
PPO (Schulman et al., 2017) is an on-policy pol-
icy gradient method, which is a simplified, but
more data efficient and reliable, variant of Trust
Region Policy Optimization (TRPO) (Schulman
et al., 2015), which leverages the “trust region” to
bound the update of the policy to avoid training
collapse. Compared with TRPO, PPO is more data
efficient and with more reliable performances than
TRPO, while only using the first-order optimiza-
tion for computational efficiency. Specifically, PPO
is maximizing the objective

J(¢) = E [min (py - 7,
Cllp(pdn 1- €, I+ 6) ' ’l“)] 3 (4)
where p,, is the importance sampling ratio condi-

tional on ¢, r is the reward, and ¢ is the hyperpa-
rameter which controls the boundary of the trust

2With a slight abuse of notations, we use) to represent
both the MLP and the parameters.

region. We note that the advantages in the general
PPO implementation is replaced with the reward.
We only provide a short introduction of PPO in this
section, as we take PPO as a blackbox for optimiz-
ing v. The full training procedure is displayed in
Algorithm 1. Other RL methods, e.g., soft actor
critic (SAC) (Haarnoja et al., 2018), can also be
used and for more details of RL, we refer readers
to the book (Sutton and Barto, 2018).

Algorithm 1 Training of RAWM

1: Input: World model (2, pre-trained embed-
ding model ¢, memory M, Query dataset Q,
number of retrieval candidates K

2: Initialize the MLP .

3: Computing the embeddings with ¢, i.e.,
Qp = {&(s,a),Y(s,a) € Q} and My =
{é(s,a,5),Y(s,a,s) € M}.

4: foriter € {1,2,...} do

5. Update the memory embedding M, =
{¢(0(s,a,5)),Y(s,a,5") € M}.

6: for (s,a)in Q do

7: Compute query embedding 1 (¢(s, a)).

8: Select top- K relevant transitions ¢ from

M with the embedding in M.

9: Generate the prediction o and compute
the reward v(o,).

10: end for

11: Train ¢ with PPO, i.e., Eq. (4).

12: end for

S Experiments

In this section, we present the extensive experi-
ments to evaluate the effectiveness of RAWM. We
will first introduce the experiment setup and then
the experiment results and analysis.

5.1 Setup

Environments. The environments considered in

this work include (as shown in Figure 3)

* Game24: a mathematical puzzle game where
four numbers are given (e.g., 10, 3, 6, and 4)
and the player can only use the basic arithmetic
operations, i.e., (+, —, X, =), to obtain 24 (e.g.,
10 x (6 = 3) + 4). This puzzle is widely used
to benchmark the LLMs’ reasoning capabili-
ties (Yao et al., 2023) and the LLMs need to
generate a sequence of operations to obtain 24.
In this game, the world model needs to correctly
generate the remaining number when an opera-

Ed = E3E3

MAKE 24"

Limited

—
Steps
N AR N
* |49
e ulvw
(a) Game24 (b) BlocksWorld (c) BabyAl

Figure 3: Environments

tion is executed, i.e., 10,2, 4 are the remaining
numbers when 6 + 3 is executed.

* BlocksWorld: a simple world of blocks where a
set of blocks is placed on the plat and the player
needs to perform the basic actions, i.e., pick up,
put down, stack, and unstack, to transform
the blocks to a target configuration (Valmeekam
et al., 2023; Hao et al., 2023). In this game, the
world model needs to predict the states for all
blocks (e.g., the blue block is on top of the re
block) after an action is executed (e.g., stack blue
block on the red block).

* BabyAlI: a grid world with objects where the
agent needs to complete the tasks defined with
language instructions (Chevalier-Boisvert et al.,
2019a) with the actions, i.e., turn left, turn
right, move forward and pick up. We use the
text description of the states in (Carta et al., 2023)
for the environments. In this environment, the
world model needs to predict the locations of the
objects after performing the action.

Datasets. Given the environments, we need to
collect the datasets for the memory, query and test
datasets, respectively. We use the query dataset
to train the embedding with RL and use the test
dataset to validate the performance of the trained
models. For Game24 and BlocksWorld, the num-
ber of all possible transitions are less than 10K,
therefore, we use the Depth-First Search (DFS) to
enumerate all transitions to form the full datasets.
While for BabyAl, we cannot enumerate all tran-
sitions due to the complexity of the environments.
Therefore, we utilize the bot provided in (Chevalier-
Boisvert et al., 2019b) to collect the data, where we
enumerate all valid actions to gather the transitions
along the action sequences generated by the bot.
After the collection, we choose the separate subsets
to form the three datasets without any overlapping
to avoid any data leakage. We provide the detailed
introduction of the environments and the protocol
for data collection in Appendix C.

Model Selection. We use the embedding model
Alibaba-NLP/gte-Qwen2-1.5B-instruct as the

pre-trained ¢, which is the leading open-source text
embedding model on MTEB (Li et al., 2023). For
the world model, we choose the Qwen-2.5 instruct
model series with the model sizes as {1.5B, 3B,
7B} (Yang et al., 2024a)°. The AWQ quantized
models are chosen for efficient inference. For the
configuration of 1), we consider a three layer MLP
with Tanh () activation function for the random ini-
tialization and a single layer without any activation
function for the identity initialization.* We pro-
vide the details about the model selection and the
initialization in Appendix E.

RL Training. For the efficiency, we consider sev-
eral implementation tricks. i) Compared with the
training of the MLP ¢, the inference of the world
model is much more time-consuming. Therefore,
we enlarge the number of batch sizes and for each
batch, we sample multiple times, which can stabi-
lize the training. ii) We also consider fixing the
embeddings in the memory, i.e., only the embed-
dings of the query datasets are trained, and do not
observe the advantages. Therefore, we update the
embedding of both datasets. iii) The output dimen-
sion of the random initialization is much smaller
than the output dimension of the identity initial-
ization, which enjoys the training stabilities with
larger learning rates and smaller memory usages
when retrieval. The hyperparameters for the RL
training of v is provided in Appendix F.

Methods Evaluated. The methods evaluated in
the experiments are: i) zero-shot: the world models
give the prediction without any in-context exam-
ples (Wang et al., 2024), ii) random: the world
models give the prediction with randomly selected
in-context examples from M (Hao et al., 2023), iii)
RAWM, rang: RAWM with the randomly initializa-
tion of ¢, which differs from the previous method,
iv) RAWM, cye: RAWM with the identity initializa-
tion of v, equivalent to the pre-trained embedding
model ¢, v) RAWMS', ;: RAWM with randomly
initialized v and RL training, and vi) RAWMRE

b.eye”

RAWM with identity initialized) and RL training.

5.2 Evaluation

We present the extensive evaluations of RAWM in
this section. There are three main research ques-
tions (RQs) investigated:

3https ://huggingface.co/spaces/Qwen/Qwen2.5

*We would note that RAWM can work for both close-source
and open-source embedding and world models. We choose
open-source models for efficient training and inference.

https://huggingface.co/spaces/Qwen/Qwen2.5

\ [Game24 I BlocksWorld [BabyAI
Modell Method | K=1 | K=2 || K=1 | K=2 | K=1 | K=2
H train test ‘ train test H train test ‘ train test H train test ‘ train test
zero-shot | 0.5224 0.5455|0.5224 0.5455 || 0.3804 0.3849 | 0.3804 0.3849 | 0.3786 0.3772|0.3786 0.3772
random || 0.5586 0.5664 | 0.5714 0.5959 || 0.4848 0.4822 | 0.4975 0.4991 || 0.3851 0.3856 | 0.3973 0.4030
1.5B
T |RAWMy ana|| 0.5156 0.5219 | 0.5322 0.5534 || 0.5386 0.5402 | 0.5597 0.5589 || 0.3415 0.3479 | 0.3527 0.3484
RAWMy, ey || 0.5352 0.5474 | 0.5510 0.5600 || 0.5659 0.5697 | 0.5878 0.5888 || 0.4427 0.4446 | 0.4710 0.4671
zero-shot | 0.4888 0.4971 | 0.4888 0.4971 || 0.3644 0.3661 | 0.3644 0.3661 | 0.3303 0.3330 | 0.3303 0.3330
sp | random | 0.6703 0.6719 | 0.6984 07010 || 0.4717 04706 | 0.5089 0.5083 | 03912 0.3908 | 0.4073 0.4052
RAWMy rana | 0.7041 0.7043 | 0.7269 0.7292 || 0.5729 0.5739 | 0.6005 0.6019 || 0.3855 0.3892 | 0.3985 0.3991
RAWMy; oy || 0.7022 0.7179 | 0.7313 0.7463 || 0.6127 0.6102 | 0.6440 0.6397 || 0.4355 0.4297 | 0.4646 0.4633
zero-shot [0.5957 0.6121 | 0.5957 0.6121 || 0.5215 0.5207 | 0.5215 0.5207 | 0.4201 0.4254 | 0.4201 0.4254
g | random | 08241 0.8267 | 0.8712 0.8667 || 0.5897 0.5838 | 0.6021 0.6072 | 0.4084 04181 | 04178 04221
RAWMy, rang || 0.8362 0.8375 | 0.8724 0.8703 || 0.6274 0.6240 | 0.6332 0.6314 | 0.4301 0.4322 | 0.4403 0.4355
RAWMy, ey || 0.8511 0.8527 | 0.8781 0.8734 | 0.6472 0.6452 | 0.6556 0.6541 || 0.4484 0.4501 | 0.4633 0.4693

Table 1: Performance of RAWM with the retrieval mechanism over three environments.

¢ RQ1: Can the retrieved methods in RAWM im-
prove the performance of world model?

* RQ2: Can the RL training pipeline in RAWM
improve the performance of the world model,
compared with pre-trained models?

* RQ3: Can the learned model generalize across
different settings, e.g., different values of K?

5.2.1 Analysis of RQ1

To investigate the RQ1, we conduct the experi-
ments of RAWM on the different sizes of the world
model, i.e., 1.5B, 3B and 7B, over the three envi-
ronments. We consider the values of K as {1,2}.
The experiment results are displayed in Table 1.
From the results, we observe that the performances
over the train and test yield the same trend, which
avoids the over-fitting to the specific dataset.

With more in-context examples selected, the
performance of the world model is significantly
improved, which is consistent with other re-
search (Agarwal et al., 2024). Another interest-
ing observation is that increasing the model sizes
of LLMs does not necessarily improve the perfor-
mance of the world models. For example, the 3B
world model performs worse than the 1.5B world
model in BabyAl. This is because the LLMs do not
have the specific knowledge of the environments
and increasing the model size cannot solve this.

We also observe that given the same number
of the in-context examples, the pre-trained model
(i.e., RAWM, ¢ye) can retrieve more relevant ex-
amples for the world models across different sizes
in BlocksWorld and BabyAl. While for the 1.5B
world model of Game24, the pre-trained models
perform worse than the random examples. There-

fore, optimizing for a better embedding model can
potentially further improve the performance.

5.2.2 Analysis of RQ2

0.600
° 0.575

2
2 0550
['4

Mean Reward
=)
o
>

§ 0.525
Q

=
train 0.500

= test

train
= test

0.475

30 0 5 10 15 20
Training lteration

(b) RAWMiI:rand (K = 2)

0 5 10 15 20
Training lteration

(a) RAWMiI:mnd (K = 1)

25 25 30

0.580 0.598
o - 0.596
3 3
2 0.575 2 0.594
12 ['4
§ § 0592
20570 2
train 0.590 train
—*— test —*— test
0.565 0.588
5 10 15 0 5 10
Training lteration Training lteration
RL _ RL —
(©) RAWM oo (K = 1) (d) RAWM 7oy (K = 2)

Figure 4: Training curves on BlocksWorld.

We then present the results of the RL training
pipeline of RAWM. Due to the limitation of the
resource, we only conduct the training on the world
models with 1.5B LLMs. The results of different
configurations of i across different environments
are displayed in Figure 5.

From the results, we observe that the RL training
can improve upon the initialization, which indicates
the capability of RL to optimize the embedding
model through exploration. We observe that both
initialization can outperform the pre-trained em-
bedding model, i.e., RAWMy, ¢ye, in Game24 and
BlocksWorld, while the random initialization fails
to find a better embedding than the pre-trained one
in BabyAl. The training curves are displayed in

0.700

0.675
0.650

B B B
§ 0.625 § 059 5
& 0.600 & 0.580 & 0.460
§ 0575 § 0570 §
= = =

0.550
0.525
0.500

0.620

0.500

0 Rawmy,epe B Rawmfl,,, B0 Rawmfl.,. 0 Rawmy,epe B Rawmfl,,, B0 Rawmfl.,. 0 Rawmy,epe 0 Rawmfl,,; B0 Rawmfl,,.

ad N

0.610

0.600 0.480

0.560 0.440

0.550

ail 1l

0.540

0.420

Train (K=1) Test (K=1)

(a) Game24

Train (K= 2) Test (K=2) Train (K=1) Test (K=1) Train (K= 2) Test (K=2)

(b) BlocksWorld

Train (K=1) Test (K=1) Train (K= 2) Test (K=2)

(c) BabyAl

Figure 5: Performance of the RL training pipeline in RAWM over three environments.

[Game24 [BlocksWorld | BabyAl
Method | K=3 | K=5 | K=3 | K=5 | K=3 [K=5
‘ ‘ train test ‘ train test ‘ ‘ train test ‘ train test ‘ ‘ train test ‘ train test
random 0.5745 0.5862 | 0.5669 0.5866 || 0.5096 0.5125 | 0.5261 0.5228 || 0.4044 0.4071 | 0.4220 0.4165
RAWMy, rand 0.5431 0.5443 | 0.5538 0.5635 || 0.5702 0.5711 | 0.5730 0.5738 || 0.3522 0.3551 | 0.3696 0.3636
RAWMy, eye 0.5533 0.5528 | 0.5660 0.5765 || 0.6016 0.5994 | 0.6178 0.6149 || 0.4838 0.4753 | 0.4816 0.4860
RAWM‘},LRlnd (K =1)|| 0.5766 0.5974 | 0.6002 0.6106 || 0.6001 0.6022 | 0.6199 0.6200 || 0.4716 0.4624 | 0.4745 0.4702
RAWMELeye (K =1)]0.5893 0.5950 | 0.5976 0.6053 || 0.6038 0.6042 | 0.6222 0.6220 || 0.4878 0.4877 | 0.4982 0.4872
RAWM¢ +and (1€ = 2)(0.6097 0.6344 | 0.5901 0.5999 || 0.6100 0.6129 | 0.6198 0.6202 || 0.4732 0.4711 | 0.4738 0.4741
RAWMELCYC (K =2)] 05912 0.6020 | 0.5981 0.6067 || 0.6049 0.6052 | 0.6215 0.6205 || 0.4864 0.4852 | 0.4976 0.4888

Table 2: Shot generalization of the 1.5B world model trained with RL.

Figure 4. Typically, the random initialization will
let the model train from a relative low performance
and we observe a drop of the performance due to

to be more capable for the generalization over shots,
compared with the pre-trained embedding model.

H Game24 ‘ BlocksWorld ‘ BabyAl
the exploration for better embedding model (i.e., Method || Traim Test | Train Test | Train Test
Figure 4b). And for the identity initialization, the RAWMyrang | 0.8724 0.8703 ‘ 06332 0.6314 ‘ 04403 0.4355

.. . . . R .8781 .8734 . .6541 14633 4693

training is more stable with smaller learning rates AWMy | 08781 08734 | 0655 06541 | 04633 0469

. . . . RAwMRL 0.8799 0.8829 | 0.6631 0.6630 | 0.4518 0.4484
w,rand

(i.e., Figures 4c and 4d). These results indicate the RawsiL | 08852 08812 ‘ 06597 0.6560 ‘ e B oL

effectiveness of our RL training pipeline.’

Our RL training pipeline can also be used to
diagnose the failure of the retrieval-augmented gen-
eration systems. If the RL pipeline cannot find a
better embedding to improve the world model’s per-
formance, then the user would replace the LLMs
for the world models and the datasets.®

5.2.3 Analysis of RQ3

The results of shot generation are displayed in Ta-
ble 2, where the embedding models trained with
random and identity initializations of K € {1,2}
are evaluated over the K € {3, 5}, i.e., the gener-
alization over shots. From the results, we observe
that with larger values of K, the performance of the
world model will be further improved. The embed-
ding models trained with RL pipeline demonstrate

SWe note that the improvement that RL training can bring
will largely be influenced by the LLMs’ capabilities.

®Different from the factual QA (Gao et al., 2023) where
we can manually check whether the retrieved examples are
correct or not, RAWM relies on the LLM’s inherit understand-
ing capabilities for the prediction and human cannot manually
check the correctness of the retrieval. Therefore, a systematic
method, e.g., RL, is needed for diagnosing the system.

Table 3: Model generalization of 1.5B —7B (K = 2).

We also consider the generalization over differ-
ent LLLMs, which is more difficult than the shot
generalization. Table 3 displays the results of gen-
eralizing the RL trained embedding model from
1.5B to 7B. We observe that the RL trained embed-
ding admits better generalization performance than
the pre-trained embedding model.

6 Conclusions

LLMs present promising foundations to build gen-
eral world models. However, LLMs usually lack
the specific knowledge of environments. Therefore,
we introduce Retrieval-Augmented World Models
(RAWM), which leverages the retrieval-augmented
generation to improve LLM-based world models.
We then introduce an efficient RL training pipeline
to further improve the performance. Extensive ex-
periments demonstrate the effectiveness and the
generalizability of RAWM. RAWM is an efficient
method to build the highly capable LLM-based
world models without fine-tuning the LLMs.

Limitations

There are several limitations of current work.

e Current RAWM focuses on prediction and the
prediction can be used for decision making. We
will extend current RAWM to support the better
decision making in future work.

* Current RAWM is based on the pre-collected data,
which may require a large number of data to
achieve good performance. We will consider to
let the model to proactively collect the data and
improve the performance automatically.

e Current RAWM is based on LLM and the envi-
ronments are represented by texts. RAWM can
also handle the multi-modal environments, e.g.,
text and image, where both embedding models
and world models will be multi-modal models.
We will explore this direction in future work.

We expect that RAWM can be a general framework

to build highly capable multi-modal world model

with automatically data collection and training, to
finally support decision making in complex tasks.

Ethics Statement

We confirm that we have fully complied with the
ACL Ethics Policy in this study. All the environ-
ments are publicly available and have been exten-
sively used in the research.

References

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd
Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,
Ankesh Anand, Zaheer Abbas, Azade Nova, et al.
2024. Many-shot in-context learning. arXiv preprint
arXiv:2404.11018.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, et al. 2024. Graph of thoughts:
Solving elaborate problems with large language mod-
els. In AAAI pages 17682—17690.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In NeurIPS, pages 1877-1901.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack
Parker-Holder, Yuge Shi, Edward Hughes, Matthew
Lai, Aditi Mavalankar, Richie Steigerwald, Chris
Apps, et al. 2024. Genie: Generative interactive
environments. In /CML.

Arunkumar Byravan, Jost Tobias Springenberg, Ab-
bas Abdolmaleki, Roland Hafner, Michael Neunert,

Thomas Lampe, Noah Siegel, Nicolas Heess, and
Martin Riedmiller. 2020. Imagined value gradients:
Model-based policy optimization with tranferable la-
tent dynamics models. In CoRL, pages 566-589.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain
Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.
2023. Grounding large language models in interac-
tive environments with online reinforcement learning.
arXiv preprint arXiv:2302.02662.

Hyungjoo Chae, Namyoung Kim, Kai Tzu iunn Ong,
Minju Gwak, Gwanwoo Song, Jihoon Kim, Sungh-
wan Kim, Dongha Lee, and Jinyoung Yeo. 2025.
Web agents with world models: Learning and lever-
aging environment dynamics in web navigation. In
ICLR.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2019a. BabyAl: First
steps towards grounded language learning with a hu-
man in the loop. In /ICLR.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2019b. BabyALl: First
steps towards grounded language learning with a hu-
man in the loop. In ICLR.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning. In
EMNLP.

Shenyuan Gao, Jiazhi Yang, Li Chen, Kashyap Chitta,
Yihang Qiu, Andreas Geiger, Jun Zhang, and
Hongyang Li. 2024. Vista: A generalizable driving
world model with high fidelity and versatile control-
lability. arXiv preprint arXiv:2405.17398.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Yu Gu, Boyuan Zheng, Boyu Gou, Kai Zhang, Cheng
Chang, Sanjari Srivastava, Yanan Xie, Peng Qi, Huan
Sun, and Yu Su. 2024. Is your llm secretly a world
model of the internet? model-based planning for web
agents. arXiv preprint arXiv:2411.06559.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. DeepSeek-R1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

David Ha and Jiirgen Schmidhuber. 2018. World mod-
els. arXiv preprint arXiv:1803.10122.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. 2018. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor. In ICML, pages 1861-1870.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. 2019. Dream to control: Learning
behaviors by latent imagination. In /CLR.

Danijar Hafner, Timothy P Lillicrap, Mohammad
Norouzi, and Jimmy Ba. 2021. Mastering Atari with
discrete world models. In ICLR.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and
Timothy Lillicrap. 2023. Mastering diverse do-
mains through world models. arXiv preprint
arXiv:2301.04104.

Jessica B Hamrick, Abram L. Friesen, Feryal Be-
hbahani, Arthur Guez, Fabio Viola, Sims Wither-
spoon, Thomas Anthony, Lars Holger Buesing, Petar
Velickovié, and Theophane Weber. 2021. On the
role of planning in model-based deep reinforcement
learning. In ICLR.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In ICLR.

Michael Janner, Justin Fu, Marvin Zhang, and
Sergey Levine. 2019. When to trust your model:
Model-based policy optimization. arXiv preprint
arXiv:1906.08253.

Michael Janner, Qiyang Li, and Sergey Levine. 2021.
Offline reinforcement learning as one big sequence
modeling problem. In NeurIPS.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, et al. 2024. Tulu 3: Pushing frontiers in
open language model post-training. arXiv preprint
arXiv:2411.15124.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. In NeurIPS, pages
9459-9474.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner,
Pieter Abbeel, Dan Klein, and Anca Dragan. 2024.
Learning to model the world with language. In
ICML.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi
Ke, Boyi Liu, and Zhaoran Wang. 2023. Reason for
future, act for now: A principled framework for au-
tonomous llm agents with provable sample efficiency.
arXiv preprint arXiv:2309.17382.

10

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In ICML, pages 1928-1937.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. Nature,
518(7540):529-533.

OpenAl. 2023. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
etal. 2021. Learning transferable visual models from
natural language supervision. In ICML, pages 8748—
8763.

Alexander Robey, George J Pappas, and Hamed Has-
sani. 2021. Model-based domain generalization. In
NeurIPS, pages 20210-20229.

Julian Schrittwieser, loannis Antonoglou, Thomas Hu-
bert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. 2020. Mastering Atari, Go,
chess and shogi by planning with a learned model.
Nature, 588(7839):604-609.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane,
Mohammadamin Barekatain, Ioannis Antonoglou,
and David Silver. 2021. Online and offline reinforce-
ment learning by planning with a learned model. In
NeurIPS, pages 27580-27591.

John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. 2015. Trust region policy
optimization. In ICML, pages 1889—1897.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter
Abbeel, Danijar Hafner, and Deepak Pathak. 2020.
Planning to explore via self-supervised world models.
In ICML, pages 8583-8592.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. 2017. Mastering the game of Go with-
out human knowledge. Nature, 550(7676):354-359.

Richard S Sutton and Andrew G Barto. 2018. Reinforce-
ment Learning: An Introduction. MIT press.

Richard S Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 1999. Policy gradient methods
for reinforcement learning with function approxima-
tion. In NeurlPS, pages 1057-1063.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. LLaMA: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2023. PlanBench: An extensible benchmark for eval-
uating large language models on planning and reason-
ing about change. In NeurIPS, pages 38975-38987.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2024. Alphazero-like tree-search can guide large
language model decoding and training. In ICML.

Ruoyao Wang, Graham Todd, Ziang Xiao, Xingdi Yuan,
Marc-Alexandre Coté, Peter Clark, and Peter Jansen.
2024. Can language models serve as text-based
world simulators? arXiv preprint arXiv:2406.06485.

Christopher JCH Watkins and Peter Dayan. 1992. Q-
learning. Machine learning, 8(3):279-292.

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui
Wang, Zichao Yang, and Zhiting Hu. 2023. Lan-
guage models meet world models: Embodied expe-
riences enhance language models. arXiv preprint
arXiv:2305.10626.

Kaige Xie, Ian Yang, John Gunerli, and Mark Riedl.
2024. Making large language models into world mod-
els with precondition and effect knowledge. arXiv
preprint arXiv:2409.12278.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen 2.5
technical report. arXiv preprint arXiv:2412.15115.

Chang Yang, Xinrun Wang, Junzhe Jiang, Qinggang
Zhang, and Xiao Huang. 2024b. Evaluating world
models with 1lm for decision making. arXiv preprint
arXiv:2411.08794.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: deliberate prob-
lem solving with large language models. In NeurIPS,
pages 11809-11822.

Kenny Young, Aditya Ramesh, Louis Kirsch, and Jiir-
gen Schmidhuber. 2023. The benefits of model-based
generalization in reinforcement learning. In ICML,
pages 40254-40276.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Ra-
jeswaran, Sergey Levine, and Chelsea Finn. 2021.
COMBO: conservative offine model-based policy op-
timization. In NeurIPS, pages 28954-28967.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon,
James Zou, Sergey Levine, Chelsea Finn, and Tengyu
Ma. 2020. MOPO: Model-based offline policy opti-
mization. In NeurIPS, pages 14129-14142.

11

A Frequently Asked Questions (FAQs)
A.1 Advantages of RAWM

There are several advantages of RAWM, compared

with other methods for LLM-based world models:

* RAWM does not require the fine-tuning of LLMs,
where the fine-tuning of LLMs is usually time
and computation extensive. Besides, the fine-
tuning may also hurt the capabilities of LLMs
on other tasks. RAWM can be viewed as a plug-
and-play framework to transform the LL.Ms into
world models.

* RAWM does not require the manually design of
the prompts, i.e., instructions and in-context ex-
amples, for LLMs, which is usually labor inten-
sive to optimize the prompts. RAWM automati-
cally retrieve the in-context examples from mem-
ory to assist the world models for predictions.

* RAWM introduces the efficient RL training to
further improve the world models with retrieval-
augmented generation. We note that with the RL
training pipeline, RAWM can find the capability
limit of the memory and the world model, thus
can be used to diagnose the systems.

A.2 Why Focusing on Next State Prediction?

Next state prediction is the most important feature
for the world model (Wang et al., 2024). The re-
ward and the terminal can usually derived from
the next state. For example, for Game24 and
BlocksWorld, we can derive the reward to check
whether the remaining number is 24 and whether
the next state is the same as the goal state, respec-
tively. Therefore, we focus on next state prediction.

A.3 Why Not Larger LLMs?

We note that Qwen/Qwen2.5-1.5B-Instruct is a
highly capable LLM, which achieves 60.9% ac-
curacy on the MMLU benchmark. Therefore, we
choose this small LLM as the base model for the
RL training for the efficiency.

We also consider the models with sizes 3B and
7B for inference, which achieve 65.6% and 72.4%
accuracy on MMLU benchmark, respectively.

A4

RL training is a powerful framework. However,
due to the trail-and-error process, RL training may
be more complicated than the supervised learning.
Here we provide some guidance for the training:

What If RL Training Cannot Improve?

* Smaller learning rate with the identity initial-
ization would be safer for the better perfor-

mance than pre-trained models. While ran-
dom initialization can potentially find better
embedding models with longer training.

* We would also note that the improvement of
RL training may also depend on the data in the
memory and the LLMs for the world model.
Therefore, if no good hyperparameters for the
improvement, please consider larger LLMs
and larger memory.

A.5 Code and Dataset Availability

We will release all the code and datasets upon the
paper acceptance. The anonymous code can be
access at: https://anonymous. 4open.science/
r/rawm-acl.

B Related Work

World Models in Decision Making. World mod-
els are actively explored by researchers to fur-
ther improve the agent’s performance and the sam-
ple efficiency (Ha and Schmidhuber, 2018; Janner
et al., 2019; Hafner et al., 2019; Schrittwieser et al.,
2020). Dreamer (Hafner et al., 2019) is a practical
model-based reinforcement learning algorithm that
introduces the belief over states as a part of the
input to the model-free DRL algorithm used. Tra-
jectory Transformer (Janner et al., 2021) trains the
transformer to predict the next state and action as a
sequence modeling problem for continuous robot
control. MuZero (Schrittwieser et al., 2020) is a re-
markable success of model-based RL, which learns
the world model and conducts the planning in the
latent space. The world model with LLM in (Xi-
ang et al., 2023) is trained to gain the environment
knowledge, while maintaining other capabilities of
the LLMs. Dynalang (Lin et al., 2024) proposes the
multi-modal world model, which unifies videos and
texts for the future prediction in decision making.

LLMs as World Simulators. World simula-
tors are developed to model the dynamics of the
world (Bruce et al., 2024). LLMs serve as the
world simulators due to their generalizability across
tasks. Specifically, The LLMs (i.e., GPT-3.5 and
GPT-4) are evaluated to predict the state transi-
tions, the game progress and scores with the given
object, action, and score rules, where these rules
are demonstrated to be crucial to the world model
predictions (Wang et al., 2024). The world models
with LLMs in (Xie et al., 2024) need to additionally
identify the valid actions.

12

World Models in LLMs. The concept of world
model also be explored in the deliberation reason-
ing of LLMs. Specifically, Reasoning via Planning
(RAP) (Hao et al., 2023) leverages the planning
methods (e.g., Monte Carlo Tree Search (MCTY))
with the world model with LLMs for plan gener-
ation and math reasoning, where LLMs need to
predict the next state and the reward to guide the
search. Tree of Thought (ToT) (Yao et al., 2023)
implicitly leverages the LLMs as the world model
to predict the next state and the reward for the
search over different thoughts. Reason for future,
act for now (RAFA) (Liu et al., 2023) combine the
planning and reflection with the world model for
complex reasoning tasks.

C Environments and Data Collection

C.1 Game24
Game24 is an interesting puzzle game, where four
integer numbers in {1,2,3,...,13} are given, the

player needs to use the basic arithmetic operators,
i.e., +, —, x and =+, and use each number exactly at
once to form 24. This puzzle game is used in (Yao
et al., 2023) and (Liu et al., 2023) to benchmark
the LLM’s reasoning capabilities.

MAKE 24
“ ¢

a8
+
vV

S I
L 3 R 2
* ¢

s

Figure 6: Game24

The instances of Game24 used in this work
can be accessed at https://github.com/
princeton-nlp/tree-of-thought-11m/blob/
master/src/tot/data/24/24.csv. The state of
Game?24 is the remaining numbers and the action
is applying the operator between two remaining
numbers. Here is an example of the transition:

{

"state”: (1.0, 1.0, 5.0, 8.0),
"action”: "1.0 + 1.0",
"next_state”: (2.0, 5.0, 8.0),
"reward"”: False,

We provide the python-style code to transform
the transitions to natural language examples in Al-
gorithm 2.

https://anonymous.4open.science/r/rawm-acl
https://anonymous.4open.science/r/rawm-acl
https://anonymous.4open.science/r/rawm-acl
https://github.com/princeton-nlp/tree-of-thought-llm/blob/master/src/tot/data/24/24.csv
https://github.com/princeton-nlp/tree-of-thought-llm/blob/master/src/tot/data/24/24.csv
https://github.com/princeton-nlp/tree-of-thought-llm/blob/master/src/tot/data/24/24.csv
https://github.com/princeton-nlp/tree-of-thought-llm/blob/master/src/tot/data/24/24.csv
https://github.com/princeton-nlp/tree-of-thought-llm/blob/master/src/tot/data/24/24.csv

Algorithm 2 Transitions to in-context examples for
Game24

n

transition is the dict with
action”, "next_state” and

def transition2example_game24(
transition, is_query=False,
is_next_state_prediction=True

"state",
"reward”

nn

example =

example += "current state:
format(transition["state"])
example += "action: {}\n".format(
transition["action”"])

{3\n".

if not is_query:
if is_next_state_prediction:
example += "next state: {}\n
" format(transition["next_state”])
else:
example += "reward:
format(transition["reward”])

{I\n".

return example

C.2 BlocksWorld

Limited

Steps

Figure 7: BlocksWorld

BlocksWorld is a widely used benchmark
to evaluate the planning capabilities of
LLMs (Valmeekam et al., 2023; Hao et al.,
2023). All the instances of the BlocksWorld can be
accessed at https://github.com/karthikv792/
LLMs-Planning/tree/main/plan-bench/
instances/blocksworld. We build the envi-
ronment by transforming the instances to MDPs,
which can provide the transitions. Here is an
example of the transition:

{

"state”: "the red block is clear,
the hand is empty, the orange block
is on top of the yellow block, the
red block is on top of the orange
block, the yellow block is on top of
the blue block, and the blue block
is on the table.”,

"action”: "unstack the red block
from on top of the orange block”,

"next_state”: "the orange block is
clear, the red block is in the hand,
the hand is holding the red block,

the orange block is on top of the
yellow block, the yellow block is on
top of the blue block, and the blue
block is on the table."”,
"reward"”: False,
"info": {
"goal”: "the red block is on top
of the blue block, the blue block
is on top of the yellow block and
the yellow block is on top of the
orange block”
}!
}

We provide the python-style code to transform the
transitions to natural language examples in Algo-
rithm 3.

Algorithm 3 Transitions to in-context examples for
BlocksWorld

n

transition is the dict with "state”,
action”, "next_state” and "reward”

def transition2example_bw(transition,
is_query=False,
is_next_state_prediction=True):
example = ""

example += "goal state: {}\n".format
(transition["info"J["goal"1)

example += "current state: {}\n".
format(transition["state"])

example += "action: {}\n".format(
transition["action"])

if not is_query:
if is_next_state_prediction:

example += "next state: {}\n
". format(transition["next_state”])
else:
example += "reward: {}\n".

format(transition["reward”])

return example

C.3 BabyAl

Figure 8: BabyAl

https://github.com/karthikv792/LLMs-Planning/tree/main/plan-bench/instances/blocksworld
https://github.com/karthikv792/LLMs-Planning/tree/main/plan-bench/instances/blocksworld
https://github.com/karthikv792/LLMs-Planning/tree/main/plan-bench/instances/blocksworld
https://github.com/karthikv792/LLMs-Planning/tree/main/plan-bench/instances/blocksworld
https://github.com/karthikv792/LLMs-Planning/tree/main/plan-bench/instances/blocksworld

"mission”: "go to a red box after
you pick up the purple key",
"state": [

"You carry a purple key",

"You see a wall 2 steps left”,

"You see a blue ball 2 steps
forward",

"You see a yellow ball 1
right and 1 step forward”,

"You see a purple ball 2 steps
right and 2 steps forward”,

"You see a red box 2 steps right
and 1 step forward”,

step

]r
"action": "turn right”,
"reward”: 0,
"done": False,
"next_state"”:

"You

"You
left and

"You
left”,

"You see a red box 1
and 2 steps forward”,

"You see a yellow ball 1
left and 1 step forward”,

"You see a green key 4 steps
forward”,

"You see a green key 1
right”,

"You see a red box 2 steps right
and 1 step forward”,

"You see a yellow key 3 steps
right and 3 steps forward”,

"You see a red ball 3 steps
right”,
]r

[

carry a purple key",

see a purple ball 2 steps
2 steps forward”,

see a blue ball 2 steps

step left

step

step

C.4 Statistics of Datasets

Table 4 provides the statistics of the datasets used
for the RL training and testing.

Memory ‘ Query ‘ Test

Game24 2882 2882 | 5764
BlocksWorld | 2416 2416 | 4833
BabyAl 3124 1562 | 3124

Table 4: Statistics of the datasets

D Prompts

Design of Prompts. To make the world model
as general as possible, we do not specifically de-
sign the prompts. The system prompt of the world
model is "After being given a current state
and an action, directly give the next
state after performing the action.” We do
not provide the description of the task, such as "I
am playing with a set of blocks where I

14

Algorithm 4 Transitions to in-context examples for
BabyAl

n

transition is the dict with
action”, "next_state” and

def transition2example_babyai(
transition, is_query=False,
is_next_state_prediction=True

"state",
"reward”

def state_to_string(state):
state_string = ""
for idx, sta in enumerate(state)

state_string += sta
if idx len(state)
continue
else:
state_string += ",
return state_string

- 1:

n

nn

example =

example += "mission: {}\n".format(
transition["mission"])

example += "current state: {}\n".
format(state_to_string(transition[”
state"]))

example += "action: {}\n".format(
transition["action"])

if not is_query:
if is_next_state_prediction:
example += "next state:
".format(

{3\n

state_to_string(
transition["next_state”])
)
else:
example += "reward:
format(transition["reward”])

{3\n".

return example

need to arrange the blocks into stacks.”,
which is game specific and it needs human to write
the specific prompts.

Content Prompt for LLMs. We present the tem-
plate for building the full prompt, i.e., the in-
context examples and the query, for the LLMs in
Algorithm 6.

E Model Selection

E.1 World Models

We expect to transform the LLMs into world mod-
els without any manually prompt engineering or
fine-tuning of LLMs. Therefore, the world models
are the general LLMs. The most capable open-
source LLM models are the Qwen-2.5-instruct se-
ries models (Yang et al., 2024a). Due to the limited

Algorithm 5 Prompt template

system_prompt = (

"After being given a current state and
an action, "

"directly give the next state after
performing the action.”

)
message = [
{
"role”: "system”,
"content"”: system_prompt,
3,
{"role": "user"”, "content": prompt},
]

resources, we only consider the models with sizes
in {1.5B, 3B, 7B} for inference and the 1.5B model
for RL training. We note that RAWM can work for
both open-source and close-source models.

For the embedding model, we choose
the General Text Embedding (gte) fam-
ily (Li et al, 2023). We choose

Alibaba-NLP/gte-Qwen2-1.5B-instruct
as the embedding model, which is the leading
open-source model on MTEB.

Emb. Model ¢ | Alibaba-NLP/gte-Qwen2-1.5B-instruct
Qwen/Qwen2.5-1.5B-Instruct-AWQ
World Model §2 Qwen/Qwen2.5-3B-Instruct-AWQ

Qwen/Qwen2.5-7B-Instruct-AWQ

Table 5: LLMs for Embedding and World Models

E.2 Architectures of MLP Head

Algorithm 7 presents the python implementation of
the two types of initialization of the MLP. Table 6
displays the comparison of the two initializations.

Random | Identity
Output dimension | Arbitrary | Same to ¢
Initial performance Low High
Training instabilities Low High

Table 6: Comparison between two initialization

F Hyperparameters of RL Training

The hyperparameters of RL training are displayed
in Table 7 and Table 8.

G

The training curves for Game24 and BabyAl are
shown in Figure 9 and Figure 10 respectively.

Additional Experiment Results

15

Algorithm 6 Generating prompts for LLMs

def get_query_examples_prompts(
query_transitions,
memory_transitions=None,
exp_name=None,

)
query_prompts = []
for idx in range(len(
query_transitions)):
query_prompt =
transition2example (
query_transitions[idx],
is_query=True, exp_name=exp_name
)
memory_prompt = ""
if memory_transitions is not
None:
for memory_transition in
reversed(memory_transitions[idx1]):
memory_prompt +=
transition2example (
memory_transition,
exp_name=exp_name
)
query_memory_prompt =
memory_prompt + query_prompt + "next
state:”
query_prompts.append(
query_memory_prompt)
return query_prompts
Hyperparameter Value
norm_adv True
clip_coef 0.2
entropy_coef 0.2
max_grad_norm 0.2
eps le-5
Table 7: Fixed Hyperparameters
Env ‘ Method H Hyperparameter Value
1 i le-4
R, | e 1
’ u
Game?24 pdate_cp
learning_rate le-5
RAWMRE -
veye || ypdate_epochs 5
RAWMEZLr . legrrtnn g_ratlfl: 1 ;:(—)4
BlocksWorld update_epochs
learning_rate le-5
RAwWMRL -
¥eye || update_epochs 10
RAWM?Z;]}and le(a;rltnng_ratlflz 3;:(—)6
BabyAl update_epochs
learning_rate Se-5
RAWMRL -
¥eye || update_epochs 10

Table 8: Modified Hyperparameters

Algorithm 7 MLP initializations

base_emb_dim: dimension of the pre-
trained embedding model, i.e., 1536
final_emb_dim: dimension of the MLP,
36 for rand and 1536 for eye
def layer_init(layer, std=np.sqrt(2),
bias_const=0.0, with_diag=False):
if with_diag:
torch.nn.init.eye_(layer.weight)
torch.nn.init.constant_(layer.
bias, 0.0)
else:
torch.nn.init.
weight, std)
torch.nn.init
bias, bias_const)
return layer

orthogonal_(layer.

.constant_(layer.

mlp_eye = nn.Sequential(
layer_init(

nn.Linear(

. . . 0.450
base_emb_dim, final_emb_dim),
with_diag=True B 0425
) , 50,400
) 8

. L0375
mlp_rand = nn.Sequential(—e— train
layer_init(nn.Linear(0350 e test

0 5 10 15 20 25 30 35 40 45 50
Training lteration

(a) RAWM]}/)]Trand (K =1

base_emb_dim, 64)),
nn.Tanh(),
layer_init(nn.Linear (64,

64)), 0.4550
nn.Tanh (), B 04525
layer_init(nn.Linear (64, Eoum
final_emb_dim), std=0.01), c

) é 0.4475

0.4450 ~®— train

—*— test

0 5 10 15 20

Training Iteration

(c) RawMyl, . (K =1)

0.475

0.450

0.425

Mean Reward
o
=
)
S

0375 —&— train

—*— test

0.350

0 5 10 15 20 25 30 35 40 45 50
Training lteration

(b) RAWpr%rand (K = 2)

0.4775
°
2
04750
&
= 04725
©
o
= 0.4700
—&— train
0.4675 T test
0 5 10 15 20
Training lteration
RL _
(d) RawME-, (K = 2)

Figure 10: Training curves on BabyAl.

0.625 0650
0.625
° °
xg 0.600 xg
D @ 0.600
 0.575 o
g g 0.575
2 0.550 2"
—o— train 0.550 —o— train
0.525 —#— test —*— test
0 5 10 15 20 24 0 5 10 15 20

Training lteration

(a) RAWMY' g (K = 1)

Training lteration

(b) RAWMS" 4 (K = 2)

0.57 0.60
el el
s S 0.59
2 0.56 =
& & 0.58
c c
§ 055 8057
= =
0.54 —e— train 0.56 —o— train
: —— test —+— test
0.55
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35

Training Iteration

(¢) RAWMY . (K =1)

Training Iteration

(d) RaWMY, . (K = 2)

Figure 9: Training curves on Game24.

16

	Introduction
	Related Work
	Preliminaries
	Retrieval-Augmented World Models
	Architecture
	Training

	Experiments
	Setup
	Evaluation
	Analysis of RQ1
	Analysis of RQ2
	Analysis of RQ3

	Conclusions
	Frequently Asked Questions (FAQs)
	Advantages of Rawm
	Why Focusing on Next State Prediction?
	Why Not Larger LLMs?
	What If RL Training Cannot Improve?
	Code and Dataset Availability

	Related Work
	Environments and Data Collection
	Game24
	BlocksWorld
	BabyAI
	Statistics of Datasets

	Prompts
	Model Selection
	World Models
	Architectures of MLP Head

	Hyperparameters of RL Training
	Additional Experiment Results

