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Abstract

Antibody design is a time-consuming and expensive process that often requires
extensive experimentation to identify the best candidates. To address this challenge,
we propose an efficient and risk-aware antibody design framework that leverages
protein language models (PLMs) and batch Bayesian optimization (BO). Our
framework utilizes the generative power of protein language models to predict
candidate sequences with higher naturalness and a Bayesian optimization algorithm
to iteratively explore the sequence space and identify the most promising candidates.
To further improve the efficiency of the search process, we introduce a risk-aware
approach that balances exploration and exploitation by incorporating uncertainty
estimates into the acquisition function of the Bayesian optimization algorithm.
We demonstrate the effectiveness of our approach through experiments on several
benchmark datasets, showing that our framework outperforms state-of-the-art
methods in terms of both efficiency and quality of the designed sequences. Our
framework has the potential to accelerate the discovery of new antibodies and
reduce the cost and time required for antibody design.

1 Introduction

Antibodies, also known as immunoglobulins, are proteins produced by the immune system to rec-
ognize and neutralize foreign substances. They play a critical role in the body’s defence against
infections and diseases [27]. The variable regions of an antibody are responsible for antigen recogni-
tion, are highly diverse, and consist of three complementarity-determining regions (CDRs) named
CDR1, CDR2, and CDR3. Among these CDRs, CDR3 exhibits the greatest variability and is often
referred to as the “hypervariable” region [32]. Efficient antibody design is becoming more and
more important because it has the potential to accelerate the development of effective treatments and
vaccines [15, 13].

Throughout the antibody design process, we strive to harness the full potential of antibodies by
tailoring their properties to meet specific requirements. By optimizing their affinity, stability, and
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other attributes, these designed antibodies offer promising prospects for targeted therapy, diagnostics,
and various biomedical applications [18, 2].

Typically, Experimental antibody design and screening can be time-consuming and expensive. Simu-
lation allows researchers to test a large number of potential antibody structure candidates and select
the most promising candidates for further experimental validation, saving time and resources. Im-
proving the process of simulations [33] can further provide insight into the properties and behaviour
of antibodies, such as binding affinity and specificity, which may be difficult to determine experi-
mentally [16, 8]. However, the sheer number of possible CDRH3 sequences in a combinatorial space
makes it infeasible to exhaustively examine any antibody simulation framework [19]. Therefore, we
need computational tools to guide our exploration of the protein landscape

Recently, Bayesian optimization has demonstrated its efficiency in exploring the sequence design
space [16, 3]. Bellamy et al [6] compared how noise affects different batched Bayesian optimization
techniques and introduced a retest policy to mitigate the effect of noise. Wang et al [30] discussed
using Bayesian optimization (BO) to design chemical-based products and functional materials,
showing that BO can significantly reduce the number of experiments required compared to traditional
approaches. However, for antibody sequence design where the search space dimension is extremely
large, it is very ineffective for Bayesian optimization. The choice of the acquisition function used to
guide the optimization process can also impact its effectiveness, and there may be a trade-off between
exploration and exploitation that must be carefully balanced.

We propose GLMAb-BO, an efficient way for antibody sequence optimization to address the above
challenges. Our main contributions are improving exploration efficiency by using protein language
models to filter out mutants with low fitness scores and designing a risk-aware acquisition function
based on the uncertainty of the prediction to improve the explorer’s ability. We demonstrate the
effectiveness of our proposed method on multiple antibody datasets. Our model can identify the
sequence with the best fitness score in the fewest rounds compared to other baselines.

2 Related work

Specially, we can use fitness scores to evaluate the bio function of the sequence, which play a
crucial role in antibody design as they serve as important indicators of the functional and structural
quality of antibodies. Higher fitness scores generally indicate better binding affinity, stability, and
other desirable properties. Many novel frameworks have been proposed to model various protein
sequences. Especially for pre-trained language models which demonstrate transfer learning ability
to predict fitness scores [29, 21]. In the context of antibody design, predicting fitness scores can
be highly beneficial. It provides a cost-effective alternative to conducting time-consuming and
expensive wet-lab experiments. By utilizing computational models and machine learning techniques,
researchers can efficiently evaluate the fitness of a large number of antibody sequences, prioritizing
those with higher predicted fitness scores for further experimental validation. The need for better
exploration algorithms, such as batch Bayesian optimization (BO), has gained attention in addressing
the challenges of sequence design. Belanger et al [5] explored the application of batched Bayesian
optimization in the context of biological sequence design, addressing the unique challenges and
investigating design choices for robust and scalable design. Furthermore, Gonzalez et al [10]
proposed a heuristic method based on an estimate of the function’s Lipschitz constant to capture the
interaction between evaluations in a batch. A penalized acquisition function is used to collect batches
of points, minimizing non-parallelizable computational effort. Khan et al [16] used a CDRH3 trust
region to restrict the search to sequences with favourable developability scores.

These studies highlight the ongoing efforts to address the challenges in sequence design for antibody
engineering. By incorporating bayesian optimization, researchers aim to enhance the efficiency and
effectiveness of antibody design and improve the sequence diversity.

3 Problem Formulation and Background

3.1 Antibody Sequence Design

Antibody Sequence Design can be formulated as a constrained optimization problem [1, 31, 16, 22].
Let x be a vector representing the CDRH3 amino acid sequence, and let f(x) be a fitness function that
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quantifies the quality of the antibody sequence in terms of target specificity and developability. The
problem is to find the optimal sequence x∗ that maximizes the scoring function subject to constraints:

max
x

f(x) s.t.x ∈ X , g(x) ≤ 0, (1)

where X is the set of all possible amino acid sequences for the CDRH3 region and g(x) represents
constraints on the biophysical properties of the sequence, such as stability and solubility. The
optimization problem aims to find the best antibody sequence that satisfies the biophysical constraints
and has the highest target specificity and developability scores. Bayesian optimization methods can be
used to efficiently solve this optimization problem by iteratively proposing candidate sequences that
are subsequently evaluated by a surrogate model and passed to an acquisition function that balances
exploration and exploitation.

3.2 Bayesian optimization

Bayesian Optimization (BO) is a sequential model-based optimization technique used to solve
expensive black-box optimization problems with a limited budget of function evaluations, which has
been applied to sequence modelling [16, 30].

We can express the BO process as follows: Let f(x) be the unknown fitness function we aim to
optimize, where x ∈ X is the input variable. Our goal is to find the global optimum x∗ that maximizes
f(x). However, doing a wet lab experiment to evaluate f(x) is expensive and time-consuming. The
acquisition function, denoted by α(x), measures the utility of evaluating a point x based on the
current surrogate model. α(x) balances exploration and exploitation by favouring points with high
uncertainty (exploration) or high expected improvement (exploitation). Popular acquisition functions
include expected improvement (EI), upper confidence bound (UCB), and probability of improvement
(PI) [34, 16].

The next evaluation point is selected by optimizing the acquisition function over the input space X :

xn+1 = argmaxx∈Xα(x) (2)

After evaluating f(xn+1), we update the surrogate model with the new observation (xn+1, yn+1)
and repeat the process until the budget of function evaluations is exhausted or a satisfactory solution
is found. Batch BO improves this by minimizing the exploration rounds.

4 Method

4.1 General language model guided candidate pool generation

Intuitively, we propose to use the General language model (GLM) trained on diverse antibody datasets
to score the candidate pool and filter out the sequence with lower fitness values in the vast sequence
space. Let C be the candidate pool consisting of N protein sequences, and let f(xi) be the fitness
score of sequence xi from candidate pool C obtained from the protein language model. We determine
the threshold fitness score t that filters out m% of the sequences with fitness scores less than or equal
to t. In the process of training our protein model GLM-Ab, we randomly mask one or two of the
CDR regions by replacing the entire region with a random mask. We also conduct random mask
fragments, by randomly masking one or more sections of the sequence.

Then, we can use GLM-Ab to score the sequences and determine an index k such that f(xk) ≤ t <
f(xk−1). Furthermore, by setting t = f(xk), the filtered set of sequences C′ with small search space
and higher naturalness is obtained as:

C′ = xi ∈ C | f(xi) ≥ t (3)

In other words, C′ contains all sequences in C with fitness scores greater than or equal to t based on
GLM scoring.
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4.2 Risk aware Bayesian optimization

Many previous works have been proposed to leverage uncertainty for biological discovery and
sequence design [12, 34, 16]. However, using traditional Gaussian processes [12] to measure the
uncertainty for a large sequence is extremely inefficient. Due to the complexity of the antibody design
space, we propose a risk-aware exploration to balance exploration and exploitation by selecting points
with high expected improvement and lower risk. In each round of optimization, we train an ensemble
of models to estimate the uncertainty, similar to the approach taken by PEX [22].

We assume the output of M surrogate models follows a normal distribution N (µs, σs). We can
divide the uncertainty of those model predictions as epistemic uncertainty (EU), σ2

e ; and aleatoric
uncertainty (AU), σ2

a [25, 28]:

σ2
e =

1

M

∑
(µ− µs)

2, σ2
a =

1

M

∑
s

σ2
s(x), (4)

where EU is based on the variance between the predictions of different surrogate models, and the
AU-estimated standard deviation provides a measure of the uncertainty associated with the predicted
values. EU quantifies the uncertainty associated with the lack of knowledge or variability in the
models themselves. EU can be reduced by increasing the number or quality of models.

Unlike PEX, we use a UCB acquisition function to evaluate sequence x. The UCB acquisition
function is defined as:

α(x) = µ(x) + βσ(x), (5)
where µ(x) is the mean ensemble prediction generates from surrogate models for a sequence x, and
β is a hyperparameter ( as 0.5 in our experiment) that controls the trade-off between exploration
and exploitation, and σ(x) is the ensemble standard deviation function of the surrogate model for
sequence x. In other words, σ(x) represents the aleatoric uncertainty of the prediction for sequence
x.

The risk-aware modification based on Equation 5 introduces a penalty term that depends on the
aleatoric uncertainty of the fitness values in the candidate pool:

αrisk(x) = µ(x) +
β

m+ risk
σ(x) (6)

where risk is the parameter that measures the variability, i.e., epistemic uncertainty, of the fitness
values prediction based on the surrogate model for the whole candidate pool. we select m = 0.5 is a
constant to avoid dividing by a very small value. The general purpose of this acquisition function is to
discourage the selection of points with high variability, which can lead to unstable and unpredictable
performance. To be more specific, the measure for risk is defined as:

risk =
1

|C|

|C|∑
i=1

σi (7)

It is calculated as the average of aleatoric uncertainty for the fitness values evaluation in the whole
generated candidate pool, where C ′ is the filtered candidate pool, and σi is the standard deviation of
the fitness values prediction for the ith candidate sequence.

In each round, we train the surrogate model fθ on the queried sequences with true fitness scores
from wet lab experiments (same as [22]). In the first few rounds, the surrogate model lacks good
prediction ability for the candidate pool and could have a higher epistemic uncertainty [25]. The
rationale for the risk measure is to consider epistemic uncertainty for the whole candidate pool, which
indicates a high risk of selecting a suboptimal point that may lead to a performance drop.

4.3 GLMAb-BO

The full algorithm of our proposed algorithm can be found in Algorithm 1. In each round of black-box
optimization, the whole framework is required to generate a query batch based on the measured
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Algorithm 1 Risk-aware Bayesian Sequence optimization
Input: Starting sequence (swt, f(swt)), Pre-trained protein language model G, surrogate model fθ,
measured buffer D, whole candidate pool C
Parameter: Initialize model parameter θ

1: for t = 1 to T do
2: while condition do
3: Use Equation 3 to generate filtered sequence pool C′ with higher naturalness.
4: Train ensemble of surrogate models fθ to get prediction µ and uncertainty σ, and risk.
5: Use the acquisition function based on Equation 6 scoring C′ to generate query sequence

batch Dquery
t .

6: Measure ground-truth fitness of Dquery
t by wet-lab experiments.

7: Update Surrogate model fθ using Dquery
t .

8: end while
9: end for

fitness score through wet lab experiments. We first utilize the pre trained unsupervised GLM-Ab
model to narrow down the candidate pool sequence space. Then, we integrate risk-aware batch
Bayesian optimization to propose a query batch for web lab experiments. The visualization of the
whole framework is in Figure 1.

Figure 1: Framework overview. In our proposed GLMAb-BO framework, we first use the pre-trained
GLM-Ab model G to filter out the sequence with unsatisfying naturalness in the candidate pool
and acquire D′, then we train an ensemble of surrogate models with GLM-Ab’s feature encoding
to predict the fitness the remaining sequences. When we acquire the ensemble mean µ, prediction
standard deviation σ, and the risk, we utilize the proposed risk-aware Bayesian Optimization (BO)
acquisition function to further evaluate the sequences. Finally, we use the top 100 sequences with
high predicted naturalness to conduct a wet-lab experiment (we use a hypothetical scenario due to
time constraints for replacement in this study) and perform another round of exploration until we
reach the exploration rounds limits.

5 Experiments

Absolut! framework [23] is used as a computational alternative to wet lab experiments for gener-
ating antibody-antigen binding datasets. It provides a deterministic simulation of binding affinity
using coarse-grained lattice representations of proteins, allowing evaluation of all possible binding
conformations between a CDRH3 sequence and an antigen. The framework has been benchmarked
and shown to produce consistent results compared to experimental data [16, 14]. And we use this
framework to generate the initial whole candidate pool.
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5.1 Baseline methods

In this study, several methods for antibody design optimization are compared. The Combinato-
rial Bayesian Optimization for Antibody Design (antbo) [16] approach employs combinatorial
Bayesian optimization to efficiently design antibody CDRH3 regions, using a trust region and a
black-box oracle for scoring specificity and affinity. Proximal Exploration (pex) [22] introduces
the Proximal Exploration algorithm and the Mutation Factorization Network architecture, which
prioritize high-fitness mutants with low mutation counts for protein sequence design. The Batch
Bayes Optimization (batchbo) [5] method uses a neural network ensemble with uncertainty esti-
mates to guide sequence batch selection using expected improvement. Random Search is employed
as a baseline for method comparison, randomly selecting subsets of sequences for reference. These
diverse methods provide insights into the optimization landscape and guide the development of more
advanced algorithms for protein sequence design.

Figure 2: Experimental results comparison on antibody datasets, each round of black-box optimization
can generate 100 proposal sequences. We use maximum measured fitness in each round as the
evaluation metric. The shaded area indicates the standard deviation given 5 random seeds.

5.2 Ablative study methods

In the ablative study, we assess the effectiveness of our proposed enhancements in the GLMAb-
BO method through various ablations. These include GLMAb-score, which focuses solely on the
highest predicted score from GLMAb on the candidate pool, and GLMAb-select, which removes the
acquisition function and relies solely on the surrogate model for sequence selection. Additionally,
GLMAb-random eliminates both the acquisition function and surrogate model, utilizing the GLM
model to filter sequences and then randomly selecting the top 100. GLMAb(w/o emb)-BO removes
the embedding of GLMAB’s CNN surrogate model to evaluate the feature embedding module.
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Table 1: Comparison of sequence optimization results on different datasets, we summarized maximum
fitness over 5 rounds, 10 rounds, and average maximum fitness over 10 rounds

Method 1JHL_A 1ADQ_A 1FNS_A 1PKQ_J 1RJL_C 1TQB_A 1UJ3_C 2R29_A 2R56_A 2UZI_R 2VXQ_A 2W9E_A overall
antbo (10) 100.18 102.76 123.32 109.86 94.64 119.84 112.26 102.34 104.69 117.17 97.01 102.62 107.22
pex (10) 100.18 104.75 127.91 108.79 96.47 118.98 112.89 101.11 103.97 114.54 98.77 104.37 107.73

random (10) 95.49 99.65 120.64 106.83 92.05 116.79 105.26 99.37 99.06 111.91 93.21 99.04 103.28
batchbo (10) 100.18 105.76 128.97 109.69 95.48 120.84 112.67 103.50 104.69 117.38 98.77 105.34 108.61

GLMAb-BO (10) 100.18 105.76 129.78 110.70 95.95 120.84 112.89 103.50 104.69 117.38 98.77 105.34 108.82
antbo (5) 94.07 98.38 120.23 98.71 88.49 111.09 100.50 95.19 97.29 106.22 91.32 98.32 99.98
pex (5) 97.36 100.36 121.45 106.87 87.86 113.09 110.23 93.60 94.11 104.87 94.34 98.77 101.91

random (5) 93.25 99.65 120.17 102.91 89.80 109.00 100.73 95.27 96.14 105.82 92.46 96.78 100.16
batchbo (5) 98.34 102.36 121.20 103.68 89.12 114.39 108.84 98.66 97.86 107.60 94.63 99.63 103.03

GLMAb-BO (5) 97.34 103.84 122.07 106.93 91.21 114.19 108.52 99.30 100.76 110.77 98.77 103.73 104.79
antbo (avg) 95.37 99.13 119.18 104.35 90.21 112.91 104.51 97.64 99.17 110.39 92.89 98.62 102.03
pex (avg) 96.21 100.64 121.84 104.89 90.73 114.14 108.22 96.21 96.18 109.51 94.74 100.51 102.82

random (avg) 92.00 97.40 117.36 102.86 88.95 110.34 101.26 95.15 95.29 106.08 90.63 96.43 99.48
batchbo (avg) 96.30 101.69 122.79 104.92 90.68 115.88 107.83 98.31 98.82 111.30 95.21 101.34 103.76

GLMAb-BO (avg) 96.83 102.25 123.63 106.40 92.19 115.86 108.50 99.30 100.60 112.38 95.63 102.37 104.66

Figure 3: Ablative study experimental results comparison on antibody datasets with 5 random seeds.

Table 2: Ablation results on different datasets,we summarized maximum fitness over 5 rounds, 10
rounds, and average maximum fitness over 10 rounds.

Method 1JHL_A 1ADQ_A 1FNS_A 1PKQ_J 1RJL_C 1TQB_A 1UJ3_C 2R29_A 2R56_A 2UZI_R 2VXQ_A 2W9E_A overall
GLMAb(w/o emb)-BO (10) 100.18 105.76 128.78 109.66 96.01 120.84 112.89 103.50 104.69 117.38 98.77 105.34 108.65

GLMAb-random (10) 95.78 102.01 123.56 105.67 93.92 117.82 110.10 100.85 101.15 113.15 95.61 101.74 105.11
Antiberty-BO (10) 100.18 105.34 128.97 109.64 95.48 120.83 110.94 103.50 100.88 117.38 98.77 105.34 108.10
GLMAb-select (10) 100.12 105.76 128.57 109.47 95.34 120.84 110.05 102.99 102.06 116.48 98.11 104.21 107.83
GLMAb-BO (10) 100.18 105.76 129.78 110.70 95.95 120.84 112.89 103.50 104.69 117.38 98.77 105.34 108.82

GLMAb(w/o emb)-BO (5) 98.11 104.45 120.94 104.34 92.43 118.78 107.23 100.91 94.93 107.81 92.06 100.50 103.54
GLMAb-random (5) 93.09 97.70 119.98 102.44 89.32 113.06 103.08 97.80 97.91 110.96 95.38 101.13 101.82

Antiberty-BO (5) 95.60 100.51 123.69 99.35 92.23 115.20 104.25 97.80 97.89 104.40 94.56 98.58 102.00
GLMAb-select (5) 97.45 100.89 122.53 105.18 93.84 112.97 109.71 99.84 100.49 108.74 96.87 103.37 104.32
GLMAb-BO (5) 97.34 103.84 122.07 106.93 91.21 114.19 108.52 99.30 100.76 110.77 98.77 103.73 104.79

GLMAb(w/o emb)-BO (avg) 96.59 102.12 123.06 105.24 92.23 116.72 107.78 99.73 99.30 111.74 94.66 101.62 104.23
GLMAb-random (avg) 92.49 97.39 118.25 101.34 89.57 111.92 105.60 97.08 96.15 109.21 93.13 98.94 100.92

Antiberty-BO (avg) 95.15 101.67 122.28 104.15 92.12 115.61 104.36 98.55 97.05 111.15 95.21 101.27 103.21
GLMAb-select (avg) 96.05 101.63 122.45 103.68 92.01 115.65 106.40 98.29 98.53 110.97 94.58 101.05 103.44
GLMAb-BO (avg) 96.83 102.25 123.63 106.40 92.19 115.86 108.50 99.30 100.60 112.38 95.63 102.37 104.66
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Moreover, the Antiberty-BO model replaces the GLM module with a different antibody-specific
transformer language model to gauge its impact on active learning efficiency.

5.3 Result analysis

5.3.1 Analysis of GLMAb-BO performance

The comparison results of different methods are presented in Figure 2 and Table 1, highlighting
notable findings. Firstly, batch-mode optimization methods (such as PEX and BatchBO) outperform
non-batch-mode methods (like AntBO) in terms of discovering sequences with higher fitness scores.
This advantage stems from the inherent diversity introduced by considering multiple sequences
simultaneously in batch mode optimization. In contrast, non-batch mode methods are more susceptible
to being trapped in local optima due to their limited diversity. Additionally, the utilization of GLMAb
to filter the extensive sequence optimization space facilitates the exploration process, enabling the
identification of optimal sequences within a few rounds. Moreover, leveraging feature embedding
pretrained from the GLMAb model enhances the performance of the surrogate model in predicting
fitness scores for unknown sequences, even with limited training data.

5.3.2 Analysis of submodule performance

For the second question, the comparison results with different ablative methods are shown in Figure
2 and detailed in Table 2. We find GLMAb-BO to perform better than Antiberty-BO in the first few
rounds, which indicates our pretrained GLMAb model’s ability to filter out more sequences with
unsatisfying naturalness. Meanwhile, we can find that with the help of the embedding feature from
GLMAb, the performance of GLMAb-BO is better than GLMAb(w/o emb)-BO on most datasets.

By comparing GLMAb-BO with GLMAb-select and GLMAb-random, we can find that they have
similar performance in the first few rounds thanks to the pre-trained GLM. However, given more
rounds, GLMAb-BO can find the sequence with the overall best fitness score which indicates that
our whole exploration framework can be helpful for exploring sequences with better naturalness. By
comparing only GLMAb-select and GLMAb-random, we can find that with the help of the trained
surrogate model, it can also greedily improve the searched sequence naturalness since it could have
overall better fitness in the last few rounds.

6 Conclusion

In conclusion, we have presented an efficient and risk-aware antibody design framework that combines
the power of protein language models and batch Bayesian optimization. Our approach addresses
the challenges of time-consuming and expensive experimentation by leveraging predictive models
to generate candidate sequences with higher naturalness and employing Bayesian optimization to
explore the sequence space effectively. By incorporating uncertainty estimates into the acquisition
function, our framework achieves a balance between exploration and exploitation, resulting in the
identification of promising antibody candidates. Through extensive experiments on benchmark
datasets, we have demonstrated the effectiveness of our method. Our framework surpasses state-of-
the-art approaches in terms of both efficiency and the quality of designed sequences. By reducing the
cost and time required for antibody design, our framework has the potential to expedite the discovery
of new antibodies and contribute to advancements in the field.
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Appendix

Training of protein language model

Since pretraining General language models (GLM) [9] pretrained on natural languages have achieved noteworthy
performance, we leveraged the GLM framework to train a language model of antibodies with 1 billion parameters
(GLM-Ab). Specifically, GLM-Ab is trained on both the understanding (in-place token prediction) and the
generation (next token prediction) tasks, which contain a blank filling task, a recovering random masked span
task and a recovering CDR deleted region task. The model is trained on Observed Antibody Space [17] with
a max length of 1024, 230K steps, and 2048 samples per batch. Other hyperparameters are the same with the
official implementation of GLM [9].

Following [20, 4, 11], we utilize the perplexity (PPL) given by a protein language model to predict the fitness of
proteins. The main training scheme and hyper-parameters are following [7].

Correlation evaluation of protein language model with the CDR3 antibody candidate pool

To shed light on the relevance of the pre-filtering with our pre-trained protein language model. We plot the
correlation between the predicted value and ground truth value on the candidate pool datasets using different
protein language models. As demonstrated from Figure 4 and 5, we can find that our pre-trained GLM-Ab can
have a better correlation than Antiberty, which makes it becomes more useful for pre-filtering out the sequence
with low naturalness. However, we still find that the correlation is not quite high even lower than 0.5 which can
validate that the BO model for sequence exploration is very necessary.

Figure 4: Correlation analysis between GLM-Ab and the candidate pool.

Figure 5: Correlation analysis between Antiberty and the candidate pool.
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Training of surrogate model

Constructing a surrogate model to facilitate the selection of mutants in in-silico evolutionary processes is an
effective approach to mitigate the resource-intensive nature of wet-lab experiments. This involves training
a fitness model denoted as f̂θ, where θ represents the model’s parameters, to predict the fitness of mutant
sequences. Specifically, the surrogate model is optimized by minimizing the regression loss function L(θ) =

Es ∼ D

[(
f̂θ(s)− f(s)

)2
]

, where D signifies a dataset containing experimentally measured sequences. The

acquired surrogate model f̂θ becomes capable of predicting the fitness of previously unseen sequences, thereby
guiding in-silico sequence exploration and enhancing the efficiency of directed evolution while reducing the
need for extensive experimental efforts. Built upon the above trained GLM-Ab model’s embedding, we add 6
layers of CNN module which is adapted from [26].

Baseline methods setup
• Combinatorial Bayesian Optimisation for Antibody Design (antbo): Khan et al introduced a

combinatorial Bayesian optimization framework for efficient in silico design of the CDRH3 region
of antibodies. They used a CDRH3 trust region to restrict the search to sequences with favorable
developability scores and a black-box oracle to score target specificity and affinity. However, it could
only propose one sequence in each round of optimization. We adapt this method to propose 100
sequences to make a fair comparison.

• Proximal Exploration(pex): Ren et al proposed the Proximal Exploration (PEX) algorithm and
the Mutation Factorization Network (MuFacNet) architecture for machine learning-guided protein
sequence design. The PEX algorithm prioritizes the search for high-fitness mutants with low mutation
counts, leveraging the natural property of the protein fitness landscape that a concise set of mutations
upon the wild-type sequence are usually sufficient to enhance the desired function. The MuFacNet
architecture is designed to predict low-order mutational effects, improving the sample efficiency of
model-guided evolution.

• Batch Bayes Optimization (batchbo): We follow the idea from [5], and we apply the neural network
ensemble with uncertainty estimate on the batch of sequence and use expected improvement as the
acquisition function.

• Random Search: This method involves randomly selecting a subset of sequences from a larger
pool, with the goal of establishing a reference point against which the performance of other methods
can be compared. While this approach is simple, it can be useful for identifying cases where more
sophisticated algorithms may be necessary. However, the quality of the baseline can be highly
dependent on the selection method and the size of the subset. Therefore, care must be taken in the
selection process to ensure that the resulting subset is representative of the larger pool of sequences.
Overall, random selection can provide a valuable starting point for evaluating the performance of more
advanced algorithms in a variety of bioinformatics applications.

Ablative study methods setup

For the ablative study, we aim to evaluate the effectiveness of our proposed improvements. We construct several
ablative versions based on our proposed GLMAb-BO method. We construct the following baselines:

• GLMAb-score: for this method, we only report the highest predicted score generated by GLMAb on
our raw candidate pool D.

• GLMAb-select: for this model, we eliminate the acquisition function, i.e., the evaluation function
from Equation 6. And we only use the surrogate model to select the top sequence for the query.

• GLMAb-random: for this model, we eliminate both the acquisition function, i.e., the evaluation
function from Equation 6 and the surrogate model. We only use the GLM model to filter out the
sequence with worse scores. Then, we use a random method to select the top 100 query sequences.

• GLMAb(w/o emb)-BO: for this model, we only eliminate the GLMAB’s embedding on top of the
CNN surrogate model to test the effectiveness of the feature embedding module.

• Antiberty-BO: To evaluate the effectiveness of our proposed method’s GLM module for active
learning, we also tried another antibody-specific transformer language model [24] to replace the GLM
module used before.

The detailed ablative methods’ configuration summarization is summarized in Table 3.
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Table 3: Comparison of the configuration of different ablation study methods
Method PLM Surrogate

model
Acquisition
function

GLMAb-score GLMAb × ×
GLMAb-
random

GLMAb × random

GLMAb-select GLMAb GLMAb
emb+CNN

×

GLMAb(w/o
emb)-BO

GLMAb CNN BO

Antiberty-BO Antiberty Antiberty
emb+CNN

BO

GLMAb-BO
(full model)

GLMAb GLMAb
emb+CNN

BO
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