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Abstract— In this paper, we present a novel algorithm for
probabilistically updating and rasterizing semantic maps within
3D Gaussian Splatting (3D-GS). Although previous methods
have introduced algorithms which learn to rasterize features
in 3D-GS for enhanced scene understanding, 3D-GS can fail
without warning which presents a challenge for safety-critical
robotic applications. To address this gap, we propose a method
which advances the literature of continuous semantic mapping
from voxels to ellipsoids, combining the precise structure of
3D-GS with the ability to quantify uncertainty of probabilistic
robotic maps. Given a set of images, our algorithm performs
a probabilistic semantic update directly on the 3D ellipsoids to
obtain an expectation and variance through the use of conjugate
priors. We also propose a probabilistic rasterization which
returns per-pixel segmentation predictions with quantifiable
uncertainty. We compare our method with similar probabilistic
voxel-based methods to verify our extension to 3D ellipsoids,
and perform ablation studies on uncertainty quantification and
temporal smoothing.

I. INTRODUCTION

In order to plan, robots require a world model which
captures geometric detail and higher levels of information
about their environment. Although some papers propose
mapless navigation [1]–[3], maps are still widely used due
to an interpretable world model which temporally adapts as
robots explore their surroundings. Depending on the robot
application, maps can store different types of information to
increase scene understanding.

For many robotic applications, uncertainty of the map
is necessary to ensure safe planning in safety-critical en-
vironments. In these situations, robots must understand not
only the type and location of objects, but confidence in
the predictions as well. Uncertainty can arise from noisy
perception networks, sensor noise, and sparse views which
can ultimately result in incomplete maps.

Continuous mapping combats sparse data by leveraging
spatial relations of points to fill in gaps in the map from
sparse data probabilistically and with quantifiable uncertainty
[4], [5]. Continuous mapping has been successfully applied
to applications such as elevation mapping [6] and semantic
mapping, by incorporating measurements into nearby cells in
the robotic map through a kernel [7]. The kernel effectively
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(a) Well fitted 3D-GS render. (b) Poorly fitted 3D-GS render.

(c) Semantic prediction on poorly
fitted render.

(d) Semantic uncertainty on poorly
fitted render.

Fig. 1: While 3D-GS may provide high quality renderings of the environ-
ment at novel views with sufficient training data, it may fail to render views
which are occluded, unseen, or at different angles from the training data.
In the above image, CSS produces semantic (c) and RGB (b) predictions
at a novel view without sufficient training data, resulting in a blurry render
and incorrect segmentation. Through probabilistic inference, CSS identifies
blurs and gaps in the render which correlate with reconstruction quality (d).

defines the influence of input points over nearby cells proba-
bilistically, leading to a closed form update solution through
Bayesian Kernel Inference (BKI). However, one challenge of
BKI is defining the kernel function, which is generally hand-
crafted and recently was shown to be learnable, resulting in
3D ellipsoid shapes [8]. Additionally, BKI has been limited
to grid-based solutions which are prone to discretization
errors and require accurate depth estimation.

Separately, 3D Gaussian Splatting (3D-GS) proposes a
new method for novel view synthesis, which learns to model
the world explicitly as 3D ellipsoids, with high quality
renderings from any angle without the discretization error
of grid-based map representations [9]. 3D-GS has captured
the attention of the robotics community, with many methods
proposing to add additional features to 3D-GS [10], [11]
and incorporate 3D-GS into simultaneous localization and
mapping (SLAM) pipelines [12], [13]. Some works have re-
cently explored quantifying information gain [14] or optimal
ellipsoid pruning [15] in 3D-GS through Fisher Information,
however quantifying uncertainty from noisy segmentation
networks or novel views remains a challenge.

In this work, we leverage the insight that 3D-GS learns
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valid kernels to propose a novel method for uncertainty quan-
tification in 3D-GS. Our method, which we call Continuous
Semantic Splatting (CSS), incorporates semantically labelled
images in a Bayesian framework to capture the semantic
uncertainty of each 3D ellipsoid. Additionally, through a
novel rasterization method, we capture the semantic variance
from noisy segmentation predictions in pixel space, as well
as information on conflicting categories caused by poor
renderings at novel views. To summarize, our contributions
are:

i. Extend continuous mapping literature from voxel grids
to 3D-GS world representation.

ii. Formulate novel 3D-GS semantic update with quantifi-
able semantic variance of ellipsoids.

iii. Probabilistic semantic 3D-GS rasterization with quan-
tifiable uncertainty.

II. RELATED WORK

In this section we briefly review relevant literature on
probabilistic semantic mapping and continuous Bayesian
Kernel Inference (BKI), which approaches the ellipsoid
world model representation of 3D-GS with quantifiable
uncertainty however lacks expressive kernels and remains
limited to voxel structures. Next, we present background on
the recently developed 3D-GS world model representation,
which learns an ellipsoid world model representation with
rotation yet lacks innate uncertainty quantification.

A. Probabilistic 3D Semantic Mapping

In 3D semantic mapping, the goal of the algorithm is to
receive sequences of exteroceptive data and update a 3D
model of the world with semantic labels and quantifiable
uncertainty. A direct approach to solve this problem is to
leverage off-the-shelf neural networks to semantically label
3D exteroceptive data, and probabilistically update the map
cells occupied by the point through either a voting scheme
or Bayesian update [16]–[20]. However, this form of update
may lead to sparse maps due to sparse 3D data. To counteract
the sparsity of 3D data, Gaussian Processes (GP’s) can
incorporate input points to form a more complete map [21]–
[23]. However, GP’s have a cubic computational complexity
with respect to the number of input points, rendering their
use impractical in scenes with high amounts of sensory data.
As a result, BKI [4] is widely used as an approximation
of GP’s to efficiently model the influence of sparse points
on the map through kernel inference [5]. Semantic BKI [7]
extended the BKI framework to semantic labels, and has
been applied to applications such as off-road driving [24],
[25] where uncertainty is critical.

However, one limitation of Semantic BKI is kernel se-
lection, as kernels are generally hand-crafted. ConvBKI
proposes to learn the shape of the kernel through a neu-
ral network, resulting in 3D ellipsoid shapes per semantic
category [8]. While the categorical shapes learned by Con-
vBKI can enable better informed continuous mapping, the
kernels are limited due to the discretization of voxels, the
lack of a rotation on the 3D ellipsoid distribution of input

points, as well as requiring pre-training on a separate set of
semantic segmentation labels. To alleviate these limitations,
we propose to extend continuous semantic mapping to 3D-
GS, which learns 3D ellipsoid distributions with rotations on
more readily available camera data.

B. 3D Gaussian Splatting

3D Gaussian Splatting (3D-GS) [9] is a new method for
novel view synthesis which represents the world explicitly as
3D ellipsoids with color, as opposed to previous methods for
novel view synthesis which represented the world implicitly
such as Neural Radiance Fields (NeRF’s) [26]. Given a set of
input images, 3D-GS optimizes the number, location, shape,
and color of a set of 3D ellipsoids to best represent the
training images. 3D-GS does not require pixel-wise depth
predictions of the training images to predict colors, due to a
depthwise rasterization process known as alpha compositing.
After training, the 3D-GS model can be used to render
images at any pose with high quality [27].

Due to the explicit 3D ellipsoid representation and high
rasterization quality, 3D-GS has been expanded through
works which improve the semantic scene understanding of
the model [10], [11], and apply the representation to classic
robotics problems such as SLAM [12], [13]. Most works
focusing on improving the semantic scene understanding of
3D-GS incorporate features from off-the-shelf segmentation
network by learning to render images with features. While
this approach has demonstrated success, learning the features
does not allow for uncertainty quantification in the model
or of the rendered images, and can fail without warning.
As previously discussed, uncertainty quantification is an
important capacity of robotic maps, which has led several
works to examine uncertainty quantification of 3D-GS [14],
[15]. However, methods for uncertainty quantification of
3D-GS are limited, and extending probabilistic methods
from classical robotic mapping to 3D-GS remains an active
question. Therefore, we propose to bridge the gap between
uncertainty quantification in probabilistic robotic mapping
and 3D-GS by leveraging the insight that the 3D ellipsoid
shape learned by 3D-GS is a valid kernel which can be
incorporated into the BKI framework.

III. METHOD

In this section, we introduce our method Continuous Se-
mantic Splatting (CSS), which probabilistically updates and
rasterizes 3D semantic predictions in the 3D-GS representa-
tion using continuous BKI. First, we introduce preliminaries
on the 3D-GS ellipsoid representation. Next, we introduce
preliminaries on BKI and demonstrate how our method
extends BKI to 3D-GS. Finally, we present a method for
rasterization of the 3D conjugate prior distributions which
maintains quantifiable uncertainty in the pixel space.

A. Preliminaries: Gaussian Splatting

3D Gaussian Splatting represents a scene through 3D
ellipsoids with location µ, opacity α, rotation R, scale S,
and color c. Together, the scale and rotation define the shape



Fig. 2: 3D-GS renders pixels as a linear combination of 3D ellipsoids, where
the influence of each 3D ellipsoid is determined by the spatial position and
shape of the ellipsoid xn relative to pixel xi as κ(xi, xn). We propose to
leverage the learned expressive kernels of 3D-GS to perform a probabilistic
semantic update and rasterization which enables uncertainty quantification.

of the ellipsoid, Σ, which determine the influence of the
ellipsoid over pixels together with the ellipsoid’s location
and opacity. To render a 2D image, 3D ellipsoids are first
converted to a 2D ellipsoid with shape Σ′

n and location µ′
n

in a process known as splatting [9], [27]. Given a 2D pixel
with location x′

i and a 2D splat n, the spatial contribution
of the splat is first calculated through a kernel as:

k(x′
i, x

′
n) = exp

(
−1

2
(x′

i − µ′
n)

TΣ′−1
n (x′

i − µ′
n)

)
, (1)

where a pixel located at the center of the ellipsoid would
result in a contribution of 1. This kernel can be combined
with the ellipsoid’s opacity to obtain a measure of influence
on a passing pixel:

α′
n = αn · k(x′

i, x
′
n). (2)

Depths of the 3D ellipsoids are incorporated into the 2D
rendering through alpha compositing, which weights the
contribution of each ellipsoid to the pixel’s color through
depthwise sorting as:

κ(x′
i, x

′
n) = α′

n

n−1∏
j=1

(1− α′
j), (3)

resulting in a final blended pixel color of:

Ci =
N∑

n=1

cnκ(x
′
i, x

′
n). (4)

Altogether, κ(x′
i, x

′
n) defines the contribution of ellipsoid

n to the total color C, as a function of the ellipsoid’s depth,
shape, and opacity. Note that the contribution of the ellipsoid
evaluates to a number between 0 and 1 in all cases, with a
value of 1 when the pixel ray terminates exactly at the center
of the 3D ellipsoid. Based on this insight, we propose that
κ(x′, µ′

n) is a valid kernel that satisfies the constraints of
BKI which we present next.

B. Probabilistic Semantic Update

Given a fully trained 3D-GS model on a set of im-
ages I, we propose to leverage the learned kernels of
3D-GS to perform a probabilistic Bayesian update on the
semantic belief of each 3D ellipsoid with BKI. Compared
with previous work, our method does not require additional
training to learn to render features. Instead, CSS extends

classical probabilistic robotic mapping methods to 3D-GS
with quantifiable uncertainty.

For each image in our training set, we first use an off-
the-shelf neural network to obtain semantic segmentation
predictions yi for each pixel xi, where yi is a one-hot
encoded vector. Given the training data, our goal is to learn
the category of each ellipsoid by defining a categorical
likelihood:

p(yi|θi) =
C∏

c=1

(θci )
yc
i . (5)

However, in 3D-GS each pixel is rasterized through partial
observations of many ellipsoids. Likewise, the semantic
category of each pixel should influence the semantic belief of
the same set of ellipsoids. Based on this insight, we propose
to perform the Bayesian update with BKI, which relates the
likelihood p(yi|θi) to the extended likelihood p(yi|θn, xi, xn)
through a kernel as:

p(yi|θn, xi, xn) ∝ p(yi|θi)κ(xi,xn). (6)

The only requirements on the kernel function are that

0 ≤ κ(xi, xn) ≤ 1 and κ(xi, xn) = 1∀xi = xn, (7)

which the 3D-GS kernel satisfies. Based on this observation,
BKI provides a method to relate semantic segmentation of
pixels to the semantic state of the ellipsoid the pixel passes
through. Incorporating the categorical likelihood of a pixel
into the extended likelihood formulation yields:

p(yi|θn, xi, xn) ∝

[
C∏

c=1

(θci )
yc
i

]κ(xi,xn)

, (8)

which effectively defines the semantic likelihood of a pixel
according to the influence of ellipsoid n over the pixel.
Next, we define a prior distribution over the semantic state
of ellipsoid n using the conjugate prior of the categorical
distribution, the Dirichlet distribution. The Dirichlet dis-
tribution defines a distribution over a distribution through
concentration parameters α, as:

p(θn) ∝
C∏
i=1

θ
αc

n−1
n,c . (9)

The concentration parameters model the counts of ob-
servations of each category, and can be decoded into an
expected categorical distribution, and variance. Intuitively,
more observations results in lower variance or uncertainty,
and the probability of each category can be identified through
normalization:

E[θcn] =
αc
n∑C

j=1 α
j
n

, Var[θcn] =
E[θcn](1− E[θcn])
1 +

∑C
j=1 α

j
n

. (10)

Combining the conjugate prior distribution and extended
likelihood, the Bayesian update over the semantic category
of ellipsoid n given all training pixels D can be written as:



p(θn|xn,D) ∝

 N∏
i=1

[
C∏

c=1

(θcn)
yc
i

]κ(xn,xi)
 C∏

c=1

θ
αc

n−1
n,c , (11)

which can be simplified to an un-normalized update of the
concentrations parameters:

αc
n ← αc

n +

N∑
i=1

κ(xi, xn)y
c
i . (12)

To summarize, given a set of images I and a pre-trained
3D-GS model on the set of images, we first label each pixel
xi in the set of training images with an off-the-shelf semantic
segmentation network to obtain per-pixel one-hot encoded
predictions yi. Next, we adopt an uninformative conjugate
prior over the semantic category of all 3D ellipsoids [7].
Last, we update the concentration parameters of each 3D
ellipsoid by computing an un-normalized sum over all pixels
the ellipsoid influences with Eq. (12).

C. Probabilistic Semantic Rasterization

While the BKI update is able to capture variance in the
semantic segmentation input network, it does not capture
uncertainty in novel views directly. We propose to leverage
the rasterization process of 3D-GS to render semantic pre-
dictions with uncertainty in the pixel space. Our intuition
is that 3D-GS rasterizations can fail in three ways which
can be captured through semantic uncertainty. First, semantic
rasterization can fail when the input segmentation network is
noisy, resulting in high variance predictions. Second, at novel
views there may be an absence of ellipsoids, in which case
the extended likelihood would have high variance. Finally,
novel views may have a blur of objects resulting in a high
probability of conflicting categories. Therefore, we propose
to model the categorical distribution of the rendered pixel as
a linear combination of 3D ellipsoids:

θi =

N∑
n=1

κ(xi, xn)θn. (13)

The expectation of the categorical variable can then be
rasterized directly through the 3D-GS rasterization process:

E (θi) =

N∑
n=1

κ(xi, xn)E (θn) , (14)

and the variance can be similarly modeled under an assump-
tion of independence between ellipses:

Var (θi) =
N∑

n=1

κ(xi, xn)
2Var (θn) . (15)

When performing alpha compositing to render images,
3D-GS incorporates a background class to fill the absence of
ellipsoids. In this case, the background is treated as another
ellipsoid, however the weight of the background color is:

κ(xi, xb) = 1−
N∑

n=1

κ(xi, xn), (16)

where xb is the background. Similarly, we propose to in-
corporate a background distribution, where θb ∼ Dir(αb)
and αb is a small positive number uniformly distributed for
each category, such that the background has high semantic
uncertainty. Due to the formulation of our problem within
3D-GS, variance and expectation both provide important
measures of uncertainty with a trade-off in information
about conflicting ellipsoid categories (expectation), or few
observations (variance).

D. Uncertainty at Image Level

From the pixels, we may also desire uncertainty at the
image level for tasks such as active perception. Inspired by
D-Optimality [28], [29], which defines a functional of the
covariance matrix to estimate information, we compute the
uncertainty of an image I from the variance as:

U(IVar) =
n
√
|ΣI |

= exp
(
1
n

∑n
i=1 log

(
Var(θ̂i)

))
, (17)

where n is the number of pixels in the image and θ̂ is the
categorical variable indexed by the most likely category. We
can also obtain a measure of uncertainty from the expectation
as:

U(IE) = 1−
∑n

i=1 E(θ̂i)
n

, (18)

where the sign is flipped to obtain the uncertainty. This
heuristic for uncertainty indicates the pixel-wise average of
the probability mass for all non-predicted categories. Intu-
itively, a low probability mass of non-predicted categories for
a pixel indicates low confidence in the predicted categories.

IV. RESULTS

In this section, we verify the probabilistic update and ras-
terization of our method by comparing to similar voxel-based
approaches. We demonstrate that our application of kernel
inference to 3D-GS is valid experimentally, as demonstrated
by comparable precision, with the benefit of a more complete
representation without a requirement of accurate depth. Next,
we study the uncertainty quantification capabilities of our
method on semantic variance caused by noisy segmentation
networks, as well as image rasterization errors caused by
insufficient training data. Finally, we study the smoothing
effect of our model and the performance gap of our method
with perfect segmentation.

A. Comparison to Voxel-Based Methods

Following the experimental setup of Semantic BKI (S-
BKI) [7] which our work is built on, we compare our
approach to several probabilistic voxel-based approaches on
the KITTI driving dataset [30] to validate our approach
against similar mapping algorithms. All methods are pro-
vided the same set of images and corresponding semantic
segmentation predictions [31]. Whereas the voxel-based ap-
proaches require pixel-wise depth predictions estimated from
ELAS [32], our approach requires pre-training to learn the



(a) RGB Image of Frame (b) Ground Truth Segmentation. (c) Input Segmentation.

(d) Semantic-BKI Predictions. (e) Our Predictions. (f) Uncertainty (Expectation) of Our Predictions.

Fig. 3: Comparison of our method to a probabilistic voxel baseline on the KITTI driving dataset. Our method achieves similar segmentation results on
pixels predicted by the voxel method, and predicts more of the scene due to the lack of a requirement for accurate depth. Additionally, our method does
not have discretization, which is beneficial for fine categories such as poles.

structure of the scene. Models are evaluated on the mean
Intersection over Union (mIoU) metric of per-pixel semantic
segmentation predictions. The most direct comparisons are
Semantic BKI [7], which applies the BKI operation on voxels
with a spherical kernel, and ConvBKI [8] which applies the
BKI update on voxels with learned per-category kernels.

First, we compare our approach to voxel-based approaches
on all pixels within each image. Qualitative results are shown
in Fig. 3, and quantitative results are shown in Table I.
Whereas voxel-based approaches are unable to complete the
entire scene due to requiring accurate per-pixel depth, 3D-
GS is capable of rendering the entire scene without depth.
This difference is visible qualitatively by comparing the gaps
in the voxel map generated by Semantic BKI in Fig. 3 to the
semantic rendering produced by our method which does not
have any gaps. The quantitative evaluation in Table I also
supports this claim, as our method achieves a higher mIoU
than all probabilistic baselines, as well as improving upon
the input segmentation network, highlighting the ability of
our method to incorporate sequences of images. While Table
I demonstrates improvement in completion, we would like
to note that the performance of the voxel-based methods is
correlated with the accuracy of depth predictions, and may
improve with better depth estimation algorithms.

Therefore, to understand the ability of our method to
incorporate semantic measurements into a 3D model more
directly compared to voxel-based methods, we quantitatively
compare our model over the same set of masked pixels pro-
duced by the probabilistic approaches. Since all algorithms
are provided the same set of data, we would expect the results
on semantic segmentation produced by the map to be similar.
This is visually apparent in Fig. 3, as well as demonstrated

TABLE I: Results on KITTI Odometry sequence 15 [30]. 3D-GS is able
to complete more of the scene since it does not rely on accurate depth
estimation for training or rasterization.
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Segmentation [31] 92.1 93.9 90.7 81.9 94.6 19.8 78.9 49.3 75.1

Yang et al. [33] 32.9 85.8 59 79.3 61 0.9 46.8 33.9 50
BGKOctoMap-CRF [5] 50 86.6 64.1 74.9 61 0.0 47.5 36.7 52.6
S-CSM [7] 42.6 87.3 62.9 77.9 62.6 17.1 47.7 34.8 54.1
S-BKI [7] 49.3 88.8 69.1 78.2 63.6 22 49.3 36.7 57.1

Ours 95.5 95.8 89.2 84.8 95.5 25.4 80.8 45.1 76.5

TABLE II: Results on KITTI Odometry sequence 15 [30] of masked pixels
which have predictions from S-BKI.
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Segmentation [31] 92.1 93.9 90.7 81.9 94.6 19.8 78.9 49.3 75.1

Yang et al. [33] 95.6 90.4 92.8 70.0 94.4 0.1 84.5 49.5 72.2
BGKOctoMap-CRF [5] 94.7 93.8 90.2 81.1 92.9 0.0 78.0 49.7 72.5
S-CSM [7] 94.4 95.4 90.7 84.5 95.0 22.2 79.3 51.6 76.6
S-BKI [7] 94.6 95.4 90.4 84.2 95.1 27.1 79.3 51.3 77.2
ConvBKI [8] 94.0 95.6 91.0 87.2 95.1 22.8 81.9 54.3 77.7

Ours 95.6 94.9 90.7 84.8 95.3 8.8 79.8 60.8 76.3

quantitatively in Table II, where results are mixed between
categories. These results confirm our intuition that CSS
performs a valid probabilistic update and rasterization.

One significant difference between our method and voxel-
based BKI methods is in the sign and pole categories, where
our method achieves a higher mIoU on the pole category but
a lower mIoU on the sign category than ConvBKI and Se-
mantic BKI. From examining the confusion matrices of both
methods, we find that our method is prone to mislabeling the
sign as a pole. This likely occurs because 3D-GS learns to
combine visually similar categories into the same structure,
whereas the ground truth of the KITTI dataset separates the
sign and sign-post as two separate categories. Combining the
sign and pole into one pole category, shown in Table III, we
find that our method outperforms Semantic BKI on mIoU,
and particularly on the combined pole and sign category. This
result demonstrates that 3D-GS is more suitable for complex
and detailed environments, where discretization from voxels
cannot adequately represent thin objects.

B. Uncertainty Quantification

We perform studies on an indoor environment created with
the Replica simulator, which offers high-quality images and
ground truth semantic labels [34], [35]. In this experiment,

TABLE III: Results on KITTI Odometry sequence 15 [30] of masked pixels
which have predictions from S-BKI. Compared with Table II, we combine
the pole and sign categories into a single pole category.
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S-BKI [7] 94.5 96.2 90.2 87.5 95.2 50.7 80.1 84.9

Ours 95.6 94.9 90.7 84.8 95.3 61.4 79.8 86.1



(a) Color rendering. (b) Semantic rendering (GT).

(c) Semantic rendering (LSeg). (d) Semantic variance (LSeg).

Fig. 4: Rasterizations from our method on an indoor environment. Our
method achieves high quality semantic renderings using ground truth
segmentation, shown in (b). Even with noisy segmentation input our method
is capable of improving the segmentation with temporal smoothing (c), and
can quantify uncertainty (d).

405 images are collected along a manually controlled trajec-
tory in the room_0 scene in order to simulate a robot path.
The data contains 28 unique classes, including basic classes
such as wall and floor, as well as more difficult classes such
as electrical outlets. An example of the data can be found in
Fig. 4. In order to study uncertainty quantification, we group
predictions into bins by confidence, and iteratively remove
the least confident sets of predictions, known as sparsification
[36]. If uncertainty is properly calibrated, we would expect
to see the performance improve as less confident predictions
are removed.

Uncertainty of Segmentation To analyze the ability of
our method to quantify uncertainty in the segmentation
rasterizations caused by noisy input segmentation networks,
we generate segmentation predictions for every image with
the open-dictionary segmentation model LSeg [37]. Next, we
train a 3D-GS model on all images of the dataset and update
the concentration parameters of the 3D-GS model with the
LSeg predictions. From the final concentration parameters,
we generate pixel-level segmentation predictions for every
image, as well as uncertainty calculated by the expectation
and variance. Plotting the sparsification in Fig. 5, we find
that both variance and expectation are highly correlated with

(a) Pixel-level Sparsification. (b) Image-level Sparsification.

Fig. 5: Sparsification plot of pixel-level and image-level uncertainty. Uncer-
tainty quantification from the expectation and variance are effective at both
the image and pixel level.

TABLE IV: Segmentation results on Replica dataset.
Method mIoU (%) Accuracy (%)
LSeg 25.5 70.7
Ours (LSeg Segmentation) 28.4 76.7
Ours (GT Segmentation) 73.7 97.0

segmentation accuracy. Additionally, we compare against a
heuristic baseline which computes confidence proportional
to the amount of times ellipsoids have been observed. Con-
cretely, pixel-wise confidence is computed as a weighted av-
erage of the Dirichlet normalization constants of contributing
ellipsoids.

Uncertainty of View Next, we repeat the experiment at
the image level, comparing image uncertainty from expec-
tation and variance with the PSNR of the images using
the predictions from LSeg. Instead of providing all images
from the sequence to train the 3D-GS model and update
the concentration parameters, only the first 100 frames are
provided as training data, so that we can examine uncertainty
quantification on unseen views. For this experiment, we
also compare against an oracle baseline, which quantifies
uncertainty according to the actual PSNR of each image.
Both methods of quantifying uncertainty are again correlated
with image-level PSNR, and with performance close to that
of the oracle.

C. Smoothing Effect

Last, we study the smoothing effect of the continuous
mapping operation on the predictions from LSeg in Table IV.
First, we compare the accuracy and mIoU of the predictions
from our model with the predictions from LSeg. We find that
our method improves over the predictions of LSeg in both
metrics, due to temporal incorporation of the segmentation
predictions. Next, we repeat the process with ground truth
segmentation to examine the loss from using 3D-GS as a map
representation. We find that the accuracy is close to 100%,
however the mIoU suffers in a couple of categories. Similar
to before, we find that visually similar classes are blended,
such as the electrical outlet being labeled incorrectly as wall.

V. CONCLUSION

In this paper, we introduced a novel method for probabilis-
tically incorporating semantic segmentation predictions into
a 3D-GS world model. Our method combines the uncertainty
quantification abilities of classical robotic mapping methods
with the modern ellipsoid representation of 3D-GS by noting
that the ellipsoids learned by 3D-GS are a natural extension
of continuous mapping. We also proposed novel methods for
uncertainty quantification in 3D-GS at the pixel and image
level, and found that both the expectation and variance can
be useful metrics of uncertainty. For future work, we believe
that integrating this method within online 3D-GS frameworks
would be a valuable extension for robotic mapping. Addition-
ally, while our proposed method operates on a discrete set
of categories, the probabilistic update and rasterization may
be extended to open-dictionary continuous splatting through
a continuous conjugate prior.
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