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ABSTRACT

Mercer’s expansion and Mercer’s theorem are cornerstone results in kernel the-
ory. While the classical Mercer’s theorem only considers continuous symmetric
positive definite kernels, analogous expansions are effective in practice for indefi-
nite and asymmetric kernels. In this paper we extend Mercer’s expansion to con-
tinuous kernels, providing a rigorous theoretical underpinning for indefinite and
asymmetric kernels. We begin by demonstrating that Mercer’s expansion may
not be pointwise convergent for continuous indefinite kernels, before proving that
the expansion of continuous kernels with bounded variation uniformly in each
variable separably converges pointwise almost everywhere, almost uniformly, and
unconditionally almost everywhere. We also describe an algorithm for computing
Mercer’s expansion for general kernels and give new decay bounds on its terms.

1 INTRODUCTION

Before the singular value decomposition (SVD) of a matrix, several pioneers of modern functional
analysis in the early 20th century—Hammerstein (1923), Schmidt (1907), Smithies (1938), and
Weyl (1912)—figured out the properties of the eigenfunction expansion and the singular value ex-
pansion (SVE) for a general square-integrable kernel (Stewart, 1993). Within these developments,
Mercer, in 1909, showed that any continuous, symmetric positive definite kernelK : [a, b]×[a, b] →
R with −∞ < a < b < ∞ can be expressed as an absolutely and uniformly convergent sum of
orthonormal eigenfunctions multiplied by their corresponding eigenvalues, i.e.,

K(x, y) =

∞∑
n=1

λnun(x)un(y), (x, y) ∈ [a, b]× [a, b]. (1)

The expansion in eq. (1) is typically called a Mercer’s expansion of K (Mercer, 1909).

Mercer’s expansion is an important result in functional analysis. It plays a crucial role in many
machine learning applications because it underpins the theory of kernel methods (Scholkopf &
Smola, 2002; Kung, 2014), allowing researchers to develop theoretical foundations for Gaussian
processes (Kanagawa et al., 2018), support vector machines (SVM) (Cortes & Vapnik, 1995; Stein-
wart & Christmann, 2008), Transformer models (Vaswani et al., 2017; Wright & Gonzalez, 2021),
and many other applications (Ghojogh et al., 2021).

Several researchers have been interested in using Mercer-like expansions for continuous kernels
that are symmetric but not positive definite (indefinite kernels) as well as general continuous ker-
nels that are not symmetric (asymmetric kernels). There are at least three reasons why indefinite
and asymmetric kernels are useful: (1) Checking whether a kernel is positive definite can be com-
putationally expensive (Luss & d’Aspremont, 2007; Huang et al., 2017), (2) Often one finds that
Mercer-like expansions continue to hold for indefinite and asymmetric kernels, even though the the-
oretical underpinnings have been lacking, and (3) Indefinite and asymmetric kernels, such as the
sigmoid (tanh) kernel, naturally arise in applications such as Transformers (Wright & Gonzalez,
2021; Chen et al., 2024), kernel learning theory (Haasdonk & Keysers, 2002; Ong et al., 2004; He
et al., 2023), H∞ control theory (Hassibi et al., 1999), protein sequence similarity (Saigo et al.,
2004; Vert et al., 2004), and many others.

Surprisingly, a continuous symmetric kernel may not have a Mercer-like expansion that converges
pointwise (see Proposition 1). We hope this new example clarifies some confusion in the literature
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on Mercer’s expansion for general kernels. We also prove that general continuous kernels may also
have Mercer’s expansions that converge pointwise, but not uniformly and absolutely, meaning that
Mercer’s expansion must be used with some care for general kernels.

This work provides a rigorous theoretical underpinning of Mercer’s expansion for indefinite and
asymmetric kernels. For indefinite kernels, the eigenfunction expansion is the most natural gen-
eralization of Mercer’s expansion. For asymmetric kernels, the most natural generalization is the
following singular value expansion (SVE) that was considered in the early 1900s (Schmidt, 1907)

K(x, y) =

∞∑
n=1

σnun(x)vn(y), (2)

where σ1 ≥ σ2 ≥ · · · > 0 are the singular values of K and {un}n∈N and {vn}n∈N are sets of
orthonormal functions called the right and left singular functions of K, respectively. The expansion
in eq. (2) can replace Mercer’s expansion for asymmetric kernels (see Section 3). We regard eq. (2)
as a natural generalization of Mercer’s expansion to general continuous kernels.

Schmidt proved the existence of the expansion in eq. (2) for all square-integrable kernels and showed
that the equality holds in the L2 sense (Schmidt, 1907). He also proved that for continuous kernels
K, if σn > 0, the corresponding left and right singular functions can be selected as continuous.
Later, in 1923, Hammerstein showed that the expansion in eq. (2) converges uniformly for any
continuous kernel that also satisfies a contrived square-integrated Lipschitz-like condition (Ham-
merstein, 1923). Later, in 1938, Smithies gave a finicky condition on continuous kernel that ensures
specific decay rates of the singular values, and he used that decay to prove almost everywhere point-
wise and almost everywhere absolute convergence (Smithies, 1938). More recently, it was realized
that both Hammerstein’s and Smithies’ conditions are satisfied by continuous kernels that are Lips-
chitz continuous uniformly in each variable separably (Townsend, 2014).

We prove results for a larger class of general continuous kernels K : [a, b] × [c, d] → R than
Lipschitz continuous kernels. We only need the kernels to have bounded variation uniformly in each
variable separately, i.e., for any fixed x ∈ [a, b] and any fixed y ∈ [c, d], we have∫ b

a

∂

∂x
K(x, y)dx < V,

∫ d

c

∂

∂y
K(x, y)dy < V, (3)

for some fixed uniform constant V < ∞. We say a kernel is of uniform bounded variation if it
satisfies the conditions in eq. (3). The partial derivatives in eq. (3) are replaced by the notion of
weak derivatives if the kernel is not differentiable (Trefethen, 2019, Chap. 7). We also provide new
decay bounds on σn for smoother kernels (see Section 4), which we believe are asymptotically tight,
and can be used to rigorously truncate Mercer’s expansion.

We prove a new result that continuous kernels of uniform bounded variation have a Mercer’s expan-
sion that converges pointwise almost everywhere, unconditionally almost everywhere, and almost
uniformly. We have not been able to prove that the expansion converges pointwise, absolutely, and
uniformly, so there could still be some subtleties in using Mercer’s expansion for general kernels.
However, we believe that continuous kernels of uniform bounded variation have a Mercer’s expan-
sion that converges pointwise, absolutely, and uniformly, and we hope later research will prove this.

1.1 OUR CONTRIBUTIONS

We generalize Mercer’s expansion to a general continuous kernel, where the kernel may be indefinite
or asymmetric. The following two theorems summarize our main theoretical results about Mercer’s
expansion for general continuous kernels (see Section 3).
Theorem. For any [a, b] ⊂ R there are continuous symmetric indefinite kernels on [a, b] × [a, b]
such that Mercer’s expansion in eq. (2): (i) does not converge pointwise, (ii) converges pointwise
but not uniformly, and (iii) converges pointwise but not absolutely.
Theorem. For any [a, b], [c, d] ⊂ R, let K : [a, b] × [c, d] → R be a continuous kernel of uniform
bounded variation (see eq. (3)). Then, Mercer’s expansion of K in eq. (2) converges pointwise,
unconditionally almost everywhere, and almost uniformly.

The first theorem shows us that Mercer’s expansion for continuous kernel must be treated with
significant care. However, our result resolve some of these subtleties for continuous kernels of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

uniform bounded variation. Bounded variation is a weak extra smoothness condition on a continuous
kernel, e.g., any uniform Lipschitz continuous kernel (in each variable separably) is also of uniform
bounded variation. In addition to these two main theorems, we prove new decay bounds on the
singular values σn for smoother kernels (see Section 4). We also describe an efficient algorithm to
compute Mercer’s expansion in eq. (2) for general continuous kernels (see Section 5).

2 BACKGROUND: MERCER’S THEOREM FOR GENERAL KERNELS

In this section, we provide some background material on Mercer’s theorem and review some of the
literature’s efforts to extend Mercer’s expansion to general kernels.

2.1 MERCER’S THEOREM FOR CONTINUOUS SYMMETRIC POSITIVE DEFINITE KERNELS

Given a continuous symmetric positive definite kernel K, Mercer’s theorem ensures the pointwise,
uniform, and absolute convergence of a Mercer’s expansion of K (Mercer, 1909).
Theorem 1 (Mercer’s theorem). For any [a, b] ⊂ R, let K : [a, b] × [a, b] → R be a continu-
ous symmetric function. Suppose K is positive definite, i.e.,

∑N
i,j=1 cicjK(xi, xj) ≥ 0 for any

c1, . . . , cN ∈ R and x1, . . . , xN ∈ [a, b]. Then, there is a set of continuous orthonormal functions
{un}n∈N on [a, b] and corresponding positive real numbers λ1 ≥ λ2 ≥ · · · > 0 such that∫ b

a

K(x, y)un(y)dy = λnun(x), x ∈ [a, b].

Moreover, K has a series expansion given by

K(x, y) =

∞∑
n=1

λnun(x)un(y), x, y ∈ [a, b], (4)

where the series converges pointwise, uniformly, and absolutely to K.

Mercer’s theorem is a simple but powerful result showing us that Mercer’s expansion for continuous
symmetric positive definite kernels can be used without any subtleties from an analysis perspective.
In this setting, by spectral theory, λ1, λ2, . . . , are the positive eigenvalues of K with corresponding
orthonormal eigenfunctions {un}n∈N.

The convergence properties of Mercer’s expansion are useful in integral operator theory (Stewart,
2011). For instance, if a Mercer’s expansion of K : [a, b] × [a, b] → R converges uniformly, one
can interchange integration and the summation, i.e.,∫ b

a

K(x, y)f(y)dy =

∫ b

a

∞∑
n=1

σnun(x)vn(y)f(y)dy =

∞∑
n=1

σnun(x)

∫ b

a

vn(y)f(y)dy.

In particular, the integrals
∫
vn(y)f(y)dy do not depend on x, so

∫ b

a
K(x, y)f(y)dy can be com-

puted efficiently using this formula. Moreover, the integral equation g(x) =
∫
K(x, y)f(y)dy, with

f unknown, can be easily solved by back substitution using Mercer’s expansion (Schmidt, 1907).

When Mercer’s expansion converges uniformly, its truncation error is always bounded in the uniform
norm. This means that one can safely truncate the series and use finite rank approximations of the
kernel. On the other hand, if Mercer’s expansion does not converge uniformly, the uniform norm
error between K and a truncation may not converge to zero as the rank increases (see Section 3.3).

Finally, when Mercer’s expansion converges absolutely (or unconditionally), one can write the ker-
nel in factored form, i.e., K = UΣV ⊤. Writing a function in a decomposition format like this has
several advantages, as linear algebra algorithms immediately extend to the continuous setting (see
(Townsend & Trefethen, 2015)). Our result in Section 3.4 implies a similar but weaker conclusion.

2.2 PREVIOUS WORK ON INDEFINITE AND ASYMMETRIC KERNELS

There are several attempts to establish a theoretical framework for Mercer’s expansions of indefinite
and asymmetric kernels. One of the most popular attempts is the theory of Reproducing Kernel
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Kreı̆n Space (RKKS) (Alpay, 2001; Ong et al., 2004; Loosli et al., 2015; Huang et al., 2017) for
indefinite kernels. Here, a kernel K needs to have a so-called positive decomposition K(x, y) =
K+(x, y)−K−(x, y), whereK+ andK− are continuous symmetric positive definite kernels (which
is also required for the generalized Mercer’s theorem in (Chen et al., 2008)). Another attempt is the
Reproducing Kernel Banach Space (RKBS), which removes the inner-product requirement from an
RKHS. It can be defined in several ways (Zhang et al., 2009; Georgiev et al., 2013; Xu & Ye, 2019;
Lin et al., 2022), for example, the RKBS requires a semi-inner product in (Zhang et al., 2009) and a
Lp-norm in (Georgiev et al., 2013).

Unfortunately, not all continuous indefinite kernels induce an RKKS, and not all continuous kernels
induce an RKBS. Characterizing what properties a kernel must have to induce an RKKS or RKBS
remains an open problem. For example, the continuous indefinite kernelKabs in eq. (6) does not have
a positive decomposition, so it does not define an RKKS. Likewise, there are continuous kernels
for which Mercer’s expansion does not converge pointwise (see Proposition 1) and hence does not
satisfy the conditions in (Xu & Ye, 2019) to generate an associated RKBS.

Aside from reproducing kernel approaches, researchers have tried to generate feature spaces induced
by indefinite kernels. Using pseudo-Euclidean spaces, (Haasdonk, 2005) shows that SVMs are a
sort of distance minimizer in such a space, although it is not a metric space. Other studies handle
indefinite kernel learning by modifying problems to continuous symmetric positive definite kernel
learning either by transforming the kernels themselves (Wu et al., 2005) or by finding a nearby
positive definite kernel (Luss & d’Aspremont, 2007). In fact, such modification may not be possible
for some kernels (see, for example, proofs of Propositions 2, 3) thus careful rigorous analysis has to
be entailed. We hope the theoretical underpinnings detailed in this paper can aid future attempts in
these directions.

3 MERCER’S EXPANSION FOR GENERAL CONTINUOUS KERNELS

We detail Mercer’s expansion for continuous kernels and investigate its convergence behavior.

3.1 MERCER’S EXPANSION

Consider a general continuous kernel K : [a, b] × [c, d] → R, where [a, b], [c, d] ⊂ R. If K is
symmetric, then the interval [c, d] will equal [a, b]. As hinted by the SVD for matrices, for a general
kernel K, we will need to consider two sets of functions: (1) Right singular functions denoted by
u1, u2, . . ., which are orthonormal with respect to L2([a, b]) and (2) Left singular functions denoted
by v1, v2, . . ., which are orthonormal with respect to L2([c, d]). The functions are defined to satisfy

σnun(x) =

∫ d

c

K(x, y)vn(y)dy, σnvn(y) =

∫ b

a

K(x, y)un(x)dx. (5)

The values σ1 ≥ σ2 ≥ · · · > 0 are called the positive singular values of K. The SVE of K, which
we refer to as Mercer’s expansion, is given in eq. (2).1

The SVE of K is not completely unique. However, the convergence properties are the same for any
SVE of K. One can modify the left and right singular functions with signs and potentially reindex
terms when singular values plateau. Moreover, the integral definition in eq. (5) allows the left and
right singular functions to be modified on sets of measure zero. For continuous kernels, if σn > 0,
we select un and vn to be continuous, which Schmidt (1907) showed is always possible. With this
convention, the SVE of K is equivalent to Mercer’s expansion for continuous symmetric positive
definite kernels.

3.2 MERCER’S EXPANSION MAY NOT CONVERGE POINTIWSE

Given a continuous symmetric but indefinite kernel K : [a, b] × [a, b] → R, a Mercer’s expansion
in eq. (2) may not converge pointwise.
Proposition 1. For any [a, b] ⊂ R, there exists a continuous symmetric indefinite kernel Kpt :
[a, b]× [a, b] → R with a Mercer’s expansion that does not converge pointwise.

1If K is continuous, then the equality at least holds in the L2 sense.
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Proof. We prove this by providing an example and, without loss of generality, we assume that
[a, b] = [−1, 1]. Consider a continuous even 2π-periodic function f : [−π, π] → R whose
Fourier series does not converge pointwise at t = 0. Such a function exists, for example, f(t) =∑∞

n=1 sin(2
n3

+1)t/2)/n2 (Fejér, 1911). Let f(t) =
∑∞

n=−∞ cne
int = c0+

∑∞
n=1 2cn cos(nt) be

the Fourier expansion of f(t), i.e., cn = 1
2π

∫ π

−π
f(t)eintdt. Now, consider Kpt(x, y) := f(x− y).

Since f is 2π-periodic we find that for fixed y, we have
∫ π

−π
Kpt(x, y)e

inxdx = 2πcne
iny for n ∈ Z.

We also have
∫ π

−π
Kpt(x, y) cos(nx)dx = 2πcn cos(ny) and

∫ π

−π
Kpt(x, y) sin(nx)dx = 0 by Eu-

ler’s formula. Since {cosnx}n∈N ∪ {sinnx}n∈N form a complete orthogonal basis of L2([−π, π]),
we have the full set of eigenfunctions of Kpt. Thus,

Kpt(x, y) = c0 +

∞∑
n=1

2πcn
1√
π
cos(nx)

1√
π
cos(ny) = c0 +

∞∑
n=1

2cn cos(nx) cos(ny),

where equality holds in the L2 sense. To conclude that the series does not converge pointwise,
consider the expansion at y = 0. We find that Kpt(x, 0) = c0 +

∑∞
n=1 2cn cos(nx) = f(x). Since

this is the Fourier series of f , we know that this series does not converge pointwise at 0. We conclude
that we have a Mercer’s expansion for Kpt that is not pointwise convergent at (0, 0). This example
can be transplanted to have a domain [a, b]× [a, b] by a linear translation for any [a, b] ⊂ R.

Since a general kernel may be indefinite, the example in the proof of Proposition 1 also shows that
Mercer’s expansion may not converge pointwise for general kernels.

3.3 MERCER’S EXPANSION MAY NOT CONVERGE ABSOLUTELY OR UNIFORMLY

For a continuous kernel, Mercer’s expansion might converge pointwise but not absolutely or might
converge pointwise but not uniformly. One must treat Mercer’s expansion carefully for indefinite or
asymmetric continuous kernels because its convergence properties can be subtle.

Proposition 2. For any [a, b] ⊂ R there exists a continuous symmetric indefinite kernel Kabs :
[a, b]× [a, b] → R with a Mercer’s expansion that converges pointwise but not absolutely.

Proposition 3. For any [a, b] ⊂ R there exists a continuous symmetric indefinite kernel Kuni :
[a, b]× [a, b] → R with a Mercer’s expansion that converges pointwise but not uniformly.

We prove these two propositions in Appendix A by finding kernels that possess Mercer’s expansion
with the desired properties. If a kernel has only a finite number of negative (positive) eigenvalues,
one can subtract a finite rank function fromK to make it positive (negative) definite. This allows one
to use the classic Mercer’s theorem for continuous positive definite kernels, ensuring that Mercer’s
expansion converges pointwise, absolutely, and uniformly. Thus, the kernels we search for must
have an infinite number of both positive and negative eigenvalues.

For example, as a proof of Proposition 2, we show that the following continuous kernel Kabs :
[−1, 1]× [−1, 1] → R has a Mercer’s expansion that converges pointwise but not absolutely:

Kabs(x, y) =

∞∑
n=1

(−1)n

n2
P̃2n(x)P̃2n(y), (6)

where P̃n is the degree n normalized Legendre polynomial (in the L2 sense), i.e., P̃n(x) =√
2n+1

2 Pn(x). The alternating signs in (−1)n in eq. (6) are essential to create a kernel with in-
finitely many positive and infinitely many negative eigenvalues. See Appendix A for details.

3.4 ON THE CONVERGENCE OF MERCER’S EXPANSION

We now prove new convergence results on Mercer’s expansion of continuous kernels of uniform
bounded variation (see eq. (3) for definition). Intuitively, a continuous function with bounded varia-
tion does not have infinitely many oscillations with non-negligible variation. Almost all continuous
functions that appear in practice are of uniform bounded variation. In particular, we believe that
all the continuous kernels used in machine learning are of uniform bounded variation. Therefore,
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our extra smoothness requirement on continuous kernels is a technical assumption needed for the
analysis but not a restrictive condition in practice.

We also remark that while Mercer’s theorem holds for any compact domain, we only consider closed
subsets of R in this work. However, in any case, Propositions 1 to 3 still serve as counterexamples
for Mercer’s theorem for general kernels on general domains. Mercer’s theorem is special since
the series has small amount of cancellation, thus the convergence does not rely on properties of
orthonormal functions. However for general domains cancellation of orthonormal series has to be
carefully examined, which is a relatively less-known subject except for closed subsets of R.

3.4.1 UNCONDITIONALLY ALMOST EVERYWHERE CONVERGENCE

We first prove a decay rate on the singular values. We use a recent result in (Wang, 2023) to obtain a
bound of the coefficients in a Legendre expansion and then use Eckart–Young–Mirsky theorem for
the SVE (Schmidt, 1907; Eckart & Young, 1936; Mirsky, 1960) to conclude Proposition 4.

Proposition 4. For any [a, b], [c, d] ⊂ R, a continuous kernel K : [a, b] × [c, d] → R of uniform
bounded variation (see eq. (3)) has σn = O(n−1) as n→ ∞.

A proof and discussion of Proposition 4 is given in Section 4. Proposition 4 tells us that the extra
smoothness assumption onK leads to a faster decay of the singular values. For a general continuous
kernel K : [a, b] × [c, d] → R, we can conclude that it is square-integrable so that

∑∞
n=1 σ

2
n < ∞.

This only allows us to conclude that σn = O(n−1/2), not σn = O(n−1). The extra decay of
the singular values allows us to show that Mercer’s expansion convergence unconditionally almost
everywhere. We prove a more general result (see Appendix B for the proof).

Theorem 2 (Unconditional Convergence of Mercer’s expansion). For any [a, b], [c, d] ⊂ R and a
continuous kernel K : [a, b] × [c, d] → R with singular values satisfying σn ≤ Cn−α for some
α > 1

2 and some C > 0, a Mercer’s expansion of K converges unconditionally almost everywhere.

To prove Theorem 2, we use the theory of orthonormal series (see Lemma 3), which can be thought
of as an extension of the Rademacher–Menchov theorem. We immediately conclude the following
result by combining Proposition 4 and Theorem 2.

Corollary 1. Let [a, b], [c, d] ⊂ R. Any continuous kernelK : [a, b]×[c, d] → R of uniform bounded
variation (see eq. (3)) has a Mercer’s expansion that converges unconditionally almost everywhere.

Corollary 1 tells us that continuous kernels of uniform bounded variation have a Mercer’s expansion
that converges almost everywhere, regardless of the order in which the terms are summed. Uncon-
ditional almost everywhere convergence is closely related to absolute convergence. Unconditional
almost everywhere convergence ensures that the expansion’s convergence behavior is stable across
the domain and that almost every point adheres to the same convergence properties. It is weaker
than absolute convergence because there is possibly an exception set of measure zero.

One can also use Theorem 2 to conclude that Mercer’s expansions converge unconditionally almost
everywhere under alternative smoothness assumptions. For example, all continuous kernels that are
Hölder continuous uniformly in each variable separately, i.e., there is a constant C < ∞ and γ > 0
such that

|K(x1, y)−K(x2, y)| ≤ C|x1 − x2|γ , |K(x, y1)−K(x, y2)| ≤ C|y1 − y2|γ ,

for all x1, x2, y1, y2, x, y, have a Mercer’s expansion that converges unconditionally almost every-
where. This is because such kernels have the singular value decay σn ≤ Cn−

1
2−γ , which can be

proved by Theorem 12 of (Smithies, 1938) with the choice of p = 2.

3.4.2 ALMOST UNIFORM CONVERGENCE

We now consider the uniform convergence of Mercer’s expansion. We show that the expansion
converges almost uniformly for continuous kernels with uniform bounded variation.

Definition 1. A sequence of functions {fn}n∈N is called almost uniformly convergent on a measur-
able set E if for any ϵ > 0 there exists a set Eϵ with measure smaller than ϵ, such that the sequence
{fn}n∈N converges uniformly on E\Eϵ.

6
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We obtain our second main convergence result as follows.
Theorem 3. With the same assumptions as Corollary 1, Mercer’s expansion of K converges almost
uniformly in y for almost every (fixed) x, and it converges almost uniformly in x for almost every y.

Proof. From Corollary 1, for almost every (fixed) x, we have the unconditional convergence of Mer-
cer’s expansion for almost every y. Since unconditional convergence implies pointwise convergence,
Egorov’s theorem (Egoroff, 1911) tells us that Mercer’s expansion converges almost uniformly for
y, for almost every x. The two-dimensional almost uniform convergence property also follows from
the fact that Mercer’s expansion converges pointwisely for almost every (x, y) ∈ [a, b]× [c, d].

The distinction between almost uniform convergence and uniform convergence is subtle. Uniform
convergence means that the expansion converges to a limit so that the convergence rate is the same
across the entire domain. In contrast, almost uniform convergence is a relaxation by allowing ex-
ceptional sets of arbitrarily small measure.

4 DECAY OF SINGULAR VALUES FOR SMOOTH KERNELS

Mercer’s expansion is equivalent to the SVE of a kernel, and this means that if Mercer’s expansion
for K is truncated after k terms, then it forms a rank k kernel that is a best rank-k approximation2 to
K in the L2 sense (Schmidt, 1907). Thus, singular value bounds help understand the approximation
power of low-rank approximations (Reade, 1983; Townsend, 2014).

Recall that P̃n(x) is normalized Legendre polynomial of degree n. If f : [−1, 1] → R is a continu-
ous function of bounded variation, then its Legendre expansion is given by

f(x) =

∞∑
n=0

anP̃n(x), an =

∫ 1

−1

f(x)P̃n(x)dx,

which converges absolutely and uniformly to f (Wang, 2023). Moreover, the L2 projection of f
onto the space of polynomials of degree ≤ k is precisely the truncation of this series, i.e., fk(x) =∑k

n=0 anP̃n(x). When f is (r−1)-times continuously differentiable and its rth derivative, f (r), has
bounded variation, V <∞, then for any k > r + 1, it holds that (Wang, 2023, Thm 3.5)

∥f − fk−1∥L2 ≤
√
2V√

π(r + 1
2 )(k − r − 1)r+

1
2

= O(k−(r+ 1
2 )). (7)

One can use eq. (7) to bound the singular values of kernels defined on [−1, 1] × [−1, 1] using
an analogous argument to that found in (Reade, 1983). If K(x, ·) is (r − 1)-times continuously
differentiable and its rth derivative in x has bounded variation, V < ∞, uniformly in y,3 then the
Eckart–Young–Mirsky theorem shows that K leg

k (x, y) =
∑k−1

n=0 an(y)P̃n(x) satisfies√√√√ ∞∑
n=k+1

σ2
n ≤ ∥K −K leg

k ∥L2 ≤ max
y∈[−1,1]

√
2∥K(·, y)−

k−1∑
n=0

an(y)P̃n(·)∥L2 ≤
2V (π(r + 1

2 ))
− 1

2

(k − r − 1)r+
1
2

,

where the first inequality comes from the fact that
√∑∞

n=k+1 σ
2
n is the best rank-k approximation

error to K and the last inequality comes from eq. (7).

Since the singular values are indexed in non-increasing order, we have kσ2
2k ≤

∑2k
n=k+1 σ

2
n ≤∑∞

n=k+1 σ
2
n. Thus, for k > r + 1, we have

σ2k ≤
2V (π(r + 1

2 ))
− 1

2

√
k(k − r − 1)r+

1
2

= O(k−(r+1)). (8)

2A nonzero kernel K is rank-1 if it can be written as K(x, y) = g(x)h(y). A sum of k rank-1 kernels is of
rank ≤ k.

3Recall that we say that K(x, ·) is of bounded variation uniformly in y if the function x → K(x, y) is of
bounded variation for every y with the same constant V .
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Figure 1: Singular value decay of two kernels defined on [−1, 1] × [−1, 1]: (Left) K(x, y) =
max {0, 1− |x| − |y|} and (Right) K(x, y) = exp(−(x2 + y2)/200)max(0, (1− |x| − |y|)). The
bounds given by the truncated Legendre expansions can be tight, allowing one to determine the
number of terms required in Mercer’s expansion to achieve a desired accuracy.

The same bound on σn holds if K(·, y) is (r − 1)-times continuously differentiable and its rth

derivative in y has bounded variation V , uniformly in x. By transplanting kernels defined on [a, b]×
[c, d], the bounds in eq. (8) can be modified for kernels defined on any domain. We believe the
bounds in eq. (8) are asymptotically tight. A reader can refer to Figure 2.4 (right) of (Townsend,
2014) for related numerical experiments.

When K is continuous with uniform bounded variation, we have r = 0 and eq. (8) shows that
σn = O(n−1), which proves Proposition 4. The bounds in eq. (8) show us that the smoother a
kernel, the faster its singular values decay to zero. In practice, if a kernel has rapidly decaying
singular values its Mercer’s expansion can be truncated after a small number of terms.

5 COMPUTING MERCER’S EXPANSION FOR GENERAL KERNELS

We now describe an algorithm for computing a Mercer’s expansion of a kernel, which is described
in (Townsend & Trefethen, 2013) for computing low-rank function approximations. Here, we use the
fact that it is observed to compute near-best low-rank function approximations (Townsend, 2014). It
involves two main steps: (1) Forming a low-rank approximant using a pseudo-skeleton approxima-
tion and (2) Compressing the approximant using a low-rank SVD (Bebendorf, 2008, Chapt. 1.1.4).
This procedure can be much more efficient than sampling the kernel on a large grid and computing
the matrix SVD. An algorithmic summary (and discussion on its complexity) can also be found in
Figure 6.1 of (Townsend & Trefethen, 2013).

5.1 STEP 1: COMPUTING A PSEUDO-SKELETON APPROXIMANT

In the first step, we compute a pseudo-skeleton approximation using Gaussian elimination with
complete pivoting (GECP), which is an iterative procedure to approximate the kernel K(x, y) as a
sum of rank-1 functions (Townsend & Trefethen, 2013). The algorithm is implemented in the two-
dimensional side of Chebfun (Driscoll et al., 2014). Similar algorithms are called Adaptive Cross
Approximation (Bebendorf, 2000) and maximum volume pseudo-skeleton approximation (Goreinov
et al., 1997).

The algorithm starts by defining e0 = K and finding an approximate location of a maximum abso-
lute value of e0(x, y). A rank-1 function approximation is constructed that interpolates K along the
x = x0 and y = y0 lines, i.e.,

K1(x, y) =
e0(x0, y)e0(x, y0)

e0(x0, y0)
.

Then, we define the residual e1 = K −K1, and the process is repeated on e1 to form e2, and so on.
After R steps, a rank-R approximation is constructed that interpolates K along 2R lines. We stop
the iteration when the residual error is below a user-defined tolerance such as 10−5.
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Figure 2: The kernelK(x, y) = tanh(100xy+1) on [−1, 1]× [−1, 1]. Left: Step 1 of our algorithm
selects R = 96 pivot locations (red dots). The algorithm densely samples K along 2R lines (blue
lines) to form its pseudoskeleton approximant. Right: The best L2 error compared to ∥K −Kr∥L2

for 1 ≤ r ≤ 96, where Kr is the rank ≤ r pseudoskeleton approximation of K. At R = 96, step 1
of our algorithm terminates as it has pointwise approximated K to extremely high accuracy.

To find an approximate location of a maximum absolute value, i.e., the pivot location, at each step
of the algorithm, we sample ej for j = 0, 1, . . . , on a coarse Chebyshev tensor grid of an adaptively
selected size and select an absolute maximum from that grid. In this way, we only need to evaluate
the kernel K on coarse grids, and K does not need to be densely sampled. At the end of step 1, we
have constructed a rank ≤ R approximation, given by

KR(x, y) =

R∑
j=1

cjϕj(x)ψj(y) (9)

where cj = 1/ej−1(xj−1, yj−1) are the reciprocals of the pivot values, and ϕj(x) = ej−1(x, yj−1)
and ψj(y) = ej−1(xj−1, y) are univariate functions. We represent ϕj and ψj as Chebyshev expan-
sions of an adaptively selected degree, which requires that K is densely sampled along 2R lines.

This first step is observed to compute a near-optimal rank ≤ R approximation to kernels. In Figure 2
we use it to approximate K(x, y) = tanh(100xy + 1) on the domain [−1, 1] × [−1, 1], where it
decides that R = 96 is sufficient to approximation K to extremely high precision. More algorithmic
details and experiments are given in (Townsend & Trefethen, 2013; Townsend, 2014).

5.2 STEP 2: LOW-RANK SVD OF THE PSEUDO-SKELETON APPROXIMANT

After we have computed a rank ≤ R pseudo-skeleton approximation in step 1, we improve it by
performing a low-rank SVD. The SVD decomposes KR(x, y) into a sum of outer products of or-
thonormal functions with singular values and gives us an accurate truncated Mercer’s expansion of
K. To do this, we write in the form KR(x, y) = Φ(x)CΨ(y)⊤, where

Φ(x) = [ϕ1(x) · · · ϕR(x)] , Ψ(x) = [ψ1(y) · · · ψR(y)] , C =

c1 . . .
cR

 .
The procedure for computing the low-rank SVD of KR involves the following steps, which is es-
sentially a fast way to compute a Mercer’s expansion of a finite rank kernel:

1. Perform two QR decompositions of Φ(x) and Ψ(y), using a function analogue of Householder
QR (Trefethen, 2010). We can write this QR decomposition as Φ(x) = Qleft(x)R1 and Ψ(y) =
Qright(y)R2, where R1, R2 ∈ RR×R and the columns of Qleft(x) and Qright(y) are orthonormal
functions.

2. Compute the SVD of an R×R matrix formed by R1CR
⊤
2 = UΣV ⊤.

9
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3. Construct the final SVD-based approximation by combining the singular values and the orthonor-
malized functions to form:

KR(x, y) =

R∑
j=1

σjuj(x)vj(y), (10)

where σ1, . . . , σR are the diagonal entries of Σ, uj(x) =
∑R

s=1 UsjQ
left
s (x), and vj(y) =∑R

s=1 VsjQ
right
s (y).

After we have formed eq. (10), we truncate the expansion down to k < R terms to give a Mercer’s
expansion of K truncated after k terms. Then, this final approximation not only compresses the
pseudo-skeleton approximant from step 1 and ensures that the resulting representation is very close
to an optimal rank ≤ k approximation with respect to the L2 norm.

If a rank-R approximation of K is computed and each slice needs to be evaluated O(n) times, then
the cost of GECP and compression is about O(R2n+R3) operations. If we discretize first and then
compute the discrete SVD, the cost would be O(n3) operations.

6 CONCLUSION

We derive new examples of kernels to show that the convergence properties of Mercer’s expansion
can be subtle for continuous kernels that are not symmetric positive definite. In particular, continuity
alone is not enough to guarantee that a kernel has a Mercer’s expansion, which holds pointwise. We
then prove that any continuous kernel with uniform bounded variation has a Mercer’s expansion that
converges pointwise almost everywhere, unconditionally almost everywhere, and almost uniformly.
We derive a new bound on the decay of singular values for smooth kernels and also provide an
efficient algorithm for computing Mercer’s expansion.
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A INDEFINITE KERNELS WHOSE MERCER’S EXPANSION CONVERGES
POINTWISE BUT NOT ABSOLUTELY OR UNIFORMLY.

In this section, we prove that Mercer’s expansion can converge pointwise, but not absolutely, and
may converge pointwise, but not uniformly.

A.1 A MERCER’S EXPANSION THAT CONVERGES POINTWISE, BUT NOT ABSOLUTELY

We begin by proving that for any [a, b] ⊂ R there exists a symmetric indefinite kernel Kabs : [a, b]×
[a, b] → R with a Mercer’s expansion that converges pointwise, but not absolutely.

Proof of Proposition 2. Without loss of generality, we assume that [a, b] = [−1, 1]; otherwise, we
can transplant the example below to have this domain. Consider the kernelKabs : [−1, 1]×[−1, 1] →
R (also defined in eq. (6)):

Kabs(x, y) =

∞∑
n=1

(−1)n

n2
P̃2n(x)P̃2n(y), (11)

where P̃n is the degree n normalized Legendre polynomial. First, we show that the expansion
in eq. (11) converges pointwise so that the value ofKabs(x, y) is well-defined. Recall that Bernstein’s
inequality for x ∈ (−1, 1), says that

|P̃n(x)| <
√

2

π

1

(1− x2)1/4
, n ≥ 0.

Furthermore, |P̃n(x)| ≤
√
n+ 1/2 for all x ∈ [−1, 1] (see (DLMF, 18.14.4) with λ = 1/2). Con-

sider any closed set S = [a, b]× [−1, 1] with −1 < a < b < 1 and let M =
√

2
π maxx∈{a,b}{(1−

x2)−1/4}. Then, |P̃n(y)| ≤M for any n ≥ 0 and y ∈ [a, b]. Thus, for any (x, y) ∈ S, we have
∞∑

n=1

∣∣∣∣ (−1)n

n2
P̃2n(x)P̃2n(y)

∣∣∣∣ ≤M

∞∑
n=1

√
n+ 1/2

n2
<∞,

which, by the Weierstrass M -test, implies that the series in eq. (11) converges absolutely and uni-
formly on [a, b]× [−1, 1]. Similarly, the series converges absolutely and uniformly on [−1, 1]× [a, b]
for any −1 < a < b < 1. Consequently, we have pointwise convergence of the series in eq. (11) and
continuity of K everywhere except possibly at the four corners (±1,±1). To check that the series
converges pointwise at the four corners, note that P̃2n(±1) =

√
2n+ 1/2 so

Kabs(±1,±1) =

∞∑
n=1

(−1)n

n2

√
2n+ 1/2 ·

√
2n+ 1/2 =

∞∑
n=1

(−1)n
(
2

n
+

1

2n2

)
,
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which is an alternating series that converges. Thus Kabs(x, y) is well-defined pointwise by its ex-
pansion for any (x, y) ∈ [−1, 1]× [−1, 1].

To prove that Kabs is continuous at (±1,±1), we prove that K̂abs(x, y) =
∑ (−1)n

n P2n(x)P2n(y) is
continuous at the four corners. This suffices as Kabs and K̂abs only differ by a continuous function.
Moreover, by symmetry, continuity at (1, 1) guarantees continuity at all four corners.

Let us first prove the continuity of K̂abs along the edge [ 12 , 1] × {1}, which will be useful. For any
(x, y) on [ 12 , 1]× {1} we have

K̂abs(x, y) =

∞∑
n=1

(−1)n

n
P2n(x) =: G(x).

Using the generating function of Legendre polynomials (Szego, 1939), we find that

1

t
√
1 + t2 − 2xt

− 1

t
=

∞∑
n=1

Pn(x)t
n−1, x ∈ [−1, 1].

Integrating both sides against t from 0 to s we see that∫ s

0

(
1

t
√
1 + t2 − 2xt

− 1

t

)
dt = log

(
4(x− s+

√
1 + s2 − 2sx)

(1 + x)(1− s+
√
1 + s2 − 2sx)2

)
=

∞∑
n=1

1

n
tnPn(x).

We now do the substitution s→ i, multiply by 2, and take the real part, to obtain

log

(
4

(1 +
√
x)2(1 + x)

)
=

∞∑
n=1

(−1)n

n
P2n(x) = G(x), (12)

for x ∈ [ 12 , 1]. The left-hand side is a smooth function, which proves the continuity of G(x) on
[ 12 , 1]. In particular, we have the continuity of G(x) at x = 1.

Using the product formula for Legendre functions (Erdélyi et al., 1953, §3.15, eq. (20))

P2n(x)P2n(y) =
1

π

∫ π

0

P2n

(
xy + cos θ

√
(1− x2)(1− y2)

)
dθ,

we have

K̂abs(x, y) =

∞∑
n=1

(−1)n

nπ

∫ π

0

P2n

(
xy + cos θ

√
(1− x2)(1− y2)

)
dθ

=
1

π

∫ π

0

G
(
xy + cos θ

√
(1− x2)(1− y2)

)
dθ,

by eq. (12). (We can interchange the integration and summation due to uniform convergence ofG on
[a, b] ⊂ (−1, 1).) Note that xy+cos θ

√
(1− x2)(1− y2)) ≤ 1 by the Cauchy–Schwarz inequality.

From the mean value theorem and continuity of G, for any x, y sufficiently close to 1, we have some
z ∈ [xy −

√
(1− x2)(1− y2), xy +

√
(1− x2)(1− y2)] such that

∞∑
n=1

(−1)n

n
P2n(x)P2n(y) = G(z).

As x, y → 1, the interval
[
xy −

√
(1− x2)(1− y2), xy +

√
(1− x2)(1− y2)

]
shrinks down to 1

and z → 1. By the smoothness of G, we conclude that
∑∞

n=1
(−1)n

n P2n(x)P2n(y) is continuous at
(1, 1).

Finally to show that eq. (11) does not converge absolutely, consider the point (x, y) = (1, 1). We
have

∞∑
n=1

∣∣∣∣ (−1)n

n2
P̃2n(1)P̃2n(1)

∣∣∣∣ = ∞∑
n=1

1

n2

√
2n+ 1/2 ·

√
2n+ 1/2 =

∞∑
n=1

2n+ 1
2

n2

which does not converge.

The kernel Kabs tells us that the convergence of Mercer’s expansion can be subtle for general con-
tinuous kernels.

14
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A.2 A MERCER’S EXPANSION THAT CONVERGES POINTWISE, BUT NOT UNIFORMLY

We now prove that for any [a, b] ⊂ R there exists a symmetric indefinite kernelKuni : [a, b]×[a, b] →
R with a Mercer’s expansion that converges pointwise, but not uniformly. This section contains a
proof Proposition 3.

Without loss of generality, we assume that [a, b] = [−1, 1]; otherwise, we can transplant the example
below to have this domain. First, define Ũn(x) :=

√
2/π(1−x2)1/4Un(x), whereUn is the degree n

Chebyshev polynomial of the second kind. Note that {Ũn}n∈N is an orthonormal set of polynomials
with respect to the standard L2 inner-product on [−1, 1]. Also, Ũn(−1) = Ũn(1) = 0 and Ũn is
continuous.

We now divide [−1, 1] into infinite number of disjoint subintervals I1, I2, . . . , defined by

In =
(
− 1 +

12

π2

n−1∑
j=1

1

j2
,−1 +

12

π2

n∑
j=1

1

j2

)
,

which is designed so that length(In) = 12
π2n2 , while

∑∞
n=1 length(In) = 2. Using these subinter-

vals, define vn for all n ∈ N, as

vn(x) =


−mπ√

6
Ũ2m(im(x)), if n = 2m− 1

mπ√
6
Ũ2m+2(im(x)), if n = 2m

(13)

where im : Im → [−1, 1] is a linear bijection (shift) from Im onto [−1, 1]. The functions v1, v2, . . .
are orthonormal on L2([−1, 1]) and vn vanishes outside of Im.

We now consider the kernel Kuni : [−1, 1]× [−1, 1] → R given by

Kuni(x, y) =

∞∑
n=1

(−1)n

(⌈n
2 ⌉)3

vn(x)vn(y). (14)

The kernel Kuni is continuous, symmetric, and has an infinite number of positive and an infinite
number of negative eigenvalues. Also since {vn}n∈N is an orthonormal set, eq. (14) is a Mercer’s
expansion for Kuni. It turns out that this expansion does not converge uniformly to Kuni.
Remark 1. The singular values of Kuni in eq. (14) are 1

13 ,
1
13 ,

1
23 ,

1
23 , . . . , which have a decay rate

of O(n−3) as n→ ∞.

To prove Proposition 3, we introduce two useful lemmas about the functions Ũn.

Lemma 1 (Uniform norm bound of Ũn). For any n ∈ N we have

2π−1
√
n ≤ ∥Ũn∥∞ ≤

√
4(n+ 1)π−1,

where ∥Ũn∥∞ is the absolute maximum value of Ũn(x) for x ∈ [−1, 1].

Proof. With the change of variables x = cos θ for θ ∈ [0, π], we find that√
π

2
Ũn(x) =

sin(n+ 1)θ√
sin θ

.

This means that we have√
π

2
Ũn(xn) =

sin π
2√

sin π
2(n+1)

>

√
2

π
(n+ 1) >

√
2n

π
,

for xn = cos π
2(n+1) using sin(xn) < xn. This proves the lower bound on ∥Ũn∥∞.

To prove the upper bound, first consider 0 ≤ θ < 1
n+1 to see that

sin(n+ 1)θ√
sin θ

≤ (n+ 1)θ√
θ/2

<
√
2θ(n+ 1) <

√
2(n+ 1),

15
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using θ
2 ≤ sin θ for θ ∈ [0, π/2]. For 1

n+1 ≤ θ ≤ π
2 , we have

sin(n+ 1)θ√
sin θ

≤ 1√
sin θ

≤
√

2

θ
≤
√
2(n+ 1).

Finally, the upper bound on ∥Ũ∥∞ holds since |Ũn(−x)| = |Ũn(x)|.

Lemma 1 is a weaker version of Bernstein-type bound for Chebyshev polynomials of the second
kind. Recall that the Chebyshev polynomials of the second kind are the Jacobi polynomials with pa-
rameter ( 12 ,

1
2 ). For Jacobi polynomials with integer parameters, a similar bound is known (Haagerup

& Schlichtkrull, 2014), while it is discussed only numerically so far for Jacobi polynomials with
noninteger parameters (Koornwinder et al., 2018, Remark 4.4).

Lemma 2 (Sum of Consecutive (−1)nŨ2n). For any n ∈ N, we have∥∥∥Ũ2n(x)− Ũ2n+2(x)
∥∥∥
∞

≤
√
8π−1.

Proof. Using the trigonometric definition of Ũn, we have√
π

2

(
Ũ2m(x)− Ũ2m+2(x)

)
=

sin((2m+ 1)θ)− sin((2m+ 3)θ)√
sin θ

= −2 cos((2m+ 2)θ)
√
sin θ,

which gives the desired inequality.

Lemma 2 shows us that if one adds two consecutive terms from {(−1)nŨ2n(x)}n∈N, the norm of the
resulting function is bounded by a constant, whereas Lemma 1 states that each term on its own has
norm at least O(

√
n). In other words, there will be significant pointwise cancellations happening

everywhere in Mercer’s expansion for Kuni in eq. (14).

We are ready to prove Proposition 3 by giving an explicit example of symmetric indefinite kernel
with pointwise convergent Mercer’s expansion that does not converge uniformly.

Proof of Proposition 3. First, notice that from the definition of vn and Kuni(x, y), there are at most
two nonzero terms in the series for each fixed x, y ∈ [−1, 1]2. If m is an integer such that x ∈ Im,
then Kuni(x, y) = 0 if y /∈ Im; otherwise, for y ∈ Im, we find that

Kuni(x, y) =
1

m3
(v2m−1(x)v2m−1(y) + v2m(x)v2m(y))

=
1

m3

m2π2

6

[
Ũ2m+2(im(x))Ũ2m+2(im(y))− Ũ2m(im(x))Ũ2m(im(y))

]
, (15)

which converges for every x, y. For any x, y in ([−1, 1] × [−1, 1])\([b, 1] × [b, 1]) with b < 1
the expansion in eq. (14) is a finite sum, which converges uniformly and Kuni is continuous on
[−1, 1]×[−1, 1] except possibly at the point (x, y) = (1, 1) as the functions {vn}n∈N are continuous.

To prove continuity at the upper right corner (1, 1), consider a small open set B around (1, 1). For
any x, y ∈ B suppose x, y ∈ Im. Letting x′ = im(x), y′ = im(y) and from eq. (15) we have

Kuni(x, y) =
π2

6m

[(
Ũ2m+2(x

′) −Ũ2m(x′)
)
Ũ2m+2(y

′)

+ Ũ2m(x′)
(
Ũ2m+2(y

′)− Ũ2m(y′)
)]
.

By Lemma 2 the terms Ũ2m+2(x
′) − Ũ2m(x′) and Ũ2m+2(y

′) − Ũ2m(y′) are bounded above by

2
√

2
π , and Ũ2m+2, Ũ2m are both bounded above by

√
(8m+ 12)/π. Thus we obtain

|Kuni(x, y)| ≤
π2

6m
· 2
√

2

π
· 2
√

8m+ 12

π
< Cm−1/2,
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where C does not depend on m. As B gets smaller, we have x, y → 1, which implies m → ∞.
Hence, limit of the value of Kuni(x, y) as (x, y) → (1, 1) is zero, which equal to Kuni(1, 1), proving
the continuity of Kuni at (1, 1). Altogether, we find that Kuni is continuous on [−1, 1]× [−1, 1].

For the final step, let us prove that the convergence of eq. (16) is not uniform. The norm of (2m)th
term of the right-hand side of eq. (14) is bounded below by

1

m3
max

x,y∈[−1,1]
|v2m(x)v2m(y)| > 1

m3
· m

2π2

6
·
(
2

π

√
2m

)2

=
4

3

using the lower bound of Ũ2m+2 obtained in Lemma 1. Since this constant lower bound holds for
any (2m)th term, it can be deduced from the Cauchy condition that the series does not converge
uniformly.

The following proposition gives an additional example of a continuous asymmetric kernel where
its SVE converges pointwise but not uniformly. Once more, we use the functions {vn} defined in
eq. (13).

Proposition 5 (Asymmetric kernel with a Mercer’s expansion that does not converge uniformly).
Define Kas : [−1, 1]× [−1, 1] → R by

Kas(x, y) =

∞∑
n=1

1

(2⌈n
2 ⌉)2

un(x)vn(y), (16)

with un = Ũ2n and vn defined in eq. (13). Then, Kas is a continuous function which is well-defined
for all (x, y) ∈ [−1, 1]× [−1, 1]. Moreover, the right-hand side of eq. (16) is Mercer’s expansion of
Kas which does not converge uniformly.

We omit the proof as it is analogous to that of Proposition 3.

B ON THE CONVERGENCE OF MERCER’S EXPANSION FOR CONTINUOUS
KERNELS OF UNIFORM BOUNDED VARIATION

For any [a, b], [c, d] ⊂ R and a continuous kernel K : [a, b] × [c, d] → R with uniform bounded
variation (see eq. (3)), we prove that Mercer’s expansion of K converges unconditionally almost
everywhere.

To show this, we first give the following lemma, which is a generalization of the Rademacher–
Menchov Theorem.

Lemma 3 (Kashin & Saakyan (2005), Chapter VIII.2). Let {ϕn(x)}n∈N be a set of orthonormal
functions and {an}n∈N be a set of coefficients. If a1, a2, . . . satisfy

∑∞
n=1 |an|2−ϵ < ∞ for some

ϵ > 0 then the series
∑∞

n=1 anϕn(x) converges unconditionally almost everywhere.

Lemma 3 allows us to prove that Mercer’s expansion, i.e.,

K(x, y) =

∞∑
n=1

σnun(x)vn(y),

converges unconditionally almost everywhere for continuous kernels of uniform bounded variation.

Proof of Theorem 2. Let ϵ > 0. By Hölder’s inequality the following inequality holds for any δ > 0:
∞∑

n=1

|σnun(x)|2−ϵ =

∞∑
n=1

|σn|δ
(
|σn|2−ϵ−δ|un(x)|2−ϵ

)
≤

( ∞∑
n=1

(
|σn|δ

) 2
ϵ

) ϵ
2

·

( ∞∑
n=1

(
|σn|2−ϵ−δ|un(x)|2−ϵ

) 2
2−ϵ

) 2−ϵ
2

, (17)
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The first term (
∑∞

n=1 |σn|
2δ
ϵ )

ϵ
2 converges when

α · 2δ
ϵ
> 1 (18)

while the second term can be written as( ∞∑
n=1

(
|σn|2−ϵ−δ|un(x)|2−ϵ

) 2
2−ϵ

) 2−ϵ
2

=

( ∞∑
n=1

|σn|
4−2ϵ−2δ

2−ϵ |un(x)|2
) 2−ϵ

2

.

Integrating the sum inside the parenthesis with respect to x, we find that∫ 1

0

∞∑
n=1

|σn|
4−2ϵ−2δ

2−ϵ |un(x)|2dx =

∞∑
n=1

(∫ 1

0

|σn|
4−2ϵ−2δ

2−ϵ |un(x)|2dx
)

=

∞∑
n=1

|σn|
4−2ϵ−2δ

2−ϵ ,

provided that the right-hand side converges, i.e.,

α · 4− 2ϵ− 2δ

2− ϵ
> 1. (19)

In this case, we have a monotonic series of functions given by

fn(x) =

n∑
n=1

|σn|
4−2ϵ−2δ

2−ϵ |un(x)|2,

which converges in the L1 sense. Since we have L1 convergence, we know that the second term of
eq. (17) converges pointwise for almost every x.

From the assumption that we have α > 1
2 , the two conditions in eq. (18) and eq. (19) are both

satisfied by selecting δ, ϵ such that δ > ϵ > 0 and

1− 1

2α
>

δ

2− ϵ
.

(There is always a solution when α > 1
2 as one can take δ = 1 − 1

2α and ϵ = min{0.001, δ/2}.)
Thus, for any given α > 1

2 , there is δ, ϵ > 0 such that eq. (17) converges for almost every x.
From Lemma 3 we see that

∑∞
n=1 σnun(x)vn(y) converges unconditionally for almost every x and

almost every y.
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