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ABSTRACT

Amortized simulator-based inference has emerged as a powerful framework for
tackling inverse problems and Bayesian inference in many computational sciences
by learning the reverse mapping from observed data to parameters. Once trained on
many simulated parameter-data pairs, these methods afford parameter inference for
any particular dataset, yielding high-quality posterior samples with only one or a
few forward passes of a neural network. While amortized methods offer significant
advantages in terms of efficiency and reusability across datasets, they are typically
constrained by their training conditions – particularly the prior distribution of pa-
rameters used during training. In this paper, we introduce PriorGuide, a technique
that enables on-the-fly adaptation to arbitrary priors at inference time for diffusion-
based amortized inference methods. Our method allows users to incorporate new
information or expert knowledge at runtime without costly retraining.

1 INTRODUCTION

Simulation-based inference has become a fundamental tool across computational sciences, enabling
parameter estimation in complex systems where the forward model (simulator) is available but
its likelihood is intractable (Cranmer et al., 2020). In a Bayesian framework, we express prior
beliefs about parameters as distributions and update them given observations (Robert, 2007). While
traditional inference methods such as Markov Chain Monte Carlo (MCMC) are the gold standard
with tractable likelihoods (Gelman et al., 2014), recent neural network approaches can directly learn
the inverse mapping from observations to posterior distributions over model parameters (Greenberg
et al., 2019; Radev et al., 2020). These methods are typically amortized, enabling efficient inference
after training and facilitating meta-learning across related problems (Brown et al., 2020). In this
context, ‘inference’ takes on a unified meaning: the neural network’s forward pass directly produces
a posterior estimate.

Modern generative modeling techniques such as transformers (Vaswani et al., 2017), flow-matching
(Lipman et al., 2023), and diffusion models (Ho et al., 2020; Song et al., 2021) have proven particularly
effective for this inverse modeling task, with recent work demonstrating state-of-the-art performance
in simulation-based inference (Wildberger et al., 2024; Gloeckler et al., 2024; Chang et al., 2024).
These methods learn the inverse mapping by generating training data – (model parameters, data) pairs
– through simulation, typically using a uniform training distribution over parameters, equivalent to the
prior, to ensure broad coverage of the parameter space.

However, this approach faces key limitations in practice. First, practitioners often possess domain-
specific knowledge that could improve inference if incorporated as prior beliefs. Second, researchers
may need to conduct prior sensitivity analysis to understand how their modeling assumptions affect
conclusions (Elsemüller et al., 2024). Current methods either require retraining with new priors
or offer only limited solutions. As the field moves toward larger foundation models for amortized
inference (Hollmann et al., 2025), retraining becomes increasingly impractical.
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Figure 1: Posterior inference with and without PriorGuide. The plots show the mean µ and
standard deviation σ parameters of a Gaussian toy model. Prior (a) and likelihood (b) from some
observations x (not shown) yield Bayesian posterior (c). A standard diffusion model trained on a
uniform distribution over µ, σ (no prior) matches the likelihood (d). PriorGuide can implement the
specified prior for µ, σ at runtime, matching the Bayesian posterior (e).

While recent work has proposed techniques for prior specification at inference time (Elsemüller
et al., 2024; Chang et al., 2024; Whittle et al., 2025), these amortized approaches are restricted to
specific family of priors considered during training – from factorized histograms to Gaussian mixture
models. While some of these families are very flexible in principle, training over the space of all
meaningful runtime priors becomes rapidly infeasible. Diffusion interval guidance offers runtime
prior specification, but limited to simple range constraints (Gloeckler et al., 2024). A general solution
for incorporating arbitrary priors at runtime remains an open challenge.

Contributions. We introduce PriorGuide, a method that enables flexible incorporation of arbitrary
prior beliefs at inference time for diffusion-based amortized inference models. Our approach requires
no modifications to the base diffusion model’s training procedure and supports more complex priors
than previously explored methods. Our method works with existing diffusion-based inference models
by implementing the prior as a guidance term. We demonstrate PriorGuide’s effectiveness on synthetic
examples and a challenging inverse problem. See Fig. 1 for an illustration of our method.

2 BACKGROUND

Diffusion models are a powerful framework for generative modeling that transforms samples from
arbitrary to simple distributions and vice versa through a gradual noising and denoising process (Sohl-
Dickstein et al., 2015). In the forward process, starting from a distribution p(θ0), Gaussian noise is
progressively added to the samples until, at the end of the process (t = 1), the distribution converges
to a simple terminal distribution (typically Gaussian). The forward process can be described as:

p(θt) =

∫
N (θt|θ0, σ(t)2I)p(θ0)dθ0, (1)

where σ(t) defines the noise variance schedule as a function of time (typically increasing with t), and
θt represents the noisy samples at time t. The corresponding reverse process reconstructs the original
sample distribution from noise, and can be formulated as either a stochastic differential equation
(SDE) or an ordinary differential equation (ODE). For the Variance Exploding (VE) SDE (Song et al.,
2021; Karras et al., 2022), the reverse process takes the form:

Reverse SDE: dθt = −2σ̇(t)σ(t)∇θ log p(θt)dt+
√

2σ̇(t)σ(t) dωt, (2)

where ∇θ log p(θt) is the score function (gradient of the log-density), dωt is a Wiener process
representing Brownian motion (noise), and σ̇(t) is the time derivative of the variance schedule.

Learning the Score Function. The score function ∇θ log p(θt) can be approximated using a neural
network s(θt, t), trained to minimize the denoising score matching loss (Hyvärinen & Dayan, 2005;
Vincent, 2011; Song et al., 2021):

LDSM = Et∼U(0,1)Eθ0∼p(θ0)Eθt∼N (θt|θ0,σ(t)2I) ∥s(θt, t)−∇θt
log p(θt|θ0)∥22 . (3)

Once trained, the network s(θt, t) approximates the gradient of the log-probability density of noised
distributions and affords sampling through the reverse SDE (Eq. (2)). Starting from a sample
θt ∼ N (θt|θ0, σ2

maxI) for t = 1 with sufficiently large σmax, integrating the reverse process backward
in time approximately reconstructs the original distribution p(θ0).
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Tweedie’s Formula. Tweedie’s formula provides a key connection between the posterior mean of
θ0 given θt and the score function:

E[θ0|θt] = µ0|t(θt) = θt + σ(t)2∇θt log p(θt). (4)

This relationship enables direct estimation of the posterior mean at any noise level and establishes an
equivalence between µ0|t(θt) and s(θt, t).

The diffusion framework’s flexibility stems largely from its ability to incorporate guidance mecha-
nisms, which afford steering the sampling process toward desired outcomes by including additional
information or constraints. Notable examples include classifier guidance (Dhariwal & Nichol, 2021)
and classifier-free guidance (Ho & Salimans, 2022), which afford controlled generation without
retraining the model. For inverse problems, this guidance framework has been extended to incorporate
likelihood information, particularly for Gaussian likelihoods (Chung et al., 2023; Song et al., 2023a).

For the inverse problems in this work, we learn a score function to approximate the conditional
mapping ∇θt log p(θt|x) using the direct conditional training approach of Gloeckler et al. (2024).
In this framework, the observation x is provided directly to the score network s(θt, t,x), similar
to the context in conditional neural processes (Garnelo et al., 2018). While our experiments in this
paper use this direct approach, we note PriorGuide can also be applied to models using joint training
with in-painting guidance (Lugmayr et al., 2022). In either case, PriorGuide adapts the guidance
framework to transform the trained prior into an arbitrary prior at inference time.

3 PRIORGUIDE

Consider an inverse problem where we observe data x and aim to infer parameters θ. Standard
diffusion models for inverse problems are trained to approximate ∇θ log p(θ|x) via a learned score
function s(θt, t,x), and sampling from the model produces posterior samples p(θ|x) that are an-
chored to the training distribution (prior) p(θ). This constraint limits flexibility when new prior
information becomes available, as incorporating it would traditionally require retraining the score
model.

Given a diffusion model trained to sample from posterior p(θ|x) with prior p(θ), our goal is to sample
from a modified posterior q(θ|x) that incorporates a new prior q(θ) without retraining. PriorGuide
affords prior modification at sampling time by leveraging a basic statistical relationship:
Proposition 1. Let the posterior under the original prior be given as p(θ|x) ∝ p(θ)p(x|θ), and let
the posterior under the new prior be q(θ|x) ∝ q(θ)p(x|θ). Then, sampling from q(θ|x) is equivalent
to sampling from ρ(θ)p(θ|x) with ρ(θ) ≡ q(θ)

p(θ) the new-over-old prior ratio.

Proof. We can rewrite the new posterior q(θ|x) as

q(θ|x) ∝ q(θ)p(x|θ) = q(θ)

p(θ)
p(θ)p(x|θ) ∝ q(θ)

p(θ)
p(θ|x) = ρ(θ)p(θ|x),

where the prior ratio ρ(θ) ≡ q(θ)
p(θ) takes the role of an importance weighing function.

Modified Posterior Score. Prop. 1, combined with the properties of diffusion models, allows us to
express the score of the modified posterior at any time t as:

q(θt|x) ∝
∫

ρ(θ0)p(θ0|x)p(θt|θ0)dθ0 (5)

∇θt
log q(θt|x) = ∇θt

log

∫
ρ(θ0)p(θ0|x)p(θt|θ0,x)dθ0 (6)

= ∇θt
log

∫
ρ(θ0)p(θ0|θt,x)p(θt|x)dθ0 (7)

= ∇θt
log

∫
ρ(θ0)p(θ0|θt,x)dθ0 +∇θt

log p(θt|x) (8)

where in Eq. (5) we write the modified posterior as an integral over θ0 by noting that q(θ0|x) ∝
ρ(θ0)p(θ0|x) and then propagate this information to time t via the transition kernel p(θt|θ0). In
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Eq. (6) we write the score, and then re-express the joint probability p(θ0|x)p(θt|θ0) = p(θ0,θt|x)
as p(θ0|θt,x)p(θt|x), which allows us to separate the contribution of the new prior guidance from
the original score model s(θt, t,x). In multiple steps we exploit the fact that multiplicative constants
inside the integral disappear under the score.

We can draw samples from q(θt|x) via the reverse diffusion process using the modified score:

∇θt
log q(θt|x) ≈ ∇θt

logEp(θ0|θt,x) [ρ(θ0)] + s(θt, t,x). (9)

where first term estimates how the new prior’s influence propagates to time t (guidance term) and the
second term is our trained score model. This is a common way to implement a guidance function
(Chung et al., 2023; Song et al., 2023a;b; Rissanen et al., 2024), where now the guidance function is
the prior ratio. In the rest of this section, we apply several approximation techniques to estimate the
guidance term.

3.1 APPROXIMATING THE GUIDANCE FUNCTION

To approximate the guidance term in Eq. (9) efficiently while maintaining flexible inference-time
priors, we introduce two approximations. Following recent work (Song et al., 2023a; Peng et al., 2024;
Rissanen et al., 2024), we first model the reverse transition kernel as a Gaussian distribution. We then
introduce a novel approach that represents ρ(θ) as a Gaussian mixture model. This representation
enables both an analytical solution and preserves flexibility in the model. While previous research
on inverse problems has explored guidance with linear-Gaussian observation models (Song et al.,
2023a), these can be viewed as special cases of our method when using a single mixture component.

Reverse Transition Kernel Approximation. We first approximate the reverse transition kernel
p(θ0|θt) as a Gaussian distribution centered at µ0|t(θt), obtained from the score function via
Tweedie’s formula, Eq. (4). This approximation is common in the guidance literature (Chung et al.,
2023; Song et al., 2023a; Peng et al., 2024; Rissanen et al., 2024; Finzi et al., 2023; Bao et al., 2022).
For the covariance matrix Σ0|t, we adopt a simple yet effective approximation inspired by Song et al.
(2023a); Ho et al. (2022):

Σ0|t =
σ(t)2

1 + σ(t)2
I. (10)

This approximation acts as a time-dependent scaling factor that naturally aligns with the diffusion
process – starting at the identity matrix when t = 1 and approaching zero as t → 0, effectively
increasing the precision of our prior guidance at smaller timesteps.

Prior Ratio Approximation. We then approximate the prior ratio function ρ(θ) = q(θ)
p(θ) as a

generalized mixture of Gaussians:

ρ(θ) ≈
K∑
i=1

wiN (θ|µi,Σi), ρ(θ) ≥ 0, (11)

where {wi,µi,Σi}Ki=1 represent the weights, means and covariance matrices of the mixture. Since
this represents a ratio rather than a distribution, the mixture weights need not be positive nor sum to
one, as long as the ratio remains non-negative, potentially enabling more expressive approximations
such as subtractive mixtures (Loconte et al., 2024). Notably, when p(θ) is uniform (as in our
experiments), ρ(θ) reduce to q(θ), and we directly specify it as a Gaussian mixture. For non-uniform
training distributions, the ratio function can be fit with a generalized Gaussian mixture approximation,
which can theoretically approximate any continuous function (Sorenson & Alspach, 1971).

Guidance Term. With these Gaussian approximations, the guidance term becomes:

∇θt
logEp(θ0|θt,x) [ρ(θ0)] ≈ ∇θt

log

∫ K∑
i=1

wiN (θ0|µi,Σi)N (θ0|µ0|t(θt),Σ0|t)dθ0. (12)
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This integral can be solved analytically (full derivation in Appendix A.1), yielding:

∇θt logEp(θ0|θt,x)[ρ(θ0)] ≈
∑K

i=1 wiN (µi|µ0|t(θt), Σ̃i)(µi − µ0|t(θt))
TΣ̃−1

i ∇θt
µ0|t(θt)∑K

i=1 wiN (µi|µ0|t(θt), Σ̃i)

(13)

=

K∑
i

w̃i(µi − µ0|t(θt))
TΣ̃−1

i ∇θtµ0|t(θt), (14)

where Σ̃i = Σi+Σ0|t and w̃i = wiN (µi|µ0|t(θt), Σ̃i)/
∑K

j=1 wjN (µj |µ0|t(θt), Σ̃j). For typical
inverse problems where parameter dimensionality is below 100, these calculations remain computa-
tionally tractable. However, higher-dimensional problems would require additional approximations,
particularly for the log determinant and matrix inversion.

Finally, the PriorGuide update to the mean of the reverse kernel can be expressed concisely using
Tweedie’s formula, Eq. (4), and our derived guidance term, Eq. (14):

µnew
0|t (θt) = µ0|t(θt) + σ(t)2

K∑
i

w̃i(µi − µ0|t(θt))
TΣ̃−1

i ∇θt
µ0|t. (15)

This update intuitively combines the original prediction µ0|t(θt) with a weighted sum of correction
terms from our new prior. The correction magnitude is controlled by both the noise schedule σ(t)2

and the distance between the mixture components and current prediction.

4 EXPERIMENTS

We evaluate PriorGuide using the base model from Simformer (Gloeckler et al., 2024), trained with
the variance exploding SDE (Song et al., 2021). Notably, our method requires no modifications to the
original diffusion model’s training procedure and works by adjusting the guidance term at inference
time as described in Section 3.

Toy Gaussian Example. We first consider a simple but illustrative case: inferring θ = (µ, σ),
the mean µ and standard deviation σ of a Gaussian distribution from 10 data points. The prior is
a correlated multivariate Gaussian (Fig. 1a), and the likelihood for a specific set of observations
x is shown in Fig. 1b. We numerically compute the true posterior for comparison (Fig. 1c). The
base model is trained with a uniform prior over (µ, σ) to learn the inverse mapping. When sampling
without prior guidance (Fig. 1d), the model focuses on the region around the data, reflecting its
uniform training prior. However, when using PriorGuide (Fig. 1e), the samples closely match the
true posterior (Fig. 1c), despite the substantial separation between prior and likelihood regions. This
demonstrates PriorGuide’s ability to successfully incorporate new priors at inference time to recover
q(θ|x). Complete experimental details are provided in Appendix A.2.

Two Moons with Correlated Prior. The two moons example is a common benchmark for
simulation-based inference. Here, we add a strong correlated prior q(θ) to test how our method
handles a multi-modal scenario (Fig. A.1a). PriorGuide correctly captures the multimodality of the
problem through its posterior distribution (Fig. A.1b). For validation, we compare PriorGuide’s
results with a ground truth baseline obtained by retraining the base model with q(θ); the comparison
of samples is shown in Fig. A.1c. For quantitative validation, we compared samples from PriorGuide
and the retrained model across 10 different observations x using the Classifier 2-Sample Tests (C2ST)
score (Lopez-Paz & Oquab, 2017). The C2ST score measures how well a classifier can distinguish
between two sets of samples, with 0.5 indicating indistinguishable samples. Between the retrained
model and PriorGuide samples, we obtain a score of 0.623±0.044. For context, the score between the
base diffusion model and standard MCMC samples is 0.523± 0.016, demonstrating that PriorGuide
generates comparable samples without requiring retraining. See Appendix A.2 for model details.

Benchmark SBI Tasks. Finally, we evaluate PriorGuide on two simulation-based inference tasks
of increasing complexity: the Ornstein-Uhlenbeck Process (OUP), a time-series model with two
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Uniform θ sampling Mixture θ sampling

Simformer ACE ACEP PriorGuide Simformer PriorGuide

OUP RMSE (↓) 0.61(0.03) 0.59(0.00) 0.21(0.02) 0.17(0.01) 0.51(0.04) 0.40(0.02)
MMD (↓) 0.19(0.01) 0.15(0.00) 0.04(0.00) 0.03(0.00) 0.16(0.02) 0.09(0.01)

Turin RMSE (↓) 0.25(0.00) 0.25(0.00) 0.10(0.01) 0.07(0.00) 0.26(0.00) 0.18(0.00)
MMD (↓) 0.11(0.00) 0.11(0.00) 0.02(0.00) 0.01(0.00) 0.08(0.00) 0.04(0.00)

Table 1: Comparison of SBI task metrics for θ prediction; mean (standard deviation) over 5 runs.
Best results are bolded. Left: Uniform sampling distribution for θ, with an informative Gaussian
prior given to ACEP and PriorGuide. Right: Correlated mixture sampling distribution, with the same
distribution given as prior to PriorGuide.

latent variables (Uhlenbeck & Ornstein, 1930), and the Turin model (Turin et al., 1972), a radio
propagation simulator with four parameters that generates 101-dimensional signal data.

For both tasks, we set the sampling distribution of θ in two ways: (i) as a uniform distribution
and (ii) as a correlated Gaussian mixture distribution. We can then test the ability of a model of
incorporating prior information by passing useful information about the sampled θ. In the uniform
case, we provide information by sampling the prior location from a Gaussian around the true θ, and
giving that Gaussian prior to models that support runtime priors, following Chang et al., 2024. In
the correlated Gaussian mixture case, we pass a prior that exactly matches the true inference-time
sampling distribution. Further experimental details are provided in Appendix A.2.

As a baseline, we compare our method, PriorGuide, with the same base SimFormer model without
prior guidance (Gloeckler et al., 2024). We also consider another amortized inference method, the
Amortized Conditioning Engine (ACE; Chang et al., 2024), whose ACEP variant affords runtime
incorporation of factorized priors seen during training. Table 1 presents the benchmark results. In the
uniform θ case, we compare PriorGuide with an informative Gaussian prior against Simformer and
ACE (both without priors), and ACE with the same simple prior (ACEP). In the mixture sampling
case, we compare base SimFormer with PriorGuide guided by the sampling distribution as prior.2
PriorGuide outperforms all baselines in both settings, demonstrating its capabilities of incorporating
prior information at test time without retraining. Example visualizations of results on the SBI
experiments are presented in Appendix A.3.

5 RELATED WORK

PriorGuide builds on advances in three key areas: diffusion models for inverse problems, simulation-
based inference (SBI), and guidance techniques for controllable generation. Recent work has adapted
diffusion models to scientific applications with intractable forward models, treating inverse problems
as conditional generation (Chung et al., 2023). Methods like those in Gloeckler et al. (2024) train
diffusion models to directly approximate the posterior. However, these approaches fix the prior during
training, limiting their flexibility. Recent work in Elsemüller et al. (2024); Chang et al. (2024); Whittle
et al. (2025) showed the effectiveness of inference time priors, but the approach is limited. In inverse
problems, reconstruction guidance (Chung et al., 2023) incorporates likelihood gradients during
sampling. Related approaches from Rissanen et al. (2024); Finzi et al. (2023); Bao et al. (2022); Peng
et al. (2024) use Tweedie’s formula to guide sampling, but focus on refining the likelihood term rather
than modifying the prior. PriorGuide uniquely repurposes guidance mechanisms to inject new prior
information, combining the flexibility of score-based methods with the expressiveness of Gaussian
mixture priors.

6 DISCUSSION

In this work, we introduced PriorGuide, a technique that enables the use of flexible, user-defined priors
at inference time for diffusion-based amortized inference methods. Our experiments demonstrate
that PriorGuide can effectively recover posterior distributions under new priors. This capability is
particularly valuable in scientific applications where prior knowledge is often refined post-training,
for prior sensitivity analysis or with large inference models, where retraining is undesirable.

2ACEP does not afford complex correlated priors, so it is not included.
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Limitations. While PriorGuide offers significant flexibility, it has several important limitations: First,
the computational cost scales with parameter dimensionality due to the weighted averaging over
Gaussian components. Very high-dimensional problems may require additional approximations to
maintain efficiency. Furthermore, PriorGuide assumes the new prior ratio can be well-approximated
by a Gaussian mixture. While highly expressive, this may not capture all possible prior distributions,
particularly those with heavy tails or discrete components. Future work could develop automatic con-
version of arbitrary priors into approximate Gaussian mixtures. Additionally, integrating PriorGuide
with in-painting style guidance techniques could enhance its applicability to a wider range of inverse
problems by removing the need to specify conditioning variables upfront, offering further flexibility.
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A APPENDIX

A.1 GAUSSIAN INTEGRATION

Here is the detailed derivation for Eq. (14) from the main text:

∇θt
logE [ρ(θ0)] ≈ ∇θt

log

∫ K∑
i=1

N (θ0|µi,Σi)N (θ0|µ0|t(θt),Σ0|t)dθ0, (A.1)

= ∇θt
log

K∑
i=1

∫
N (µi|θ0,Σi)N (θ0|µ0|t(θt),Σ0|t)dθ0. (A.2)

The step above uses the symmetry property of Gaussian distributions: if a ∼ N (µ,Σ) then µ ∼
N (a,Σ). This allows us to swap θ0 and µi in the first Gaussian. Furthermore,

= ∇θt log

K∑
i=1

N (µi|µ0|t(θt),Σi +Σ0|t), (A.3)

using the standard result for the convolution of two Gaussian distributions:∫
N (x|µ1,Σ1)N (µ1|µ2,Σ2)dµ1 = N (x|µ2,Σ1 +Σ2) (A.4)

For notational convenience, we define Σ̃i = Σi +Σ0|t continuing with the derivation:

= ∇θt
log

K∑
i=1

N (µi|µ0|t(θt), Σ̃i), (A.5)

=
∇θt

∑K
i=1 N (µi|µ0|t(θt), Σ̃i)∑K

i=1 N (µi|µ0|t(θt), Σ̃i)
(chain rule), (A.6)

=

∑K
i=1 N (µi|µ0|t(θt), Σ̃i)∇θt

logN (µi|µ0|t(θt), Σ̃i)∑K
i=1 N (µi|µ0|t(θt), Σ̃i)

(since ∇f = f∇ log f ), (A.7)

=

∑K
i=1 N (µi|µ0|t(θt), Σ̃i)∇θt

(
− 1

2 (µ0|t(θt)− µi)
⊤Σ̃−1

i (µ0|t(θt)− µi)
)

∑K
i=1 N (µi|µ0|t(θt), Σ̃i),

(A.8)

=

∑K
i=1 N (µi|µ0|t(θt), Σ̃i)(µi − µ0|t(θt))

TΣ̃−1
i ∇θt

µ0|t(θt)∑K
i=1 N (µi|µ0|t(θt), Σ̃i)

. (A.9)

A.2 EXPERIMENTAL DETAILS

Toy Gaussian Example. A Gaussian likelihood is chosen for tractability, where x | θ ∼
N (x; θ1, θ

2
2) so θ ∈ R2. The original prior p(θ) is uniform over [0, 1]2, while the new prior

q(θ) is a multivariate Gaussian distribution:

q(θ) = N
(
θ;

[
0.3
0.8

]
,

[
0.039 0.025
0.025 0.04

])
(A.10)

where θ1 represents the mean and θ2 the standard deviation of the likelihood. This choice of prior
introduces correlation between the mean and standard deviation parameters while concentrating
probability mass in a specific region of the parameter space. The x for likelihood calculations
for training are 10 samples from a given θ(i) therefore x(i) ∈ R10. The base model was trained
with 10, 000 simulations. The network architecture and training scheme was taken from the base
configuration in Gloeckler et al. (2024). In Fig. 1 a histogram plot shows the sample frequency as a
comparison for the posterior density which can be computed exactly.
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(a) Prior v samples (b) PriorGuide v samples (c) PriorGuide v retrained

Figure A.1: Two moons with correlated prior. The points are samples from the diffusion model
trained with uniform prior p(θ). Contours of the new prior q(θ) are shown in . The points are
PriorGuide samples using this new prior. Fig. A.1c compares these against samples from a model
retrained with the new prior, showing comparable results without retraining.

Two Moons with Correlated Prior. We use the standard two moons example in the SBI package
detailed in Greenberg et al. (2019), where θ ∈ R2 and x ∈ R2. The original prior p(θ) is uniform
over [−1, 1]2, while the new prior q(θ) is a multivariate mixture Gaussian distribution:

q(θ) =
1

2
N

(
θ;

[
0.2
0.2

]
,

[
0.01 0.007
0.007 0.01

])
+

1

2
N

(
θ;

[
−0.2
−0.2

]
,

[
0.01 0.007
0.007 0.01

])
(A.11)

where the mixture weights are equal so 0.5, and each component shares the same covariance matrix
with correlation coefficient. The base model was trained with 10, 000 simulations and same network
architecture as in the previous example.

Ornstein-Uhlenbeck Process (OUP). OUP is a well-established stochastic process frequently
applied in financial mathematics and evolutionary biology for modeling mean-reverting dynamics
(Uhlenbeck & Ornstein, 1930). The model is defined as:

yt+1 = yt +∆yt, ∆yt = θ1 [exp(θ2)− yt] ∆t+ 0.5w, for t = 1, . . . , T,

where we set T = 25, ∆t = 0.2, and initialize x0 = 10. The noise term follows a Gaussian
distribution, w ∼ N (0,∆t). We define p(θ) as a uniform prior, U([0, 2]× [−2, 2]), over the latent
parameters θ = (θ1, θ2).

For this OUP task, the base model is trained on 10,000 simulations. We evaluate the performance
using Maximum Mean Discrepancy (MMD) with an exponentiated quadratic kernel with a lengthscale
of 1, and Root Mean Squared Error (RMSE). Each experiment is evaluated using 100 randomly
sampled θ. For each θ, we generate 1,000 posterior samples, repeating this process over five runs.

We define two new prior distributions q(θ) for the OUP experiments: (i) The simple prior consists of
Gaussian distributions with a standard deviation set to 5% of the parameter range. Each prior’s mean
is sampled from a Gaussian centered on the true parameter value, using the same standard deviation
(similar to Chang et al., 2024). (ii) The complex prior, a mixture of two slightly correlated bivariate
Gaussians with equal component weights (π1 = π2 = 0.5):

q(θ) = π1 N
((

0.5
−1.0

)
,

(
0.06 0.01
0.01 0.06

))
+ π2 N

((
1.3
0.5

)
,

(
0.06 0.01
0.01 0.06

))
. (A.12)

Turin Model. Turin is a widely used time-series model for simulating radio wave propagation
(Turin et al., 1972; Pedersen, 2019). This model generates high-dimensional, complex-valued time-
series data and is governed by four key parameters: G0 determines the reverberation gain, T controls
the reverberation time, λ0 defines the arrival rate of the point process, and σ2

N represents the noise
variance.

The model assumes a frequency bandwidth of B = 0.5 GHz and simulates the transfer function Hk

at Ns = 101 evenly spaced frequency points. The observed transfer function at the k-th frequency
point, Yk, is defined as:

Yk = Hk +Wk, k = 0, 1, . . . , Ns − 1,
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where Wk represents additive zero-mean complex Gaussian noise with circular symmetry and variance
σ2
W . The transfer function Hk is expressed as:

Hk =

Npoints∑
l=1

αl exp(−j2π∆fkτl),

where the time delays τl are sampled from a homogeneous Poisson point process with rate λ0, and
the complex gains αl are modeled as independent zero-mean complex Gaussian random variables.
The conditional variance of the gains is given by:

E[|αl|2|τl] =
G0 exp(−τl/T )

λ0
.

To obtain the time-domain signal ỹ(t), an inverse Fourier transform is applied:

ỹ(t) =
1

Ns

Ns−1∑
k=0

Yk exp(j2πk∆ft),

where ∆f = B/(Ns − 1) represents the frequency spacing. Finally, the real-valued output is com-
puted by taking the absolute square of the complex signal and applying a logarithmic transformation:

y(t) = 10 log10(|ỹ(t)|2).

We follow the same training and experimental setup as in OUP. In this Turin case, all parameters are
normalized to [0, 1] using the transformation: x̃ = x−xmin

xmax−xmin
, where x̃ is the normalized value. The

true parameter bounds are: G0 ∈ [10−9, 10−8], T ∈ [10−9, 10−8], λ0 ∈ [107, 5×109], σ2
N ∈

[10−10, 10−9].

For this Turin problem, the simple prior follows the same specification as in OUP, while the complex
prior is also a multivariate Gaussian mixture with equal component weights but with different
component parameters, adjusted to match the Turin model’s parameter dimension and normalized
range, defined as:

q(θ) = π1 N
(

0.30

0.30

0.70

0.70

 ,

 0.01 0.005 0.005 0.005
0.005 0.01 0.005 0.005
0.005 0.005 0.01 0.005
0.005 0.005 0.005 0.01

)

+ π2 N
(

0.70

0.70

0.30

0.30

 ,

 0.01 0.005 0.005 0.005
0.005 0.01 0.005 0.005
0.005 0.005 0.01 0.005
0.005 0.005 0.005 0.01

)
.

(A.13)

A.3 SBI MIXTURE PRIOR CORNER PLOTS

As a representative visualization of the SBI experiments, we present example corner plots of posterior
samples for the case where the sampling distribution of θ follows a mixture distribution in both the
OUP and Turin SBI tasks. These plots illustrate marginal pairwise relationships between sampled
latent parameters and demonstrate that PriorGuide can handle complex priors, producing posterior
results that are reasonable given the prior structure.

Fig. A.2 presents the corner plots for the OUP case, comparing Simformer and PriorGuide. The
higher-dimensional Turin task is shown in Fig. A.3 and Fig. A.4 for Simformer and PriorGuide,
respectively.
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Figure A.2: OUP model. Comparison of posterior samples between Simformer and PriorGuide. The
light blue line is the true parameter value. The bottom left corner of (b) shows the sampling mixture
distribution (and prior); see Eq. (A.12) for detail. (a) Simformer results (without prior guidance),
where the model fails to capture the true mixture distribution of θ. (b) PriorGuide helps the base
model generate posterior results that align well with the structure of the complex prior.
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Figure A.3: Turin model (SimFormer). Posterior samples using Simformer, without prior guidance.
The light blue line is the true parameter value. The sampling distribution is the mixture described
in Eq. (A.13) (see bottom left corner of Fig. A.4 for visualization). Since the model is trained
on a uniform prior, it yields a wide posterior that fails to capture the multimodality of the true θ
distribution.

15



G0 = 0.46+0.16
0.16

Prior

0.2
0.4
0.6
0.8
1.0

T 2.5

5.0

5.0

7.5

7.5

10.0

10.0

12.5

12.5

Prior comp1
Prior comp2

T = 0.42+0.06
0.05

0.2
0.4
0.6
0.8
1.0

0

2.5

2.5

5.0

5.0

7.5

7.5

10.0
10.0

12.5

12.5

2.5

2.5

5.0

5.0

7.5

7.5

10.0

10.0

12.5

12
.5

0 = 0.42+0.32
0.19

0.2 0.4 0.6 0.8 1.0

G0

0.2
0.4
0.6
0.8
1.0

2 N

2.5

2.5

5.0

5.0
7.5

7.5

10.0

10.0

12
.5

12.5

0.2 0.4 0.6 0.8 1.0

T

2.5

2.5

5.0

5.0

7.5

7.5

10.0

10.0

12.
5

12.5

0.2 0.4 0.6 0.8 1.0

0

2.5

5.0

5.0

7.5

7.5

10.0

10.0

12.5

12.5

0.2 0.4 0.6 0.8 1.0

2
N

2
N = 0.38+0.13

0.10

Figure A.4: Turin model (PriorGuide). Posterior samples from PriorGuide. Compared to the
Simformer without prior guidance (Fig. A.3), PriorGuide significantly improves posterior estimation,
aligning it more closely with the complex prior structure while using the same model as the Simformer,
without retraining. Note that the contour plots represent the sampling distribution (prior).

16


	Introduction
	Background
	PriorGuide
	Approximating the Guidance Function

	Experiments
	Related Work
	Discussion
	Appendix
	Gaussian Integration
	Experimental Details
	SBI Mixture Prior Corner plots


