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Abstract

Contemporary competitive programming plat-
forms, such as Codeforces, offer a vast array of
problems, which can overwhelm novice users en-
countering competitive programming for the first
time. This complexity highlights the need for in-
telligent recommendation learning paths. How-
ever, designing these paths using traditional rec-
ommendation systems poses significant challenges,
as many do not incorporate temporal knowledge
and prerequisite concepts, often relying solely on
correlation-based methods. We approach this is-
sue from the perspective of deep knowledge tracing
(DKT), utilizing transformers for predicting users’
skill levels and recommending problems. Our
model employs DKT to learn a dynamic knowl-
edge vector that predicts the probability of users
successfully solving any given problem. Addition-
ally, we enhance our DKT transformer architecture
with a TransE-based prerequisite graph. Our model
achieves a ROC AUC score of 0.75 for knowl-
edge tracing, paving the way for explainable rec-
ommendations. Users who interact with our sys-
tem benefit from real-time insights into their weak-
nesses while receiving targeted suggestions to im-
prove their knowledge.

1 Introduction
The online competitive programming platform Codeforces
contains a broad array of over 30,000 programming problems
with an exceptionally high skill ceiling, making it a gold mine
for a maximal level of human skill development that even
state-of-the-art AI models are currently unable to reach [Li
et al., 2022]. However, navigating this collection of program-
ming problems is particularly tricky for the novice. Even with
problem tags and difficulty levels, new users can be bogged
down due to concept unfamiliarity and the asymmetry of their
own skills. In general, unstructured exploration of such an
educational resource has been shown to be inferior to struc-
tured guidance [Kirschner et al., 2006]. Thus, there exists the
need for an automated learning system that can understand
both the user’s skill level (measured in terms of a “knowledge

frontier”) and the structural dependencies of the learning re-
source to create an optimal ”golden path” that challenges but
does not overwhelm the user [da Silva et al., 2023].

Traditional recommendation algorithms, while success-
ful in domains like e-commerce [Sarwar et al., 2001], of-
ten rely on collaborative filtering or content-based meth-
ods that capture correlational patterns [Resnick et al., 1994;
Goldberg et al., 1992]. These approaches may not adequately
model the hierarchical nature of knowledge acquisition or
the prerequisite dependencies inherent in educational sub-
jects like algorithmic problem-solving. For instance, under-
standing graph traversal is typically a prerequisite for tackling
complex shortest path algorithms. A purely correlation-based
system might miss this “you should master A before attempt-
ing B” nuance, leading to recommendations that are either
too trivial or prematurely advanced, thereby hindering opti-
mal learning.

Causal learning aims to model underlying cause-effect re-
lationships, offering the potential for more reliable, fair, and
interpretable systems [Kumar et al., 2023]. In an educational
context, this involves two primary aspects:
1. Causal Discovery (Knowledge Structure): Identifying

dependencies between concepts or problems, often repre-
sented as a prerequisite graph where mastering one skill or
problem enables or facilitates the understanding of another
[Roy et al., 2019].

2. Causal Inference (Learning Impact): Estimating the ef-
fect of a pedagogical intervention, such as attempting a
specific problem, on a learner’s knowledge state and their
ability to solve future problems.
Our work focuses on leveraging the temporal sequence

of user interactions on Codeforces to address the causal in-
ference aspect directly through Deep Knowledge Tracing
(DKT). By modeling how a user’s knowledge state evolves
with each problem solved or failed, we can predict their cur-
rent capability across all problems. This “knowledge vec-
tor”, a set of probabilities indicating the likelihood of solving
each problem, forms the basis for our recommender. Such a
system can offer explanations grounded in the user’s learn-
ing trajectory and the predicted impact of new problems on
their knowledge. For instance, a problem might be recom-
mended because the user has a high probability of solving it
and because solving it is predicted to significantly improve
their chances on other, more advanced problems (i.e., maxi-



Figure 1: Figure depicting the model’s predicted solve probabilities for seven problems (y-axis) versus fifty steps in the user’s problem-solving
sequence. At the first step, the model is not confident the user can solve anything. The first ten steps, marked by X’s (incorrect attempts) and
circles (correct submissions) are shown. The model is able to update is estimate of the user’s solve probability for each problem after each
attempt by feeding the new interaction It into the transformer model.

mizing their expected knowledge gain).
Developing an explicit prerequisite graph from data as part

of causal discovery holds significant value. We investigate
using embeddings derived from this graph as features, based
on which we propose a DKT system designed to inherently
follow knowledge. This approach enables us to: (1) Predict a
user’s dynamic, fine-grained knowledge state; (2) Formulate
recommendations that aim to expand the user’s “knowledge
frontier” by suggesting challenging yet achievable problems;
(3) Provide explanations for recommendations based on pre-
dicted solvability and potential learning impact.

We utilize a large-scale dataset of Codeforces submissions
to train and evaluate our DKT Transformer model. Our pre-
liminary results show that the DKT model effectively traces
user knowledge (validation AUC ≈ 0.75). This work paves
the way for more personalized and pedagogically sound guid-
ance on competitive programming platforms.

The major contributions of our model can be summarized
as follows:
• Causal DKT–Transformer. We treat each problem at-

tempt as a causal intervention on the learner’s latent state,
and use a transformer-based Deep Knowledge Tracing
model to produce a dynamic “knowledge vector” of suc-
cess probabilities over all problems.

• Data-driven prerequisite graph. We recover causal de-
pendencies between problems from Codeforces submission
logs, embed them via TransE, and integrate these embed-
dings to bias the DKT representation toward the true hier-
archy of concept prerequisites.

• Intervention-aware evaluation. We introduce a temporal-
holdout protocol combining ROC AUC for tracing fidelity
with a HITS@K metric that measures how recommended
“interventions” (problems) causally improve downstream
solving performance.

• Explainable, impact-driven recommendations. We show
how our causally-grounded tracing yields transparent sug-

gestions—each recommendation comes with both a pre-
dicted solvability score and an estimate of its expected
knowledge gain.

2 Related Work

Our research intersects with several areas: knowledge trac-
ing, sequential recommendation, graph-based recommenda-
tion, causal inference in education, and recommender sys-
tems for programming education.

Knowledge Tracing (KT). KT aims to model a student’s
understanding of concepts over time based on their interac-
tions with educational content [Corbett and Anderson, 1994].
Early models like Bayesian Knowledge Tracing (BKT) often
required explicit mapping of problems to underlying skills.
Deep Knowledge Tracing (DKT) [Piech et al., 2015] marked
a significant advancement by using Recurrent Neural Net-
works (RNNs) to automatically learn latent knowledge states
from sequences of problem interactions (problem ID and cor-
rectness). This removed the need for explicit skill tagging
for each problem, allowing models to learn complex tempo-
ral dependencies.

Subsequent work has extended DKT using more powerful
sequential architectures. Attention mechanisms, popularized
by the Transformer [Vaswani et al., 2017], have been incorpo-
rated into KT models like Self-Attentive Knowledge Tracing
(SAKT) [Pandey and Karypis, ] and SAINT(+) [Shin et al.,
2021], often outperforming RNN-based DKTs by better cap-
turing long-range dependencies in student learning histories.
These models typically predict the probability of a correct re-
sponse on the next interaction. Our approach builds on this
line of work, employing a Transformer architecture to pro-
cess rich interaction sequences from Codeforces, including
problem difficulty, user ratings, and time deltas, to predict
solvability across the entire problem set.



Sequential Recommendation. Parallel to KT, sequential
recommendation systems also model sequences of user-item
interactions, but typically aim to predict the next item a user
will interact with (e.g., click, purchase, watch) [Hidasi et al.,
2016; Rendle et al., 2010]. Transformer-based models like
SASRec [Kang and McAuley, 2018] and BERT4Rec [Sun et
al., 2019] have shown state-of-the-art performance. While
the modeling techniques are similar to those in Transformer-
based KT, the prediction task differs: KT focuses on predict-
ing correctness/mastery, while sequential recommenders pre-
dict item choice. Our DKT model’s output (probabilities of
solving all problems) can be seen as a rich user state repre-
sentation, which could inform a subsequent next-item predic-
tion layer, but our primary goal is assessing solvability for
learning-focused recommendations.

Causal Reasoning and Explainability in Recommender
Systems. There’s a growing interest in moving beyond
correlation-based recommendations towards systems that un-
derstand or infer causal relationships [Wang et al., 2023;
Zhang et al., 2021]. This is particularly vital in education,
where the effect of working on a problem on future learn-
ing is key. Causal approaches address issues like selection
bias [Schnabel et al., 2016] and aim to provide more ro-
bust and fair recommendations. Explainable AI (XAI) for
recommenders also seeks to make system outputs transpar-
ent [Zhang and Chen, 2020]. Our DKT approach contributes
to explainability by grounding recommendations in predicted
solvability and potential “knowledge gain” derived from the
model’s simulation of solving a problem, offering a “why”
behind suggestions. While true causal claims from observa-
tional data are challenging, DKT allows for causal-style in-
terpretations of how specific interactions impact the learned
knowledge state.

Prerequisite Modeling and Graph-Based Recommenda-
tion. Explicitly modeling prerequisites is a form of incor-
porating causal domain structure. This often involves con-
structing a prerequisite graph where nodes are concepts or
problems and edges denote dependencies [Chen et al., 2018;
Roy et al., 2019]. Knowledge Graph (KG) embedding tech-
niques like TransE [Bordes et al., 2013], TransH [Wang et
al., 2014], etc., learn vector representations of entities and
relations in such graphs. These embeddings can then enrich
recommendation models [Wang et al., 2019]. Graph Neural
Networks (GNNs) also directly learn from graph structures
[Wu et al., 2022; Ying et al., 2018]. In our current DKT-
focused work, we propose using these pre-computed TransE
embeddings as additional features to the DKT model, allow-
ing it to leverage this explicit structural information alongside
its sequence-based learning.

Recommendation in Competitive Programming. Several
systems aim to recommend problems on platforms like Code-
forces, often using collaborative filtering, problem tags, or
difficulty [Desai, 2023; Coc, 2021]. Shared datasets [Denk,
2024] have spurred research. However, few systems deeply
integrate temporal knowledge tracing with the goal of provid-
ing explainable, learning-focused paths sensitive to prerequi-
site structures learned from data. Our work aims to advance
this by applying a robust DKT Transformer model, poten-

tially enhanced by explicit prerequisite graph embeddings, to
provide fine-grained solvability predictions for personalized
learning trajectories.

3 Proposed Methodology
In this section, we describe our end-to-end methodology for
causal, explainable problem recommendation on Codeforces.
We begin by detailing how we curate and transform raw sub-
mission logs into rich sequential interaction data, including
problem identifiers, outcomes, difficulty ratings, user ratings,
and interaction time deltas, and split them into user-level tem-
poral training and test sets. We then introduce our DKT-
Transformer architecture, which ingests these engineered fea-
tures, applies causal self-attention to model the effect of each
problem attempt on the learner’s latent knowledge state, and
outputs a dynamic “knowledge vector” of solve probabilities.
To infuse explicit prerequisite structure, we explain how we
derive a directed acyclic problem graph via an LIS-inspired
analysis of solving patterns, embed its edges with TransE,
and seamlessly integrate these embeddings into the DKT
input representation. Finally, we outline our intervention-
aware recommendation strategy, which leverages the result-
ing knowledge vector to select problems that the learner is
likely to solve and whose predicted causal impact maximizes
expected knowledge gain.

3.1 Dataset and Feature Engineering
We utilize a large-scale dataset derived from Codeforces sub-
mission logs, based on the “UsersCodeforcesSubmission-
sEnd2024” dataset by Denk [Denk, 2024]. Each raw inter-
action record contains the user’s handle, problem ID, submis-
sion timestamp, the problem’s official rating, the user’s Code-
forces rating at the time of submission, and the verdict of the
submission.
Core Interaction Definition. For our DKT model, each
step in a user’s sequence represents a problem interaction.
The primary features for each interaction at step t are:
• Problem ID (Pt): The unique identifier of the problem at-

tempted, label-encoded into a continuous integer range.
• Outcome (Ot): A binary variable indicating suc-

cess (1 if verdict is ‘OK’, 0 otherwise for rele-
vant non-successful attempts like ‘WRONG ANSWER’,
‘TIME LIMIT EXCEEDED’).

• Problem Rating (PRt): The official difficulty rating of Pt.
• User Rating at Submission (URt): The user’s overall

Codeforces rating when attempting Pt.
• Time Delta (∆Tt): The time elapsed since the user’s pre-

vious interaction (Tt − Tt−1). For the first interaction,
∆T1 = 0.

Continuous features (PRt, URt,∆Tt) are normalized (e.g.,
using standardization based on training set statistics, with
∆Tt log-transformed before standardization due to its skewed
distribution). Missing values for ratings are imputed using
medians derived from the training set.
Sequence Generation and Splitting. User interactions
are first sorted chronologically for each unique user to
form individual interaction histories. From these histo-
ries, we construct sequences suitable for our DKT model.



Figure 2: Conceptual overview of the DKT-Transformer model, taking sequential user interactions and prerequisite graph embeddings (op-
tional) as input to predict a knowledge vector (solve probabilities).

Each sequence consists of a series of interaction tuples
(Pt, Ot, PRt, URt,∆Tt) as defined previously. For training
the DKT model to predict the outcome of the (k + 1)th in-
teraction based on the preceding k interactions, we transform
each user’s history of length L into input sequences of fea-
tures from interactions (I0, . . . , IL−2) and corresponding tar-
get sequences of problem IDs (P1, . . . , PL−1) and their ac-
tual outcomes (O1, . . . , OL−1).

User sequences with fewer than two interactions are fil-
tered out, as they do not provide a basis for next-step predic-
tion. To manage computational complexity and ensure uni-
form input dimensions for the Transformer, sequences longer
than a predefined ‘MAX SEQ LENGTH’ are truncated, re-
taining the most recent interactions. Shorter sequences are
padded to this ‘MAX SEQ LENGTH’ using specific padding
values for problem IDs, outcomes, and continuous features.
Crucially, these processed sequences are then subjected to a
strict user-level temporal split: users are divided into train-
ing (80%) and testing (20%) sets, ensuring that all sequences
from a given user belong exclusively to one set. This setup
rigorously tests the model’s ability to generalize to entirely
new users.

3.2 DKT Transformer Model Architecture
We adapt the Transformer architecture [Vaswani et al., 2017]
for the DKT task. The model processes a sequence of past
interactions to predict the probability of solving each problem
in the entire problem set.

Input Embedding Layer. For each interaction It =
(Pt, Ot, PRt, URt,∆Tt) in a user’s sequence, we construct
a rich input representation:
1. Problem Embedding (ePt

): A learned embedding vector
for Pt.

2. Outcome Embedding (eOt
): A learned embedding vec-

tor for the binary outcome Ot.
3. Continuous Features: The normalized PRt, URt,∆Tt

are treated as scalar features.
These components are concatenated:

xt = [ePt
; eOt

;PRt;URt; ∆Tt] (1)

This combined vector xt is then projected by a linear layer to
the Transformer’s hidden dimension, dmodel.

Positional Encoding. Standard sinusoidal positional en-
codings are added to the projected interaction embeddings to
provide the model with information about the order of inter-
actions in the sequence.
Transformer Encoder. The sequence of positionally-
aware interaction embeddings is fed into a multi-layer Trans-
former encoder. Each encoder layer consists of a multi-head
self-attention mechanism followed by a position-wise feed-
forward network. Layer normalization and dropout are ap-
plied within each layer. The self-attention mechanism allows
the model to weigh the importance of all prior interactions
when constructing the representation for the current state. A
causal (triangular) attention mask is applied to ensure that the
prediction for step i only depends on interactions 1, . . . , i.
Output Layer. After processing the input sequence of
length Lin (representing interactions I1, . . . , ILin ), the Trans-
former encoder outputs a sequence of context vectors
h1, . . . ,hLin

, where hi ∈ Rdmodel is the representation of
the user’s knowledge state after the i-th interaction in the in-
put. For each hi, a final linear layer followed by a sigmoid
activation function predicts the probability of solving every
problem Pj in the entire problem set (of size NP ):

ŷi = σ(Wouthi + bout) ∈ [0, 1]NP (2)
Thus, ŷi[j] is the predicted probability
P (user solves problem Pj |History up to Ii).
Training Objective. The model is trained to predict the
outcome of the next actual interaction. If the input sequence
to the DKT model at a given training step consists of inter-
actions I1, . . . , Ik, and the user’s actual (k + 1)th interaction
was with problem Ptgt resulting in outcome Otgt, the loss is
computed based on the model’s prediction for Ptgt made from
state hk. Specifically, we use Binary Cross-Entropy (BCE)
loss:

L = −[Otgt log(ŷk[Ptgt])

+ (1−Otgt) log(1− ŷk[Ptgt])]
(3)

The loss is calculated only for valid (non-padded) target in-
teractions in a batch.

3.3 Enhancing DKT with Prerequisite Graph
Embeddings

To provide the DKT model with explicit knowledge about
problem dependencies, we leverage embeddings from a prob-



lem prerequisite graph described in Section 3.4 to inform our
DKT model.
Prerequisite Graph Construction and TransE Embed-
dings. In Section 3.4 we describe the process of construct-
ing a directed acyclic graph where an edge A → B indicates
that problem A is a prerequisite for problem B. This graph
is derived from temporal user solving patterns and problem
difficulty ordering, using a longest increasing subsequences
(LIS)-inspired approach. We then apply TransE [Bordes et
al., 2013] to this graph to learn a demb-dimensional embed-
ding vTransE

P for each problem P , such that if A→ B, then

vTransE
A + r ≈ vTransE

B , (4)
where r is the embedding for the “isPrerequisiteOf” relation.
Integration into DKT. These pre-trained TransE embed-
dings are incorporated into the DKT model’s input represen-
tation. When constructing the feature vector xt for an inter-
action It involving problem Pt:

xt = [ePt ; eOt ;v
TransE
Pt

;PRt;URt; ∆Tt] (5)

The TransE embedding vTransE
Pt

is concatenated with the
other features. The DKT model’s own problem embedding
layer for ePt can either be initialized randomly or potentially
with these TransE embeddings (and then fine-tuned). An ab-
lation study (Section 4) will assess the impact of including
these TransE features.

3.4 LIS-based Prerequisite Graph Generation
We infer prerequisite relationships between Codeforces prob-
lems by analyzing users’ temporal solving patterns, with a
focus on sequences of increasing difficulty. The intuition is
that if users consistently solve an easier problem A before
successfully tackling a harder problem B, then A is likely a
prerequisite for B. The algorithm aims to be efficient by pro-
cessing each user’s solved problem sequence in a single pass,
inspired by Longest Increasing Subsequence (LIS) construc-
tion.

Problem Difficulty Ordering and Preprocessing
First, all unique problems in the dataset successfully solved
by users (verdict == OK) are considered. For each such prob-
lem, we determine its median problem rating based on all
successful submissions. Problems are then globally sorted
by this median rating to establish a canonical order of diffi-
culty. Let P ′

0, P
′
1, . . . , P

′
NP−1 be the sequence of problems

sorted by increasing difficulty, where NP is the total num-
ber of unique problems after an initial pruning step (e.g., re-
moving problems solved by fewer than a minimum number
of users, such as 4). Each problem P is mapped to its global
difficulty index idx(P ) based on this sorted list.

Per-User LIS-Inspired Path Processing
For each user, their sequence of successfully solved problems
is processed chronologically. During this process, we main-
tain a dynamic list, difficulty seq, which stores the dif-
ficulty indices of problems forming the current LIS of prob-
lem difficulties encountered so far for that user.

When processing a newly solved problem Pcurrent (with
difficulty index idx(Pcurrent)) by the user:

1. If Pcurrent is not in our pre-filtered and indexed set of
problems, or if Pcurrent has already been processed in the
user’s current LIS path construction (to handle first solves
primarily), it is skipped.

2. We find the position pos where idx(Pcurrent) would be in-
serted into the current difficulty seq to maintain its
sorted order (using binary search, e.g., bisect left).

3. If pos > 0, all problems Pprev with idx(Pprev) ∈
difficulty seq[0 . . . pos−1] are considered as being
on an increasing difficulty path leading to Pcurrent. For
each such Pprev, the counter for the potential prerequisite
relationship (Pprev → Pcurrent) in a global NP ×NP ma-
trix, prereq counts, is incremented.

4. The difficulty seq is updated: if pos ==
len(difficulty seq), idx(Pcurrent) is appended.
Otherwise, difficulty seq[pos] is replaced by
idx(Pcurrent).

5. A counter, total solvers lis[idx(Pcurrent)], is in-
cremented, tracking how many times Pcurrent has been
part of these LIS-path constructions.

The overall process is summarized in Algorithm 1.

Figure 3: Edge weight distribution in the LIS-derived prerequisite
graph. The distribution shows many weak links and fewer strong
ones.

Figure 4: In-degree and out-degree distributions of the LIS-derived
prerequisite graph. Most problems have few direct prerequisites or
serve as prerequisites for few others, with some hub problems.

Prerequisite Score Normalization and Filtering
After processing all users, the raw prereq counts matrix
is normalized. The score S(P ′

i , P
′
j) for problem P ′

i being a



prerequisite for P ′
j is calculated as:

S(P ′
i , P

′
j) =

prereq counts[idx(P ′
i ), idx(P

′
j)]

total solvers lis[idx(P ′
j)]

(6)

This ratio represents the proportion of times P ′
i was on an

LIS-path leading to P ′
j , out of all LIS-path occurrences of

P ′
j . A final threshold (e.g., 0.1) is applied to this normalized

matrix to retain only statistically significant prerequisite re-
lationships. The resulting graph is inherently acyclic due to
the difficulty ordering used in the LIS construction. Figure 3
shows a typical distribution of these edge weights, and Fig-
ure 4 shows the degree distributions.

3.5 Recommendation Strategy
The primary output of our DKT model at any point in a user’s
sequence is the “knowledge vector” ŷ, representing the pre-
dicted probability of solving each problem in the dataset. Our
recommendation strategy aims to guide users towards their
“knowledge frontier.”

A straightforward heuristic based on this vector is to rec-
ommend the most challenging problem that the user is pre-
dicted to be able to solve with a reasonable probability.
Specifically, for a user with current knowledge vector ŷ:
1. Filter the set of all problems to include only those not yet

successfully solved by the user.
2. From this filtered set, select candidate problems Pj for

which the predicted solvability ŷ[j] > θsolve (where
θsolve is a predefined confidence threshold, e.g., 0.6 or
0.7).

3. Among these candidates, recommend the one(s) with the
highest official ‘problem rating‘ (difficulty).

This strategy directly leverages the DKT model’s ability to as-
sess current mastery. More advanced strategies, such as rec-
ommending problems that maximize Expected Knowledge
Gain (EKG), are discussed as future work (Section 6). The
explainability of recommendations stems from being able to
state the predicted solvability and the potential impact on the
knowledge vector.

4 Experiments
To evaluate our proposed Deep Knowledge Tracing (DKT)
Transformer model and the impact of incorporating prerequi-
site graph embeddings, we conducted experiments on a large-
scale dataset derived from Codeforces user submission logs.
We compare our approach against a traditional Neural Collab-
orative Filtering (NCF) model adapted for a temporal evalua-
tion setting.

4.1 Experimental Setup
Dataset and Preprocessing. We use the Codeforces inter-
action dataset described in Section 3.1, containing approx-
imately 17 million submission records from around 15,000
users across over 30,000 unique problems. Each interac-
tion is characterized by the problem ID, the binary outcome
(solved/failed), the problem’s official rating, the user’s Code-
forces rating at the time of submission, and the time delta
from the user’s previous interaction. Continuous features are
normalized (Section 3), and problem IDs are label-encoded,
resulting in NP ≈ 30, 614 unique problems.

Train-Test Split. We employ a strict user-level temporal
split. The dataset is divided such that 80% of users (11,965
users) are randomly selected for the training set, and all their
historical interactions are used for training. The remaining
20% of users (2,992 users) form the test set, and their en-
tire histories are used for evaluation. This ensures that the
model is evaluated on its ability to generalize to entirely new
users it has not encountered during training (a cold-start user
scenario). For all users, sequences are processed chronologi-
cally. Sequences with fewer than two interactions are filtered
out before creating datasets for the models.

DKT Model Configuration. Our primary model is a Deep
Knowledge Tracing (DKT) Transformer, whose architecture
is detailed in Section 3.2. The model processes sequences
of user interactions, with a maximum sequence length in-
formed by our dataset analysis (see Figure 5). Specific hy-
perparameters for the DKT model, including embedding di-
mensions, Transformer layer configurations, optimizer de-
tails, and training epochs, are provided in Appendix A (Ta-
ble 2).

DKT Enhancement with Prerequisite Graph Embeddings
(DKT+TransE). To investigate the utility of explicit struc-
tural knowledge, we evaluate a variant of our DKT model
(DKT+TransE). This variant incorporates pre-trained TransE
embeddings as additional input features for each problem in
a user’s interaction sequence. These TransE embeddings are
derived from a data-driven prerequisite graph constructed us-
ing an LIS-based method on the training data. Further details
on the prerequisite graph construction are in Appendix B, and
TransE embedding specifics are in Appendix A.

4.2 Baseline Model: Adapted Neural
Collaborative Filtering (NCF)

To provide a comparative baseline, we adapt a standard Neu-
ral Collaborative Filtering (NCF) architecture [He et al.,
2017]. The NCF model is trained on individual ‘(user id,
problem id, outcome)‘ interactions from the same training
users as the DKT models. It learns user and problem embed-
dings and uses an MLP to predict the binary outcome. For
evaluation on the cold-start test users, default predictions are
used as the NCF has no prior information on these users. Key
NCF hyperparameters are detailed in Appendix A (Table 2).
This setup ensures the NCF is evaluated under the same chal-
lenging cold-start user conditions.

4.3 Baseline Model: Adapted Neural
Collaborative Filtering (NCF)

To provide a comparative baseline, we adapt a standard Neu-
ral Collaborative Filtering (NCF) architecture [He et al.,
2017].
• Training: The NCF model is trained on individual

‘(user id, problem id, outcome)‘ interactions from the
same 80% of users in the DKT training set. It learns
user and problem embeddings (dimension 64) and uses an
MLP to predict a single logit for the binary outcome. User
IDs for NCF are separately label-encoded from the 11,965
training users.



Figure 5: Distribution of user interaction sequence lengths in the training set. Left: Histogram of sequence lengths. (Right) Cumulative
Distribution Function (CDF) with 80th (1846), 90th (2847), 95th (3980), and 99th (6881) percentiles marked. The median sequence length is
688. This distribution informed our choice of ‘MAX SEQ LENGTH‘ (see Appendix A).

• Evaluation (Temporal, Cold-Start): For evaluation, we
iterate through the test users’ sequences (the 2,992 unseen
users). At each step t in a test user’s sequence, the NCF
model attempts to predict the outcome for the target prob-
lem Pt+1. Since these are cold-start users for NCF, pre-
dictions for ROC AUC, MAE, and RMSE are based on a
default zero logit (implying 0.5 probability). HITS@K per-
formance is expected to be minimal. The NCF model was
trained for 15 epochs.

This setup ensures the NCF is evaluated under the same chal-
lenging cold-start user conditions as the DKT model.

4.4 Evaluation Metrics
We evaluate the models on their ability to predict the outcome
of the next interaction in a user’s sequence.
• Area Under the ROC Curve (AUC): Primary metric for

discriminating whether a user will correctly solve the spe-
cific problem they attempt next.

• Root Mean Squared Error (RMSE) and Mean Absolu-
teError (MAE): Measure the difference between the pre-
dicted probability (after sigmoid) and the actual binary out-
come (0 or 1).

• HITS@K (K=10):
– HITS@10 (Raw Solvability Ranking): Ranks all NP can-

didate problems (not yet solved by the user) based purely
on the model’s predicted solvability scores (pj).

– HITS@10 (Optimal Challenge Ranking): Filters candi-
date problems where DKT’s pj ∈ [0.6, 0.9], then ranks
these by descending official ‘problem rating‘. A hit oc-
curs if the user’s actual next solved problem is in the top
K.

• Loss: Validation Binary Cross-Entropy loss.

4.5 Results and Analysis
Table 1 presents the performance of our DKT Transformer
model, its variant augmented with TransE prerequisite em-

beddings (DKT+TransE), and the NCF baseline on the cold-
start user test set, reporting the metrics from the epoch with
the best validation AUC for the DKT models.

DKT Performance. Our DKT-Transformer model demon-
strates a strong ability to trace user knowledge and predict
solvability for unseen users. As shown in Table 1, the base
DKT model achieves a validation AUC of 0.7528 (at epoch
13), significantly outperforming the NCF baseline’s AUC of
0.5, which struggles with cold-start users as expected. The
DKT model’s MAE of 0.3959 and RMSE of 0.2004 indi-
cate reasonable calibration of its probability predictions. This
highlights the DKT model’s capacity to learn generalizable
patterns of skill acquisition from sequential data. The train-
ing and validation losses for the DKT model (e.g., DKT-Base
validation loss of 0.5853 at epoch 13) consistently decreased
over training, indicating stable learning.

Impact of Prerequisite Embeddings (TransE). Incorpo-
rating TransE embeddings derived from the LIS-prerequisite
graph (DKT+TransE) yielded a slight improvement in per-
formance. The DKT+TransE model achieved a peak valida-
tion AUC of 0.7542 (at epoch 14), with a validation loss of
0.5844, MAE of 0.3948, and RMSE of 0.2. While the im-
provement over the DKT-Base model is modest, it suggests
that providing the DKT model with explicit structural knowl-
edge about problem dependencies can offer a small benefit
to its learning process and predictive accuracy for new users.
The HITS@10 metrics remained very low and similar to the
base DKT model.

HITS@K Analysis. The “HITS@K (Raw Solvability
Ranking),” which ranks all candidate problems solely by the
DKT’s predicted P (solve) score, remains very low for both
DKT models (around 0.0001). This is expected given the vast
problem space (NP ≈ 30, 614) and the diverse factors influ-
encing a user’s next choice beyond raw solvability. Similarly,



Figure 6: Training and validation performance curves for the DKT-Base and DKT-TransE models over 15 epochs. Shows Training Loss,
Validation Loss, and Validation AUC. The model demonstrates stable learning and generalization, with validation AUC reaching 0.7542 for
DKT-TransE and 0.7528 for DKT-Base.

Model Val. Loss Val. AUC Val. MAE Val. RMSE Val. HITS@10 (Raw) Val. HITS@10 (Optimal)
NCF (Adapted, Ep. 15) N/A 0.5000 N/A N/A 0.0000 (0 / All) N/A
DKT-Transformer (Base, Ep. 13) 0.5853 0.7528 0.3959 0.2004 0.0001 0.0000
DKT-Transformer + TransE (Ep. 14) 0.5844 0.7542 0.3948 0.2000 0.0001 0.0000

Table 1: Performance comparison on the cold-start user test set. DKT models report best validation AUC epoch. NCF Val Loss/MAE/RMSE
are N/A as evaluation focused on AUC/HITS for this baseline. HITS@10 (Optimal) is not applicable to NCF’s output.

Figure 7: ROC curve for the DKT-Base model on the cold-start user
test set. The curve illustrates the model’s ability to discriminate be-
tween problems the user is likely to solve correctly versus incor-
rectly. The Area Under the Curve (AUC) achieved is 0.7528.

the “HITS@K (Optimal Challenge Ranking)” also resulted
in 0.0000 for both DKT variants in these initial 15 epochs.
This suggests that either the model’s probabilities are not
yet sufficiently calibrated to precisely fit the [0.6, 0.9] “op-
timal” window, or that users’ actual next solved problems do
not frequently align with this specific heuristic ranking when
considering all possible problems. As discussed previously,
for an educational recommender, HITS@K is likely more in-
sightful when evaluating specific recommendation policies
built upon the DKT’s knowledge vector. This remains an im-
portant direction for future work (Section 6).

Qualitative Insights Explainability. The DKT model’s
primary output, the knowledge vector (solve probabilities),
provides a strong basis for explainable recommendations. For
instance, a problem Prec can be recommended because:
1. The model predicts a high probability of the user solving

Prec (e.g., P (solve Prec|History) > θsolve).
2. Solving Prec is projected by the DKT model (by simulat-

ing the solve and observing the change in the knowledge



vector) to lead to a significant “knowledge gain” on other,
potentially harder, problems.

This allows the system to move beyond “users who solved X
also solved Y” towards explanations grounded in the user’s
dynamically tracked skill profile and the potential learning
impact of the recommendation.

Qualitative Case Study: Knowledge Evolution. To il-
lustrate how our DKT-Transformer model traces knowledge,
Figure 1 depicts the predicted probability of solving a fixed
set of initial problems for a sample test user, evolving over
their first 50 interactions (x-axis).

Initially, at step 1, the model predicts a low solve proba-
bility for an easy problem, say P1980A on the sixth row (an
easy 800-level math problem).

Suppose the user then solves this problem successfully,
taking two tries for it (indicated by first an X-mark, indicating
failure, and then a green circle, indicating success). We see
that upon the first failure, the solve probabilities for all other
problems remain low. But at the success upon the second at-
tempt, the solve probabilities become much higher.

Following this successful interaction, we might observe in
the heatmap that the predicted solve probability for P1986A
(an 800-level geometry problem) at step 2 increases from
roughly 0.4 to 0.7.

Later, at step 3 the user solves another relevant problem
P1980B (a 800-level sorting problem) causing the proba-
bility for P1986A to further increase and bringing it into a
”solvable” range.

This step-by-step visualization demonstrates the model’s
ability to dynamically update its assessment of the user’s mas-
tery based on their performance, capturing the learning pro-
cess. It also provides an interpretable basis for why P1968A
might be recommended after P1980A and P1980B, as the
model infers that earlier successes on those problems have
increased the user’s readiness for P1986A.

5 Explainability and Causal Interpretation
A key advantage of our DKT-Transformer approach is its ca-
pacity to offer explainable recommendations and facilitate
causal-style interpretations of learning pathways. Unlike tra-
ditional collaborative filtering models that often function as
black boxes, our DKT model’s foundation in tracing a dy-
namic knowledge state provides a more transparent and inter-
pretable basis for its suggestions.

The Knowledge Vector: A Foundation for Explainability.
At any step t in a user’s interaction sequence, the DKT model
outputs a knowledge vector, ŷt ∈ [0, 1]NP . Each element
ŷt[j] represents the predicted probability that the user will
correctly solve problem Pj , given their history up to step t:

ŷt[j] = P (user solves problem Pj |Historyt) (7)

This vector provides an immediate, interpretable snapshot of
the user’s current capabilities across the entire problem set, as
estimated by the model.

This knowledge vector directly enables several types of ex-
planations for a recommended problem Prec:

Figure 8: DKT ”Knowledge Frontier” for a sample user after k in-
teractions (e.g., k = 20). Each point represents a problem, plot-
ted by its actual Codeforces difficulty rating (x-axis) and the DKT
model’s predicted probability of the user solving it (y-axis). Col-
ors indicate predicted solvability zones: e.g., green for ’Mastered’
(P (solve) > 0.9), light green for ’Solvable’ (0.7 − 0.9), gold for
’Frontier’ (0.5− 0.7), orange for ’Challenging’ (0.3− 0.5), and red
for ’Very Hard’ (< 0.3). The dashed vertical line indicates the user’s
Codeforces rating at that time.

• Solvability-based Explanation: “Prec is recommended
because, based on your interaction history, our system pre-
dicts a probability of ŷt[index(Prec)] of 0.75 that you can
solve it successfully.”

• Knowledge Frontier Explanation: If using the heuristic
from Section 3.5, “Prec is suggested as an appropriately
challenging problem predicted to be within your current ca-
pabilities (ŷt[index(Prec)] > θsolve).”

Simulating Interventions: Estimating Knowledge Gain.
The dynamic nature of the DKT model allows us to sim-
ulate the impact of hypothetical future actions, a step to-
wards causal reasoning. We can estimate the pedagogical
value of attempting a candidate problem Pc by quantify-
ing the “Knowledge Gain” (KG) it might yield. Let ŷt be
the user’s current knowledge vector. If the user were to
successfully solve a candidate problem Pc (not yet solved),
their history would be augmented: Historyt+1 = Historyt ⊕
(Pc, outcome = 1, featuresc). Feeding this Historyt+1 into
the DKT model yields a new predicted knowledge vector,
ŷ′
t+1. The Knowledge Gain from solving Pc can be defined as

the aggregate positive impact on the predicted solvability of
other relevant problems (e.g., unsolved problems Punsolved):

KG(Pc|ŷt) =
∑

j∈Punsolved,j ̸=c

max(0, ŷ′
t+1[j]− ŷt[j]) (8)

This measures the total increase in predicted mastery across
other problems due to solving Pc.

To account for the user’s current ability to solve Pc, we can



Figure 9: Conceptual illustration of factors contributing to Expected
Knowledge Gain (EKG). The ’Initial Knowledge (ŷt)’ curve (light
blue) represents the user’s baseline estimated probabilities of solv-
ing different problems. The candidate problem (Pc) is marked (blue
circle) on this initial curve. If Pc is hypothetically solved, its prob-
ability becomes 1.0 (marked by a red ’X’). This leads to a ’New
Knowledge (ŷ′

t+1)’ curve (red), which generally shows increased
probabilities for other problems. The shaded ’Knowledge Increase’
area between the two curves visually represents these gains. The
sum of the increases in probabilities for problems other than Pc

forms the Knowledge Gain, KG(Pc). The Expected Knowledge
Gain for Pc is then EKG(Pc) = ŷt[c] × KG(Pc), where ŷt[c] is
the initial probability of solving Pc.

use the concept of Expected Knowledge Gain (EKG):

EKG(Pc|ŷt) = ŷt[c] ·KG(Pc|ŷt) (9)

This weights the potential knowledge gain by the likelihood
of actually achieving that gain (i.e., solving Pc). Problems
with high EKG are those that are both achievable and peda-
gogically impactful.

Recommendations based on EKG can be explained as:
“Problem Prec is recommended because it offers a high Ex-
pected Knowledge Gain. This means you have a good chance
of solving it (predicted probability ŷt[index(Prec)]), and do-
ing so is predicted to substantially improve your ability to
tackle other problems by KG.” This provides a powerful,
causal-style justification.

Interpreting Broader Knowledge States. The knowledge
vector ŷt, while high-dimensional, can be analyzed to under-
stand a user’s proficiency across different problem categories
or topics (if such metadata is available and mapped to prob-
lems). Visualizing changes in average solvability for these
categories over time can illustrate a user’s learning trajectory
as captured by the DKT model.

Limitations and True Causality. It is important to ac-
knowledge that while our DKT model enables interpretable
explanations and causal-style reasoning based on its learned
understanding of knowledge evolution, it learns from obser-
vational data. The “causal” interpretations are thus based
on learned correlations and simulated interventions within
the model’s learned world. Establishing true causal effects
(e.g., that recommending via EKG causes faster learning than
another strategy) would necessitate controlled experiments,
such as A/B testing different recommendation strategies de-
rived from the DKT model. Nevertheless, the DKT frame-
work provides a significantly richer basis for generating and

testing hypotheses about causal learning effects compared to
traditional recommendation models.

6 Conclusion
In this paper, we proposed and evaluated a Deep Knowl-
edge Tracing (DKT) system using a Transformer architec-
ture for recommending Codeforces problems. Our primary
goal was to move beyond traditional correlation-based meth-
ods by modeling the temporal evolution of a user’s knowl-
edge state to provide more pedagogically sound and explain-
able recommendations. Crucially, our approach outputs a dy-
namic “knowledge vector” that both predicts user solvability
and quantifies expected knowledge gain, enabling transpar-
ent, pedagogically informed suggestions.

Using a large-scale dataset of Codeforces interactions, we
demonstrated that our DKT-Transformer model can effec-
tively trace user knowledge, achieving a validation AUC of
0.7542 in predicting the outcome of the next problem a user
attempts, significantly outperforming a standard NCF base-
line in a cold-start user scenario. We also explored the in-
tegration of explicit prerequisite knowledge by incorporating
TransE embeddings derived from a data-driven prerequisite
graph, with DKT+TransE showing a small but measurable
improvement over just DKT alone.While HITS@K remains
a stringent test of exact-match recommendations, it provides
useful insight when evaluating intervention policies grounded
in our tracing framework.

Our work underscores the potential of sophisticated se-
quential models like Transformers for DKT in complex do-
mains like competitive programming. By focusing on an ac-
curate representation of the learner’s evolving capabilities, we
can build recommender systems that not only suggest relevant
content but also provide transparent reasons for their sugges-
tions, fostering a more effective and understandable learning
experience.
Future Work. The DKT-based framework presented opens
several exciting avenues for future research. A primary di-
rection is the development and rigorous evaluation of recom-
mendation policies based on maximizing Expected Knowl-
edge Gain (EKG), where problems are ranked by P (solve) ·
KnowledgeGainIfSolved; comparing such policies using ap-
propriate HITS@K metrics will be crucial for optimizing
learning. We also plan to explore using the trained DKT
model’s learned dynamics to automatically infer or refine a
more nuanced problem prerequisite graph, for instance, by
analyzing asymmetrical influence patterns where solving one
problem boosts solvability of another. For users with specific
long-term goals, investigating A* search or similar pathfind-
ing algorithms operating on a problem graph, guided by the
DKT model’s knowledge state and EKG-related heuristics,
could generate optimal, personalized learning paths. Fi-
nally, experimenting with more recent Transformer variants
designed for longer sequences or improved relational reason-
ing may further enhance the DKT model’s knowledge tracing
capabilities. Pursuing these directions aims to significantly
advance intelligent tutoring and recommendation systems in
complex problem-solving domains.
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A Hyperparameters

Parameter Group Setting / Value
DKT-Transformer (Base & +TransE unless specified)

Embedding Dimension (dmodel) 128
Attention Heads (Nhead) 4
Transformer Encoder Layers 2
Feed-Forward Dimension (Encoder) 256
Dropout Rate 0.1
Max Sequence Length (MAX SEQ LENGTH) 512
Optimizer AdamW
Learning Rate 1× 10−4

Loss Function Binary Cross-Entropy
Training Epochs (Max) 15
Checkpointing Based on best validation AUC

Prerequisite Graph Embeddings (for DKT+TransE variant)
Source Graph Construction LIS-based on training data (see Appendix B)
TransE Embedding Dimension (demb) 64

NCF Baseline Model
User Embedding Dimension 64
Problem Embedding Dimension 64
MLP Hidden Dimensions [128, 64]
NCF Dropout Rate 0.3
Optimizer Adam
Learning Rate 1× 10−3

Loss Function Binary Cross-Entropy
Training Epochs 15

Table 2: Key hyperparameters and configuration details for the DKT
models and the NCF baseline. Specifics of prerequisite graph con-
struction for TransE are in Appendix B.

B Prerequisite Graph Construction and
Embedding

This appendix details the methodology used to construct the
problem prerequisite graph from user interaction data and the
subsequent generation of TransE embeddings for these prob-
lems. This graph and its embeddings can be used as features
to enhance the Deep Knowledge Tracing (DKT) model by
providing explicit structural information about problem de-
pendencies.

B.1 TransE for Prerequisite Embeddings
To encode the structural information from the generated pre-
requisite graph into vector representations suitable for ma-
chine learning models, we employ TransE [Bordes et al.,
2013], a knowledge graph embedding technique.

Triple Formulation
The prerequisite graph, where an edge A → B signifies that
A is a prerequisite for B, is transformed into a set of (head,
relation, tail) triples. In our context, we primarily model a
single relationship type, “isPrerequisiteOf”. Thus, each sig-
nificant edge A → B (after thresholding the LIS-derived
scores) becomes a triple (A, isPrerequisiteOf, B). Problem
IDs are mapped to unique integer entity IDs for the embed-
ding model.

TransE Objective and Training
TransE learns demb-dimensional vector embeddings for enti-
ties (problems, eP ) and relations (r). The fundamental prin-
ciple is that if a relation r holds between a head entity h and
a tail entity t, their embeddings should satisfy eh + r ≈ et.
The model is trained by minimizing a margin-based ranking
loss. This loss function aims to ensure that the score for valid

Algorithm 1 Prerequisite Graph Construction

0: Initialize empty prerequisite matrix S ∈ RP×P

0: Compute problem difficulty ordering Order(p) for all
problems

0: Create problem-to-index mapping idx(p)
0: for each user u ∈ Users do
0: Initialize empty sequence L = []
0: for each problem p solved by u in chronological order

do
0: if p not in idx or already processed then
0: continue
0: end if
0: i← idx(p)
0: k ← bisect left(L, i)
0: if k > then
0: S[L[1..k], i] += 1
0: end if
0: Update L with i at position k
0: total solvers[i] += 1
0: end for
0: end for
0: Normalize S by total solvers
0: Apply threshold τ to S
0: return S =0

triples (positive samples) is lower than the score for corrupted
triples (negative samples), where negative samples are gener-
ated by replacing either the head or tail of a valid triple with
a random entity. A common scoring function is the L1 or
L2 norm of (eh + r − et). We initialize entity and relation
embeddings (e.g., using Xavier initialization) and train the
TransE model using an optimizer like Adam. For our sin-
gle “isPrerequisiteOf” relation, its embedding r captures the
typical vector translation associated with this dependency.

Output Embeddings
After training, the TransE model yields an embedding matrix
where each row corresponds to the learned vector vTransE

P ∈
Rdemb for a problem P . These embeddings capture the re-
lational structure of the prerequisite graph and are used as
input features to our DKT model, as detailed in Section 3.3,
to provide it with explicit structural priors about problem de-
pendencies.
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