
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEEPFDM: A SCIENTIFIC COMPUTING METHOD FOR NEURAL
PARTIAL DIFFERENTIAL EQUATION (PDE) OPERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving Partial Differential Equations (PDE) has long been a critical challenge in many scientific
and engineering domains. Recently, neural networks have shown great promise in solving PDEs
by learning solution operators from data, offering a flexible and adaptive alternative to traditional
numerical solvers. Despite these advancements, there is still a need for systematic benchmarking
of neural operator methods against conventional approaches and for the development of datasets
representing diverse distributions for robust evaluation.
In this paper, we introduce DeepFDM, a benchmark method for learning PDE solution operators
based on numerical PDE solvers. DeepFDM leverages the structure of the PDE, in order to achieve
better accuracy and generalization compared to neural solvers. It is designed as a solver for a specific
class of PDEs and not as a replacement for neural solvers. Moreover, because DeepFDM learns the
coefficients of the PDEs, it offers inherent interpretability. We also introduce a principled method
for generating training and test data for PDE solutions, allowing for a quantifiable measure of distri-
bution shifts. This method provides a structured approach to evaluate the out-of-distribution (OOD)
performance of neural PDE operators.
Our work sets a foundation for future comparisons of neural operator methods with traditional sci-
entific computing approaches, providing a rigorous framework for performance benchmarking, at
the level of the data and at the level of the neural solver.

1 INTRODUCTION

Solving Partial Differential Equations (PDE) has long been a critical challenge in many scientific and engineering
domains. Recently, neural network methods have been applied to solve PDEs, with impressive results (Karniadakis
et al., 2021; Lu et al., 2021; Li et al., 2020a;b). These methods learn PDE solution operators from PDE solution data
sets. They bypass the strict requirements of numerical solvers by treating the problem of solving PDEs as a problem of
learning from data. Neural network methods offer a highly flexible and adaptive approach to solving PDEs, compared
to traditional numerical PDE solvers, as they can work with a wide variety of equations and input data.

Although recent work has focused mainly on performance gains, with the large number of recent contributions, there
is a need for (i) benchmarking neural operator methods against standard scientific computing approaches and (ii)
generating test and training datasets from different distributions.

Contribution In this work, we implement a benchmark scientific computing approach to PDE operator learning,
DeepFDM, based on numerical PDE solvers and numerical inverse problems. In contrast to traditional inverse problem
methods, DeepFDM is implemented as a feedforward convolutional neural network and works with a family of PDEs.
This allows it to be used on benchark PDEs and trained using standard neural network methods. Because DeepFDM is
designed to work with a specific family of PDEs, it is expected to have better accuracy and generalization than neural
PDE solvers. As such, it will be useful for benchmarking the accuracy and generalization of the more flexible neural
PDE operator methods. See Table 1. We propose it as a benchmark method for neural solvers, since it corresponds to
the scientific computing ground-truth solution of a given PDE, with a given dataset.

DeepFDM works by learning the coefficients of the PDE from the data. DeepFDM is not a replacement for existing
neural operator methods, as it leverages the more structurally constrained PDE solver framework. In particular, it will
lose accuracy on PDEs outside the class for which it was designed. However, when applied to PDEs in the class, it is
both theoretically justified and empirically validated, outperforming current neural PDE solvers in both test accuracy
and out-of-distribution (OOD) accuracy. Furthermore, because this method is based on learning the coefficients of
PDEs, it is inherently interpretable; see Figure 1.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) 1D diffusion process (b) 2D ground truth coefficients (c) 2D learned coefficients

Figure 1: DeepFDM leverages the extra assumption of a PDE structure to learn the PDE coefficients and to implement
the corresponding numerical PDE solver. Learned coefficients: (a) 1D diffusion process, (b) and (c) 2D diffusion
process ground truth and learned coefficients.

We also introduce a principled method for measuring out-of-distribution (OOD) performance of neural operators.
We generate PDE solution data by choosing families of orthogonal functions with random coefficients for the initial
conditions and passing these functions through a high-accuracy numerical PDE solver. Using different distributions on
the coefficients allows us to quantify the distance between the distribution (over functions), in terms of the Hellinger
distance. These results are illustrated in Figure 2, and quantified in Figure 4a.

Together, the scientific computing-based benchmark solver, DeepFDM, and the quantitative generation of OOD
datasets provide a foundation for future development of neural PDE operators.

ResNet U-Net FNO DeepFDM
Diffusion 0.6149 0.0640 0.0266 0.0024
Advection 0.7039 0.0618 0.0251 0.0007
Advection-Diffusion 0.6286 0.0692 0.0307 0.0017
Reaction 0.9119 0.0521 0.0319 0.0016
Burgers 0.8517 0.0790 0.0379 0.0045

Table 1: Test error (normalized MSE) of our model and various benchmarks on a diverse set of PDE problems; by
leveraging the additional assumption of a PDE structure, the more restrictive DeepFDM method outperforms neural
operators. The results reported are the average over three runs.

(a) ID ground truth (b) ID DeepFDM (c) ID FNO (d) ID U-Net

(e) OOD ground truth (f) OOD DeepFDM (g) OOD FNO (h) OOD U-Net

Figure 2: Two-dimensional modelled solutions for a diffusion equation for both in distribution (ID) data (top) and
out-of-distribution (OOD) data (bottom). All models are visually similar on the in-distribution data. For OOD data,
FNO and U-Net lose accuracy, as can be seen from the visualization of the solution.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 NEURAL PDES

Early machine learning methods (Rudy et al., 2017) focused on discovering the form of a PDE from solution data,
without building solution operators. Physics-informed neural networks (PINNs) (Karniadakis et al., 2021; Shin et al.,
2020) were among the first models to leverage neural networks to solve PDEs. These methods corresponded to solving
a single PDE from incomplete data, rather than learning PDE solution operators from a dataset.

Key Neural PDE Operator learning papers Lu et al. (2019) propose the DeepONet architecture, which learns
PDE solution operators. However, in this case, the PDE is fully known and the PDE residual is included in the loss.
Subsequently, Li et al. (2020b) proposed a similar approach by learning Green’s function for a given PDE. This method
gave rise to the Fourier neural operator (Li et al., 2020a), which takes advantage of certain assumptions about Green’s
function to solve the problem in the Fourier space. Liu et al. (2022) build neural network models that integrate PDE
operators directly in the model’s architecture while retaining the large capacity neural network architecture.

There are too many recent works on neural PDEs to mention. Zhang (2024) lists over seven hundred articles, most of
them from the last three years, including surveys and benchmark articles. We mention a few relevant papers: Takamoto
et al. (2022), provide a benchmark dataset and an interface for learning PDEs. Solver in the loop Um et al. (2020)
integrate NN methods with a PDE solver. ClimODE (Verma et al., 2024) solves an advection equation with source.

Neural Networks architectures related to differential equations Several works connect neural network architec-
tures and solution operators for differential equations. Chen et al. (2018) proposed a neural network architecture based
on ODE solvers and Haber & Ruthotto (2017) focused on the stability aspects of the architecture. Also we have neural
SDEs (Tzen & Raginsky, 2019). Ruthotto & Haber (2020) proposed network architectures based on discretized PDE
solvers; however, they do not learn PDE operators. Long et al. (2018) represents a PDE solution operator as a feed-
forward neural network, and learns both an approximation to the PDE coefficients and the solution operator from the
data, however, this early contribution had low accuracy.

2.2 INVERSE PROBLEMS

Neural PDE operators aim to learn to solve a given PDE from data, without assuming that the form of the PDE is
known. In contrast, the PDE inverse problem approach assumes that a specific form of the PDE is known, but that
the coefficients are unknown. More precisely, inverse PDE problems (Taler & Duda, 2006) aim to infer unknown
parameters of a PDE with a known form, using a dataset of PDE solutions. Although the inverse problem approach
is compatible, in theory, with any numerical or neural PDE method, the drawback is the specialized nature of each
solver, with custom code and custom optimization routines.

Numerical inverse problems We first discuss the approach that uses forward PDE solvers to learn the PDE coef-
ficients. The PDE approach uses numerical PDE solvers, such as finite element methods (FEM) and finite difference
methods (FDM) (Larsson & Thomée, 2009). These methods discretize the PDEs on the domain into a system of
equations that can be solved numerically. These solvers require knowledge of the full equation governing the process
of interest and operate on structured input data, which can limit their applicability and adaptability to a wider range of
scientific problems. For inverse problems, numerical PDE solvers are often used in combination with gradient-based
optimization techniques. These are implemented in packages such as (COMSOL, 2023; Logg et al., 2012; Virtanen,
2020; Ruthotto et al., 2017). These methods are computationally intensive and often require customized code for each
problem formulation. However, when combined with proper regularization and optimization strategies, they provide
accurate and reliable solutions.

Neural inverse problems There are a number of works on neural inverse problems. (These works differ somewhat
from ours, in that they focus on a single problem at a time, rather than developing a methodology for solving a wide
class of inverse problems - they have not applied the same method to a number of benchmark problems). Zhao et al.
(2022) solve PDE inverse problems, such as waveform inversion. In this case, the forward solver is given by a graph
neural network or by a U-Net. They report faster solution times, compared to using the Finite Element Method for the
forward solver. Even using neural networks, their approach has the limitation that changes to the PDEs require training
a new forward solver. Huang et al. (2022) treat inverse problems for Darcy and Navier Stokes. Jiao et al. (2024) use
DeepONets as a solver in a Bayesian Markov Chain Monte Carlo (MCMC) approach to PDE inverse problems, to
learn from noisy solutions of a diffusion equation. Zhang et al. (2024) solves inverse problems using a PINN approach
for the forward solver.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

A second approach is the Bayesian inference approach to inverse problems (Stuart, 2010): this one is more appropriate
for problems with uncertainty in the model and noise in the data, and does not require PDE solvers. Cao et al. (2023)
solve Bayesian Inverse Problems and find that using neural networks for the forward solver is faster but less accurate,
compared to traditional scientific computing solvers, so they implement a hybrid approach.

3 NEURAL OPERATORS AND PDE INVERSE PROBLEMS

In this section, we explain the difference between neural PDE operators and our approach. In this work, we consider
a known family of time dependent PDEs, written as

∂

∂t
u(x, t) = P (u(·), a(x)) (PDE)

along with initial condition, u(x, 0) = u0(x). We implemented periodic boundary conditions for convenience. Here
P (u(·), a(x)) is a PDE operator, parameterized by a(x), a vector function, representing the PDE coefficients. We
choose the following operator, P (u(·), a(x)),

P (u(·), a(x)) = a0(x) + a1(x)u(x, t) + a2(x) · ∇u(x, t) + a3(x)∆u(x, t)

+ a4(x)u(x, t)(1− (u(x, t)) + a5(x)u(x, t)∇u(x, t)

The PDE above includes many benchmark PDEs, from Li et al. (2020a;b) and Takamoto et al. (2022), as a special
case, by setting some coefficients to zero. In particular, it includes each of the following PDEs: advection, diffusion,
advection-diffusion, reaction diffusion equations, and the Burgers equation. We focus mainly on the two-dimensional
case, but we also include a one-dimensional implementation.

The benchmarks which were excluded were the PDEs which fell outside the class: the two-dimensional Navier-Stokes
equations, because it is a vector PDE, and the Darcy equation, because it is not time-dependent. In the case of a
numerical solver, we expect to know the type of the data (e.g., time dependent, or time independent, vector, or scalar),
so these cases were excluded from the equation.

3.1 LEARNING PDE SOLUTION OPERATORS

Given a dataset, Sm = {U1, . . . , Um} where each element

Ui(X,T) = (Ui(X, 0), Ui(X, t1), . . . , Ui(X, tk))

consists of a vector of grid values of a PDE, one for each time, t ∈ T = (0, t1, . . . , tk). The dataset can come from
benchmark datasets. Below we show how it can also be generated by a numerical PDE solver solution (2), along with
initial conditions sampled from a distribution. In this case, the solution is generated on a higher resolution grid, and
then coarsened (upsampled), in order to better approximate the PDE solution.

Learning PDE operator with neural networks The neural PDE solver corresponds to a neural network architecture
with weights W . A forward pass (fixed W), maps initial grid data U0, to a vector of time slices U(X,T).

U(X,T) = NNOperator(U0;W) (1)

The neural network learns the solution operator by fitting the data, using mean squared loss,

min
W

∑
Ui∈S

∥Ui − NNOperator(Ui(X, 0);W)∥2X

Once the neural network is trained, the final weights, Ŵ , lead to the approximate solution operator,
NNOperator(Ui(X, 0); Ŵ). In the results section, we show empirically that neural solvers can be biased.

Learning PDE coefficients with numerical PDE solvers The parametric PDE learning problem (which is a type
of PDE inverse problem) corresponds to the following. The input data set is assumed to be a solution of (PDE) with
unknown but bounded coefficients. A given benchmark problem would have most of the coefficients set to zero.
However, each training run assumes all the coefficients can be nonzero.

The numerical solution operator is written,

U(X,T) = NumPDESolve(U0;A(X)) (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Given the dataset Sm, training the inverse problem corresponds to fitting the coefficients to the data.

min
A∈A

∑
Ui∈S

∥Ui − NumPDESolve(Ui(X, 0);A)∥2X (3)

The method (3) is interpretable by design: the learned parameters of the model, Â, correspond to the coefficients of
the PDE. It can be interpreted as a vector regression problem for parameter identification. The method (3) is more
tractable and easier to analyze than the neural network problem (1). Thus, we expect that overfitting will not be a
problem. Moreover, since a forward pass corresponds to an accurate numerical solution of the PDE, we expect the
solution to be accurate. However, there will still be errors associated with finite data, so we expect Â to approximate,
but not be equal, to A∗, the grid values of the coefficients.

In the next section, we have a theorem that characterizes the numerical inverse problem in terms of parametric regres-
sion.

3.2 PARAMETRIC REGRESSION PROBLEM FOR THE NUMERICAL PDE SOLVER

For a given grid, X , let h(X) be the grid resolution. Regarding a function on a grid as an approximation, we define
∥U∥X = h(X)2∥U∥2 (in two dimensions). The scaling factor is a normalization that ensures that constant functions
have the same norm, regardless of the grid resolution.
Theorem 3.1. Let A∗ be the grid values of the true PDE parameters, A∗ = a(X). The numerical PDE learning
problem corresponds to the parametric vector regression learning problem

min
A∈A

∑
Ui∈S

∥NumPDESolve(Ui(X, 0);A)− NumPDESolve(Ui(X, 0);A∗)− ϵi∥2X

with noise vector, ϵi, whose norm goes to zero with the grid resolution, maxi ∥ϵi∥X = O(h(X)).

Proof. Given (PDE), write u(x, t) = PDESolve(u0, a(x)) for the solution of the PDE, with initial data u0(x).

Define
ϵi = NumPDESolve(U0;A(X))− PDESolve(u0, a(x))(X)

Standard PDE finite difference numerical approximation bounds Larsson & Thomée (2009) can then be expressed as
∥ϵi∥2X = O(h(X)), where we assume first order accuracy. The PDE solution, u(x, t), when evaluated on the grid,
corresponds to Ui. Thus

Ui − NumPDESolve(Ui(X, 0);A∗) = ϵi

where ϵi represents the numerical solver error, which has a norm on the order of the grid resolution ∥ϵi∥X = O(h(X)),
as desired.

The small amount of noise means there can be a small error in learning the parameters, but still we expect that the
model learn a close approximation of the correct parameters, and should generalize. Thus, using standard results
about regression, this theorem tells us that we expect a nearly unbiased approximation to the true parameters of the
model, with better results as the grid resolution improves. In many cases, for an inverse problem, there is a theory that
ensures machine learning consistency: with enough data that the solution operator converges to the correct one. With
additional assumptions, the coefficients also converge, Â → A∗.

4 DEEPFDM MODEL DESIGN AND MODEL ARCHITECTURE

Equation (3) described a general purpose inverse problem solver, where a forward pass corresponds to solving a PDE
with fixed coefficients, and where the optimization step corresponds to learning the coefficients. Normally, the inverse
problem (3) is implemented using a scientific computing package, along with a user-defined optimization code.

In our case, we build the inverse problem in a neural network architecture, DeepFDM. DeepFDM can be interpreted
as neural network architecture, which implements a finite difference method for solving a PDE, as a forward pass.

DeepFDM is implemented as a feedforward convolutional neural network, where each forward pass corresponds to
an implementation of a scientific computing solver, NumPDESolve(U ;A(X)), of (PDE), where A(X) corresponds
to the unknown vector of coefficients. In other words, for a given vector of coefficients, a forward pass is a numerical

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Approximate with
finite differences

Learn function over
grid

P
D

E
 Layer

…

Repeat T times

M
ean P

ooling

U
psam

ple

+

P
D

E
 Layer

+

P
D

E
 Layer

+

Figure 3: Example network architecture for the PDE solver. The mean pooling layer is used to reduce the resolution
of the input and the upsampling layer is used to bring the output back up to size.

solution of the corresponding PDE. The numerical PDE operator is implemented using finite differences, and the PDE
is parameterized by the grid values, A(X), of the coefficients a(x). The details of the implementation and the use of
finite difference schemes are not required to understand the main work, but are included in Appendix C, for reference.

Using a neural network architecture is very convenient, since we can take advantage of built-in optimization routines,
rather than implementing optimization as is more typical with inverse problems. Moreover, a forward pass is very
computationally efficient since we are working with a deep but small convolutional neural network. Training is also
faster than for benchmark neural solvers; see the results section below.

The model architecture is an implementation of the finite difference solver for (PDE). In this case, the finite dif-
ference operators are implemented as convolution with fixed (predefined, non-learnable) operators. The coefficients
correspond to model weights passed through a sigmoid nonlinearity (to make them bounded). This allows the finite
difference solver to be implemented as a differentiable model and trained using standard SGD implementations (see
the results section below). The architecture is illustrated in Figure 3, and more details of the architecture can be found
in Appendix A.

5 DATASET GENERATION AND OOD QUANTIFICATION

In this section, we describe the procedure used to generate the synthetic data we use for testing. We also explain the
definition of an out-of-distribution (OOD) shift we consider in this paper. To the best of our knowledge, no other work
employs the OOD quantification scheme used in our paper, making it a novel contribution.

Data generation process To characterize and benchmark DeepFDM against existing architectures, we train on syn-
thetic data generated by PDE solvers.

1. Sample some Fourier coefficients c ∼ N (0,Σ) from a Fourier spectrum with at most N modes and compute
the resulting function, U0, with coefficients multiplied by the Fourier basis functions.

2. Use a standard scientific computing solver to compute the solution to the PDE problem with initial condition
U0 for the required number of time steps.

Generating initial conditions The initial conditions are generated as follows. Let N (0,Σ) be a mean zero nor-
mal distribution with diagonal covariance matrix, Σ. Sample a coefficient vector, ci ∼ N (0,Σii). Let Φ(x) =
(ϕ1(x), . . . ϕN (x)) be an orthonormal family of functions defined on the grid. We used a Fourier basis, sines and
cosines in one dimension, and products of sines and cosines in two dimensions. Then for each sample of coefficients,
c, set

u(x) = c · Φ(x) =
N∑
i=1

ciϕi(x) (4)

This generates samples of function u(x) defined on the grid. Since the basis functions are orthonormal, the covariance
of the functions (using the standard L2 inner product) is also given by Σ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To generate OOD data, we employ the same procedure, using a different distribution ρ̃ = N (0, Σ̃).

Measuring dataset shift We generate functions, using the orthonormal basis Φ and coefficients c ∼ N(0,Σ).
Using a different Σ̃, keeping the same basis functions Φ, we can measure the distance between the two distributions.
A convenient choice of distance is given by the Hellinger distance (Cramér, 1999), chosen because it has a formula
for the distance between two multivariate normal distributions. The Hellinger distance between two multivariate mean
zero normal distributions is given by

H2(N (0,Σ),N (0, Σ̃)) = 1− det(Σ)
1
4 det(Σ̃)

1
4

det
(
(Σ + Σ̃)/2

) 1
2

.

Figure 6 shows examples of initial conditions generated using different Fourier spectra and gives the Hellinger dis-
tances between the distributions.

Generating accurate Numerical PDE solutions To generate PDE solutions from the initial data, we implemented
a finite difference solver (Larsson & Thomée, 2009). The PDE solver uses the forward Euler method, with a small
time step, calculated from the coefficients and spatial resolution, to ensure stability and convergence. This solver can
be used to generate high-resolution PDE solutions, with a given distribution of coefficients. High-resolution PDE
solutions are then projected onto a coarser grid, which gives an accurate approximation to the exact solution of the
PDEs. Projecting the finer grid solutions avoids biasing the solution towards the particular choice of numerical solver.

6 RESULTS

In this section, we compared the performance of our proposed benchmark method, DeepFDM, again the state-of-the-
art neural operator methods, with the primary goal of comparing the accuracy for data generated both in and out of
distribution (OOD). We also report training times and show how DeepFDM is interpretable. Finally, we illustrate how
the benchmark method can be used to study the bias of neural solvers.

As described above, the training procedure was the same for the neural operators and for DeepFDM, since DeepFDM
is implemented as a neural network. However, since DeepFDM also corresponds to an inverse problem method (3),
for (PDE), we expect that it will have higher accuracy and better generalization performance. Moreover, since it has
many fewer parameters and a simpler architecture, we expect that it will train faster.

To measure accuracy, we used the normalized mean squared error of the predicted solutions. The normalization factor
is designed to set the variance of the initial data (as a function of x) to one and allows for a fair comparison between
different distributions, which may have different coefficient norms.

For DeepFDM, we used the model architecture described in section 4, designed so that a forward pass corresponds
to a numerical solution of (PDE) with all coefficients allowed to be non-zero. The coefficients were assumed to have
magnitude at most 2.5. (Making the bounds on the coefficients larger did not have a significant effect since in either
case, the model achieved high training accuracy).

For in-distribution data, we used the available solution dataset, obtained from (Liu et al., 2022). To measure the
performance of the models on data from a different distribution, we used the method described in section 5 to generate
synthetic PDE solution data, sampled from different distributions.

Considered benchmarks U-Net: We use a U-Net architecture, popular for image-to-image tasks, such as segmen-
tation. We consider a 2D U-Net with 4 blocks (Ronneberger et al., 2015). ResNet: We use an 18 block ResNet with
residual connections (He et al., 2016). FNO: We use an FNO with 12 modes for all channels and all experiments (Li
et al., 2020a). Our results for the ResNet and U-Net matched the results reported for these models in Li et al. (2020a).

Training dynamics All models are trained using the MSE loss function. All models were trained with the Adam
optimizer without weight decay. The training, validation and test data samples were split as 75%, 12.5%, and 12.5%,
respectively. All models were run on a Tesla T4, GPU with a batch size of 32. DeepFDM trained faster, and with a
smaller generalization gap than the other methods. See Figure 5.

Parameter count The number of parameters in DeepFDM is on the order of the number of grid points (spatial data
points) as shown in Table 2, which is hundreds of times less than FNO and U-Net.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Grid resolution 4, 096 1, 024 256 64

Parameters in DeepFDM 20, 484 5, 124 1, 284 324
Parameters in FNO 184, 666 184, 666 184, 666 184, 666
Parameters in U-Net 7, 762, 762 7, 762, 762 7, 762, 762 7, 762, 762
Parameters in Res-Net 3, 960 3, 960 3, 960 3, 960

Table 2: Model parameters for DeepFDM and the benchmark models tested.

Model accuracy We see from Table 1 that, as expected, DeepFDM is more accurate by a factor of 10 in all equations
considered. Furthermore, as expected, DeepFDM is more accurate in OOD performance; the solutions given by
DeepFDM are visually accurate and have lower errors than the other benchmarked models. Figure 2 shows example
modeled solutions in two dimensions. We note that in all figures we exclude ResNet, since errors were higher than
60%.

Out-of-distribution generalization To quantify the generalizability of DeepFDM to distinct data distributions, we
tested several distributions, each one further apart from the training distribution. Figure 4a shows the relative error of
the models tested as a function of the Hellinger distance between the training and the test distribution. We can see that
as the test distribution is further apart from the training distribution, all models start losing accuracy but DeepFDM
still achieves under 1% relative error while both U-Net and FNO approach errors of 10% for the furthest distributions.
We tested this for all equations shown in Table 1.

Interpretable models: learning coefficients In most cases, DeepFDM successfully learns a set of parameters that
match the ground-truth process. Figure 1, shows the case of a diffusion equation, where the coefficients are recovered
from the model with high accuracy.

Coefficient variance explains FNO errors In Figure 4b, we report the relative error for different coefficient values.
The variance of the coefficient on the x-axis corresponds to the amplitudes of the sine waves used to generate the
coefficients (larger amplitude correlating to larger variance). We note that both FNO and U-Net see a degradation
in performance as the coefficient variance increases, while DeepFDM has nearly constant performance. By design,
DeepFDM is able to learn variable-coefficient PDEs accurately.

For the FNO, this can be explained by one of the underlying hypotheses of their model architecture; in order to
perform computation in Fourier space, the authors make the assumption that the Green’s function they learn is trans-
lation invariant. Since variable coefficients are not translation-invariant, as the variance of the coefficients grows, this
hypothesis becomes less valid. Thus, we illustrated the bias of FNO towards translation invariant solutions.

7 CONCLUSION

In this work, we introduced DeepFDM, a benchmark framework for comparing neural Partial Differential Equation
(PDE) operators with traditional numerical solvers. Although DeepFDM is not intended as a replacement for neural
PDE solvers, it takes advantage of the inherent structure of PDEs to offer improved accuracy, generalization, and in-
terpretability, particularly in out-of-distribution (OOD) scenarios. Furthermore, we proposed a method for generating
and quantifying distribution shifts using the Hellinger distance, enabling robust performance evaluation across diverse
PDE problems. Our results show that DeepFDM consistently outperforms neural operator methods when applied to
learning PDEs from the class it was designed for. This makes it a valuable tool for benchmarking and advancing neural
PDE operator research.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Relative error of different models (y-axis) in terms of the
Hellinger distance between the training and test distributions
(x-axis). DeepFDM is the most accurate, achieving under 1%
relative error even under the largest dataset shift. On the other
hand, FNO and U-Net significantly decrease their performance
on distinct distributions, with relative errors approaching 10%.

(b) Relative error as a function of coefficient variance. The
coefficient variance corresponds to the amplitude of the sine
waves used to generate the coefficients (bigger variance means
bigger amplitude). Our model shows constant error across co-
efficient size while FNO and U-Net see a performance drop as
variance increases.

Figure 4: Comparison of relative errors of different models under the shift of the data set (left) and coefficient variance
(right).

Figure 5: Training dynamics of the models tested. With fewer parameters, DeepFDM trains to an error of 10−3 in just
epoch, and to an error of 10−4 in less than 100 epochs, compared to FNO and U-Net which take longer. The ResNet
model trains more slowly and has a higher loss.

REFERENCES

L. Cao, T. O’Leary-Roseberry, P.K. Jha, and J.T. Oden. Residual-based error correction for neural operator ac-
celerated infinite-dimensional bayesian inverse problems. Journal of Computational Physics, 2023. URL https:
//www.sciencedirect.com/science/article/pii/S0021999123001997.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations.
Advances in neural information processing systems, 31, 2018.

COMSOL. COMSOL Multiphysics® v. 6.1. COMSOL AB, Stockholm, Sweden, 2023. URL https://www.comsol.com.
Accessed: 2024-09-26.

Richard Courant, Kurt Friedrichs, and Hans Lewy. Über die partiellen differenzengleichungen der mathematischen
physik. Mathematische annalen, 100(1):32–74, 1928.

Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference equations of mathematical physics. IBM
journal of Research and Development, 11(2):215–234, 1967.

Harald Cramér. Mathematical Methods of Statistics, volume 26. Princeton University Press, 1999.

9

https://www.sciencedirect.com/science/article/pii/S0021999123001997
https://www.sciencedirect.com/science/article/pii/S0021999123001997
https://www.comsol.com

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34(1):014004, dec
2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Daniel Zhengyu Huang, Jiaoyang Huang, Sebastian Reich, and Andrew M Stuart. Efficient derivative-free bayesian
inference for large-scale inverse problems. Inverse Problems, 38(12):125006, 2022.

A. Jiao, Q. Yan, J. Harlim, and L. Lu. Solving forward and inverse pde problems on unknown manifolds via physics-
informed neural operators. arXiv preprint arXiv:2407.05477, 2024. URL https://arxiv.org/abs/2407.05477.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed
machine learning. Nature Reviews Physics, 3(6):422–440, may 2021.

Stig Larsson and Vidar Thomée. Partial Differential Equations With Numerical Methods, volume 45. Springer,
Chalmers University of Technology and University of Gothenburg 412 96 Göteborg Sweden, 2009.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 10 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations. arXiv preprint
arXiv:2003.03485, 03 2020b.

Xin-Yang Liu, Hao Sun, Min Zhu, Lu Lu, and Jian-Xun Wang. Predicting parametric spatiotemporal dynamics by
multi-resolution pde structure-preserved deep learning. arXiv preprint arXiv:2205.03990, 2022.

Anders Logg, Kent-Andre Mardal, Garth Wells, et al. Automated solution of differential equations by the finite
element method: The fenics book. Lecture Notes in Computational Science and Engineering, 84, 2012. doi:
10.1007/978-3-642-23099-8. URL https://fenicsproject.org/. Accessed: 2024-09-26.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In International conference
on machine learning, pp. 3208–3216. PMLR, 2018.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for identifying differential
equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193, 2019.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library for solving
differential equations. SIAM review, 63(1):208–228, 2021.

Adam M Oberman. Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–jacobi
equations and free boundary problems. SIAM Journal on Numerical Analysis, 44(2):879–895, 2006.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image seg-
mentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241. Springer, 2015.

Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of partial differential
equations. Science advances, 3(4):e1602614, 2017.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations. Journal of Mathe-
matical Imaging and Vision, 62(3):352–364, Apr 2020.

Lars Ruthotto, Eran Treister, and Eldad Haber. jinv–a flexible julia package for pde parameter estimation. SIAM
Journal on Scientific Computing, 39(5):S702–S722, 2017. doi: 10.1137/16M1081063. URL https://doi.org/10.
1137/16M1081063.

Yeonjong Shin, Jerome Darbon, and George Em Karniadakis. On the convergence and generalization of physics
informed neural networks. arXiv e-prints, pp. arXiv–2004, 2020.

Andrew M Stuart. Inverse problems: a bayesian perspective. Acta numerica, 19:451–559, 2010.

10

https://arxiv.org/abs/2407.05477
https://fenicsproject.org/
https://doi.org/10.1137/16M1081063
https://doi.org/10.1137/16M1081063

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk Pflüger, and
Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Process-
ing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Or-
leans, LA, USA, November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper files/paper/2022/hash/
0a9747136d411fb83f0cf81820d44afb-Abstract-Datasets and Benchmarks.html.

Jan Taler and Piotr Duda. Solving direct and inverse heat conduction problems. Springer, 2006.

Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep latent gaussian models in the
diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

Kiwon Um, Robert Brand, Yun (Raymond) Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop: Learning from
differentiable physics to interact with iterative pde-solvers. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-
sell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/43e4e6a6f341e00671e123714de019a8-Abstract.html.

Yogesh Verma, Markus Heinonen, and Vikas Garg. Climode: Climate and weather forecasting with physics-informed
neural odes. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=xuY33XhEGR.

Pauli et al Virtanen. Scipy 1.0: Fundamental algorithms for scientific computing in python, Feb 2020. URL https:
//doi.org/10.1038/s41592-019-0686-2.

Chengyang Zhang. Neural-pde-solver. https://github.com/bitzhangcy/Neural-PDE-Solver, 2024. Version 1.0.

R.Z. Zhang, X. Xie, and J. Lowengrub. Bilo: Bilevel local operator learning for pde inverse problems. arXiv preprint
arXiv:2404.17789, 2024. URL https://arxiv.org/abs/2404.17789.

Qingqing Zhao, David B. Lindell, and Gordon Wetzstein. Learning to solve pde-constrained inverse problems with
graph networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan
Sabato (eds.), International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning Research, pp. 26895–26910. PMLR, 2022. URL https:
//proceedings.mlr.press/v162/zhao22d.html.

11

http://papers.nips.cc/paper_files/paper/2022/hash/0a9747136d411fb83f0cf81820d44afb-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/0a9747136d411fb83f0cf81820d44afb-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper/2020/hash/43e4e6a6f341e00671e123714de019a8-Abstract.html
https://openreview.net/forum?id=xuY33XhEGR
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/bitzhangcy/Neural-PDE-Solver
https://arxiv.org/abs/2404.17789
https://proceedings.mlr.press/v162/zhao22d.html
https://proceedings.mlr.press/v162/zhao22d.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A FULL MODEL ARCHITECTURE

DeepFDM is formulated to take some initial condition U0 (defined as a function on a grid) and iterate in time for some
given number of time steps T . For k = 0, 1, . . . , T − 1, the iterative update is defined as

Uk+1 := Uk + ct

 nlin∑
i=1

σ(θlin
i)⊙ (conv(Wi, Uk)) +

nquad∑
j=1

Nj(θ
quad
j , Uk, Uk−1)


where ⊙ represents the componentwise product. Here ct is a constant representing the time-step interval, and each Wi

is a predetermined (nontrainable) convolution kernel corresponding to a finite difference operator. The componentwise
σ(·) is the sigmoid function. nlin = 4 and nquad = 2 represent the number of linear and nonlinear terms, respectively.
θlin
j and θquad

j are the corresponding parameters.

The linear terms corresponds to standard upwind finite difference discretizations of the derivatives, pointwise multi-
plied by nonlinearly scaled coefficient terms.

The expressions Nj represent nonlinear terms. For the reaction operator, for example, this corresponds to a quadratic
reaction term and takes the form

N1(θ
quad
1 , U) = σ(θquad

1)U ⊙ (1− U),

The nonlinear term corresponding to a non-constant coefficient Burgers operator takes the form

N2(θ
quad
2 , Uk, Uk−1) = σ(θquad

2)⊙ Uk−1 (conv(Wadv, Uk))

where the first term corresponds to a linear advection term, multiplied by Uk−1 (we used the previous time step value
for stability).

More PDE terms can be added by widening the network with the corresponding discretization.

By bounding the coefficients with a sigmoid function scaled by the time step interval, our model corresponds by
design, for fixed parameter values θ, to a stable finite difference method consistent with a PDE with coefficients given
by the model parameters.

Each layer is repeated T times, and corresponds to the Forward Euler method, as can be seen in Figure 3.

B VISUALIZATION OF OOD SAMPLES

C TRADITIONAL NUMERICAL PDE SOLVER BACKGROUND: FINITE DIFFERENCE METHODS

In this section, we demonstrate the finite difference operator in a simple case and give an idea of how to build learnable
finite difference operators in the general case.

A fundamental result in numerical approximation of linear PDEs (Courant et al., 1928; Larsson & Thomée, 2009)
provides conditions on the time and grid discretization parameters, ct, cx, in terms of bounds on the coefficients a(x)
which ensure that the method is numerically stable, and convergent. Oberman (2006), extended the family of stable
finite difference operators to a wide class of diffusion-dominated PDEs. The convergence theory states that as the
resolution of the data increases, the solution operator converges to the PDE solution operator. limϵ→0 ∥hϵ − h∗∥ = 0,
in the appropriate operator norm.

C.1 FINITE DIFFERENCE HEAT EQUATION SOLVER

An intuitive way to approximate a derivative is by a finite difference. For example, for x in one dimension,

ux(x) ≈
u(x+ ϵ)− u(x)

ϵ
.

A more careful analysis shows that the second derivative operator, uxx, is approximated by the finite difference
uxx(x) ≈ u(x+ϵ)−2u(x)+u(x−ϵ)

ϵ2 .

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

(a) 1D training distribution
sample

(b) Sample from a distribu-
tion with H2 = 0

(c) Sample from a distribu-
tion with H2 = 0.64

(d) Sample from a distribu-
tion with H2 = 0.99

(e) 2D training distribution
sample

(f) Sample from a distribu-
tion with H2 = 0

(g) Sample from a distribu-
tion with H2 = 0.64

(h) Sample from a distribu-
tion with H2 = 0.99

Figure 6: Examples of functions, u(x), randomly samples from the distribution according to (4). By changing the
distribution of coefficients, we obtain different functions with a different Fourier spectrum, visible from the scale of
oscillations in the functions. The first two columns are sampled from the same distribution. The second two are from
different distributions. The last column has the finest scale oscillations. Top: x − y plot of functions of one variable.
Bottom: color map plots of functions of two variables.

C.2 FINITE DIFFERENCE OPERATORS ON GRIDS

A finite difference operator on a grid is an approximation of a differential operator. The finite difference operator
corresponding to ux on a uniform grid is represented by a convolution operator, with kernel W = 1

cx
[−1, 1], where

we have replaced ϵ with the grid spacing parameter, cx. We have a similar operator in two dimensions.

Finite difference approximations of the Laplacian in one dimension, in two dimensions, correspond, respectively, to
convolutions with the following kernels

WLap,1 =
1

c2x
[1,−2, 1], WLap,2 =

1

c2x

[
0 1 0
1 −4 1
0 1 0

]
.

These operators are linearly combined to approximate each of the linear terms, L(u, a), in the linear part of the PDE.

To approximate nonlinear terms, we use upwind nonlinear finite difference opertators, Oberman (2006), which showed
that it is possible to build numerically stable finite difference approximations for a wide class of nonlinear elliptic and
parabolic PDEs. (For example, a stable approximation of the the eikonal operator, |ux|, is given by the maximum of
the upwind finite difference schemes for ux and −ux, respectively.)

C.3 STABLE DISCRETIZATION

Each layer of the operator corresponds to a discretization of a PDE. We need this discretization to be convergent,
which puts requirements on the hyperparameters in the model, and how they relate to the possible coefficients. Here
we discuss the special case of the heat equation, for clarity of exposition.

When solving any PDE numerically, we are bound by some stability constraints that are necessary for obtaining a
convergent solution. For the heat equation, assuming we take space intervals of cx (and equal in all dimensions) and
time intervals of ct, we are bound by the stability constraint 0 ≤ a(x) · ct

c2x
≤ 1

2·D where D is the dimension of the
data, (Courant et al., 1967). Thus when one knows the coefficients a(x) then one can simply pick ct and cx to satisfy
the stability constraint.

In this case, we take the opposite approach. Given fixed values of cx and ct, we can bound the coefficients themselves
by

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0 ≤ a(x) ≤ Ca =
c2x

2D · ct

This is a crucial constraint since the parameters of the model will take the place of the coefficients of the equation
being modelled. In this way, we design DeepFDM precisely with the aim of learning the physical process that is trying
to approximate.

In order to satisfy the stability constraint, we bound the raw parameters learned by the model with a scaled sigmoid
function. This is, if the model’s parameters are θ, then the values that we multiply with the convolution layer (corre-
sponding to the Laplace operator) are given by Ca ·σ(θ). This ensures that the parameters are bounded by the stability
region of the PDE and thus forces DeepFDM to find a solution in the parameter space in which the PDE itself is stable.

14

	Introduction
	Related work
	Neural PDEs
	Inverse Problems

	Neural Operators and PDE inverse problems
	Learning PDE solution operators
	Parametric Regression problem for the numerical PDE solver

	DeepFDM model design and model architecture
	Dataset generation and OOD quantification
	Results
	Conclusion
	Full model architecture
	Visualization of OOD samples
	Traditional Numerical PDE solver background: finite difference methods
	Finite difference heat equation solver
	Finite difference operators on grids
	Stable discretization

