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ABSTRACT

The NMDA receptor (NMDAR) in the hippocampus is essential for learning and
memory. We find an interesting resemblance between deep models’ nonlinear
activation function and the NMDAR’s nonlinear dynamics. In light of a recent
study that compared the transformer architecture to the formation of hippocampal
memory, this paper presents new findings that NMDAR-like nonlinearity may be
essential for consolidating short-term working memory into long-term reference
memory. We design a navigation task assessing these two memory functions and
show that manipulating the activation function (i.e., mimicking the Mg2+-gating
of NMDAR) disrupts long-term memory formation. Our experimental data sug-
gest that the concept of place cells and reference memory may reside in the feed-
forward network layer of transformers and that nonlinearity plays a key role in
these processes. Our findings propose that the transformer architecture and hip-
pocampal spatial representation resemble by sharing the overlapping concept of
NMDAR-like nonlinearity.

1 INTRODUCTION

In the hippocampus, NMDAR is regarded as an essential component that mediates synaptic plas-
ticity, memory formation, and spatial representation (Li & Tsien, 2009; Tsien et al., 1996; Kentros
et al., 1998). NMDAR serves as a switch for synaptic plasticity and long-term memory forma-
tion (Bliss & Collingridge, 1993; Slutsky et al., 2010; Miyashita et al., 2012). In addition, NMDAR
has been highlighted for its importance in place cell representations in hippocampal CA1 (McHugh
et al., 1996; Kentros et al., 1998). Place cells in the hippocampus (O’Keefe & Dostrovsky, 1971)
and grid cells in the entorhinal cortex (Hafting et al., 2005) are thought to be crucial for spatial
navigation in an animal. These discoveries have triggered recent efforts to replicate these spatial
representations found in the brain by using deep neural networks (Banino et al., 2018; Cueva & Wei,
2018; Whittington et al., 2022).

In NMDAR depicted in Fig. 1a, the ion channels that reside in the post-synaptic region have unique
characteristics that distinguish them from other ion channels in the brain. Their nonlinear dynamics
are modulated by Mg2+ ion blockade at the pore region. NMDAR requires activity-dependent re-
pulsion of Mg2+ ion (Nowak et al., 1984; Mayer et al., 1984) to be functional, and this phenomenon
is partly interesting because it serves as a self-gating of ion influx in the post-synaptic region. In
particular, the Mg2+ gated nonlinear dynamics of NMDAR plays a key role in synaptic plasticity and
memory formation (Slutsky et al., 2010; Miyashita et al., 2012).

Recently, the relationship between the transformer (Vaswani et al., 2017) and hippocampal formation
model has been reported (Whittington et al., 2022). The transformer is the most advanced deep
learning model, showing unprecedented results in various tasks such as language modeling (Devlin
et al., 2018; Brown et al., 2020), computer vision (Dosovitskiy et al., 2020; Radford et al., 2021), and
art generation (Ramesh et al., 2022). This model has two consecutive modules, a self-attention layer
and a feed-forward network (see Fig. 1b). Whittington et al. (2022) show the self-attention layer is
closely related to the state-of-the-art neuroscience model (Whittington et al., 2020) and claim that
softmax neurons in the self-attention layer behave like place cells in a navigation task. However,
studies on the role of neurons in feed-forward networks have been absent.
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Figure 1: (a) Schematic diagram of Mg2+-gated NMDAR modulating synaptic plasticity (left),
its IV curve of current-voltage dynamics (right top) and NMDAR-inspired activation function,
NMDAα(x) (right bottom). (b) Transformer architecture and its feed-forward network’s activa-
tion function, Gaussian Error Linear Unit (GELU; left bottom).

We find an interesting resemblance of NMDAR nonlinearity with the Gaussian Error Linear Unit
(GELU), a nonlinear activation function popularly used in the transformer’s feed-forward network
(Fig. 1). Similar to NMDAR’s activity-dependent gating mechanism of ion influx, the form of
the GELU function has a combination of input with the self-gating function. Biological experi-
ments have shown the critical consequence of changing NMDAR’s nonlinearity in synaptic plastic-
ity and long-term memory formation (Slutsky et al., 2010; Miyashita et al., 2012), while the role of
NMDAR-like nonlinearity in place cell representation remains unclear.

This work is inspired by the fascinating resemblance of NMDAR’s nonlinearity dynamics with the
GELU activation function and the recent model relating transformer’s self-attention mechanism to
hippocampal formation (Whittington et al., 2020; 2022). These findings motivated us to ask a ques-
tion; Can NMDAR-like nonlinearity in the feed-forward network layer of transformers en-
hance the formation of long-term memory and spatial place cell representation?

To address this question, we propose a novel NMDAR-like activation function derived from NM-
DAR IV curve and design a spatial navigation task in a 2D grid environment that can assess two
different memory types well formulated in neuroscience experiments (Olton et al., 1977; 1979):
working memory and reference memory. Working memory controls the events from a within-trial,
while reference memory controls across-trials from the unchanging environment. We evaluate the
transformer model with the NMDAR-like activation function on this task; the results show that 1)
place cell representations emerge in feed-forward networks, 2) the reference memory can be con-
trolled by the nonlinearity of the NMDAR-like activation function, 3) the place cell in feed-forward
networks is strongly correlated with the reference memory, while the place cell in self-attention lay-
ers has no correlation, 4) the proposed NMDAR-like activation shows the best reference memory
performance when compared to other widely used nonlinear activation functions.

Our experimental data suggest that NMDAR-like nonlinearity in the feed-forward network layer of
the transformer can enhance the long-term memory formation and place cell representation.

2 TRANSFORMER

The transformer architecture (Vaswani et al., 2017) can be constructed by stacking multiple blocks
of self-attention layers and feed-forward networks (see Fig. 1b). Here we briefly review the self-
attention mechanism and the feed-forward networks.
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Self-attention mechanism Given a sequence {x1, ...,xT } of d-dimensional input embeddings,
the self-attention layer calculates the interaction term between each embedding element within a
context window via the self-attention mechanism. More formally, each input embedding applies
two linear layers (Wk and Wv) to the embeddings to form the key matrix K and value matrix V :

K⊤ = [k⊤
t−c k

⊤
t−c+1 . . . k⊤

t ], where ki = xiWk (Wk ∈ Rd×dk);

V ⊤ = [v⊤
t−c v

⊤
t−c+1 . . . v⊤

t ], where vi = xiWv (Wv ∈ Rd×dk).
(1)

Here, c denotes the context length. The key matrix K ∈ R(c+1)×dk is then used to compute the
interaction score between an input embedding at step t and all the vectors in K via dot products:

st = qtK
⊤, where qt = xtWq (Wq ∈ Rd×dk). (2)

The normalized values of st ∈ R(c+1), called attention values, are calculated via the softmax func-
tion; the final output of the self-attention mechanism is a weighted sum of the value vectors in
V ∈ R(c+1)×dk with the attention values:

yt = softmax

(
qtK

⊤
√
dk

)
V. (3)

After this update, yt ∈ Rdk is updated by another linear transformation Wo ∈ Rdk×d: zt = ytWo.
The output zt is added to the xt; zt + xt is the final output of the self-attention layer, and this
information is sent through the following subsequent layer.

Feed-forward networks Another important component of a transformer layer is the feed-forward
network. This consists of two linear layers with a point-wise nonlinear activation function ϕ:

FFN(xt) = ϕ(xtU
⊤
1 )U2, (4)

where U1 ∈ Rdf×d and U2 ∈ Rdf×d are trainable weight matrices. Sukhbaatar et al. (2019)
pointed out that equation 4 and equation 3 have similar structures except for the following two major
differences: 1) U1 and U2 matrices are fixed over different input sequences while K and V matrices
are dynamically changed as input is and 2) operations in feed-forward networks are entirely point-
wise or local while the self-attention layer has non-local operations, e.g., the softmax function and
dot products between different elements. This observation suggests that the feed-forward networks
store general knowledge about the task that does not depend on the situation.

3 METHODS

3.1 RELATING ACTIVATION FUNCTION IN TRANSFORMERS WITH NMDAR NONLINEARITIES

NMDAR’s nonlinear dynamics arise from the voltage-gated Mg2+ repulsion at the NMDAR chan-
nel’s pore (Nowak et al., 1984; Mayer et al., 1984) (Fig. 1a left). Previously, Mg2+-gated NMDAR
open probability p has been shown to follow ion blockade model of Woodhull (1973):

pα(x) =
1

1 + αe−βx
, (5)

where x represent an input voltage, α = [Mg2+]/KMg2+ is a parameter determined by [Mg2+],
KMg2+ is a dissociation constant, and β is a temperature constant. Experimentally, increasing the
Mg2+ level in the brain can enhance long-term memory formation (Slutsky et al., 2010). We ob-
served the NMDAR’s nonlinear dynamics of IV curve (Fig. 1a right top; current-voltage relation-
ship) in the synapse to closely resemble the form of GELU activation function. GELU is a widely
used activation function in transformers (Fig. 1b left bottom; GELU(x) ≈ xσ(1.702x) where σ
is the sigmoid function) (Hendrycks & Gimpel, 2016; Devlin et al., 2018; Brown et al., 2020). In-
spired by this resemblance, we define a new nonlinear activation function (Fig. 1a right bottom) with
α parameter which modulates dynamics as following (see details in Appendix A.1 & A.2):

NMDAα(x) = xpα(x) =
x

1 + αe−x
. (6)

To investigate this NMDAR-like nonlinearity in transformer memory formation, we replaced the
GELU(x) activation function with NMDAα(x) in a standard transformer model.
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Figure 2: (a) Sensory observation prediction task in a 2D grid, where dotted squares indicate the
target position to predict given a sequence of past actions and observations. The unvisited (visited)
places are represented in gray (black) letters. (b) A transformer model for predicting the next loca-
tion’s observation based on sequences of [action, observation] pairs. Using the sequence of pairs in
the context, the model is trained to predict the masked observation (i.e., the subsequent observation)
corresponding to the final query action.

3.2 TRANSFORMERS LEARN SPATIAL NAVIGATION TASKS

We train the transformer model to predict the subsequent sensory observations of an agent that
randomly walks a 2D grid environment (Whittington et al., 2022) (Fig. 2a). A sequence of previ-
ous [Action (a), Observation (x)] pairs is an input to the model, and the subsequent observation is
masked for prediction (Fig. 2b). Instead of using sinusoidal positional encoding (Vaswani et al.,
2017) that is commonly used in transformers, we employ the recurrent positional embedding which
is encoding the location of an input element by using the recurrent neural network (RNN) (Whit-
tington et al., 2022)1.

We generate the embedding vectors of the sensory observation sequence with a word embed-
ding layer, but the embedding vectors of the action sequence are generated by RNN; et+1 =
tanh (etWa), where et is a recurrent positional embedding at step t, and Wa is the action-dependent
trainable weight matrix. The input is given by {[e1,x1], [e2,x2], . . . , [et,xt]}, where x denotes the
embedding vector of sensory observation x; the initial recurrent positional embedding e1 is sampled
from a normal distribution and we mask the last observation xt. We generate N maps of 11×11
2D grids. A random sensory observation among ten letters is placed at each position on each map.
Agents can move ’up,’ ’right,’ ’down,’ ’left,’ or ’stay.’ An agent starts at a random position and
initiates a random walk on the map, a randomly selected map among N training maps, for 2,048
steps for each trial.

The model is trained with the softmax cross-entropy loss and predicts the subsequent sensory obser-
vations (i.e., dotted squares). We evaluate two types of memory: working memory and reference
memory. When the prediction on nodes that were previously visited during the random walking is
incorrect, it will count as the working memory error (see Fig. 2a left). On the other hand, when the
prediction on unvisited nodes is incorrect, it will count as the reference memory error (see Fig. 2a
right). Minimizing the reference memory error by memorizing input sequences is infeasible; the
possible number of sequence configurations is exponential since the input sequence is randomly
generated at each trial. To solve this task, the model should be able to 1) understand the abstract
structure of 2D space, 2) infer which map it is on from input sequence data, and 3) memorize what
sensory observation is placed at each position in that map. We describe more training, evaluation,
and transformer model details in the following section. See details for task and definition regarding
working and reference memory in Appendix A.3.

4 RESULTS

4.1 IMPLEMENTATION DETAILS

In our experiment, the feed-forward network (FFN) in the transformer model consists of two linear
layers (see Fig. 1b and equation 4) with the NMDAR-inspired activation function NMDAα (Eq. 6).

1This method is closely related to the most advanced neuroscience model of the hippocampus.
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We use TransformerXL (Dai et al., 2019) with an extended memory length of 32 and segment length
of 32 so that the context length c is 64 and working memory error is measured when the node to
predict its sensory observation is in the context window (see Fig. 2b); i.e. a node that the agent
had never visited within recent 64 steps is treated as an unvisited node. The input embedding is
concatenated vector [e,x] of the word embedding x (dimension of 256) and the recurrent positional
embedding e (dimension of 256) so that the total input embedding dimension is 512. The number of
heads in the self-attention layer is 8 and the number of neurons in the FFN is 2,048. The dropout rate
is set to 0.1 and the maximum clip norm of the gradient is set to 0.25. We employ ADAM (Kingma
& Ba, 2015) optimizer and a learning rate schedule with a linear decay from 0.0001 (start) to 0
(end). We run 512 random walk simulations (trials) in parallel for collecting training trajectories.
The total number of random walking steps is 2,048 for each simulation so the total number of steps
for training a model is 512 (batch size; number of trials per epoch) × 2,048 (total number of steps in
a trial) × 200 (number of epochs) (see Fig. 7 in Appendix A.3). All runs are performed on a single
NVIDIA TITAN V GPU.

4.2 WORKING MEMORY ERROR & REFERENCE MEMORY ERROR

To measure the impact of nonlinearity α in the FNNs, we train the transformer models with differ-
ent values of α in [0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10] and evaluate the working memory and reference
memory errors on the train maps (i.e., familiar maps) and test maps (i.e., novel maps). The average
number of unvisited nodes in a single trial is 561.

The top left plot in Fig. 3a shows that the reference memory error on the train maps is rapidly de-
creased over train trials when α is larger than zero, with a larger improvement for increasing α.
The reference memory error on the novel maps, however, is nearly constant at the chance level of
0.9 (= 1 − 1/(number of letters)) for all α (see Fig. 3a top right). Fig. 3a (bottom right) shows
that working memory is active on novel maps that had not been shown during training. This find-
ing suggests that the working memory formation is intact on novel maps. Training the models on
different numbers of maps N , Fig. 3b shows that increasing nonlinearity (i.e., α) helps activate the
reference memory, and the trend of improvement is consistently shown for N = 32, 48, and 64
cases. Training over more maps leads to bigger reference memory errors. This is because more

(a) (b)

(c)

Figure 3: (a) Reference and working memory errors over training trials for training (familiar) maps
and testing (novel) maps for N = 64 where N is the number of training maps. (b) Reference mem-
ory errors evaluated on training maps over different values of α in NMDAα and N . (c) Reference
memory errors comparison between NMDAα = 10, GELU, ReLU, LeakyReLU, sigmoid, and tanh
activation functions. Inset: zoom on the top 4 activation functions. Error bars and shaded areas
represent the standard deviation of errors from three independently trained models.
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maps require the model to store more pairs of ’what’-’where’ memory (i.e., each training contains
unique ’what’-’where’ information).

In addition, we demonstrate other nonlinear activation functions which are widely used in the
machine learning literature. We test GELU (xσ(1.702x)), ReLU (max(0, x)), LeakyReLU
(max(0, x)+0.01min(0, x)), sigmoid, and tanh in the FFNs. As can be seen in Fig. 3c, NMDAα=10

shows the lowest reference memory errors on the training maps.

Other memory types, such as information in path integration (i.e., recurrent positional embedding),
may be used instead of reference memory. To test this assumption, we used non-recurrent positional
embeddings to train the models. The result shows that working memory and reference memory er-
rors increase substantially. However, it exhibits similar behavior to the trend of decreasing reference
memory error while increasing α of NMDAα (see Fig. 8 in Appendix A.4). We also assessed the
prediction error of the first visited node. While the reference memory error is defined as a prediction
error on a node that the agent has not visited in the previous 65 steps, the first visited node prediction
error is a prediction error on a node that the agent visits for the first time in a trial. The results for
the first visited node prediction error in training maps are identical to the results for the reference
memory error (see Fig. 9 in Appendix A.4). These findings suggest that the reference memory is
used in training maps to predict the unvisited node.

4.3 PLACE CELLS IN FEED-FORWARD NETWORKS

Place cell is a neuron in the hippocampus which fires at a particular place of the environment
(O’Keefe & Dostrovsky, 1971). Studies have shown that hippocampal place cells encode the spa-
tial location through localized firing patterns. They have been considered a substrate for long-term
memory of the location where specific events occurred (i.e., previously visited position in our navi-
gation task). Selective impairment of NMDAR in hippocampal CA1 disrupts place cell emergence
and long-term memory formation (Tsien et al., 1996; Kentros et al., 1998; McHugh et al., 1996).

We investigate the role of neurons in the FFNs and self-attention layers by measuring the neuron’s
place specificity. Given a K × K 2D grid environment as graph G = (V,E) and a firing rate

Figure 4: Reference memory-related place cells selectively emerge in the feed-forward layer but not
in the self-attention layer along with α increase (N = 64). (a, b) Example rate maps with place
scores in feed-forward layers and self-attention layers at α = 10; from top left (high) to bottom
right (low); color bar indicates the firing rate between ρmax and ρmin. (c-d) Place cell score distri-
butions with varying α in feed-forward layers (c) and self-attention layers (d). (e-f) Scatter plot of
average place cell scores and reference memory errors. r and p denote Spearman’s rank correla-
tion coefficient and significance score, respectively. (g) place cell score distribution and relationship
of average place cell scores and reference memory errors in common activation functions: GELU,
ReLU, LeakyReLU, tanh, and sigmoid. All results are evaluated from training maps.
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(cumulative activation value at node i divided by the length of evaluation trial) of node i ∈ V as a
ρi, we define maximally firing node as imax and its firing rate as ρmax. Where E is directed edges,
which connect high to low firing nodes in G. From G, we run depth-first-search from source node,
imax, to build a sub-graph G = (V, E) which we call all connected components. Given G and G, the
place cell score is defined as following

Place cell score = γ

∑
i∈V ρi∑
i∈V ρi

, (7)

where γ = 1 − |V∗|/|V | is a discount factor and V∗ is V without node imax and leaf nodes (see
details in Appendix A.6). To measure place cell score, we record the firing rate ρi of neurons over
a random walking trajectory with 105 steps in one of the training maps; then we measure the place
cell scores of neurons in the FFN and self-attention layers. The place cell score is 1 when the neuron
is firing only at a certain node; the score is 0 when the neuron is firing homogeneously across all
nodes.

Fig. 4a and 4b show the rate maps of neurons with place cell scores in the FFN and self-attention
layers, respectively. For the self-attention layer, the total number of neurons in the softmax layer is
65 (context length + masked sensory observation) × 8 (number of heads) × 2 (number of layers).
The total number of neurons in the FFN layer is set as 2,048 (number of neurons) × 2 (number
of layers). As can be seen, our metric well represents place specificity. Fig. 4c and 4d show the
distribution of place cell scores in the two layers with different values of α. When the α value is
increased, the place cell score distribution found in the FFN layer becomes positively shifted (see
Fig. 5 rate map examples for α = 0, 1.0, and 10.0), whereas place cell score distribution in the
self-attention layers remains.

Fig. 4e and 4f show a relationship between the average place cell score and the reference memory
error for each α. While average place cell scores in self-attention layers show no correlation with
reference memory errors whatsoever, neurons in the FFN exhibit a substantial correlation. These
results imply that the reference memory formation and place cell emergence can be enhanced by
NMDAR-like nonlinearity in the FFN.

In Fig. 4g, we compare the place cell representations of our NMDA (α = 0, 10) with the repre-
sentations in FFNs with the activation functions used in Fig. 3c. Our results show that the case of
NMDAα=10 outperforms other activation functions, in both reference memory formation and place
cell representation. Our finding that increasing α ([Mg2+] component) enhances reference memory
is in line with the biological observation that increasing the [Mg2+] in the brain enhances long-term
memory formation (Miyashita et al., 2012).

In addition, we investigate the consequence of changing nonlinearity with other than NMDAα. We
choose LeakyReLU with controllable negative slope (max(0, x) + αmin(0, x)) to compare with
NMDAα. Compared to NMDAα=10, LeakyReLU exhibits a lower average place score in the al-
lowed range of α, indicating that NMDAα is better in place cell emergence (see Fig. 10 in Ap-
pendix A.7).

Figure 5: Rate maps of neurons with top-64 place cell scores in the feed-forward network with
varying values of α; α = 10 (left), α = 1 (middle), and α = 0 (right).
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5 RELATED WORKS

The current study is inspired by recent observations that connect neuroscience and AI models.
One such seminal work is by Whittington et al. (2022), where the authors showed the relation-
ship between the self-attention layer and the state-of-the-art hippocampal model called the Tolman-
Eichenbaum Machine (TEM; Whittington et al. (2020)). The current work expands the literature by
focusing on the feed-forward networks (FFNs) in the transformer and the emergence of place cells.

TEM is a neuroscience-based model that reproduces neural representations in the hippocampus and
entorhinal cortex. Instead of storing memory in the key matrix K and value matrix V , it assumes to
store memory at the Hebbian weight matrix M ∈ Rdk×dk and every outer product of key and value
vector k⊤

i vi at each step i are simply stored in M via Hebbian update rule. M is initialized to a
zero matrix at the beginning of the task and adds every outer product at each time step:

M = a

t∑
i=1

k⊤
i vi = aK⊤V, (8)

where a is a weighting factor. In the memory retrieving phase with the query vector q, TEM uses an
attractor network2:

qM = aqK⊤V. (9)
Whittington et al. (2022) found that the memory retrieving process in TEM has a close mathematical
structure with equation 3 when the softmax function is replaced with a linear function. Their sub-
sequent model, called TEM-t (Whittington et al., 2022), replaces the attractor network (equation 9)
with self-attention mechanism (equation 3). They demonstrated that TEM-t learns significantly
faster than TEM.

TEM-t and TEM do not have a fixed context length c; therefore, these models store all information
before step t, i.e., c = t. The computational cost of the self-attention layer in TEM-t is O(t2), and
retaining all previous information is too expensive from both biological and computational stand-
point3. For TEM, the Hebbian update rule has no quadratic computational cost and can add all pre-
vious information in a fixed number of synapse d2k; however, the memory capacity of the Hebbian
matrix M is O(dk) and the speed of memory retrieval is substantially slower than the self-attention
mechanism (Demircigil et al., 2017; Ramsauer et al., 2021; Krotov & Hopfield, 2021). In contrast to
TEM and TEM-t that rely on a single memory system, the transformer model employs two separate
memory systems: 1) context-dependent matrices K and V in the self-attention layer with a fixed
context length c and 2) context-independent fixed matrices U1 and U2 (in equation 4) in the FFNs.

We also focus on the observation by Whittington et al. (2022) that softmax neurons in the self-
attention layer behave like place cells. Nonetheless, the role of neurons in FFNs of transformers has
not been thoroughly investigated, which is our contribution. In our work, we newly 1) propose a
method for assessing the reference memory; 2) compare the effects of various nonlinear activation
functions in FFNs with our NMDA-inspired activation functions on reference memory performance;
3) demonstrate the emergence of place cells in FFNs. We note that TEM and TEM-t only evaluated
working memory errors in test maps.

6 DISCUSSION AND CONCLUSION

Searching for biological substrate of nonlinear activation function Rigorous previous efforts
in finding the optimal nonlinear activation function underlie the great success of modern deep neural
network models (Nair & Hinton, 2010; Hendrycks & Gimpel, 2016; Ramachandran et al., 2017).
However, the neural substrates that mediate nonlinearity in the human brain and their role in intelli-
gence have not been clearly understood. Our work is one of the first to put together the biologically
inspired nonlinearity and its effect on long-term memory formation and the place cell representation
in the previously described transformer model of the hippocampal formation. This idea was tested
on a sensory observation task in the 2D grid environment and with the implementation of NMDAR-
like nonlinearity. Our data indicated that NMDAR-like nonlinearity in the feed-forward network

2Note that this is a simplified description of TEM and it is not exactly the same.
3Due to this limitation, TEM-t does not store all historical data. Instead, the model selectively chooses

which data to store in K and V .
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layer of transformers can enhance the formation of long-term memory and spatial place cell repre-
sentation. Furthermore, this design choice improves long-term memory more than other commonly
used nonlinear functions.

Our results agree qualitatively with previous NMDAR impairment experiments from neuroscience:
1) hippocampal CA1 NMDAR perturbation does not impair working memory (Lee & Kesner, 2002),
2) changing NMDAR Mg2+-gating (changing α in this work) enhances or disrupts long-term mem-
ory formation (Slutsky et al., 2010; Miyashita et al., 2012), 3) NMDAR is required for long-term
stabilization of newly forming place fields (McHugh et al., 1996; Kentros et al., 1998). Our contri-
bution is at showing these patterns experimentally for the first time.

Short-term working memory and long-term reference memory Memories can be divided into
short-term memory and long-term memory with respect to time (Atkinson & Shiffrin, 1968). Later,
these two different memory systems were denoted as working memory and reference memory, con-
cerning functional aspect (Baddeley & Hitch, 1974). In neuroscience, there is a consolidation theory
that some short-term working memories are converted to a long-term reference memory system, and
others fade out. There has been accumulating evidence that NMDAR is essential for memory con-
solidation in the hippocampal CA1 region (Kentros et al., 1998; Shimizu et al., 2000). Our work
assessed the short-term working memory and long-term reference memory in the transformer’s nav-
igation task by measuring the visited error and unvisited error, respectively.

The modulation of α selectively affects the formation of long-term reference memory (i.e., predic-
tion of unvisited places across trials) while leaving the formation of short-term working memory
(i.e., prediction of unvisited places within trials) intact. This result suggests that short-term working
memory and long-term reference memory are physically stored in separate structures: the self-
attention layer and the feed-forward layer. A similar idea has been proposed in psychology, which
we illustrate in detail in Appendix A.5.

In neuroscience, the transfer of short-term memory into a long-term system is called memory con-
solidation (McGaugh, 2000). Various research has revealed that Mg2+-gating of NMDA receptors
modulates the formation of long-term memory (Slutsky et al., 2010; Miyashita et al., 2012). These
observations imply that the nonlinear dynamics of NMDA receptors in hippocampus CA1 are critical
for consolidating short-term memory into long-term memory.

Current research showed that the transformer could model memory consolidation. We assumed
that the GELU activation function links short-term working memory and long-term reference mem-
ory. Our experiments indicate that the formation of long-term reference memory is impaired when
the activation function is completely linear (corresponding to no Mg2+). In contrast, increasing α
(which corresponds to an increase in Mg2+ level) has resulted in superior performance in long-term
reference memory compared to other activation functions (e.g., ReLU, GELU, LeakyReLU, sig-
moid, tanh). These similarities between hippocampal memory consolidation and our results suggest
a transformer as an effective memory consolidation model.

We have investigated the role of NMDAR-like nonlinearity with a novel consideration of activation
function in a transformer model and have demonstrated the effects of altering the nonlinear dynamics
of the activation function. Even though there are trainable parameters in the self-attention layer, the
quantitative analysis of the place cell score indicates that most of the reference memory is stored in
feed-forward networks. Surprisingly, our result that loss of nonlinearity in NMDAR-like activation
function (α = 1) show impaired reference memory formation (Fig. 3b) but intact working memory
formation (Fig. 3a) seems to replicate the previous findings in neuroscience; selective inhibition of
hippocampal CA1 NMDAR inhibition does not disrupt working memory (Lee & Kesner, 2002) but
impairs the long-term memory formation (Tsien et al., 1996). These similarities provide an exciting
possibility that our brain selectively updates short-term working memory into long-term reference
memory by activity-dependent Mg2+-gating of NMDAR.

Future directions Our research has exciting future directions. The current study only examined
what-where memory using a sensory observation task in a static environment. However, our real-
world environment is changing dynamically. Modern deep learning systems are generally incapable
of adapting to a dynamic environment or reordering of sensory inputs. In future work, we intend to
explore what-where-when memory, called episodic memory, in transformer and other deep models.

9
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7 REPRODUCIBILITY STATEMENT

We included the Pytorch implementation code available along with the paper (see the Supplemental
Material file). For reproducibility, we included a thorough overview of the experimental setup, task
design, and place cell score evaluation pseudo-code in the Appendix.
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A APPENDIX

A.1 DERIVATION OF NMDAR NONLINEARITY FROM THE MOLECULAR LEVEL CHEMICAL
INTERACTION

Here, we describe the NMDAR nonlinear dynamics from chemical interaction between Mg2+ and
NMDAR following previous literature Woodhull (1973); Jahr & Stevens (1990); Perouansky & Yaari
(1993). At the molecular level, one Mg2+ ion binds to one NMDAR receptor when opening the
NMDAR channel. Thus, the chemical equation of binding reaction between Mg2+ ion and NMDAR
receptor, R, can be described as

Mg2+ + R −−⇀↽−− Mg2+R. (10)

From this chemical equation, the equilibrium constant K is given by

K =
[Mg2+R]
[Mg2+][R]

. (11)

Thus, dissociation constant KD, which correspond to Mg2+ dissociation from NMDAR, follows

KD = K−1 =
[Mg2+][R]
[Mg2+R]

, (12)

in which [R] and [Mg2+R] are the free and Mg2+-bound NMDARs respectively. The fraction
of opened NMDAR channels (number of unbound NMDAR over a number of total NMDAR) at
equilibrium follows,

p =
[R]

[R] + [Mg2+R]

=
1

1 + [Mg2+]/KD

(13)

Experimentally, the voltage-dependent dynamics of KD has been described as following equation
by Ascher & Nowak (1988)

KD = KMg2+e
βV , (14)

where, V is membrane voltage, β is a temperature constant and KMg2+ is a dissociation constant
at V = 0. If Eq.14 is substituted into Eq.13, voltage-dependent open fraction of NMDAR can be
expressed as follows

p(V ) =
1

1 + [Mg2+]
KMg2+

e−βV
.

=
1

1 + αe−βV
.

(15)

in which α = [Mg2+]/KMg2+ , the parameter determined by the [Mg2+]. Given the voltage-
dependent open fraction of NMDAR, p(V ), and NMDAR’s maximal conductance, gmax, then
voltage-dependent NMDAR conductance g(V ) can be described as

g(V ) = gmaxp(V ) (16)

Given g(V ), and driving force, V −Vr, and current I , they have a relationship of I = (V −Vr)g(V ),
in which Vr is reversal potential (the value of membrane potential above which current inverts the
direction). As experimental investigations on the physiological reversal potential of NMDAR to be
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Vr = 0 Mayer & Westbrook (1987); Ichinose et al. (2003); Kohr et al. (1993), I = V g(V ). Then,
the normalized NMDAR current Inorm = I/gmax follows

Inorm = V p(V ) (17)

From Eq. 17 and previous electrophysiological experimental results Kirson et al. (1999), we recon-
struct IV curve in (Fig. 1a, right top).

A.2 NMDAR-INSPIRED NONLINEAR ACTIVATION FUNCTION

Here, we propose an NMDAR-inspired nonlinear activation function from the nonlinear dynamics
of the NMDAR-IV curve. If we consider the nonlinear IV curve of NMDAR (Eq. 17) as a nonlinear
mapping function, ϕ, the membrane voltage, V , can be viewed as an input, x, and normalized
NMDAR current, Inorm, as an output, ϕ(x). Then we can rewrite the nonlinear mapping function ϕ
as follows

ϕ(x) = xp(x). (18)

We define the NMDAR-inspired activation function as a nonlinear mapping function,
NMDA(x):=ϕ(x). By substituting Eq. 15 into Eq. 18, we show the generalized expression of
NMDA(x) equation with α and β parameters as following

NMDAα,β(x) =xpα,β(x)

=
x

1 + αe−βx
.

(19)

Given α = 1 and β = 1, p(x) is identical to sigmoid function, σ(x) = 1/(1 + e−x). This particular
case of α and β leads to xσ(x), Sigmoid Linear Unit (SiLU) activation function Elfwing et al.
(2018). In the case of α = 1 and β = 1.702, xσ(1.702x) correspond to the GELU activation
function, which is popular in transformer models Lan et al. (2019); Liu et al. (2019); Lan et al.
(2019). Ramachandran et al. (2017) introduced the swish activation function, xσ(βx), which is
a generalized form of GELU and SiLU. They demonstrated that when β → ∞, the activation
function resembles RELU. We summarized these four activation functions by comparing them with
our NMDAα,β(x) in table 1 and Fig 6.

In contrast to the extensive research on β in NMDAα,β(x), α, the Mg2+-gating component, is not
explored. For this reason, we focused on the parameter α over β, and investigated NMDAα(X). It is
interesting to note that the Swish function was originally proposed as a self-gating function, inspired
by the use of the sigmoid function as a gating of information flow in the long short-term memory
(LSTM) network Hochreiter & Schmidhuber (1997). In contrast, our activation function NMDA(x)
is inspired by the physical Mg2+-gating mechanism that occurs in the real biological synapses.
These shared mechanisms of self-gating from the artificial models and biological observations raise
an interesting possibility that NMDAR is a neural substrate of nonlinear activation function in the
brain.

A.3 DETAILED DESCRIPTION OF TASK DESIGN AND DEFINITION OF SHORT-TERM WORKING
MEMORY AND LONG-TERM REFERENCE MEMORY

Our task is based on a widely employed neuroscience experiment for spatial working memory and
reference memory Olton et al. (1977; 1979). Errors in working memory are measured by within-trial
error, whereas errors in reference memory are measured by across-trial error. The training phase and

Table 1: Comparison of common activation functions with NMDAα,β

NMDAα,β Name Equation Reference
NMDAα=1,β=1(x) SiLU(x) xσ(x) Elfwing et al. (2018)
NMDAα=1,β=1.702(x) GELU(x) xσ(1.702x) Hendrycks & Gimpel (2016)
NMDAα=1,β=∞(x) RELU(x) max(0, x) Nair & Hinton (2010)
NMDAα=1,β(x) Swish(x) xσ(βx) Ramachandran et al. (2017)
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Figure 6: Comparison of common activation functions (left) and their derivatives (right) with
NMDAα,β .

the test phase alternate at each trial. In the test phase, the unvisited place prediction error and visited
place prediction error for the familiar map and the novel map, respectively, are measured. The
memory of a relatively recent experience can be defined as short-term working memory (STWM),
and the memory of relatively old experience can be defined as long-term reference memory (LTRM).
Within trial visited place prediction measures relatively short-term experience for our task. On the
other hand, the across-trial unvisited place prediction task in the familiar map measures the relatively
long-term experience. Measuring unvisited place prediction error in the novel map will establish a
baseline of chance-level accuracy; above this baseline, the formation of long-term memory can be
observed (Fig. 7).
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Figure 7: Detailed task design of working and reference memory evaluation. At each random walk
step, a batch is created (which is then used in the backpropagation step). The batch size is 512 since
there are 512 parallel random walkers in use. Note that at each trial the agent randomly selects a
map from training maps (familiar maps), the initial position of the agent is random, and the agent
does a random walk.
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A.4 NON-RECURRENT POSITIONAL EMBEDDINGS AND PREDICTION ERRORS ON THE NODE
VISITED FOR THE FIRST TIME

We test the non-recurrent positional embedding by substituting the recurrent positional embedding
et with the action embedding A(at), where A is the embedding layer and at is the action at step t.
Compared to Fig. 8a, the result sdemonstrates a significant increase in working memory error and
reference memory error (Fig. 3 vs. Fig. 8). Nonetheless, its behavior is comparable to the trend of
decreasing reference memory error while increasing α of NMDAα (see Fig. 8b).

In addition, we compare unvisited node prediction error (unvisited within context window, in this
case, 64 steps) versus first visited node prediction error (unvisited for within a trial). As shown in
Fig. 9, the prediction error results for the first visited node do not differ from the reference memory
error results.

These results strongly support that (1) while the path-integrated information from recurrent posi-
tional embedding is important for learning the spatial structure of the map, this information is not
used in predicting the unvisited node, and (2) the reference memory is used for predicting the unvis-
ited node in a familiar map.

(a)

(b)

Figure 8: Experiment with non-recurrent positional embeddings. (a) Reference and working mem-
ory errors over training trials for training (familiar) maps and testing (novel) maps for N = 32 where
N is the number of training maps. (b) Reference memory errors evaluated on training maps over
different values of α in NMDAα for N = 32. Error bars and shaded areas represent the standard
deviation of errors from three independently trained models.

Figure 9: First visited node prediction error evaluated on training maps over different values of α in
NMDAα for N = 32, 48, and 64. Error bars and shaded areas represent the standard deviation of
errors from three independently trained models.
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A.5 TRANSFORMER AS A MEMORY CONSOLIDATION MODEL AND ITS BIOLOGICAL
PLAUSIBILITY

Next, we examined the biologically inspired NMDAα activation function in the feed-forward layer
of the transformer and its role in memory formation and place cell representation. We show that
modulating α corresponds to a change in extracellular [Mg2+], by deriving the nonlinear activation
function from the real NMDAR nonlinear IV curve. We show the reconstructed real nonlinear IV
curve in Fig. 1a (right top).

The modulation of α selectively affects the formation of long-term reference memory (i.e., predic-
tion of unvisited places across trials) while leaving the formation of short-term working memory
(i.e., prediction of unvisited places within trials) intact. This result suggests that short-term working
memory and long-term reference memory are physically stored in separate structures: the self-
attention layer and the feed-forward layer. In psychology, the idea of a multi-store model regarding
short-term memory and long-term memory was historically suggested in Atkinson & Shiffrin (1968).
In their model, sensory inputs are stored in short-term memory systems via attention, and some are
transferred to a long-term memory system while others quickly disappear.

In neuroscience, the transfer of short-term memory into a long-term system is called memory consol-
idation McGaugh (2000). Animal studies have demonstrated that the CA1 region of the hippocam-
pus is essential for memory consolidation Shimizu et al. (2000); Remondes & Schuman (2004).
In hippocampal CA1, the postsynaptic NMDA receptor mediates synaptic plasticity, and the selec-
tive perturbation of these receptors leads to impairment in long-term memory formation Tsien et al.
(1996); Remondes & Schuman (2004). Later research revealed that Mg2+-gating of NMDA re-
ceptors modulates the formation of long-term memor Slutsky et al. (2010); Miyashita et al. (2012).
These observations imply that the nonlinear dynamics of NMDA receptors in CA1 are critical for
consolidating short-term memory into long-term memory.

On the basis of a previous link between the hippocampus and the transformer, the current
research hypothesized that the transformer could serve as a model for memory consolidation.
Given the resemblance of the GELU nonlinear activation function and CA1 NMDAR nonlinear IV
curve, we assumed that the GELU activation function serves as a key component that links short-
term working memory and long-term reference memory. Our experimental results indicate that that
the formation of long-term reference memory is impaired when the activation function is completely
linear (corresponding to no Mg2+). In contrast, increasing α (which corresponds to an increase in
Mg2+ level) has resulted in our model’s superior performance in long-term reference memory com-
pared to other activation functions (e.g., RELU, GELU, LRELU, Sigmoid, Tanh). Based on these
similarities between hippocampal memory consolidation and our results, we propose a transformer
as an effective memory consolidation model.

In addition to the performance gain in long-term memory formation with NMDAα, we found that
modulating the α affects the emergences of place cells in the feed-forward layer and conclude a
significant correlation between place cell score and long-term reference memory formation. Our
results align with previous biological findings that perturbation of CA1 NMDARs lead to impairment
in both place cell representation and long-term memory formation Tsien et al. (1996); McHugh et al.
(1996); Kentros et al. (1998); Shimizu et al. (2000). These similarities support the idea that place
cells are the neural correlates of long-term spatial memories. Altogether, our findings suggest an
exciting possibility that the nonlinear IV curve of NMDAR in the hippocampal CA1 is a neural
substrate of nonlinear activation function in the brain.
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A.6 PSEUDO CODE FOR CALCULATING PLACE CELL SCORE METRIC

Algorithm 1: Pseudo code for calculating place cell score metric
1 function PlaceCellScore(place field);

Input : place field (K ×K 2D array)
Output: place score

2 G := 2D grid graph (K ×K)
3 G := empty directed graph (K ×K)
4 for edge (nodei −→ nodej) in G do
5 if firing rate ρi > firing rate ρj then
6 G add edge (nodei −→ nodej)
7 end
8 end
9 Find nodek of firing rate ρmax

10 for nodev in G do
11 if nodev is not descendant of nodek found with DFS(k) then
12 delete nodev from G
13 end
14 end
15 conn. components = sum of all nodes’ firing rates in G
16 total components = sum of all nodes’ firing rates in G

17 return place score place score = γ
conn. components
total components

18 † γ is discount factor, determined by connected component size

The place field in Algorithm 1 is measured as following procedure: 1) During a random walk sim-
ulation, the activation value of a neuron at node i, where the agent is located, is measured every
65 steps. Let’s say this value is ai. 2) Every time the agent visits node i again, value ai is added
cumulatively to the recorded value; Ai+ = ai such that Ai is the cumulative activation value at node
i. We assume the initial value of Ai is zero. After the random walk is done, Ai divided by the length
of the random walk trajectory is the firing rate ρi at node i of the neuron (place field ∈ RK×K). In
our place cell evaluation experiment, the length of the random walk is 105 and K = 11; the evaluate
map is one of the training maps.

A.7 CONSEQUENT OF CHANGING NONLINEAR DYNAMICS IN LEAKY RELU ACTIVATION
FUNCTION

Here, we investigated the consequence of changing nonlinearity with other than NMDAα. Here,
we choose LeakyReLU (max(0, x) + αmin(0, x)) activation function to compare with NMDAα.
Regarding LeakyReLU, α = 1 of LeakyReLU also leads to a fully linear activation function similar
to α = 0 of NMDAα. Compared to NMDAα=10, LeakyReLU exhibits a lower average place score
in the allowed range of α, indicating that NMDAα is better in place cell emergence (see 10)
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Figure 10: Evaluation of reference memory error in LeakyReLU (LRELU) while modulating α(top)
and relationship of average place cell score and reference memory error (bottom).
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