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ABSTRACT

The world is inherently dynamic, and continual learning aims to enable models
to adapt to ever-evolving data streams. Pre-trained models has shown powerful
performance in continual learning. However, since pre-trained models acquire
knowledge from static datasets, they still require finetuning to adapt effectively
to downstream tasks. Traditional finetuning methods are largely empirical, lack
explicit objectives, and still require a relatively large number of parameters. In this
work, we introduce Continual Representation Learning(CoRe), a novel framework
that, for the first time, applies low-rank linear subspace representation finetuning
to continual learning. Unlike conventional finetuning approaches, CoRe adopts a
learning paradigm with explicit objectives rather than relying on black-box opti-
mization, achieving more efficient parameter utilization and superior performance.
Extensive experiments across multiple continual learning benchmarks demonstrate
that CoRe not only preserves parameter efficiency but also significantly outperforms
existing methods. Our work extends the applicability of representation finetuning
and introduces a new, efficient finetuning paradigm for continual learning.

1 INTRODUCTION

The world is dynamically changing, however, machine learning models are usually trained under the
assumption that the training and test data come from the same stationary distribution. When exposed
to non-stationary data streams, such models often suffer from Catastrophic Forgetting(Goodfellow
et al., 2013)—the tendency to lose previously acquired knowledge when learning new tasks. This
challenge has motivated extensive research in continual learning(De Lange et al., 2021)(Masana et al.,
2022), whose goal is to enable models to incrementally acquire new knowledge without sacrificing
performance on prior tasks.

Recently, continual learning methods built upon pre-trained models have attracted increasing at-
tention(Wang et al., 2022c)(Wang et al., 2022b)(Yu et al., 2024). Pre-trained models, such as
ViTDosovitskiy et al. (2020), are extensively trained on large-scale datasets and demonstrate powerful
feature extraction capabilities. However, in continual learning scenarios, a domain gap often exists
between pretraining datasets and downstream datasets(Zhou et al., 2025). As a result, pre-trained
models typically require finetuning to adapt effectively to new tasks. Traditional finetuning methods,
such as full-finetuning and parameter-efficient fine-tuning (PEFT)(Houlsby et al., 2019)(Jia et al.,
2022), primarily focus on updating model parameters. While effective, these approaches lack inter-
pretability during the learning process, making it difficult to directly explain the role of the updated
parameters, and the learning process is largely empirical with unclear objectives. Moreover, they
still require a relatively large number of parameters and the parameter efficiency needs to be further
improved.

Unlike weight-based finetuning, the recently proposed representation finetuning (ReFT)Wu et al.
(2024) directly intervenes on a model’s hidden representations, often within a low-rank linear
subspace, providing a more flexible and efficient way to adapt models. By enabling task-specific
interventions without introducing excessive parameter overhead, ReFT has achieved competitive
results across various domains(Liu et al., 2025)(Yin et al., 2024)(Osial et al., 2025)(Huang et al.,
2025), particularly in large language models. Nevertheless, despite its effectiveness, ReFT has not yet
been explored in the context of continual learning, where controlling representation drift is especially
critical.
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In this work, we introduce CoRe, the first framework that integrates representation finetuning into
continual learning. CoRe applies task-specific interventions within the low-rank subspace of hidden
representations, enabling efficient adaptation to new tasks while mitigating catastrophic forgetting.
Compared with conventional parameter-efficient fine-tuning methods, CoRe leverages subspace-
based interventions to achieve better parameter utilization and superior performance across multiple
benchmarks.

Our contributions can be summarized as follows:

• We propose CoRe, the first framework to integrate representation finetuning into continual
learning, bridging the gap between representation-level interventions and incremental task
adaptation.

• CoRe performs task-specific interventions in the low-rank linear subspace of hidden represen-
tations with explicit objectives, ensuring parameter efficiency while improving adaptability.

• Experiments on extensive continual learning benchmarks show that CoRe consistently
outperforms existing parameter-efficient fine-tuning methods, achieving state-of-the-art
results while maintaining efficiency.

2 RELATED WORK

2.1 CONTINUAL LEARNING

Traditional continual learning approaches can generally be categorized into three groups:
regularization-based, architecture-based, and replay-based methods. Regularization-based ap-
proaches(Aljundi et al., 2018)(Serra et al., 2018)(Li & Hoiem, 2017) preserve knowledge from
previous tasks by imposing constraints on parameter updates; however, such constraints may also hin-
der the model’s ability to acquire knowledge from new tasks. Architecture-based approaches(Mallya
& Lazebnik, 2018)(Serra et al., 2018)(Wang et al., 2020) address this limitation by dynamically
modifying the model structure to accommodate new tasks, but this often results in increased mem-
ory consumption. Replay-based approaches(Rebuffi et al., 2017)(Buzzega et al., 2020)(Cha et al.,
2021), on the other hand, maintain a memory buffer that stores data or knowledge from past tasks,
which can be replayed during the training of new tasks to mitigate forgetting. Nevertheless, these
methods face challenges such as continually growing memory requirements and potential privacy
concerns. Recently, continual learning methods built upon pretrained models have attracted signifi-
cant attention(Wang et al., 2022c)(Wang et al., 2022b)(Yu et al., 2024). Pretrained models, such as
ViTDosovitskiy et al. (2020) and CLIPRadford et al. (2021), are extensively trained on large-scale
datasets and exhibit strong feature extraction capabilities. However, a domain gap often exists be-
tween the pretraining datasets and the downstream datasets in continual learning scenarios(Zhou et al.,
2025). As a result, pretrained models typically require finetuning to adapt effectively to downstream
tasks.

2.2 REPRESENTATION FINETUNING

Representation finetuning methods intervene in models by modifying the semantic representations
of inputs using counterfactual information. ReFTWu et al. (2024) first introduce representation
finetuning for adapting large language models (LLMs), achieving competitive results across a wide
range of benchmarks. Building on this idea, LoFITYin et al. (2024) identified task-specific critical
attention points and trained offsets to modify hidden representations accordingly. IntervMergeOsial
et al. (2025) further extend representation finetuning to model merging, employing task-specific inter-
ventions to alleviate representational bias. CRFTHuang et al. (2025) apply representation finetuning
to Chain-of-Thought reasoning, leveraging information flow analysis to identify and optimize key
representations. While representation finetuning has demonstrated competitive performance across
various domains, existing approaches have primarily been applied to textual inputs. The potential
of presentation finetuning in continual learning has not yet been explored, and further adaptation is
required to make it suitable for downstream continual learning tasks.
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Figure 1: The overall structure of the proposed method. (a) illustrates a standard ViT block, while (b)
depicts the implementation of ReFT. Unlike previous finetuning approaches, ReFT directly intervenes
in the model by modifying its intermediate features. Specifically, the features are projected into
a low-rank subspace via learnable parameters R, w, and b, and then mapped back to the original
dimension. Gray areas indicate frozen parameters, while green areas denote trainable components.

2.3 PARAMETER-EFFICIENT TUNING

The Parameter Efficient Fine-Tuning (PEFT) method finetunes the pre-trained model by incorporating
lightweight modules. During the training process, the pretrained model remains frozen, and model
intervention is done only by updating the lightweight modules. Representative methods include
AdaptersHoulsby et al. (2019), PromptsJia et al. (2022), and SSFLian et al. (2022). Adapter is a
linear module, usually consisting of downsampling, upsampling and activation function. Prompt
is a set of learnable vectors that are dynamically added to the hidden layer representation during
computation. SSF adds scaling and displacement factors to the model weights, and learns the scaling
and displacement factors to adjust the model.

3 METHOD

3.1 CONTINUAL LEARNING

Given a sequence of tasks D1, . . . ,DT , here The t-th task is defined as Dt={(xt
i,y

t
i)}

mt
i=1, where Dt

contains mt samples xt
i and their corresponding labels yt

i . Continual learning generally involves
three scenarios: task-incremental learning(TIL)(Van de Ven et al., 2022), domain-incremental learn-
ing(DIL), and class-incremental learning(CIL). During the continual learning process, for instance
in tasks D1 and D2, the input distributions generally differ, i.e.P (X1) ̸= P (X2), In TIL, both the
target distributions P (Y1) and P (Y2), as well as the corresponding label spaces {Y1} and {Y2}, are
distinct. More importantly, the model has access to the task identifier i (task id) during both training
and inference. Consequently, at inference time, the model can select the corresponding classifier ϕi()
based on the provided task id. This setting greatly reduces classification conflicts across tasks but
depends on the availability of task identifiers, which limits its applicability when task information is
unavailable. In DIL, although the data from different tasks originate from distinct domains, they share
the same target label distribution, i.e., P (Y1) = P (Y2), and a common label space {Y1} = {Y2}. The
categories remain consistent across domains, but the task identifier is not accessible during inference.
This implies that the model cannot rely on task id for prediction, and must instead correctly classify
data from unseen domains while overcoming distribution shifts caused by domain variations. CIL
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poses the most challenging scenario. In this case, the label distributions P (Y1) ̸= P (Y2) differ across
tasks, and the label space {Y1} ⊆ {Y2} continuously expands as new tasks introduce additional
classes. During inference, the task id is not available, and the model must dynamically adapt to the
growing set of categories without relying on task information, while retaining the ability to recognize
previously learned classes. This greatly increases the risk of catastrophic forgetting.

3.2 REPRESENTATION FINETUNING

In large language models (LLMs), taking transformer-based architectures as an example, the model
first maps the input text into a semantic representation, which is then propagated through a sequence
of block layers progressively learning the semantic representation. Based on the Domain Intervention
Interpretation (DII) framework(Geiger et al., 2024), given an initial hidden representation hb of input
text b and representations hs of counterfactual s, the distributed interchange intervention on hb with
the counterfactual source representation hs could be defined as:

DII (hb,hs, R) = hb +R⊤ (Rhs −Rhb) (1)

Where R ∈ Rd×k is a low-rank projection matrix, d is the semantic representation dimension, and
r is the rank of the subspace in which we intervene. Eq. 1 provides a principle for counterfactual
intervention in the model. Wu et al. (2024) further proposed replacing the explicit counterfactual
features with learnable linear matrix W and b, introducing an orthogonal constraint that yields the
representation editing formulation in LLMs:

Φ (hb,hs, R,W, b) = hb +R⊤ (Whb + b−Rhb) (2)

3.3 CONTINUAL LEARNING WITH REFT

In the context of continual learning with visual inputs, representations requiring intervention can
similarly be regarded as counterfactual information. For instance, if the model incorrectly classifies
Samoyed’s visual feature es as spotted dog eb. By applying Eq.2, the feature representation of a
Samoyed es can be treated as counterfactual information to guide the model’s finetuning. As shown in
Fig.1, for transformer-based pretrained models, such as ViT, the learned representations can similarly
be modified through an learnable linear transformation: We+ b in place of explicit counterfactual.
This leads to the following formulation, which removes the dependency on manually constructed
counterfactual information:

gθ(eb) = eb +R⊤ (Web + b−Reb) (3)

Here, R defines the intervention subspace, while W and b are used to learn the calibration rule. The
objective is to make Web+ b approximate es, thereby aligning the transformed representation gθ(eb)
more closely with the true feature es. In this way, the original representation eb is calibrated within a
low-rank subspace, rather than being optimized in a black-box manner. With Eq.3, the finetuning of
pre-trained model f0 could be described as:

f∗(x) = F (f0(x),D1, θ) (4)

Where f∗(x) is the finetuned model, f0 is the pre-trained model, like ViT, θ is the trainable parameters
of ReFT.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Benchmark We evaluate our approach under three continual learning scenarios: task incremental
learning, domain incremental learning, and class incremental learning. In the task incremental
learning setting, following Yu et al. (2024), we evaluate model performance on a collection of
datasets, including AircraftMaji et al. (2013), Caltech101Fei-Fei et al. (2004), CIFAR100Krizhevsky
et al. (2009), DTDCimpoi et al. (2014), EuroSATHelber et al. (2019), Flowers102Nilsback &
Zisserman (2008), Food101Bossard et al. (2014), MNISTLeCun et al. (2002), OxfordPetParkhi et al.
(2012), StanfordCarsKrause et al. (2013), and SUN397Xiao et al. (2010). These datasets cover
diverse characteristics: fine-grained datasets such as Aircraft and StanfordCars; broader-coverage
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datasets such as EuroSAT; and large-scale scene recognition datasets such as SUN397. For evaluation,
EuroSAT and MNIST are divided into 5 tasks with 2 classes per task, while Oxford Pet is split into 8
tasks. In addition, All other datasets are partitioned into 10 tasks, each containing an equal number
of classes. In the domain incremental learning setting, following Wang et al. (2022a), we conduct
experiments on CDDBLi et al. (2023), CORe50Lomonaco & Maltoni (2017), DomainNetPeng et al.
(2019), and OfficeHomeVenkateswara et al. (2017). Among them, CDDB focuses on user behavior
recognition and consists of 10 domains; CORe50 contains 50 object classes captured under 11
different lighting and background conditions; DomainNet is the largest and most diverse benchmark
for domain shift classification, consisting of 345 categories across 6 highly heterogeneous domains.
In this setting, each domain is regarded as a separate task, and each task includes all categories.
In the class incremental learning setting, following Zhou et al. (2025), we evaluate our method on
CIFAR100Krizhevsky et al. (2009), CUB200Wah et al. (2011), ImageNet-AHendrycks et al. (2021b),
ImageNet-RHendrycks et al. (2021a), ObjectNetBarbu et al. (2019), OmniBenchmarkZerroug et al.
(2022), and VTABZhai et al. (2019). These datasets include fine-grained recognition benchmarks such
as CUB200, challenging subsets of ImageNet such as ImageNet-A and ImageNet-R, and large-scale
benchmarks such as OmniBenchmark. In this setting, CIFAR100 and ImageNet-R are split into tasks
with 5 classes per task, OmniBenchmark into tasks with 30 classes each, while the remaining datasets
are divided into tasks containing 10 classes each. For clarity, we denote the number of classes in each
task using the notation ’Inc’. For example, “Inc10” indicates that every contains 10 classes.

Table 1: Performance comparison of different methods under the Task Incremental Learning scenario.
All experiments are based on the ViT-B/16-IN21k. Each task consists of 5 classes for DTD and
OxfordPet, 2 classes for EuroSAT and MNIST, 20 classes for StandCars and SUN397, and 10 classes
for the remaining datasets. The best results are highlighted in bold.
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Avg

ViT 64.50 99.01 95.14 92.57 96.34 99.86 96.23 96.49 97.09 72.15 93.25
Finetune 67.94 99.36 95.03 92.39 89.60 99.81 94.12 96.38 97.01 70.66 93.11
VPT 69.33 99.29 98.01 90.04 89.84 99.79 96.61 94.60 97.56 79.92 93.44
SSF 66.63 99.31 97.52 93.85 94.39 99.81 95.96 97.36 96.98 75.11 93.14
Adapter 64.55 99.08 97.98 92.57 95.89 99.86 96.40 99.48 96.97 72.22 93.19
Ours 75.09 99.43 98.15 92.71 96.43 99.87 96.77 99.60 97.00 79.41 93.48

Last

ViT 66.16 99.25 94.76 92.98 93.26 99.89 96.06 97.37 98.15 72.89 93.24
Finetune 66.07 99.20 94.61 93.19 85.33 99.84 94.28 96.31 97.33 69.63 93.11
VPT 69.37 99.03 97.45 90.96 86.31 99.82 96.34 94.93 97.98 80.74 93.26
SSF 71.05 99.41 96.90 94.31 90.24 99.85 95.67 97.43 97.89 75.46 93.03
Adapter 66.22 99.36 97.53 92.98 92.61 99.89 96.28 99.25 98.06 73.05 93.11
Ours 74.89 99.62 97.59 93.35 93.15 99.89 96.45 99.39 97.93 80.40 93.40

Baseline Model finetuning aims to adapt pre-trained models to downstream tasks by updating only a
small fraction of parameters compared with the full model. We compare CoRe against several repre-
sentative parameter-efficient fine-tuning methods, including AdapterHoulsby et al. (2019), PromptJia
et al. (2022), and SSFLian et al. (2022). Specifically, Adapter introduces trainable projection layers,
typically consisting of down-sampling, up-sampling, and non-linear activation functions, into pre-
trained models. Prompt tuning employs a set of learnable vectors that are concatenated with hidden
layer representations to modulate model outputs. SSF finetunes models by learning task-specific
scaling and shifting parameters applied to model weights. In addition to these PEFT baselines,
we also include comparisons with the frozen pretrained model outputs as well as full-parameter
finetuning.

Training Details We evaluate our method under different continual learning settings, including task
incremental learning(TIL), domain incremental learning(DIL), and class incremental learning(CIL).
During training, following Zhou et al. (2025), we train the model only on the first task and compute
the class-wise feature means, which are then used as the classifier weights. For subsequent tasks, the
model parameters remain frozen, and only the prototype-based classifier is updated. The classifier
design differs across the three continual learning scenarios. In TIL, we construct a task-specific
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classifier for each task. During inference, the task identifier is provided to select the corresponding
classifier for prediction. In DIL, following Wang et al. (2022a), we create a separate classifier and
a set of k-means cluster centers for each domain during training. At inference time, the input is
assigned to the nearest domain center, and the corresponding classifier is used. In CIL, the classifier
is dynamically expanded as new classes arrive, and the model must predict over all previously seen
classes without any external task information. All experiments are conducted using the ViT-B/16
pretrained on ImageNet-21K, which pretrained on ImageNet21k. For finetuning, we adopt stochastic
gradient descent (SGD) as the optimizer with an initial learning rate of 0.05, scheduled by cosine
decay. A weight decay of 0.0005 is applied. The batch size is set to 48, and epochs is 20.

Evaluation Metric In model performance evaluation, we follow Zhou et al. (2025), using Aver-
age accuracy (Avg) and Last accuracy (Last) to measure the performance of model. Specifically,
Last denotes the Top-1 accuracy of every task, and Avg is the average value of Last of all tasks.
Mathematically, for the t-th task, Average accuracy is calculated as follows: Avgt = 1

t

∑t
i=1Lasti.

Table 2: Performance comparison of different methods under the Domain Incremental Learning
scenario. All experiments are conducted using ViT-B/16-IN21k. For all datasets, each task contains
the same number of classes. The best results are highlighted in bold.

OfficeHome Inc65 Core50 Inc50 CDDB Inc2 DomainNet Inc345

Method Avg Last Avg Last Avg Last Avg Last

ViT 74.22 64.99 77.55 61.49 76.30 72.41 50.73 40.37

Finetune 69.06 58.15 75.86 58.22 71.98 66.64 55.31 42.54

VPT 75.30 65.95 76.20 57.20 76.51 72.42 55.32 44.09

SSF 75.48 65.80 76.42 59.02 75.39 69.34 53.57 42.50

Adapter 74.67 65.83 76.50 58.53 76.64 72.07 55.51 44.23

Ours 75.96 66.30 77.95 59.91 77.35 72.50 56.73 45.23

4.2 MAIN RESULTS

We first compare CoRe with various finetuning methods under the task-incremental learning setting.
Results are reported in Tab.1. As shown in Tab.1, CoRe achieves competitive performance across
diverse datasets. These results demonstrate that CoRe substantially enhances the feature extraction
capability of pretrained models across diverse scenarios. On fine-grained benchmarks such as Aircraft
and Oxford Pet, CoRe is able to capture subtle intra-class distinctions, while on domain-shift datasets
like EuroSAT it adapts to variations in data distribution without sacrificing stability. Moreover,
its strong performance on large-scale datasets such as SUN397 highlights CoRe’s scalability and
robustness when handling complex visual concepts, underscoring its effectiveness as a general
solution for task-incremental learning.

We further evaluate different methods under the domain incremental learning (DIL) setting, where
each domain contains the same set of categories, and the model must capture the feature variations of
identical classes across domain shifts. Following Wang et al. (2022a), we conduct experiments on
CDDB, CORe50, DomainNet, and OfficeHome, with results reported in Tab.2. As observed, CoRe
consistently achieves superior performance, effectively learning domain-invariant representations
while retaining flexibility for domain-specific features. This balance enables better generalization
across shifts in appearance, style, or context, demonstrating robustness in dynamic environments with
evolving data distributions.

Finally, we assess all methods in the class incremental learning setting, which is widely regarded
as the most challenging scenario in continual learning. In this setting, the task identity is unknown
during inference, and the model must classify samples among all previously seen classes. This
makes the problem substantially harder but also more reflective of real-world applications. Following
Zhou et al. (2025), we evaluate the methods on multiple benchmarks, with results summarized in
Tab.3. We observe that CoRe outperforms other finetuning methods in most cases. These results
confirm that CoRe effectively retains knowledge from previously learned tasks while acquiring
new representations in highly challenging settings. By operating in the representation subspace
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rather than directly modifying model weights, CoRe mitigates catastrophic forgetting and preserves
discriminative features of past classes. This ability to balance stability and plasticity makes CoRe
particularly well-suited for real-world continual learning scenarios where task identity is not available
at inference.

Table 3: Performance comparison of various finetuning methods under Class Incremental Learning
scenario. All experiments are based on ViT-B/16-IN21k. Here, ’IN-R’ denotes ImageNet-R datasets,
’IN-A’ refers to ImageNet-A datasets, ’ObjNet’ represents the ObjectNet dataset, and ’Omni’ stands
for the OmniBenchmark dataset. For all datasets, each task contains an equal number of classes. The
best results are highlighted in bold.

CIFAR Inc5 CUB Inc10 IN-R Inc5 IN-A Inc10 ObjNet Inc10 Omni Inc30 VTAB Inc10

Method Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last

ViT 87.57 81.26 92.20 86.73 62.58 54.55 60.5 49.44 65.45 53.59 79.34 73.15 85.99 84.38

Finetune 87.67 81.27 91.82 86.39 70.51 62.42 61.57 50.76 61.41 48.34 73.02 65.03 87.47 80.44

VPT 88.46 82.17 91.02 84.99 68.79 60.48 60.59 48.72 67.83 54.65 81.05 74.47 86.59 83.06

SSF 87.78 81.98 91.72 86.13 68.94 60.60 62.81 51.48 69.15 56.64 80.53 74.00 85.66 81.92

Adapter 90.65 85.15 92.21 86.73 72.35 64.33 60.53 49.57 67.18 55.24 80.75 74.37 85.95 84.35

CoRe(Ours) 91.32 86.04 92.51 86.90 72.52 64.40 61.64 49.05 71.00 58.59 81.50 75.04 89.42 85.65

(a) Trainable parameters and Avg accuracy (b) Last accuracy under different random seeds

Figure 2: Figure (a) present the comparison of trainable parameters and Avg accuracy of finetuning
methods, while figure(b) show the average value of Last accuracy of methods under different random
seeds. The experiments are conducted on CIFAR Inc10 with ViT-B/16-IN21K.

4.3 MODEL ANALYSIS

In the context of model finetuning, parameter efficiency is of critical importance, especially in
continual learning scenarios where frequent updates can quickly increase computational and memory
costs. We compare CoRe with several representative finetuning methods in terms of the number
of trainable parameters and Avg accuracy. The experiments are conducted on CIFAR Inc10 in
class increment learning, using ViT-B/16-IN21k as the backbone. The results, illustrated in Fig.2a,
show that CoRe achieves the highest average accuracy while using the fewest trainable parameters,
efficiently leveraging pretrained representations by updating only task-relevant subspaces. This
design enables effective continual adaptation with low computational overhead, highlighting the
value of representation-level interventions for scalable and efficient continual learning.

During the training phase of CoRe, we apply a fixed random seed (1993) to shuffle the order of all
datasets, ensuring that the training sequence remains unbiased and that results are not influenced
by a particular data ordering. To further ensure a fair and robust comparison with other methods,
we conduct additional experiments using multiple random seeds 1991, 1992, 1993, 1994, 1995 and
report the averaged Last accuracy, as shown in Fig.2b. As observed in Fig.2b, CoRe consistently
outperforms competing methods across all seeds, demonstrating not only its superior accuracy but also
its robustness to variations in data ordering and initialization. This indicates that CoRe’s performance
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is stable and reliable, and that its effectiveness does not rely on fortuitous random choices during
training.

(a) CIFAR Inc5 (b) CUB Inc10 (c) ImageNet-A Inc10

(d) ImageNet-R Inc5 (e) ObjectNet Inc10 (f) Omnibenchmark Inc30

Figure 3: Last accuracy of various finetuning methods under Class Incremental Learning scenario
using ViT-B/16-IN1k as the backbone. Each task contains the same number of classes across all
datasets. Core consistently outperforms other finetuning approaches even with the ViT-B/16-IN1k
architecture.

In real-world scenarios, data is not always uniformly distributed, and continual learning often faces
the challenge of class imbalance. We evaluate the performance of different methods under class-
imbalanced settings, and experiments are conducted on CIFAR Inc10 with ViT-B/16-IN21k. The
results are summarized in Tab.4, where imb factor denotes the imbalance ratio. Specifically, the
number of samples for class i is computed as max num ∗ (imb factor(i/(num classes)) where
max num is the original number of samples per class in the balanced setting, and num classes
is the total number of classes. As shown in Tab.4, model performance gradually declines as the
imbalance ratio decreases, which highlights that class imbalance poses a substantial challenge for
continual learning, leading to biased feature learning and degraded generalization. Nonetheless,
CoRe consistently outperforms other methods across varying imbalance ratios, demonstrating its
robustness and stability under imbalanced conditions.

In addition, we further evaluate model performance based on ViT-B/16-IN1k. Unlike ViT-B/16-IN21k,
this backbone is obtained by first pretrained on ImageNet-21k and then finetuned on ImageNet-1k,
which shifts the model’s focus. We conduct experiments on CIFAR Inc10 in the class incremental
learning setting using ViT-B/16-IN1k as the backbone and compare the Last accuracy across methods.
The results presented in Fig.3 indicate that CoRe consistently maintains superior performance across
most cases. This suggests that its advantages are not limited to a specific pretrained backbone, but
generalize across models with different pretraining histories, confirming its capacity to achieve stable
and reliable continual learning under diverse backbone initializations.

4.4 ABLATION STUDY

In CoRe, feature representations are updated within a low-rank subspace, and the subspace rank
critically affects continual learning performance. We evaluate different ranks on CIFAR Inc10
under the class-incremental learning setting using ViT-B/16-IN21k, with results summarized in
Tab.5a. Performance improves as the rank increases from small values, reflecting greater capacity to
capture task-specific variations, but degrades when the rank is too high, likely due to redundancy and
overfitting. Higher ranks also increase computational cost. Considering this trade-off, we set rank as
8 in this work.

ViT consists of multiple transformer block layers, and finetuning different numbers of layers affects
the degree of model intervention. We investigate the impact of inserting ReFT modules into different
numbers of blocks on CIFAR Inc10 (Tab.5b). Generally, applying ReFT to more layers improves

8
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Table 4: Performance comparison between CoRe and other finetune methods under different imbal-
ance factors. All experiments are conducted on CIFAR Inc10 with ViT-B/16-IN21k, the best results
are highlighted in bold.

imb factor 1 imb factor 0.5 imb factor 0.1 imb factor 0.05 imb factor 0.01
Method Avg Last Avg Last Avg Last Avg Last Avg Last

ViT 87.13 81.26 87.07 81.14 86.70 80.88 86.51 80.47 84.70 78.07
Finetune 88.56 82.80 88.06 82.52 88.40 83.11 88.06 82.24 85.70 79.68
VPT 90.59 85.27 90.51 85.12 88.43 84.99 86.83 80.45 76.61 68.52
SSF 90.71 85.21 90.55 85.09 90.17 84.88 89.71 84.38 87.03 80.96
Adapter 92.27 87.50 91.94 87.14 89.51 84.15 88.29 82.69 85.25 79.09
Ours 92.37 87.60 92.34 87.58 91.76 86.95 91.87 86.89 89.41 83.23

performance, with the best results achieved when all 12 blocks are used. Interestingly, inserting ReFT
into only one block sometimes outperforms three blocks, indicating a nonlinear relationship between
module placement and overall performance. Based on these observations, we insert ReFT into all 12
layers to fully leverage the hierarchical feature representations.

Table 5: Ablation studies on (a)ReFT rank and (b)number of block layer inserted with ReFT. ”Reft
Rank” in (a) indicates the rank value of every ReFT in model. (b) indicates effect of the number of
ViT layers integrated with ReFT. The ViT-B/16-IN21k architecture consists of 12 block layers. Here,
”1” indicates that ReFT is inserted into only one block layer, while ”12” denotes that ReFT is applied
to every block layer. All experiments are conducted on CIFAR Inc10 with ViT-B/16-IN21k.

(a) Effect of ReFT rank.

Reft Rank Avg Last

4 92.28 87.62
8 92.34 87.63
16 92.27 87.51
32 92.02 87.29
64 92.01 87.08

(b) Effect of the number of finetuned layers

Layer Avg Last

1 91.95 87.25
3 91.59 86.61
6 92.16 87.40
9 92.17 87.59
12 92.24 87.63

5 THE USE OF LLM

In accordance with the ICLR 2026 policy on the use of large language models (LLMs), we disclose
that we employed OpenAI GPT-4o for language refinement. The model was prompted with: “I am
writing a conference paper, please help me polish this paragraph in an academic style.” The LLM
was used solely for linguistic refinement and did not generate any new content, experimental results,
or analyses. All results were reviewed and verified by the authors, who take full responsibility for the
final manuscript.

6 CONCLUSION

In this work, we introduced CoRe, the first framework that integrates representation finetuning into
continual learning. Unlike conventional parameter-efficient finetuning approaches that intervene
primarily at the weight level, CoRe performs task-specific interventions in a low-rank subspace of
hidden representations and adopts a learning paradigm with explicit objectives rather than relying
on black-box optimization, enabling efficient adaptation to new tasks while mitigating catastrophic
forgetting. Through extensive experiments, we demonstrated that CoRe consistently outperforms
existing finetuning baselines, achieving state-of-the-art performance while maintaining parameter
efficiency. These results highlight the potential of representation-level interventions as an effective
and scalable alternative to weight-based adaptation in dynamic learning environments. Our work not
only extends the applicability of ReFT to continual learning for the first time but also establishes a
new paradigm for efficient fine-tuning in lifelong learning, providing insights for future research on
representation-level adaptation in large pre-trained models.
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ETHICS STATEMENT

This work presents a novel algorithm for Continual Learning. Our research is based on publicly
available benchmark datasets and does not involve any human subjects, personal data, or other
sensitive information. We are not aware of any direct negative ethical impacts or malicious use cases
of our work. However, as with any AI technology, we encourage the community to consider the
potential for unintended consequences and to use it responsibly.

REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work:

• Code: The source code will be made publicly available upon acceptance of this paper.
• Experiments: The full experimental setup, including hyperparameter values and training

details, is described in Section 4.
• Data: All experiments in this paper are conducted on publicly available benchmark

datasets. A complete list of the datasets used, along with their respective citations, is
provided in Section 4

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits
of object recognition models. Advances in neural information processing systems, 32, 2019.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In European conference on computer vision, pp. 446–461. Springer,
2014.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of
the IEEE/CVF International conference on computer vision, pp. 9516–9525, 2021.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3606–3613, 2014.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 2002.

Chuqiao Li, Zhiwu Huang, Danda Pani Paudel, Yabin Wang, Mohamad Shahbazi, Xiaopeng Hong,
and Luc Van Gool. A continual deepfake detection benchmark: Dataset, methods, and essentials.
In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 1339–
1349, 2023.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A
new baseline for efficient model tuning. Advances in Neural Information Processing Systems, 35:
109–123, 2022.

Tianci Liu, Ruirui Li, Yunzhe Qi, Hui Liu, Xianfeng Tang, Tianqi Zheng, Qingyu Yin, Monica Xiao
Cheng, Jun Huan, Haoyu Wang, et al. Unlocking efficient, scalable, and continual knowledge
editing with basis-level representation fine-tuning. arXiv preprint arXiv:2503.00306, 2025.

Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for continuous
object recognition. In Conference on robot learning, pp. 17–26. PMLR, 2017.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
7765–7773, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van
De Weijer. Class-incremental learning: survey and performance evaluation on image classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5513–5533, 2022.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.
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