

000 REPRESENTATION FINETUNING FOR CONTINUAL 001 002 LEARNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009 010

011 The world is inherently dynamic, and continual learning aims to enable models
012 to adapt to ever-evolving data streams. Pre-trained models has shown powerful
013 performance in continual learning. However, since pre-trained models acquire
014 knowledge from static datasets, they still require finetuning to adapt effectively
015 to downstream tasks. Traditional finetuning methods are largely empirical, lack
016 explicit objectives, and still require a relatively large number of parameters. In this
017 work, we introduce **Continual Representation Learning(CoRe)**, a novel framework
018 that, for the first time, applies low-rank linear subspace representation finetuning
019 to continual learning. Unlike conventional finetuning approaches, CoRe adopts a
020 learning paradigm with explicit objectives rather than relying on black-box optimi-
021 zation, achieving more efficient parameter utilization and superior performance.
022 Extensive experiments across multiple continual learning benchmarks demonstrate
023 that CoRe not only preserves parameter efficiency but also significantly outperforms
024 existing methods. Our work extends the applicability of representation finetuning
025 and introduces a new, efficient finetuning paradigm for continual learning.

026 1 INTRODUCTION

027 The world is dynamically changing, however, machine learning models are usually trained under the
028 assumption that the training and test data come from the same stationary distribution. When exposed
029 to non-stationary data streams, such models often suffer from Catastrophic Forgetting(Goodfellow
030 et al., 2013)—the tendency to lose previously acquired knowledge when learning new tasks. This
031 challenge has motivated extensive research in continual learning(De Lange et al., 2021)(Masana et al.,
032 2022), whose goal is to enable models to incrementally acquire new knowledge without sacrificing
033 performance on prior tasks.

034 Recently, continual learning methods built upon pre-trained models have attracted increasing at-
035 tention(Wang et al., 2022c)(Wang et al., 2022b)(Yu et al., 2024). Pre-trained models, such as
036 ViTDosovitskiy et al. (2020), are extensively trained on large-scale datasets and demonstrate powerful
037 feature extraction capabilities. However, in continual learning scenarios, a domain gap often exists
038 between pretraining datasets and downstream datasets(Zhou et al., 2025). As a result, pre-trained
039 models typically require finetuning to adapt effectively to new tasks. Traditional finetuning methods,
040 such as full-finetuning and parameter-efficient fine-tuning (PEFT)(Houlsby et al., 2019)(Jia et al.,
041 2022), primarily focus on updating model parameters. While effective, these approaches lack inter-
042 pretability during the learning process, making it difficult to directly explain the role of the updated
043 parameters, and the learning process is largely empirical with unclear objectives. Moreover, they
044 still require a relatively large number of parameters and the parameter efficiency needs to be further
045 improved.

046 Unlike weight-based finetuning, the recently proposed representation finetuning (ReFT)Wu et al.
047 (2024) directly intervenes on a model’s hidden representations, often within a low-rank linear
048 subspace, providing a more flexible and efficient way to adapt models. By enabling task-specific
049 interventions without introducing excessive parameter overhead, ReFT has achieved competitive
050 results across various domains(Liu et al., 2025)(Yin et al., 2024)(Osial et al., 2025)(Huang et al.,
051 2025), particularly in large language models. Nevertheless, despite its effectiveness, ReFT has not yet
052 been explored in the context of continual learning, where controlling representation drift is especially
053 critical.

054 In this work, we introduce CoRe, the first framework that integrates representation finetuning into
 055 continual learning. CoRe applies task-specific interventions within the low-rank subspace of hidden
 056 representations, enabling efficient adaptation to new tasks while mitigating catastrophic forgetting.
 057 Compared with conventional parameter-efficient fine-tuning methods, CoRe leverages subspace-
 058 based interventions to achieve better parameter utilization and superior performance across multiple
 059 benchmarks.

060 Our contributions can be summarized as follows:
 061

- 062 • We propose CoRe, the first framework to integrate representation finetuning into continual
 063 learning, bridging the gap between representation-level interventions and incremental task
 064 adaptation.
- 066 • CoRe performs task-specific interventions in the low-rank linear subspace of hidden represen-
 067 tations with explicit objectives, ensuring parameter efficiency while improving adaptability.
- 068 • Experiments on extensive continual learning benchmarks show that CoRe consistently
 069 outperforms existing parameter-efficient fine-tuning methods, achieving state-of-the-art
 070 results while maintaining efficiency.

073 2 RELATED WORK

074 2.1 CONTINUAL LEARNING

077 Traditional continual learning approaches can generally be categorized into three groups:
 078 regularization-based, architecture-based, and replay-based methods. Regularization-based ap-
 079 proaches(Aljundi et al., 2018)(Serra et al., 2018)(Li & Hoiem, 2017) preserve knowledge from
 080 previous tasks by imposing constraints on parameter updates; however, such constraints may also hin-
 081 der the model’s ability to acquire knowledge from new tasks. Architecture-based approaches(Mallya
 082 & Lazebnik, 2018)(Serra et al., 2018)(Wang et al., 2020) address this limitation by dynamically
 083 modifying the model structure to accommodate new tasks, but this often results in increased mem-
 084 ory consumption. Replay-based approaches(Rebuffi et al., 2017)(Buzzega et al., 2020)(Cha et al.,
 085 2021), on the other hand, maintain a memory buffer that stores data or knowledge from past tasks,
 086 which can be replayed during the training of new tasks to mitigate forgetting. Nevertheless, these
 087 methods face challenges such as continually growing memory requirements and potential privacy
 088 concerns. Recently, continual learning methods built upon pretrained models have attracted signifi-
 089 cant attention(Wang et al., 2022c)(Wang et al., 2022b)(Yu et al., 2024). Pretrained models, such as
 090 ViTDosovitskiy et al. (2020) and CLIPRadford et al. (2021), are extensively trained on large-scale
 091 datasets and exhibit strong feature extraction capabilities. However, a domain gap often exists be-
 092 tween the pretraining datasets and the downstream datasets in continual learning scenarios(Zhou et al.,
 093 2025). As a result, pretrained models typically require finetuning to adapt effectively to downstream
 094 tasks.

095 2.2 REPRESENTATION FINETUNING

097 Representation finetuning methods intervene in models by modifying the semantic representations
 098 of inputs using counterfactual information. ReFTWu et al. (2024) first introduce representation
 099 finetuning for adapting large language models (LLMs), achieving competitive results across a wide
 100 range of benchmarks. Building on this idea, LoFITYin et al. (2024) identified task-specific critical
 101 attention points and trained offsets to modify hidden representations accordingly. IntervMergeOsial
 102 et al. (2025) further extend representation finetuning to model merging, employing task-specific inter-
 103 ventions to alleviate representational bias. CRFTHuang et al. (2025) apply representation finetuning
 104 to Chain-of-Thought reasoning, leveraging information flow analysis to identify and optimize key
 105 representations. While representation finetuning has demonstrated competitive performance across
 106 various domains, existing approaches have primarily been applied to textual inputs. The potential
 107 of representation finetuning in continual learning has not yet been explored, and further adaptation is
 required to make it suitable for downstream continual learning tasks.

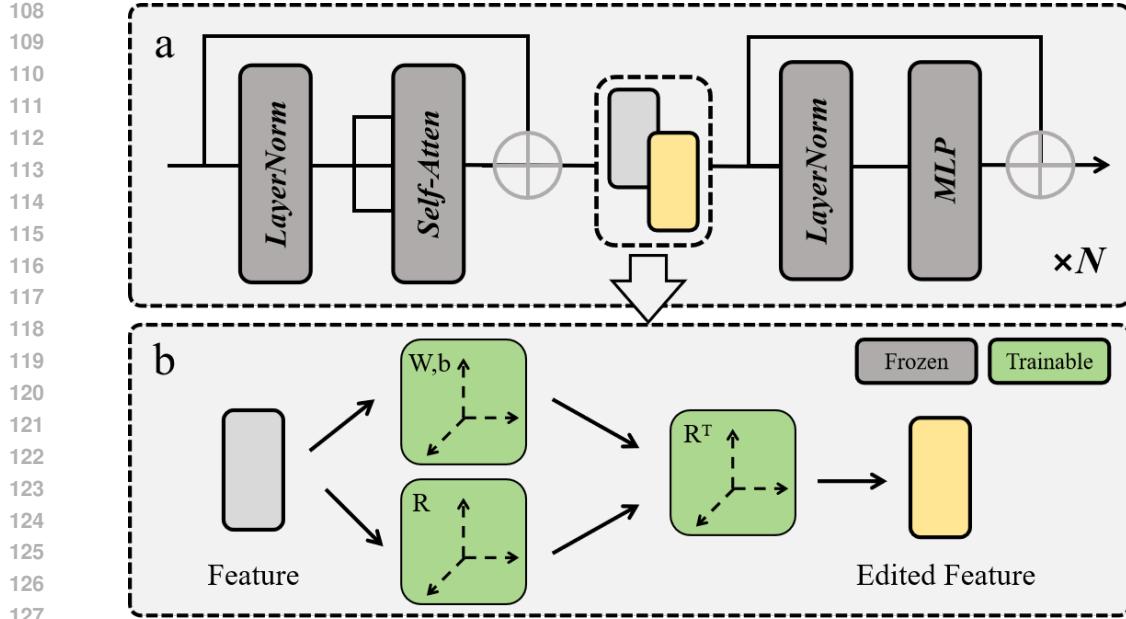


Figure 1: The overall structure of the proposed method. (a) illustrates a standard ViT block, while (b) depicts the implementation of ReFT. Unlike previous finetuning approaches, ReFT directly intervenes in the model by modifying its intermediate features. Specifically, the features are projected into a low-rank subspace via learnable parameters R , w , and b , and then mapped back to the original dimension. Gray areas indicate frozen parameters, while green areas denote trainable components.

2.3 PARAMETER-EFFICIENT TUNING

The Parameter Efficient Fine-Tuning (PEFT) method finetunes the pre-trained model by incorporating lightweight modules. During the training process, the pretrained model remains frozen, and model intervention is done only by updating the lightweight modules. Representative methods include AdaptersHoulsby et al. (2019), PromptsJia et al. (2022), and SSFLian et al. (2022). Adapter is a linear module, usually consisting of downsampling, upsampling and activation function. Prompt is a set of learnable vectors that are dynamically added to the hidden layer representation during computation. SSF adds scaling and displacement factors to the model weights, and learns the scaling and displacement factors to adjust the model.

3 METHOD

3.1 CONTINUAL LEARNING

Given a sequence of tasks $\mathcal{D}_1, \dots, \mathcal{D}_T$, here The t -th task is defined as $\mathcal{D}_t = \{(\mathbf{x}_i^t, \mathbf{y}_i^t)\}_{i=1}^{m_t}$, where \mathcal{D}_t contains m_t samples \mathbf{x}_i^t and their corresponding labels \mathbf{y}_i^t . Continual learning generally involves three scenarios: task-incremental learning(TIL)(Van de Ven et al., 2022), domain-incremental learning(DIL), and class-incremental learning(CIL). During the continual learning process, for instance in tasks D_1 and D_2 , the input distributions generally differ, i.e. $P(X_1) \neq P(X_2)$, In TIL, both the target distributions $P(Y_1)$ and $P(Y_2)$, as well as the corresponding label spaces $\{Y_1\}$ and $\{Y_2\}$, are distinct. More importantly, the model has access to the task identifier i (task id) during both training and inference. Consequently, at inference time, the model can select the corresponding classifier $\phi_i()$ based on the provided task id. This setting greatly reduces classification conflicts across tasks but depends on the availability of task identifiers, which limits its applicability when task information is unavailable. In DIL, although the data from different tasks originate from distinct domains, they share the same target label distribution, i.e., $P(Y_1) = P(Y_2)$, and a common label space $\{Y_1\} = \{Y_2\}$. The categories remain consistent across domains, but the task identifier is not accessible during inference. This implies that the model cannot rely on task id for prediction, and must instead correctly classify data from unseen domains while overcoming distribution shifts caused by domain variations. CIL

poses the most challenging scenario. In this case, the label distributions $P(Y_1) \neq P(Y_2)$ differ across tasks, and the label space $\{Y_1\} \subseteq \{Y_2\}$ continuously expands as new tasks introduce additional classes. During inference, the task id is not available, and the model must dynamically adapt to the growing set of categories without relying on task information, while retaining the ability to recognize previously learned classes. This greatly increases the risk of catastrophic forgetting.

3.2 REPRESENTATION FINETUNING

In large language models (LLMs), taking transformer-based architectures as an example, the model first maps the input text into a semantic representation, which is then propagated through a sequence of block layers progressively learning the semantic representation. Based on the Domain Intervention Interpretation (DII) framework (Geiger et al., 2024), given an initial hidden representation \mathbf{h}_b of input text b and representations \mathbf{h}_s of counterfactual s , the distributed interchange intervention on \mathbf{h}_b with the counterfactual source representation \mathbf{h}_s could be defined as:

$$\text{DII}(\mathbf{h}_b, \mathbf{h}_s, R) = \mathbf{h}_b + R^\top (R\mathbf{h}_s - R\mathbf{h}_b) \quad (1)$$

Where $R \in \mathbb{R}^{d \times k}$ is a low-rank projection matrix, d is the semantic representation dimension, and r is the rank of the subspace in which we intervene. Eq. 1 provides a principle for counterfactual intervention in the model. Wu et al. (2024) further proposed replacing the explicit counterfactual features with learnable linear matrix W and b , introducing an orthogonal constraint that yields the representation editing formulation in LLMs:

$$\Phi(\mathbf{h}_b, \mathbf{h}_s, R, W, b) = \mathbf{h}_b + R^\top (W\mathbf{h}_b + b - R\mathbf{h}_b) \quad (2)$$

3.3 CONTINUAL LEARNING WITH REFT

In the context of continual learning with visual inputs, representations requiring intervention can similarly be regarded as counterfactual information. For instance, if the model incorrectly classifies Samoyed's visual feature \mathbf{e}_s as spotted dog \mathbf{e}_b . By applying Eq. 2, the feature representation of a Samoyed \mathbf{e}_s can be treated as counterfactual information to guide the model's finetuning. As shown in Fig. 1, for transformer-based pretrained models, such as ViT, the learned representations can similarly be modified through an learnable linear transformation: $W\mathbf{e} + b$ in place of explicit counterfactual. This leads to the following formulation, which removes the dependency on manually constructed counterfactual information:

$$g_\theta(\mathbf{e}_b) = \mathbf{e}_b + R^\top (W\mathbf{e}_b + b - R\mathbf{e}_b) \quad (3)$$

Here, R defines the intervention subspace, while W and b are used to learn the calibration rule. The objective is to make $W\mathbf{e}_b + b$ approximate \mathbf{e}_s , thereby aligning the transformed representation $g_\theta(\mathbf{e}_b)$ more closely with the true feature \mathbf{e}_s . In this way, the original representation \mathbf{e}_b is calibrated within a low-rank subspace, rather than being optimized in a black-box manner. With Eq. 3, the finetuning of pre-trained model f_0 could be described as:

$$f^*(\mathbf{x}) = \mathcal{F}(f_0(\mathbf{x}), \mathcal{D}_1, \theta) \quad (4)$$

Where $f^*(\mathbf{x})$ is the finetuned model, f_0 is the pre-trained model, like ViT, θ is the trainable parameters of ReFT.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Benchmark We evaluate our approach under three continual learning scenarios: task incremental learning, domain incremental learning, and class incremental learning. In the task incremental learning setting, following Yu et al. (2024), we evaluate model performance on a collection of datasets, including AircraftMaji et al. (2013), Caltech101Fei-Fei et al. (2004), CIFAR100Krizhevsky et al. (2009), DTDCimpoi et al. (2014), EuroSATHeber et al. (2019), Flowers102Nilsback & Zisserman (2008), Food101Bossard et al. (2014), MNISTLeCun et al. (2002), OxfordPetParkhi et al. (2012), StanfordCarsKrause et al. (2013), and SUN397Xiao et al. (2010). These datasets cover diverse characteristics: fine-grained datasets such as Aircraft and StanfordCars; broader-coverage

datasets such as EuroSAT; and large-scale scene recognition datasets such as SUN397. For evaluation, EuroSAT and MNIST are divided into 5 tasks with 2 classes per task, while Oxford Pet is split into 8 tasks. In addition, All other datasets are partitioned into 10 tasks, each containing an equal number of classes. In the domain incremental learning setting, following Wang et al. (2022a), we conduct experiments on CDDBLi et al. (2023), CORe50Lomonaco & Maltoni (2017), DomainNetPeng et al. (2019), and OfficeHomeVenkateswara et al. (2017). Among them, CDDB focuses on user behavior recognition and consists of 10 domains; CORe50 contains 50 object classes captured under 11 different lighting and background conditions; DomainNet is the largest and most diverse benchmark for domain shift classification, consisting of 345 categories across 6 highly heterogeneous domains. In this setting, each domain is regarded as a separate task, and each task includes all categories. In the class incremental learning setting, following Zhou et al. (2025), we evaluate our method on CIFAR100Krizhevsky et al. (2009), CUB200Wah et al. (2011), ImageNet-AHendrycks et al. (2021b), ImageNet-RHendrycks et al. (2021a), ObjectNetBarbu et al. (2019), OmniBenchmarkZerroug et al. (2022), and VTABZhai et al. (2019). These datasets include fine-grained recognition benchmarks such as CUB200, challenging subsets of ImageNet such as ImageNet-A and ImageNet-R, and large-scale benchmarks such as OmniBenchmark. In this setting, CIFAR100 and ImageNet-R are split into tasks with 5 classes per task, OmniBenchmark into tasks with 30 classes each, while the remaining datasets are divided into tasks containing 10 classes each. For clarity, we denote the number of classes in each task using the notation 'Inc'. For example, "Inc10" indicates that every contains 10 classes.

Table 1: Performance comparison of different methods under the Task Incremental Learning scenario. All experiments are based on the ViT-B/16-IN21k. Each task consists of 5 classes for DTD and OxfordPet, 2 classes for EuroSAT and MNIST, 20 classes for StandCars and SUN397, and 10 classes for the remaining datasets. The best results are highlighted in bold.

	Method	Aircraft	Clatch101	CIFAR	DTD	EuroSAT	Flowers	Food	MNIST	OxfordPet	StandfordCars	SUN397
Avg	ViT	64.50	99.01	95.14	92.57	96.34	99.86	96.23	96.49	97.09	72.15	93.25
	Finetune	67.94	99.36	95.03	92.39	89.60	99.81	94.12	96.38	97.01	70.66	93.11
	VPT	69.33	99.29	98.01	90.04	89.84	99.79	96.61	94.60	97.56	79.92	93.44
	SSF	66.63	99.31	97.52	93.85	94.39	99.81	95.96	97.36	96.98	75.11	93.14
	Adapter	64.55	99.08	97.98	92.57	95.89	99.86	96.40	99.48	96.97	72.22	93.19
	Ours	75.09	99.43	98.15	92.71	96.43	99.87	96.77	99.60	97.00	79.41	93.48
Last	ViT	66.16	99.25	94.76	92.98	93.26	99.89	96.06	97.37	98.15	72.89	93.24
	Finetune	66.07	99.20	94.61	93.19	85.33	99.84	94.28	96.31	97.33	69.63	93.11
	VPT	69.37	99.03	97.45	90.96	86.31	99.82	96.34	94.93	97.98	80.74	93.26
	SSF	71.05	99.41	96.90	94.31	90.24	99.85	95.67	97.43	97.89	75.46	93.03
	Adapter	66.22	99.36	97.53	92.98	92.61	99.89	96.28	99.25	98.06	73.05	93.11
	Ours	74.89	99.62	97.59	93.35	93.15	99.89	96.45	99.39	97.93	80.40	93.40

Baseline Model finetuning aims to adapt pre-trained models to downstream tasks by updating only a small fraction of parameters compared with the full model. We compare CoRe against several representative parameter-efficient fine-tuning methods, including AdapterHoulsby et al. (2019), PromptJia et al. (2022), and SSFLian et al. (2022). Specifically, Adapter introduces trainable projection layers, typically consisting of down-sampling, up-sampling, and non-linear activation functions, into pre-trained models. Prompt tuning employs a set of learnable vectors that are concatenated with hidden layer representations to modulate model outputs. SSF finetunes models by learning task-specific scaling and shifting parameters applied to model weights. In addition to these PEFT baselines, we also include comparisons with the frozen pretrained model outputs as well as full-parameter finetuning.

Training Details We evaluate our method under different continual learning settings, including task incremental learning(TIL), domain incremental learning(DIL), and class incremental learning(CIL). During training, following Zhou et al. (2025), we train the model only on the first task and compute the class-wise feature means, which are then used as the classifier weights. For subsequent tasks, the model parameters remain frozen, and only the prototype-based classifier is updated. The classifier design differs across the three continual learning scenarios. In TIL, we construct a task-specific

270 classifier for each task. During inference, the task identifier is provided to select the corresponding
 271 classifier for prediction. In DIL, following Wang et al. (2022a), we create a separate classifier and
 272 a set of k-means cluster centers for each domain during training. At inference time, the input is
 273 assigned to the nearest domain center, and the corresponding classifier is used. In CIL, the classifier
 274 is dynamically expanded as new classes arrive, and the model must predict over all previously seen
 275 classes without any external task information. All experiments are conducted using the ViT-B/16
 276 pretrained on ImageNet-21K, which pretrained on ImageNet21k. For finetuning, we adopt stochastic
 277 gradient descent (SGD) as the optimizer with an initial learning rate of 0.05, scheduled by cosine
 278 decay. A weight decay of 0.0005 is applied. The batch size is set to 48, and epochs is 20.

279 **Evaluation Metric** In model performance evaluation, we follow Zhou et al. (2025), using Average
 280 accuracy (**Avg**) and Last accuracy (**Last**) to measure the performance of model. Specifically,
 281 **Last** denotes the Top-1 accuracy of every task, and **Avg** is the average value of **Last** of all tasks.
 282 Mathematically, for the t -th task, Average accuracy is calculated as follows: $\text{Avg}_t = \frac{1}{t} \sum_{i=1}^t \text{Last}_i$.

284 Table 2: Performance comparison of different methods under the Domain Incremental Learning
 285 scenario. All experiments are conducted using ViT-B/16-IN21k. For all datasets, each task contains
 286 the same number of classes. The best results are highlighted in bold.

Method	OfficeHome Inc65		Core50 Inc50		CDDB Inc2		DomainNet Inc345	
	Avg	Last	Avg	Last	Avg	Last	Avg	Last
ViT	74.22	64.99	77.55	61.49	76.30	72.41	50.73	40.37
Finetune	69.06	58.15	75.86	58.22	71.98	66.64	55.31	42.54
VPT	75.30	65.95	76.20	57.20	76.51	72.42	55.32	44.09
SSF	75.48	65.80	76.42	59.02	75.39	69.34	53.57	42.50
Adapter	74.67	65.83	76.50	58.53	76.64	72.07	55.51	44.23
Ours	75.96	66.30	77.95	59.91	77.35	72.50	56.73	45.23

4.2 MAIN RESULTS

301 We first compare CoRe with various finetuning methods under the task-incremental learning setting.
 302 Results are reported in Tab.1. As shown in Tab.1, CoRe achieves competitive performance across
 303 diverse datasets. These results demonstrate that CoRe substantially enhances the feature extraction
 304 capability of pretrained models across diverse scenarios. On fine-grained benchmarks such as Aircraft
 305 and Oxford Pet, CoRe is able to capture subtle intra-class distinctions, while on domain-shift datasets
 306 like EuroSAT it adapts to variations in data distribution without sacrificing stability. Moreover,
 307 its strong performance on large-scale datasets such as SUN397 highlights CoRe’s scalability and
 308 robustness when handling complex visual concepts, underscoring its effectiveness as a general
 309 solution for task-incremental learning.

310 We further evaluate different methods under the domain incremental learning (DIL) setting, where
 311 each domain contains the same set of categories, and the model must capture the feature variations of
 312 identical classes across domain shifts. Following Wang et al. (2022a), we conduct experiments on
 313 CDDB, CORE50, DomainNet, and OfficeHome, with results reported in Tab.2. As observed, CoRe
 314 consistently achieves superior performance, effectively learning domain-invariant representations
 315 while retaining flexibility for domain-specific features. This balance enables better generalization
 316 across shifts in appearance, style, or context, demonstrating robustness in dynamic environments with
 317 evolving data distributions.

318 Finally, we assess all methods in the class incremental learning setting, which is widely regarded
 319 as the most challenging scenario in continual learning. In this setting, the task identity is unknown
 320 during inference, and the model must classify samples among all previously seen classes. This
 321 makes the problem substantially harder but also more reflective of real-world applications. Following
 322 Zhou et al. (2025), we evaluate the methods on multiple benchmarks, with results summarized in
 323 Tab.3. We observe that CoRe outperforms other finetuning methods in most cases. These results
 324 confirm that CoRe effectively retains knowledge from previously learned tasks while acquiring
 325 new representations in highly challenging settings. By operating in the representation subspace

rather than directly modifying model weights, CoRe mitigates catastrophic forgetting and preserves discriminative features of past classes. This ability to balance stability and plasticity makes CoRe particularly well-suited for real-world continual learning scenarios where task identity is not available at inference.

Table 3: Performance comparison of various finetuning methods under Class Incremental Learning scenario. All experiments are based on ViT-B/16-IN21k. Here, 'IN-R' denotes ImageNet-R datasets, 'IN-A' refers to ImageNet-A datasets, 'ObjNet' represents the ObjectNet dataset, and 'Omni' stands for the OmniBenchmark dataset. For all datasets, each task contains an equal number of classes. The best results are highlighted in bold.

Method	CIFAR Inc5		CUB Inc10		IN-R Inc5		IN-A Inc10		ObjNet Inc10		Omni Inc30		VTAB Inc10	
	Avg	Last												
ViT	87.57	81.26	92.20	86.73	62.58	54.55	60.5	49.44	65.45	53.59	79.34	73.15	85.99	84.38
Finetune	87.67	81.27	91.82	86.39	70.51	62.42	61.57	50.76	61.41	48.34	73.02	65.03	87.47	80.44
VPT	88.46	82.17	91.02	84.99	68.79	60.48	60.59	48.72	67.83	54.65	81.05	74.47	86.59	83.06
SSF	87.78	81.98	91.72	86.13	68.94	60.60	62.81	51.48	69.15	56.64	80.53	74.00	85.66	81.92
Adapter	90.65	85.15	92.21	86.73	72.35	64.33	60.53	49.57	67.18	55.24	80.75	74.37	85.95	84.35
CoRe(Ours)	91.32	86.04	92.51	86.90	72.52	64.40	61.64	49.05	71.00	58.59	81.50	75.04	89.42	85.65

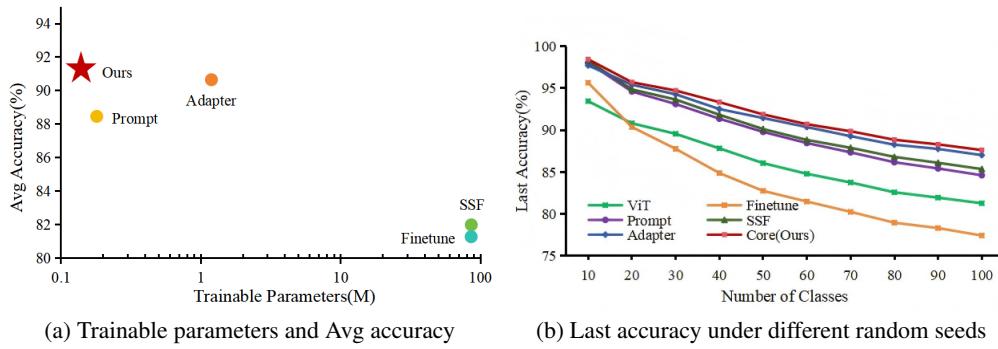


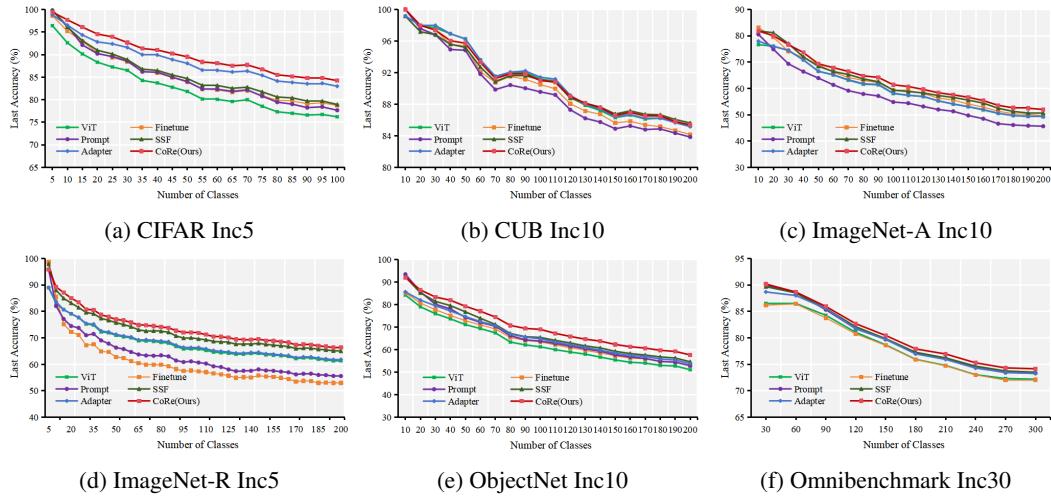
Figure 2: Figure (a) present the comparison of trainable parameters and Avg accuracy of finetuning methods, while figure(b) show the average value of Last accuracy of methods under different random seeds. The experiments are conducted on CIFAR Inc10 with ViT-B/16-IN21K.

4.3 MODEL ANALYSIS

In the context of model finetuning, parameter efficiency is of critical importance, especially in continual learning scenarios where frequent updates can quickly increase computational and memory costs. We compare CoRe with several representative finetuning methods in terms of the number of trainable parameters and Avg accuracy. The experiments are conducted on CIFAR Inc10 in class increment learning, using ViT-B/16-IN21k as the backbone. The results, illustrated in Fig.2a, show that CoRe achieves the highest average accuracy while using the fewest trainable parameters, efficiently leveraging pretrained representations by updating only task-relevant subspaces. This design enables effective continual adaptation with low computational overhead, highlighting the value of representation-level interventions for scalable and efficient continual learning.

During the training phase of CoRe, we apply a fixed random seed (1993) to shuffle the order of all datasets, ensuring that the training sequence remains unbiased and that results are not influenced by a particular data ordering. To further ensure a fair and robust comparison with other methods, we conduct additional experiments using multiple random seeds 1991, 1992, 1993, 1994, 1995 and report the averaged Last accuracy, as shown in Fig.2b. As observed in Fig.2b, CoRe consistently outperforms competing methods across all seeds, demonstrating not only its superior accuracy but also its robustness to variations in data ordering and initialization. This indicates that CoRe's performance

378 is stable and reliable, and that its effectiveness does not rely on fortuitous random choices during
 379 training.
 380



387 Figure 3: Last accuracy of various finetuning methods under Class Incremental Learning scenario
 388 using ViT-B/16-IN1k as the backbone. Each task contains the same number of classes across all
 389 datasets. Core consistently outperforms other finetuning approaches even with the ViT-B/16-IN1k
 390 architecture.
 401

402 In real-world scenarios, data is not always uniformly distributed, and continual learning often faces
 403 the challenge of class imbalance. We evaluate the performance of different methods under class-
 404 imbalanced settings, and experiments are conducted on CIFAR Inc10 with ViT-B/16-IN21k. The
 405 results are summarized in Tab.4, where imb_factor denotes the imbalance ratio. Specifically, the
 406 number of samples for class i is computed as $max_num * (imb_factor^{(i)/(num_classes)})$ where
 407 max_num is the original number of samples per class in the balanced setting, and $num_classes$
 408 is the total number of classes. As shown in Tab.4, model performance gradually declines as the
 409 imbalance ratio decreases, which highlights that class imbalance poses a substantial challenge for
 410 continual learning, leading to biased feature learning and degraded generalization. Nonetheless,
 411 CoRe consistently outperforms other methods across varying imbalance ratios, demonstrating its
 412 robustness and stability under imbalanced conditions.
 413

414 In addition, we further evaluate model performance based on ViT-B/16-IN1k. Unlike ViT-B/16-IN21k,
 415 this backbone is obtained by first pretrained on ImageNet-21k and then finetuned on ImageNet-1k,
 416 which shifts the model’s focus. We conduct experiments on CIFAR Inc10 in the class incremental
 417 learning setting using ViT-B/16-IN1k as the backbone and compare the Last accuracy across methods.
 418 The results presented in Fig.3 indicate that CoRe consistently maintains superior performance across
 419 most cases. This suggests that its advantages are not limited to a specific pretrained backbone, but
 420 generalize across models with different pretraining histories, confirming its capacity to achieve stable
 421 and reliable continual learning under diverse backbone initializations.
 422

4.4 ABLATION STUDY

423 In CoRe, feature representations are updated within a low-rank subspace, and the subspace rank
 424 critically affects continual learning performance. We evaluate different ranks on CIFAR Inc10
 425 under the class-incremental learning setting using ViT-B/16-IN21k, with results summarized in
 426 Tab.5a. Performance improves as the rank increases from small values, reflecting greater capacity to
 427 capture task-specific variations, but degrades when the rank is too high, likely due to redundancy and
 428 overfitting. Higher ranks also increase computational cost. Considering this trade-off, we set rank as
 429 8 in this work.
 430

431 ViT consists of multiple transformer block layers, and finetuning different numbers of layers affects
 432 the degree of model intervention. We investigate the impact of inserting ReFT modules into different
 433 numbers of blocks on CIFAR Inc10 (Tab.5b). Generally, applying ReFT to more layers improves

432
 433 Table 4: Performance comparison between CoRe and other finetune methods under different imbal-
 434 ance factors. All experiments are conducted on CIFAR Inc10 with ViT-B/16-IN21k, the best results
 435 are highlighted in bold.

Method	<i>imb_factor</i> 1		<i>imb_factor</i> 0.5		<i>imb_factor</i> 0.1		<i>imb_factor</i> 0.05		<i>imb_factor</i> 0.01	
	Avg	Last	Avg	Last	Avg	Last	Avg	Last	Avg	Last
ViT	87.13	81.26	87.07	81.14	86.70	80.88	86.51	80.47	84.70	78.07
Finetune	88.56	82.80	88.06	82.52	88.40	83.11	88.06	82.24	85.70	79.68
VPT	90.59	85.27	90.51	85.12	88.43	84.99	86.83	80.45	76.61	68.52
SSF	90.71	85.21	90.55	85.09	90.17	84.88	89.71	84.38	87.03	80.96
Adapter	92.27	87.50	91.94	87.14	89.51	84.15	88.29	82.69	85.25	79.09
Ours	92.37	87.60	92.34	87.58	91.76	86.95	91.87	86.89	89.41	83.23

444
 445 performance, with the best results achieved when all 12 blocks are used. Interestingly, inserting ReFT
 446 into only one block sometimes outperforms three blocks, indicating a nonlinear relationship between
 447 module placement and overall performance. Based on these observations, we insert ReFT into all 12
 448 layers to fully leverage the hierarchical feature representations.

449
 450 Table 5: Ablation studies on (a)ReFT rank and (b)number of block layer inserted with ReFT. "Reft
 451 Rank" in (a) indicates the rank value of every ReFT in model. (b) indicates effect of the number of
 452 ViT layers integrated with ReFT. The ViT-B/16-IN21k architecture consists of 12 block layers. Here,
 453 "1" indicates that ReFT is inserted into only one block layer, while "12" denotes that ReFT is applied
 454 to every block layer. All experiments are conducted on CIFAR Inc10 with ViT-B/16-IN21k.

(a) Effect of ReFT rank.			(b) Effect of the number of finetuned layers		
Reft Rank	Avg	Last	Layer	Avg	Last
4	92.28	87.62	1	91.95	87.25
8	92.34	87.63	3	91.59	86.61
16	92.27	87.51	6	92.16	87.40
32	92.02	87.29	9	92.17	87.59
64	92.01	87.08	12	92.24	87.63

463 464 5 THE USE OF LLM

465
 466 In accordance with the ICLR 2026 policy on the use of large language models (LLMs), we disclose
 467 that we employed OpenAI GPT-4o for language refinement. The model was prompted with: "I am
 468 writing a conference paper, please help me polish this paragraph in an academic style." The LLM
 469 was used solely for linguistic refinement and did not generate any new content, experimental results,
 470 or analyses. All results were reviewed and verified by the authors, who take full responsibility for the
 471 final manuscript.

472 473 6 CONCLUSION

474
 475 In this work, we introduced CoRe, the first framework that integrates representation finetuning into
 476 continual learning. Unlike conventional parameter-efficient finetuning approaches that intervene
 477 primarily at the weight level, CoRe performs task-specific interventions in a low-rank subspace of
 478 hidden representations and adopts a learning paradigm with explicit objectives rather than relying
 479 on black-box optimization, enabling efficient adaptation to new tasks while mitigating catastrophic
 480 forgetting. Through extensive experiments, we demonstrated that CoRe consistently outperforms
 481 existing finetuning baselines, achieving state-of-the-art performance while maintaining parameter
 482 efficiency. These results highlight the potential of representation-level interventions as an effective
 483 and scalable alternative to weight-based adaptation in dynamic learning environments. Our work not
 484 only extends the applicability of ReFT to continual learning for the first time but also establishes a
 485 new paradigm for efficient fine-tuning in lifelong learning, providing insights for future research on
 representation-level adaptation in large pre-trained models.

486 ETHICS STATEMENT
487488 This work presents a novel algorithm for Continual Learning. Our research is based on publicly
489 available benchmark datasets and does not involve any human subjects, personal data, or other
490 sensitive information. We are not aware of any direct negative ethical impacts or malicious use cases
491 of our work. However, as with any AI technology, we encourage the community to consider the
492 potential for unintended consequences and to use it responsibly.494 REPRODUCIBILITY STATEMENT
495496 To facilitate the reproducibility of our work:
497498

- **Code:** The source code will be made publicly available upon acceptance of this paper.
- **Experiments:** The full experimental setup, including hyperparameter values and training
500 details, is described in Section 4.
- **Data:** All experiments in this paper are conducted on **publicly available benchmark
501 datasets**. A complete list of the datasets used, along with their respective citations, is
503 provided in Section 4

505 REFERENCES
506507 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
508 Memory aware synapses: Learning what (not) to forget. In *Proceedings of the European conference
509 on computer vision (ECCV)*, pp. 139–154, 2018.510 Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
511 Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits
512 of object recognition models. *Advances in neural information processing systems*, 32, 2019.514 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
515 nents with random forests. In *European conference on computer vision*, pp. 446–461. Springer,
516 2014.517 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
518 experience for general continual learning: a strong, simple baseline. *Advances in neural information
519 processing systems*, 33:15920–15930, 2020.521 Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In *Proceedings of
522 the IEEE/CVF International conference on computer vision*, pp. 9516–9525, 2021.523 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
524 ing textures in the wild. In *Proceedings of the IEEE conference on computer vision and pattern
525 recognition*, pp. 3606–3613, 2014.527 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
528 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
529 tasks. *IEEE transactions on pattern analysis and machine intelligence*, 44(7):3366–3385, 2021.530 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
531 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
532 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
533 arXiv:2010.11929*, 2020.534 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
535 examples: An incremental bayesian approach tested on 101 object categories. In *2004 conference
536 on computer vision and pattern recognition workshop*, pp. 178–178. IEEE, 2004.538 Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah Goodman. Finding
539 alignments between interpretable causal variables and distributed neural representations. In *Causal
Learning and Reasoning*, pp. 160–187. PMLR, 2024.

540 Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
 541 gation of catastrophic forgetting in gradient-based neural networks. *arXiv preprint arXiv:1312.6211*,
 542 2013.

543

544 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 545 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected
 546 Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

547

548 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 549 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
 550 analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international
 551 conference on computer vision*, pp. 8340–8349, 2021a.

552

553 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 554 examples. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 555 pp. 15262–15271, 2021b.

556

557 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
 558 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 559 nlp. In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

560

561 Chenxi Huang, Shaotian Yan, Liang Xie, Binbin Lin, Sinan Fan, Yue Xin, Deng Cai, Chen Shen, and
 562 Jieping Ye. Enhancing chain-of-thought reasoning with critical representation fine-tuning. *arXiv
 563 preprint arXiv:2507.10085*, 2025.

564

565 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 566 Ser-Nam Lim. Visual prompt tuning. In *European conference on computer vision*, pp. 709–727.
 567 Springer, 2022.

568

569 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 570 categorization. In *Proceedings of the IEEE international conference on computer vision workshops*,
 571 pp. 554–561, 2013.

572

573 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

574

575 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 576 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 2002.

577

578 Chuqiao Li, Zhiwu Huang, Danda Pani Paudel, Yabin Wang, Mohamad Shahbazi, Xiaopeng Hong,
 579 and Luc Van Gool. A continual deepfake detection benchmark: Dataset, methods, and essentials.
 580 In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 1339–
 581 1349, 2023.

582

583 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis
 584 and machine intelligence*, 40(12):2935–2947, 2017.

585

586 Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A
 587 new baseline for efficient model tuning. *Advances in Neural Information Processing Systems*, 35:
 588 109–123, 2022.

589

590 Tianci Liu, Ruirui Li, Yunzhe Qi, Hui Liu, Xianfeng Tang, Tianqi Zheng, Qingyu Yin, Monica Xiao
 591 Cheng, Jun Huan, Haoyu Wang, et al. Unlocking efficient, scalable, and continual knowledge
 592 editing with basis-level representation fine-tuning. *arXiv preprint arXiv:2503.00306*, 2025.

593

594 Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for continuous
 595 object recognition. In *Conference on robot learning*, pp. 17–26. PMLR, 2017.

596

597 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 598 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

599

600 Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
 601 pruning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp.
 602 7765–7773, 2018.

594 Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van
 595 De Weijer. Class-incremental learning: survey and performance evaluation on image classification.
 596 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5513–5533, 2022.

597

598 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 599 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 600 722–729. IEEE, 2008.

601 Marcin Osial, Daniel Marczak, and Bartosz Zieliński. Parameter-efficient interventions for enhanced
 602 model merging. In *Proceedings of the 2025 SIAM International Conference on Data Mining
 603 (SDM)*, pp. 516–526. SIAM, 2025.

604

605 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012
 606 IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

607

608 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 609 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference on
 610 computer vision*, pp. 1406–1415, 2019.

611 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 612 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 613 models from natural language supervision. In *International conference on machine learning*, pp.
 614 8748–8763. PMLR, 2021.

615

616 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 617 Incremental classifier and representation learning. In *Proceedings of the IEEE conference on
 618 Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.

619

620 Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
 621 forgetting with hard attention to the task. In *International conference on machine learning*, pp.
 622 4548–4557. PMLR, 2018.

623

624 Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 4(12):1185–1197, 2022.

625

626 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 627 hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE conference on
 628 computer vision and pattern recognition*, pp. 5018–5027, 2017.

629

630 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 631 birds-200-2011 dataset. 2011.

632

633 Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
 An occam’s razor for domain incremental learning. *Advances in Neural Information Processing
 634 Systems*, 35:5682–5695, 2022a.

635

636 Zifeng Wang, Tong Jian, Kaushik Chowdhury, Yanzhi Wang, Jennifer Dy, and Stratis Ioannidis.
 637 Learn-prune-share for lifelong learning. In *2020 IEEE International Conference on Data Mining
 (ICDM)*, pp. 641–650. IEEE, 2020.

638

639 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
 640 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
 641 rehearsal-free continual learning. In *European conference on computer vision*, pp. 631–648.
 Springer, 2022b.

642

643 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
 644 Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings
 645 of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149, 2022c.

646

647 Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Manning,
 648 and Christopher Potts. Reft: Representation finetuning for language models. *Advances in Neural
 649 Information Processing Systems*, 37:63908–63962, 2024.

648 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
649 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on*
650 *computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.

651

652 Fangcong Yin, Xi Ye, and Greg Durrett. Lofit: Localized fine-tuning on llm representations. *Advances*
653 *in Neural Information Processing Systems*, 37:9474–9506, 2024.

654 Jiazu Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
655 continual learning of vision-language models via mixture-of-experts adapters. In *Proceedings of*
656 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23219–23230, 2024.

657

658 Aimen Zerroug, Mohit Vaishnav, Julien Colin, Sebastian Musslick, and Thomas Serre. A benchmark
659 for compositional visual reasoning. *Advances in neural information processing systems*, 35:
660 29776–29788, 2022.

661 Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
662 Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
663 large-scale study of representation learning with the visual task adaptation benchmark. *arXiv*
664 *preprint arXiv:1910.04867*, 2019.

665 Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental
666 learning with pre-trained models: Generalizability and adaptivity are all you need. *International*
667 *Journal of Computer Vision*, 133(3):1012–1032, 2025.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701