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Abstract
Proteins are complex molecules responsible for
different functions in nature. Enhancing the func-
tionality of proteins and cellular fitness can sig-
nificantly impact various industries. However,
protein optimization using computational meth-
ods remains challenging, especially when starting
from low-fitness sequences. We propose LatPro-
tRL, an optimization method to efficiently tra-
verse a latent space learned by an encoder-decoder
leveraging a large protein language model. To es-
cape local optima, our optimization is modeled
as a Markov decision process using reinforce-
ment learning acting directly in latent space. We
evaluate our approach on two important fitness
optimization tasks, demonstrating its ability to
achieve comparable or superior fitness over base-
line methods. Our findings and in vitro evaluation
show that the generated sequences can reach high-
fitness regions, suggesting a substantial potential
of LatProtRL in lab-in-the-loop scenarios.

1. Introduction
Proteins mediate the fundamental processes of life. Im-
proving the proteins’ functions or cellular fitness is crucial
for industrial, research, and therapeutic applications (Yang
et al., 2019; Huang et al., 2016). One powerful approach to
this is directed evolution, the iterative process of performing
random mutations and screening proteins with desired phe-
notypes. However, the protein sequence space of possible
combinations of 20 amino acids is too vast to search exhaus-
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tively in the laboratory, even with high-throughput screening
from diversified libraries (Huang et al., 2016). Therefore,
computational methods have been proposed to improve the
success rate of fitness optimization by generating optimized
sequences or predicting beneficial mutations (Brookes et al.,
2019; Sinai et al., 2020; Kirjner et al., 2023). When experi-
mental data is available, fitness predictors have been trained
to act as surrogate models for optimization (Rao et al., 2019;
Dallago et al., 2021).

In our work, we consider protein fitness optimization in
an active learning setting (Algorithm 1) starting from low-
fitness sequences. The model iteratively proposes optimized
sequences, gets feedback from a black-box oracle, and
updates its belief on the fitness landscape, i.e., mapping
between sequence and fitness, for the next optimization
round. For example, Bayesian optimization (BO) methods
(Brookes et al., 2019; Belanger et al., 2019) update their
acquisition function after each round. In this paper, we
propose an optimization of sequences via reinforcement
learning (RL) directly in a latent representation space rather
than in the protein sequence space. Our protein fitness opti-
mization framework (Figure 1) works as follows:

• State. We introduce a variant encoder-decoder
(VED), which reduces a protein sequence into a low-
dimensional representation using a pre-trained protein
language model (pLM). In the decoder, we introduce a
prompt-tuning approach to recover the sequence from
predicted embeddings. By treating the learned repre-
sentation as states, we can use the knowledge of a large
pre-trained language model and detach the representa-
tion learning from optimization.

• Action. Generating sequences via single mutations
can lead to challenges in exploration, particularly for
proteins where multiple mutations are required to ac-
quire high fitness. Therefore, we define actions as
perturbations in a latent space. The optimized repre-
sentation generated by the policy is decoded back to
the sequence space using the variant encoder-decoder.

• Optimization. The protein fitness landscape is of-
ten rugged (Szendro et al., 2013), exhibiting multiple
peaks surrounded by low fitness valleys. When starting
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from a low fitness sequence, it is important to cross
the valleys and escape local optima. We use a Markov
decision process to model fitness optimization, where
we design the protein over several timesteps and train
the RL policy to maximize the expected future rewards.

In the optimization process, at each timestep, the policy
updates the latent representation by making small perturba-
tions to maximize fitness, i.e., walking uphill through the
local landscape until the end of an episode. We also pro-
pose three essential components to efficiently model this
RL setting. First, we store the previously found maxima in
a frontier buffer and sample initial states from it. Second,
we give negative feedback to the RL policy based on the
number of mutations per step as calibrating steps. Third,
we add a constrained decoding strategy by only applying
the most probable predicted mutations.

We evaluate our method, named LatProtRL, in two fit-
ness optimization tasks with accurate in silico oracles avail-
able: optimizing the green fluorescent protein (GFP) and the
functional segment of adeno-associated virus (AAV). Our
results show that LatProtRL design sequences with compa-
rable or higher fitness than previous methods. We showcase
that our designs successfully escape local optima and reach
high-fitness regions in the experimental data for GFP while
other methods fail. We also provide ablation studies on
the state/action modeling, the proposed components, and a
single-round optimization setting where we use a fitness pre-
dictor as a surrogate model for the black-box oracle. Code
is available in https://github.com/haewonc/LatProtRL.

2. Related Works
Protein Representation Learning aims to learn compact
and expressive features describing the protein. Since a
protein can be represented as a sequence of amino acids
(N = 20), language models such as BERT (Devlin et al.,
2018) are widely used (Brandes et al., 2022; Lin et al.,
2022). Rives et al. (2021) introduced ESM-2, a pLM trained
with 250 million sequences, which produces representations
expressing biological properties and reflecting protein struc-
ture. Similarly to our work, previous literature explored
learning latent representations for optimization (Gómez-
Bombarelli et al., 2018; Stanton et al., 2022).

Protein Fitness Prediction. The pLM representation can
be generalized across different applications, achieving state-
of-the-art results for zero-shot (Notin et al., 2022) and su-
pervised (Rao et al., 2019) fitness prediction. Notin et al.
(2022) proposed an autoregressive transformer architecture
for fitness prediction that achieved high performance in
87 protein datasets. Traditional machine learning methods
and CNN-based architectures have been applied to fitness
prediction as in Yang et al. (2019).

Algorithm 1 Fitness optimization as active learning
1: Set of measured sequences S
2: for E rounds do
3: Propose Noracle calls sequences
4: Evaluate the proposed sequences using an oracle q
5: Augment S with evaluated sequences
6: Update knowledge on fitness landscape using S

2.1. Protein Fitness Optimization

Reinforcement Learning. Angermueller et al. (2019) pro-
posed a variant of proximal policy optimization (Schulman
et al., 2017) that trains an offline policy using previously
measured sequences to autoregressively generate the opti-
mized sequence. Wang et al. (2023) explored self-play and
Monte Carlo tree search for protein and peptide design.

Bayesian Optimization. BO is extensively studied for
fitness optimization in Romero et al. (2013); Belanger
et al. (2019); Terayama et al. (2021); Swersky et al. (2020).
Among these approaches, Stanton et al. (2022) optimize
the sequence with respect to multiple objectives directly
in a latent space by training a denoising autoencoder that
learns representations for corrupted sequences. Compared to
Stanton et al. (2022), our approach does not use the corrupt-
and-denoise idea and defines optimization as an episodic
task to use reinforcement learning.

Energy-Based Models (EBM). Kirjner et al. (2023) pro-
posed a method to smooth the fitness landscape and sample
sequences based on the gradients of a differentiable fitness
predictor trained on experimental data. They show state-of-
the-art results in fitness optimization when a differentiable
predictor is available. As an ablation study, we also evaluate
the proposed methodology in this setting. Frey et al. (2023)
proposed a discrete EBM framework for antibody design
that learns a smoothed energy function and samples from
this data manifold using Langevin Markov chain Monte
Carlo (MCMC). A denoiser network is also trained to re-
cover denoised sequences from noisy inputs. Compared to
Frey et al. (2023), our decoder recovers sequences from a
latent space, and not from noisy amino acid distributions.

Evolutionary Algorithms. Sinai et al. (2020) proposed
a rollout method that greedily mutates the sequences us-
ing a predictor trained based on the oracle feedback. Ren
et al. (2022) proposed an exploration algorithm named PEX
that prioritizes a lower number of mutations between the
optimized sequence and the wild-type sequence.

Generative Models are explored in Schmitt et al. (2022);
Jain et al. (2022); Kim et al. (2023) to search and sample
optimized sequences. Jain et al. (2022) used GFlowNets
with the focus on the generation of diverse candidates.
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3. Methodology
3.1. Problem Formulation

We define a protein x = (x1, · · · , xL) as a sequence
of amino acids with length L, where xi ∈ V is the
amino acid at the i-th position, and V is the vocabu-
lary of 20 amino acids. In our in silico optimization
tasks, we assume the availability of a large-scale dataset
of variant sequences with fitness measurements D∗ =
{(x1, f(x1)), · · · , (xN , f(xN ))} to train an in silico or-
acle qθ, where N is the number of sequences in the dataset
and f(x) represents the fitness measurement for sequence
x. Here, we use the term fitness to represent a desired pro-
tein functionality. We consider a set of low-fitness proteins
D sampled from D∗ to only contain proteins with fitness
value lower than a certain percentile of D∗. D is used for
optimization by the proposed method (i) to set initial states;
(ii) to train the encoder-decoder; and (iii) to train a fitness
predictor gϕ if applicable. The main objective is to generate
M sequences with high fitness, and desirably, high diver-
sity. Algorithm 1 describes the general procedure of active
learning. This setting is readily applicable to in vitro oracles
when only a low-fitness dataset D is available.

3.2. Optimization in Latent Space

We train a pair of encoder Eθ that maps the protein sequence
to a latent space with reduced dimensionality z = Eθ(x),
and decoder Rϕ that decodes this representation back to
sequence space. We optimize the protein by performing a
perturbation in the latent representation z of the current se-
quence x and decoding the perturbed representation z′ back
to sequence space x′ = Rϕ(z

′). Using a latent space formu-
lation can efficiently detach the representation learning step
in optimization and allow the use of pre-trained embedding
models. It also allows flexibility as a perturbation in latent
space can lead to multiple mutations at each optimization
step, compared to generating (Angermueller et al., 2019) or
mutating a single position per step (Belanger et al., 2019;
Kirjner et al., 2023).

3.3. Variant Encoder-Decoder (VED)

For successful optimization in a latent space, an informative
latent space and a high-accuracy decoder are required. Ad-
ditionally, the dimension of representation R should ensure
the effective training of the policy or generator. To address
these conflicting objectives, we propose to train an VED
to learn the mutation information of a target sequence when
compared to a reference sequence. We define the reference
xref as the sequence with the minimum average distance
from all the other sequences in the training dataset D, with
the distance defined as the number of mutations between
two sequences. The VED architecture is shown in Figure 2.
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Figure 1. Overview of LatProtRL. At each round, an RL policy π
acts to collect trajectories T for a fixed number of episodes. After
T are collected, the reward is calculated based on the feedback
from an oracle. The trajectories with calculated rewards, T ′, are
used to train the policy using an on-policy RL algorithm.

Encoder Architecture The encoder Eθ consists of a pre-
trained pLM and a dimensionality reduction layer. Given
a sequence x as an input, the pLM output is given as
v ∈ R(L+2)×E1 , where E1 is the embedding size. In
ESM-2, a CLS (classification) token is prepended, and an
EOS (end-of-sequence) token is appended to the sequence
when generating the embeddings. We use only the CLS
embedding which contains per-protein information (Wu
et al., 2023), reducing the dimensionality from R(L+2)×E1

to vCLS ∈ RE1 . The CLS embedding is chosen over average
pooling as it led to higher performance during our experi-
ments. We subtract the CLS embedding of the mutant vCLS
from the CLS embedding of the reference sequence vref

CLS, to
extract information about mutations. Given that E1 = 1280,
we use a single fully-connected layer to further reduce the
dimension to RR and apply a tanh activation function to
obtain the final representation z.

Decoder Architecture We propose the decoding architec-
ture using a prompt tuning methodology, where we prompt
the token embeddings of the reference sequence xref with
the mutation embedding reconstructed from the reduced
representation z using a fully-connected layer. Specifically,
prompt embedding replaces the original CLS embedding
of xref. The combined (L + 2, E2) embedding is passed
through ESM-2 attention layers. During training, the ini-
tial 4 attention layers are fine-tuned so that it can adapt to
the new CLS embedding. Compared to conventional ap-
proaches that fine-tune the last layers of language models,
we observed that in our case, as we change the input of
the pLM, fine-tuning the initial layers leads to better per-
formance. Finally, we reconstruct the sequence x̂ using a
prediction head, which is not updated during fine-tuning.

Constrained Decoding After each policy action, the en-
tire amino acid sequence x̂t+1 is reconstructed from st+1.
Even though the proposed VED shows high accuracy (see
Section 4), the decoder accuracy is still a bottleneck for
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Figure 2. Variant Encoder-Decoder Architecture. Given an input sequence, the encoder calculates a representation that is used by the
decoder to reconstruct the original sequence. The term CLS represents the embeddings for the classification token in ESM-2.

small R and large L. We tackle this with a constrained
decoding strategy, in which we apply the top mdecode mu-
tations with respect to their predicted probabilities by the
decoder. These mutations are then applied to a xtemplate se-
quence, which is the sequence of the previous state in our
optimization algorithm.

The VED training objective is the cross-entropy loss be-
tween x and x̂. We augment the training datasetD with ran-
dom mutations, such that mutated sequence has the expected
number of mutations from the original sequence equal to 3.

3.4. Protein Fitness Optimization via Model-Based RL

Protein fitness landscapes can exhibit multiple peaks in
which high-fitness proteins are located (Kauffman & Wein-
berger, 1989), and single mutations can drastically change
the fitness. Regularization methods that create a convex or
smoothed landscape (Castro et al., 2022; Kirjner et al., 2023)
may not represent the true fitness landscape. We formulate
the problem as a Markov decision process (MDP) where the
agent optimizes the sequence in a latent space through mul-
tiple timesteps of an episode traversing the fitness landscape.
See Figure 1 and Algorithm 2 for details on LatProtRL.

At the beginning of each episode, we sample an initial se-
quence x0 ∈ B from a frontier buffer (see Section 3.5). We
map the sequence x0 to a state s0 ← Eθ(x0) in the represen-
tation space (state space) Q. At each timestep t, the agent
observes a state st ∈ Q and selects an action at ∈ A accord-
ing to a policy π : Q → A, whereA is the action space. The
action at is defined as a perturbation in which a continuous
value atj ∈ [−δ, δ] is chosen for the j-th dimension, and δ is
a hyperparameter that is chosen based on the representation
distribution. Both st and at have R dimensions. The next
state is given as st+1 = st + at. The agent interacts with
the environment until: (i) the last timestep Tep of an episode
is reached; or (ii) d(xt+1,x0) > mtotal where mtotal is the
maximum number of mutations allowed per episode. The
distance function d is defined as the number of different
amino acids between two sequences.

Calibrating Steps. In our formulation, it is desired to
optimize through multiple steps, since it enables the value

Algorithm 2 LatProtRL algorithm
1: Initialize buffer B ← INITIALIZE(D)
2: for E rounds do
3: Set of trajectories T ← {}, Nep ← 0
4: while Nep < Noracle calls do
5: Sample initial sequence x0 ← TOP()
6: Encode initial state s0 ← Eθ(x0)
7: t← 0, done← false
8: while not done do
9: Choose action at at state st following π

10: Next state st+1 ← st + at
11: Reconstruct sequence xt+1←Rϕ(st+1,xt)
12: ▷ Constrained decoding
13: if d(xt+1,xt) > mstep then v← false
14: else v← true, Nep ← Nep + 1
15: ▷ Calibrating steps
16: if d(xt+1,x0) > mtotal or t+1 = Tep then
17: done←true
18: else done←false
19: T ← T ∪ {st, at, st+1,xt+1,v, done}
20: t← t+ 1

21: Set of trajectories T ′ ← {}
22: for {st, at, st+1,v,xt+1,done} ∈ T do
23: if not v then rt ← −1
24: else if done then
25: rt ← q(xt+1)
26: UPDATE(xt+1, rt)
27: else rt ← 0

28: T ′ ← T ′ ∪ {st, at, rt, st+1,done}
29: Update policy π using T ′

function to learn states in high-fitness regions. Additionally,
we want actions that avoid deviating very far from the initial
sequences, since these might lead to low-fitness regions
of the fitness landscape. As a way to calibrate the policy
actions, we give negative feedback for actions leading to
a high number of mutations per step. The variable v is set
to false if d(xt+1,xt) > mstep and stored in trajectory.
During the reward calculation step, if v is false the oracle
is not called and a negative reward is assigned to the policy.
The effect of calibrating steps is studied in Section 4.4.
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Algorithm 3 Frontier buffer operations.
Buffer B ← {}, Buffer size SB ← 128
Exploration probability ϵ← 1.0
Hyperparameters for ϵ updates T ← 0, Tu ← 50, γ ← 0.96
function INITIALIZE(D)

for (x, f(x)) ∈ random SB elements of D do
B ← B ∪ (x, f(x), 1)

function TOP()
T ← T + 1
if T is multiple of Tu then ϵ← max(0.05, γ · ϵ)
r ← random value ∈ [0, 1)
if r < ϵ then b← sample index from B where proba-

bility p(b) ∝ 1/
√
B[b][2]

else b ← sample index from B where probability
p(b) ∝ softmax(c · B[b][1]) ▷ c is a temperature
B[b][2]← B[b][2] + 1
return B[b][0]

function UPDATE(x, f(x))
if x /∈ B then

bmin ← index of element of minimum fitness in B
if f(x) > B[bmin][1] then ▷ Replace element
B[bmin]← (x, f(x), 1)

Reward Function. At each timestep of an episode, a 6-tuple
(st, at, st+1,xt+1,v,done) without reward rt is stored in
T . The reward is calculated only after all the trajectories are
collected using the current policy π. The reward is defined
as a sparse reward where we only evaluate the optimized
sequence at the last timestep using the oracle. The reward
function is shown in lines 24-27 of Algorithm 2. The trajec-
tories are updated using the computed rewards and used to
train the policy using Proximal Policy Optimization (PPO)
(Schulman et al., 2017). We finish each optimization round
when the number of episodes Nep reaches the number of
oracle calls set per round, Noracle calls. When using in vitro
oracles, Noracle calls is set based on the budget for wet lab
experiments.

3.5. Frontier Buffer

We propose a frontier buffer1 inspired by Go-Explore (Ecof-
fet et al., 2021), which has shown that storing and starting
from the states that led to high reward enhance the perfor-
mance of RL algorithms tackling environments in which
exploration is challenging. Algorithm 3 details the buffer op-
erations. The frontier buffer is a set of 3-tuple (x, f ,visit)
with fixed size SB, where f is the fitness of sequence x, and
visit is the number of episodes in which x was sampled
as the initial state. The buffer is initialized by sampling
SB sequences from D, with visit count set to 1. At the be-

1This concept is different from the replay buffer concept that
stores transitions in off-policy RL.

Dataset D∗ medium hard

AAV 0.466 0.376 0.326
GFP 0.738 0.232 0.092

Table 1. Median fitness of D∗ and the top 128 sequences of the
medium and hard tasks subsets.

ginning of an episode, the initial sequence x0 is sampled
from the buffer. We employ an ϵ-greedy formulation to bal-
ance exploitation and exploration. We replace the sequence
with the lowest fitness in the buffer with a new sequence if
it has higher fitness at the end of each round. The buffer
does not allow repeated sequences by design. We use the
sequences in the buffer after the final round to measure the
performance of our method.

4. Results
4.1. Experiment Setup

Datasets and Oracles Following Kirjner et al. (2023), we
evaluate our method in two proteins, GFP and AAV. The
length L is 237 for GFP and 28 for the functional segment
of AAV. The D∗ for GFP (Sarkisyan et al., 2016) contains
54,025 mutant sequences, with log-fluorescence intensity
associated with each sequence. The D∗ for AAV (Bryant
et al., 2021) contains 44,156 sequences associated with its
ability to package a DNA payload. The fitness values in
both datasets are min-max normalized. We use the medium
and hard level benchmarks proposed by Kirjner et al. (2023)
to sample D for optimization. The medium task sample
sequences with fitness ranging from the 20-40th percentile
while the hard task sample sequences with fitness ranging
from the 10-30th percentile of D∗. All methods including
the baselines start optimization from the top 128 sequences
of D of each task. See Table 1 for the statistics of D∗ and
D. For our experiments, we use the checkpoints of the
oracles and predictors in Kirjner et al. (2023). The number
of rounds E and the number of oracle calls Noracle calls are
limited in the active learning setting. We set E = 15 and
Noracle calls = 256. For the experiments in Section 4.3, a
predictor is used to calculate the reward function, and the
oracle is used only for evaluation. In this case, we assume
that the computational costs and inference time allow the
running of multiple optimization steps and predictor calls.

Baselines For the active learning setting, we compare
with representative multi-round optimization methods that
assume black-box oracle evaluations: Bayesian optimiza-
tion, implemented as in the FLEXS benchmark (Sinai et al.,
2020), and three evolutionary algorithms: AdaLead (Sinai
et al., 2020), PEX (Anand & Achim, 2022), and covariance
matrix adaptation evolution strategy (CMAES) using one-
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AAV medium task AAV hard task

Method Fitness ↑ Diversity dinit dhigh Fitness ↑ Diversity dinit dhigh

PEX 0.64 (0.0) 5.4 (0.5) 5.2 (0.4) 4.0 (0.0) 0.62 (0.0) 5.8 (0.7) 6.2 (1.0) 6.0 (0.0)
AdaLead 0.74 (0.0) 3.8 (0.4) 7.4 (1.0) 4.4 (1.0) 0.72 (0.0) 3.2 (0.4) 8.2 (1.2) 6.4 (1.0)
BO 0.59 (0.0) 8.8 (0.4) 10 (0.5) 9.6 (1.0) 0.61 (0.0) 8.6 (0.5) 11 (0.5) 8.6 (1.0)
CMAES 0.03 (0.0) 21 (0.5) 20 (0.9) 19 (0.7) 0.04 (0.0) 21 (0.5) 20 (0.5) 19 (1.0)
CMAES-VED 0.61 (0.0) 4.8 (0.4) 9.1 (0.2) 5.9 (0.9) 0.50 (0.0) 5.0 (0.0) 9.6 (0.5) 5.4 (1.3)
LatProtRL 0.71 (0.0) 5.4 (0.9) 6.1 (0.2) 2.4 (0.5) 0.66 (0.0) 6.0 (1.2) 7.0 (0.0) 2.0 (0.0)
– w/o buffer 0.49 (0.0) 11 (0.0) 4.0 (0.0) 6.8 (0.5) 0.42 (0.0) 13 (0.6) 4.3 (0.6) 8.3 (0.6)
– w/o calibrating steps 0.62 (0.0) 7.4 (0.9) 6.0 (0.0) 4.5 (0.6) 0.64 (0.0) 7.4 (0.9) 7.2 (0.4) 5.4 (0.6)
– PPO (Lat/Mut) 0.57 (0.0) 5.7 (1.1) 6.7 (1.1) 9.0 (1.0) 0.59 (0.0) 6.2 (1.3) 7.0 (1.0) 8.6 (0.9)
– PPO (Seq/Mut) 0.55 (0.0) 7.0 (0.8) 7.6 (1.0) 9.3 (0.5) 0.60 (0.0) 4.8 (0.8) 6.6 (0.5) 7.0 (0.7)

GFP medium task GFP hard task

Method Fitness ↑ Diversity dinit dhigh Fitness ↑ Diversity dinit dhigh

PEX 0.60 (0.1) 7.2 (1.0) 8.0 (2.2) 11 (2.0) 0.52 (0.1) 6.8 (0.7) 13 (2.3) 13 (3.0)
AdaLead 0.93 (0.0) 5.0 (0.6) 10 (1.9) 14 (2.0) 0.75 (0.1) 3.8 (1.3) 16 (1.5) 19 (1.0)
BO 0.25 (0.1) 31 (12) 41 (26) 46 (25) 0.33 (0.1) 38 (6.4) 58 (20) 66 (20)
CMAES -0.05 (0.0) 177 (4.2) 168 (5.7) 167 (5.6) -0.03 (0.0) 176 (0.9) 220 (4.2) 220 (4.2)
CMAES-VED 0.57 (0.1) 5.0 (1.0) 9.0 (0.0) 3.6 (0.5) 0.44 (0.1) 4.8 (0.4) 9.2 (0.8) 3.6 (0.9)
LatProtRL 0.93 (0.0) 4.6 (0.5) 6.0 (0.0) 1.0 (0.0) 0.85 (0.0) 4.8 (0.5) 7.0 (0.0) 2.0 (0.0)
– w/o buffer 0.64 (0.0) 8.8 (0.4) 3.0 (0.0) 3.0 (0.0) 0.49 (0.0) 8.8 (0.4) 3.0 (0.0) 3.0 (0.0)
– w/o calibrating steps 0.92 (0.0) 4.0 (0.0) 6.0 (0.0) 1.1 (0.2) 0.82 (0.0) 4.0 (0.0) 6.0 (0.0) 2.0 (0.0)
– PPO (Lat/Mut) 0.74 (0.0) 11 (5.7) 10 (1.8) 14 (1.2) 0.64 (0.0) 6.6 (0.9) 11 (1.5) 16 (1.4)
– PPO (Seq/Mut) 0.77 (0.0) 7.8 (2.0) 11 (1.9) 13 (1.6) 0.62 (0.0) 10 (3.2) 12 (2.5) 15 (6.4)

Table 2. AAV and GFP optimization results for LatProtRL and baseline methods. Shaded rows indicate the result of ablation studies in
Section 4.4. The standard deviation of 5 runs with different random seeds is indicated in parentheses.

hot encoding. We also compare with CMAES using our
VED for encoding, termed CMAES-VED. In Section 4.3,
we additionally compare with representative single-round
optimization methods that assume query to fitness predic-
tors: GFlowNets (GFN AL) (Jain et al., 2022) and Gibbs
sampling (GGS) (Kirjner et al., 2023).

Evaluation Metrics We use four evaluation metrics: fit-
ness, diversity, distance from the set of initial sequences
(dinit), and high fitness sequences (dhigh). While high fitness
and diversity are desired, distance metrics are not determin-
istic, and rather provide a higher-level view of the position
of optimized sequences on the fitness landscape. Let the op-
timized sequences G∗ = {g∗1 , · · · , g∗K}. Fitness is defined
as the median of the evaluated fitness of K = 128 generated
sequences. Diversity is defined as the median of the dis-
tances between every pair of sequences in G∗. The variables
dinit and dhigh are defined as the median of the minimum
distance from each sequence in G∗ to D and to the top 10%
fitness sequences of D∗, respectively.

Implementation details The latent representation space
R = 32 for GFP and R = 16 for AAV. For the policy, the

perturbation magnitude δ of action vector is set to 0.3 for
GFP and to 0.1 for AAV. The episode length Tep is set to 6
for GFP and to 4 for AAV. The value for mstep is set to 3
and for mtotal is set to 15. The exploration buffer size SB is
set to 128. The constrained decoding term mdecode is set to
18 for GFP and 8 for AAV, considering their length L.

4.2. Fitness Optimization

We report the mean and standard deviation of the evalua-
tion metrics of 5 runs with different random seeds in Ta-
ble 2. LatProtRL outperforms or shows comparable results
with baseline methods. The 90th percentile normalized fit-
ness is 0.64 for AAV and 0.86 for GFP in the experimental
datasets, suggesting that our method successfully optimizes
all tasks. For AAV optimization, AdaLead shows the highest
fitness, whereas LatProtRL shows the higher diversity when
compared to the evolutionary algorithm baselines. LatPro-
tRL achieves the highest fitness while achieving compara-
ble diversity for GFP medium and hard tasks. In contrast,
CMAES fails to optimize both sequences with one-hot en-
coding, but achieves comparable results to PEX using our
VED representation.
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Figure 3. Evaluation metric by optimization round for LatProtRL, AdaLead and PEX. Shaded regions indicate the standard deviation
of 5 runs. The x-axis indicates the number of rounds.

LatProtRL is more successful in GFP when compared to
AAV, and when initial sequences D exhibit lower fitness.
We demonstrate that the reason for this is related to the
difference in the characteristics of both dataset landscapes.
The GFP dataset (Sarkisyan et al., 2016) is collected by
random mutagenesis, in which initial sequences exhibit very
low (< 0.1) fitness and are far from the region with high-
fitness sequences (See Figure 4). On the other hand, the
AAV dataset (Bryant et al., 2021) uses an additive fitness
predictor to sample sequences with predicted high fitness
for experiments. For AAV, 62.5% of random mutants with
more than 6 mutations have high fitness. The results for
GFP indicates that LatProtRL can be particularly useful for
rugged fitness landscapes given its MDP formulation.

Evaluation by Optimization Round Figure 3 shows the
evaluation results after each round of optimization. The pol-
icy effectively improves the performance of the generated
sequences over rounds. Also, the proposed method allevi-
ates the decrease in diversity of the optimized sequence over
rounds when compared to AdaLead.

Analysis of Distance Metrics As shown in Figure 3, Lat-
ProtRL decreases the distance between optimized sequences
and the top 10% sequences of D∗, reaching a median dis-
tance of 1.0 and 2.0 for GFP medium and hard, respectively.
Remarkably, these highly-fit sequences were never used in
the VED’s training or optimization process. This strength is
unique to LatProtRL and is not observed in other baselines.
Given that the GFP landscape is highly centralized around
the wild-type, and that only 0.4% of GFP mutants with over
10 mutations from the wild-type show fitness above 0.5,

AAV medium AAV hard

Method Fitness Div. dinit Fitness Div. dinit

GFN-AL 0.18 (0.1) 9.6 19 0.10 (0.1) 9.5 19
CbAS 0.47 (0.1) 8.8 5.3 0.40 (0.0) 12 7.0
AdaLead 0.43 (0.0) 3.8 2.0 0.44 (0.0) 2.9 2.0
GGS 0.51 (0.0) 4.0 5.4 0.60 (0.0) 4.5 7.0
LatProtRL 0.57 (0.0) 3.0 5.0 0.57 (0.0) 3.0 7.0

GFP medium GFP hard

Method Fitness Div. dinit Fitness Div. dinit

GFN-AL 0.15 (0.1) 16 213 0.16 (0.2) 22 215
CbAS 0.66 (0.1) 3.8 5.0 0.57 (0.0) 4.2 6.3
AdaLead 0.59 (0.0) 5.5 2.0 0.39 (0.0) 3.5 2.0
GGS 0.76 (0.0) 3.7 5.0 0.74 (0.0) 3.6 8.0
LatProtRL 0.81 (0.0) 3.0 5.0 0.75 (0.0) 3.0 7.0

Table 3. Single-round optimization results using predictor
trained on D. We report standard deviation for the fitness val-
ues over 5 runs with different seeds in parentheses.

with the highest observed fitness being 0.79, a high dhigh
might suggest false positives. Thus, LatProtRL reaching
low dhigh indicates the ability to generate sequences at the
high-fitness regions of the experimental data even starting
from low-fitness regions far from the wild-type sequence.

4.3. Optimization Using a Fitness Predictor

We also investigate a scenario in which the optimization is
guided by a “known” fitness predictor, assuming it can be
trained accurately using D. This predictor approximates

7



Robust Optimization in Protein Fitness Landscapes Using RL in Latent Space

Normalized  
Fitness

Start from  
low-fitness region

Close to D*

Far from D*

Figure 4. Optimization trajectories of LatProtRL and AdaLead in GFP hard task. The “original” term indicates the experimental
rugged fitness landscape, exhibiting several local peaks. The x- and y-axis are obtained by multidimensional scaling (MDS) (Kruskal,
1964) of pairwise distances of 2500 sequences sampled from D∗ with 16 optimized sequences from LatProtRL and AdaLead at each
round. We chose the median of 16 sequences but observed a similar tendency for the top 16 sequences. AdaLead generates improved
sequences at each round but farther from the experimental data distribution and with fitness values lower when compared to high-fitness
sequences (See ▷ markers at Round 15). LatProtRL generates sequences closer to high-fitness sequences in the data distribution (See ♢
markers at Round 15) while also escaping local optima.

the oracle and substitutes it for the reward calculation as
presented in Figure 1. The oracle is used just for the final
evaluation. The optimization results are shown in Table 3.
LatProtRL achieves the highest performance for the AAV
medium and GFP, while being the second best for the AAV
hard task. When compared to AdaLead, GGS and LatPro-
tRL incorporate exploration methodologies in the optimiza-
tion framework that leads to generating sequences farther
from the initial sequences, i.e. higher dinit. Notably, com-
pared to GGS, our method does not require a differentiable
predictor for sampling optimized sequences. Compared to
the performance of methods using the oracle in Table 2, us-
ing the predictor as a surrogate model leads to lower fitness
values for the generated sequences.

In Appendix C, we provide another practical setup for Lat-
ProtRL. We use the model in a double-loop optimization
setting, with an in silico predictor serving as a reward func-
tion between rounds of black-box evaluation. Such a setting
can be used when the number of rounds is limited.

4.4. Essential Components in RL Modeling

We now examine the effect of different model components.
First, Table 2 shows the effects of training PPO with
different state and action modeling. We compare two
possible state modeling options: the representation obtained
by the VED (Lat) and the one-hot encoded input sequence
(Seq). For the action modeling we compare a perturbation
in the representation (Lat) and mutation at a position in the
sequence (Mut). The latent space modeling of LatProtRL
leads to higher performance compared to the other modeling
options. Second, we show the effects of the frontier buffer
in Table 2. Without the buffer, the performance drops

mstep = 3 No calibrating steps

Figure 5. Effect of the calibrating steps to fitness and episode
length. Calibrating steps allow the policy to learn actions leading to
less than mstep mutations and increasing the length of the episodes
during training.

significantly and the RL policy needs longer episodes and
leads to unstable training under a multi-round optimization
setting. Third, we show the effects of the calibrating steps
in Figure 5. The policy learns to take actions within the
maximum number of steps msteps allowed per timestep.
Additionally, using the calibration steps leads to longer
episode lengths over time for GFP, ultimately leading to
a performance increase.

4.5. Impact of MDP Formulation

We discuss the impact of the MDP formulation in sampling
and optimization by comparing to other top-performing
methods. In Sinai et al. (2020); Kirjner et al. (2023) the
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Candidate in silico oracle score dhigh dinit pLDDT Fluorescence intensity (×107)

Wild-type 0.9396 0 6 95.80 3.15 ± 0.07
adalead 1 1.0360 7 12 95.80 4.16 ± 0.07
adalead 12 1.0028 11 16 95.23 2.72 ± 0.44
latprotrl 12 1.0170 1 7 96.02 5.00 ± 0.16
latprotrl 16 1.0156 3 8 96.03 5.01 ± 0.12

Table 4. Statistics of the candidates. The variable dhigh denotes the minimum distance to the top 10% functional sequences of D∗. The
variable dinit denotes the median distance to the initial dataset D provided to the policy. The fluorescence intensity shows mean and
standard deviation from n = 3 independent experiments.

mutation rate is constrained to 1/L per timestep, while in
our current formulation, the number of mutations is con-
strained by the mdecode, set to 12 and 8, for GFP and AAV,
respectively. Additionally, Sinai et al. (2020) apply greedy
search and Kirjner et al. (2023) apply Gibbs sampling at
each timestep, while we use a frontier buffer and an RL
formulation maximizing a sparse reward that is only given
by evaluating the sequence proposed at the last timestep.
In this way, we proactively avoid local optima in the opti-
mization framework. We illustrate this ability in Figure 4
and Appendix F with the trajectories obtained by LatProtRL
and AdaLead. LatProtRL can avoid local optima and gen-
erate designs closer to the experimental data. In contrast,
AdaLead’s designs are located far from the experimental
data.

4.6. In Vitro Validation

We conducted an in vitro assessment to further support the
strength of LatProtRL proposing variants close to the ex-
perimental distribution. We analyzed the 256 candidates
generated after the end of round E=15 by LatProtRL and
by AdaLead for the GFP medium task. We selected top 30
sequences ranked by the in silico oracle. We predicted the
structures using AlphaFold2 (AF2) (Jumper et al., 2021) for
the top 30 sequences of LatProtRL, the top 30 sequences
of AdaLead, and the wild-type sequence. We select the
top 2 sequences for each model by pLDDT values. All
four selected sequences and wild-type were expressed and
purified successfully. The details on the purification and
fluorescence measurement of the variants are presented in
Appendix A.1. The statistics of candidates including cal-
culated fluorescence intensities are shown in Table 4 and
Figure 6.

LatProtRL designs achieve the highest fluorescence inten-
sity, with both designs achieving intensity higher than the
wild-type sequence. For AdaLead, only one design achieved
an intensity higher than the wild-type, even though both
candidates are predicted to have higher fitness in silico.
Analysis of the mutations proposed by each method when
compared to the wild-type sequence are detailed in Ap-
pendix A.2.

Figure 6. The GFP fluorescence intensity (Excitation: 485nm
and emission: 535nm) of each variant (20µM, 0.1ml). The
data from independent experiments (n = 3) were analyzed
and expressed as mean±SD (0.01<*P<0.1, 0.001<**P<0.01,
0.0001<***P<0.001, ****P<0.0001 vs. control). P values by
one-way ANOVA test followed by Dunnett’s multiple comparisons
test. ns, not significant.

5. Conclusion
This paper addressed protein fitness optimization in an ac-
tive learning setting, starting with low-fitness sequences.
We modeled the problem as an MDP to maximize future re-
wards, which allows an efficient exploration of the landscape
and escape from the local optima. Our framework, named
LatProtRL, uses an RL policy to traverse a latent space
learned by a proposed variant encoder-decoder. LatProtRL
is competitive or outperformed other baseline methods for
two fitness optimization benchmarks, GFP and AAV. Our
results show that sequences generated by LatProtRL reach
high-fitness regions of the experimental data, demonstrat-
ing its potential to be extended to lab-in-the-loop scenarios.
We anticipate our research to impact real-world protein de-
sign tasks involving in vitro experiments, such as enhancing
antibody affinity or protein stability. Future research di-
rections include combining LatProtRL with the feedback
provided by AlphaFold2 and extending the proposed VED
to accommodate the insertion and deletion of amino acids.
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A. In Vitro Evaluation
A.1. Protein purification and fluorescence measurement of GFP variants

The full-length of GFP variants followed by a 6X-His tag and a stop codon were cloned into the NdeI and XhoI sites of the
pET29b vector (69872, Novagen) and transformed in E. coli BL21 (DE3) (CP111, Enzynomics). Cells were grown at 37°C
in LB broth with 0.05mg/mL kanamycin to an OD600 of 0.6. Protein expression was induced by 0.4mM IPTG (isopropyl
beta-d-1-thiogalactopyranoside) and incubated for 3h at 37°C. The proteins were purified from cell lysate through affinity
chromatography using Ni-NTA agarose affinity column (30210, QIAGEN). The finally purified protein exists in a solution
state in DPBS (pH7.5) buffer. The green fluorescence intensity (excitation: 485nm and emission: 535nm) of each variant
(20µM, 0.1mL) were measured using SpectraMax® iD5 (using SoftMax Pro 7.1.2 software).

A.2. Sequence alignment

Figure 7. Sequence alignment for the GFP wild-type, the low-functional reference, and the top 2 designs by LatProtRL and AdaLead. For
all designs, the residues in the chromophore region are kept. The label of sequence includes name, number of mutations from wild-type,
number for mutations from medium task reference sequence, and AF2 pLDDT score delimited by vertical line.
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B. Hyperparameter Search and Guidelines
In this section, we discuss the hyperparameters of LatProtRL and provide some guidelines for the tuning and choice for
different protein families. Here, we discuss the following hyperparameters: R, δ, mstep, Tep, mtotal, and mdecode. First, we
explain two important parameters in depth: R (dimension of latent space) and δ (maximum magnitude of the perturbation).

We chose the value of R that leads to higher decoder accuracy. In our hyperparameter search we set R = 8, 16, 32, 64.
Policy training was conducted with R = 16 or R = 32 and showed no significant differences between the two. Therefore,
we speculate that VED performance could be the sole factor in hyperparameter searches in resource-constrained settings.

We use a tanh activation function as the last layer of the encoder, which inherently limits the range of δ. We show ablation
studies on δ in Table 5 for AAV and Table 6 for GFP. The performance is robust to the value of δ and the best performance
is obtained when δ = 0.05 for AAV and δ = 0.2 for GFP. We observed that as δ increases, fitness tends to decrease while
diversity increases, indicating a tradeoff. Therefore, the choice of δ should be based on the specific priorities of the task.

δ Fitness ↑ Diversity dinit dhigh

0.05 0.67 (0.1) 5.4 (0.5) 7.0 (0.0) 4.0 (0.0)
0.1 0.66 (0.0) 6.0 (1.2) 7.0 (0.0) 2.0 (0.0)
0.2 0.63 (0.0) 8.2 (2.6) 8.4 (0.5) 7.0 (0.7)

Table 5. Ablation studies on δ in AAV hard task.

δ Fitness ↑ Diversity dinit dhigh

0.2 0.88 (0.0) 4.2 (0.4) 7.0 (0.0) 3.0 (0.0)
0.3 0.85 (0.0) 4.8 (0.5) 7.0 (0.0) 2.0 (0.0)
0.5 0.83 (0.0) 5.0 (0.7) 7.0 (0.0) 3.2 (0.4)

Table 6. Ablation studies on δ in GFP hard task.

The parameter mstep is set to regularize the policy to not take steps that lead to a high number of mutations from the sequence
of the current state. The recommended value is 3. The parameter mdecode is set based on the VED accuracy and the sequence
length L for the target protein family. This value also affects the maximum number of mutations allowed at each timestep.
The parameter mtotal is set based on the protein design specifications for desired optimization sequences. The parameter Tep
defines the length of the episode. The recommended range of Tep is [3, 8] given that we are using a sparse reward modeling
in which the reward is given just at the end of the episode. For settings using an in silico predictor in which reward can be
calculated at every timestep and a dense reward modeling, this value can be increased allowing the policy to take more steps
through the fitness landscape at each episode.

C. Double-loop Optimization
We show that LatProtRL achieves high performance using a black-box oracle in Table 2 and an in silico predictor in
Section 4.3. For a setting in which the number of rounds is very limited, e.g. 5 rounds, our method adds an option of using
an in silico predictor to update the policy in between rounds of black-box evaluation. We investigate a double-loop setting
(Algorithm 4) where we (i) train the RL policy using the predictor evaluation as a reward in an inner loop, (ii) train the
predictor based on oracle evaluation of variants proposed in the final round of the inner loop. We test the double-loop
methodology with a limited number of rounds E = 5 and setting Noracle calls to 256. As shown in Table 7, the double-loop
method is effective and outperforms both using only the oracle and only the predictor for 5 rounds.

Algorithm 4 Double-loop optimization
1: function INNER-LOOP(q, Einner)
2: Run Alg. 2 for Einner rounds with q (see line 25 of Alg. 2)
3: return trajectories T ′ (see line 29 of Alg. 2)
4: Predictor gϕ, oracle g
5: for 5 rounds do
6: Toracle ← INNER-LOOP(g, 1)
7: Train gϕ with Toracle
8: INNER-LOOP(gϕ, 2)
9: INNER-LOOP(gϕ, 10)
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AAV medium task AAV hard task

Method Fitness ↑ Diversity dinit Fitness ↑ Diversity dinit

Ours
Double-loop E = 5 0.70 (0.0) 4.4 (0.5) 5.6 0.65 (0.0) 6.3 (1.2) 7.3
Oracle E = 5 0.60 (0.0) 8.0 (0.7) 7.4 0.54 (0.0) 11 (1.1) 9.0
Predictor-only 0.57 (0.0) 3.0 (0.0) 5.0 0.57 (0.0) 3.0 (0.0) 7.0

AdaLead Oracle E = 5 0.66 (0.2) 3.2 (0.4) 9.2 0.63 (0.0) 3.0 (0.0) 10
Predictor-only 0.43 (0.0) 3.8 (0.4) 2.0 0.44 (0.0) 2.9 (0.9) 2.0

GFP medium task GFP hard task

Method Fitness ↑ Diversity dinit Fitness ↑ Diversity dinit

Ours
Double-loop E = 5 0.91 (0.0) 4.2 (0.4) 5.8 0.81 (0.0) 4.8 (0.8) 7.2
Oracle E = 5 0.90 (0.0) 4.8 (0.8) 7.2 0.77 (0.1) 6.2 (1.3) 8.4
Predictor-only 0.81 (0.0) 3.0 (0.0) 5.0 0.75 (0.0) 3.0 (0.0) 7.0

AdaLead Oracle E = 5 0.80 (0.0) 3.6 (1.1) 15 0.50 (0.0) 3.2 (1.3) 17
Predictor-only 0.59 (0.0) 5.5 (0.6) 2.0 0.39 (0.0) 3.5 (0.6) 2.0

Table 7. Single vs. double-loop optimization results. The standard deviation of 5 runs with different seed is indicated in parentheses.

D. Variant Encoder-Decoder
We provide more information regarding the VED architecture and training. We used the pre-trained ESM-2 (Lin et al., 2022)
model with 650M parameters for both the encoder and decoder. The ESM-2 650M model consists of a token embedding
layer and 33 transformer layers. Each transformer layer consists of multi-head attention followed by a layer normalization
layer and two fully connected layers with GeLU (Hendrycks & Gimpel, 2016) non-linear activation. The language model
head comprises a linear layer followed by GeLU activation, and the linear layer uses the weight of the embedding layer in
the encoder. The number of focus heads is set to 20. Since we provide a reference representation during sequence recovery
and mutants in the GFP dataset have a maximum of 15 mutations, we add a constrained decoding objective during inference
time to restrict the number of mutations in the input sequence. We train a separate VED for each of the four tasks evaluated
in this work. We held 5% of the data as a test dataset before augmentation. The training dataset is augmented by 4 times
using random mutations, where the expected number of mutations is set to 3. The model is trained on the training set of
each dataset for 32 epochs using the Adam optimizer (Kingma & Ba, 2014) for GFP and 64 epochs for AAV. The initial
learning rate of Adam is set to 1e-3, with weight decay set to 1e-5. Table 8 shows the performance of a sequence decoder.

Dataset Top-1 Accuracy
Mutated positions Non-mutated positions

GFP medium 0.40 0.95
GFP hard 0.43 0.94
AAV medium 0.62 0.83
AAV hard 0.57 0.78

Table 8. Decoding accuracy of VED on test datasets. Mutated positions are with respect to the reference sequence.

As shown in Table 8, the decoder architecture is still an open question, and improvement in the decoding accuracy is desired.
With the use of the proposed constrained decoding strategy, the decoding step can be thought of as mutations proposed by
the policy with a rather inherent degree of exploration.

E. Oracle and Training Details
Oracle The oracle proposed in Kirjner et al. (2023) is based on a convolutional neural network (CNN) architecture. This
architecture uses 1-dimensional convolutional layers with 256 channels taking as input a one-hot encoding of the protein
sequence. This layer is followed by a max-pooling and a dense layer to output a single value representing the predicted
fitness. The oracle prediction shows a Spearman correlation of 0.89 for GFP dataset. This oracle is used for evaluation in all
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benchmarks. For the experiments using the fitness predictor, we use the implementation and results of Kirjner et al. (2023).

Policy The RL policy is trained using PPO (Schulman et al., 2017), an on-policy RL algorithm. For the experiments, we
use the implementation provided by Stable Baselines (Hill et al., 2018). The default hyperparameters of the PPO class are
used to train the RL policies. In our formulation, the action space is continuous.

Optimization using a fitness predictor We ran a total of 15,000 timesteps for GFP hard and 20,000 timesteps for the
other three tasks and reported the result of the last evaluation round. Other hyperparameters regarding policy training are
similar to the experiments using the oracle except for the fact that the reward is calculated for every timestep when using the
predictor.

F. Policy avoiding Local Optima
In Figure 8, we show selected trajectories from the RL policy during optimization for the GFP hard task. To propose
sequences that achieve higher fitness when compared to the initial sequence, in specific cases the policy takes actions
that lead to sequences with lower predicted fitness during an episode. For example, in round 5, 37 out of 256 trajectories
increased fitness, with 12 out of those 37 trajectories having decreasing steps. We show 5 sample trajectories with decreasing
steps in Figure 8. In round 10, 28 out of 256 trajectories increased fitness, with 7 out of those 28 trajectories having steps
decreasing fitness values. We show 3 sample trajectories with decreasing steps in Figure 8. In the final round, since the
fitness is already high and the set of starting sequences is close to the experimental distribution of high-functional variants,
only one trajectory had decreasing steps. This trajectory is shown in yellow in Figure 8. We show two additional trajectories
(red and blue) that increase fitness at round 15 without decreasing steps showing the policy optimization behavior.

Figure 8. Sample trajectories from the RL policy during GFP hard optimization for rounds 5, 10, and 15.
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https://stable-baselines.readthedocs.io/en/master/

