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Abstract

Tandem mass spectrometry has played a pivotal role in advancing proteomics,
enabling the high-throughput analysis of protein composition in biological tissues.
Despite the development of several deep learning methods for predicting amino
acid sequences (peptides) responsible for generating the observed mass spectra,
training data biases hinder further advancements of de novo peptide sequencing.
Firstly, prior methods struggle to identify amino acids with Post-Translational
Modifications (PTMs) due to their lower frequency in training data compared
to canonical amino acids, further resulting in unsatisfactory peptide sequencing
performance. Secondly, various noise and missing peaks in mass spectra reduce
the reliability of training data (Peptide-Spectrum Matches, PSMs). To address
these challenges, we propose AdaNovo, a novel and domain knowledge-inspired
framework that calculates Conditional Mutual Information (CMI) between the
mass spectra and amino acids or peptides, using CMI for robust training against
above biases. Extensive experiments indicate that AdaNovo outperforms previous
competitors on the widely-used 9-species benchmark, meanwhile yielding 3.6% -
9.4% improvements in PTMs identification. The code for reproducing the results
is available at: https://github.com/Westlake-OmicsAI/adanovo_v1.

1 Introduction

Proteomics research focuses on large-scale studies to characterize the proteome, the entire set of
proteins in a living organism. Tandem mass spectrometry serves as the only high-throughput method
to analyze the protein composition in complex biological samples, playing an essential role in drug
target discovery [12], PTMs discovery [16] and precision medicine [28]. Peptide sequencing, i.e.,
predicting the peptide sequence for each observed mass spectrum, is at core of proteomics [1].

Currently, two mainstream methods are employed in peptide sequencing: database search and de
novo peptide sequencing. The database search approaches [18] compare the observed spectrum
against the spectra in a pre-constructed PSMs database and pick the peptide sequence of the most
similar spectrum as the identification result. Obviously, database search cannot sequence the peptides
out of the database. In contrast, de novo peptide sequencing deduces peptide sequence without
prior knowledge of the database and thus it is essential in applications where the database is not
available, such as antibody sequencing[26], human leukocyte antigen neoantigen sequencing[25],
and identification of new proteins and peptides which are missing from the database[30].
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Figure 1: (a): An example of PTMs (oxidation of methionine). (b): Comparisons of previous de novo
sequencing methods in terms of amino acid-level precision. ‘G’ and ‘A’ denote Glycine and Alanine,
respectively. Both of them are canonical amino acids. ‘M(+15.99)’ and ‘Q(+.98)’ represent oxidation
of methionine and deamidation of glutamin, both of which are modified amino acids (the amino acids
with PTMs). The results are reported using the human dataset in 9-species benchmark as test set.

Since the early 1990s, de novo sequencing methods based on the graph theory [2, 8], Hidden Markov
Model [6], or dynamic programming [3, 15, 7] were developed to score peptide sequences against
observed spectra. With the prosperity of deep learning, some researchers train the deep neural
networks with mass spectrum as the input and peptide sequence as the label [27, 19, 35]. Although
these methods have achieved notable progress, as shown in Figure 1, we observe that they struggle
to identify the amino acids with PTMs (such as the oxidation of methionine shown in Figure 1(a)),
further leading to low peptide sequencing performance. On the other hand, the identification of
amino acids with PTMs holds significant biological importance because PTMs plays a pivotal role
in elucidating protein function and studying disease mechanisms [4]. Additionally, some expected
peaks in mass spectra may be missing due to instrument malfunction or multiple cleavage events
occurring on the peptides, and some additional peaks may undesirably appear in the spectrum, created
by instrument noise or non-peptide molecules in the biological samples[17]. All of these make the
spectra and peptides labels for training being poorly matched.

To address above issues, we propose a novel framework, AdaNovo, to calculate the conditional
mutual information (CMI) between the spectrum and each amino acid in its peptide label. This is
inspired by the domain knowledge that the mass shifts of PTMs over canonical amino acids are only
manifested in the mass spectrum. The CMI can measure the importance of different target amino
acids by their dependence on the source spectrum. Based on the amino acid-level CMI, we can obtain
the Mutual Information (MI) between the spectrum and the entire peptide to measure the matching
level of each spectrum-peptide pair in the training PSM data. Subsequently, we design a robust
training approach based on both the amino acid- and PSM-level CMI or MI, which re-weights the
training losses of the corresponding amino acids adaptively.

The extensive experiments on the 9-species benchmark [27] indicate that AdaNovo generally out-
performs state-of-the-art de novo peptide sequencing methods in amino acid-level or peptide-level
precision and demonstrates significantly higher precision in identifying the amino acids with PTMs.

2 Background and Related Work

As shown in Figure 2, in a standard protein identification workflow of shotgun proteomics [32],
proteins undergo initial digestion by enzymes, yielding a mixture of peptides. The peptides are then
separated using liquid chromatography. Each charged peptide is analysed by mass spectrometer,
which produces the first scan (MS1) spectra, displaying the mass-to-charge (m/z) ratio of the intact
peptide. And then, each peptide will be fragmented in the mass spectrometer, and each generated
second scan (MS2) spectrum comprises a collection of peaks. Each peak is tuple constitutes m/z value
and an associated intensity value. The core of the above pipeline is the peptide sequencing, where
we aim to predict the peptide sequence using the observed MS2 spectrum and the corresponding
precursor information (mass and charge of the intact peptide). Finally, we can infer the entire protein
sequence using assembly methods [14]. There exist two lines of works for peptide sequencing.
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Figure 2: The identification workflow of shotgun proteomics [32]. The peptide sequencing task is
to predict the peptide sequence (e.g., ATASPPRQK) for the observed MS2 spectrum, where peaks
in blue are signal peaks (real ions) and grey peaks denote noisy ones. The spectrum annotation are
obtained with ProteomeXchange [31].

The first line is database search, where we compare the observed mass spectra against the theoretical
fragmentation mass spectra of peptide sequences in the database and pick the peptide sequence with
the highest matching score as the result. Typical methods and tools include SEQUEST [5], pFind [11],
MSFragger [10] and Open-pFind [23]. However, these methods cannot sequence the peptides out of
the database.

The second line of works is de novo peptide sequencing, where we predict the peptide sequences
for observed spectra without relying on pre-constructed databases. Initially, researchers cast the de
novo peptide sequencing task as finding the largest path in the spectrum graph [3, 24] or compute the
best sequences whose fragment ions can best interpret the peaks in the observed MS2 spectrum using
Hidden Markov Model [6] or dynamic programming algorithm [15].

With the prosperity of deep learning, DeepNovo [27] is the first method applying deep neural networks
to the task of de novo peptide sequencing. It regards the task as the image caption [22] in computer
vision and incorporates the encoder-decoder architecture to predict the peptide sequence. To annotate
the high-resolution mass spectrometry data, PointNovo [19] adopts an order invariant network
structure for peptide sequencing. More recently, Casanovo [35] first employs a transformer encoder-
decoder architecture [29] to predict the peptide sequence for the observed spectra. SearchNovo [34]
integrates the strengths of database search and de novo sequencing to enhance peptide sequencing.

Although de novo peptide sequencing methods have achieved notable progress, we observe that they
have difficulty in identifying the amino acids with PTMs because these amino acids occur much
less frequently in datasets compared to other canonical ones. Additionally, mass spectrometry data
contains a significant amount of noise. All of these make the peptides labels being less reliable. The
AdaNovo model proposed in this paper effectively alleviates both of them.

3 Methods

3.1 Task Formulation

Formally, we denote mass spectrum peaks in a MS2 spectrum as x = {(mi, ti)}Mi=1, where each peak
(mi, ti) forms a 2-tuple representing the m/z and intensity value, and M is the number of peaks that
can be varied across different mass spectra. Also, we denote the precursor as z = {(mprec, cprec)},
consisting of the total mass mprec ∈ R and charge state cprec ∈ {1, 2, . . . , 10} of the spectrum.
Additionally, we represent the peptide sequence as y = {(y1, y2, . . . , yN )}, where yi is the type of
the i-th amino acid, N is the peptide length and can be varied across different peptides. y<j means
the previous amino acids sequence appearing before the index j in the peptide y. The de novo peptide
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Figure 3: Schematic diagram of AdaNovo framework.

sequencing models are designed to predict the probability of each amino acid yi given x, z and y<j :

P (y | x, z; θ) =
N∏
j=1

p (yj | y<j ,x, z; θ) , (1)

where j is the index of each amino acid position in the peptide sequence and θ is the model parameter.
In general, previous models [27, 35, 19] are optimized using the cross-entropy (CE) loss:

LCE(θ) = −
N∑
j=1

log p (yj | y<j ,x, z; θ) . (2)

During inference, these models typically predict the probabilities of target amino acids in an autore-
gressive manner and generate hypotheses using heuristic search algorithms like beam search [21].

3.2 Model Architectures

As shown in Figure 3, AdaNovo consists of a mass spectrum encoder (MS Encoder) and two
peptide decoders (Peptide Decoder #1 and Peptide Decoder #2). All of these models are built on
Transformer [29]. In order to feed the mass spectrum peaks to MS Encoder, following Casanovo[35],
we regard each mass spectrum peak (mi, ti) as a ‘word’ in natural language processing and obtain
the peak embedding by individually encoding its m/z value (mi) and intensity value (ti) before
combining them through summation. We employ the similar embedding approach for the precursor
z = {(mprec, cprec)}. As the embedding method is not our original contribution, we introduce
the details in Appendix A. As for the peptide sequence, the amino acid vocabulary encompasses
the 20 canonical amino acids, 3 PTMs (oxidation of methionine, deamidation of asparagine or
glutamine) and a special [stop] token indicates the end of decoding. Peptide Decoder #1 and
Peptide Decoder #2 undergo autoregressive training, wherein they receive the previous sequence
y<j prior to amino acid yj during the prediction process. However, different from Peptide Decoder
#1, Peptide Decoder #2 exclusively employs previous sequence y<j as input because we want
to calculate the conditional probability p(yj | y<j), which is the prerequisite for calculating the
conditional mutual information between the mass spectrum (x and z) and amino acids.

3.3 Training Strategies

The training strategies consist of amino acid-level (§ 3.3.1) and PSM-level training methods (§ 3.3.2).

3.3.1 Amino Acid-level Training Objective

As mentioned above, previous de novo peptide sequencing models struggle to identify amino acids
with PTMs because they occur much less frequently in datasets compared to other canonical amino
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acids. Therefore, we expect to emphasize the amino acids with PTMs to improve the models’
ability in identifying them during inference. This resembles the up-sampling methods in long-tailed
classification where researchers emphasize samples from the tail class during training [36, 20]. We
explain the reasons why these methods are unsuitable to de novo peptide sequencing and compare
AdaNovo with them in Section 4.6. On the other hand, when predicting the amino acid with PTMs yj ,
we should rely more on mass spectrometry data (peaks x and precursor z) and less on the historical
predictions of previous amino acids sequence y<j because the mass shifts resulting from PTMs are
only manifested in the mass spectrometry data. This unique attribute of PSMs data motivates us to
measure the mutual information (MI) between each target amino acid (yj) and the mass spectrum
conditioned on previous amino acids, i.e., conditional mutual information (CMI) [33] between target
amino acid and mass spectrum. Given that x, yj , z,y<j are drawn from the underlying random
variable X,Yj , Z, Y<j , respectively, we can calculate the conditional mutual information (CMI) as,

I (X,Z;Yj | Y<j) = E(X,Yj ,Z)

{
log

(
p (yj ,x, z | y<j)

p (yj | y<j) · p (x, z | y<j)

)}
= E(X,Yj ,Z)

{
log

(
p (yj | x, z,y<j) · p (x, z | y<j)

p (yj | y<j) · p (x, z | y<j)

)}
= E(X,Yj ,Z)

{
log

(
p (yj | x, z,y<j)

p (yj | y<j)

)}
.

(3)

In this way, the CMI can be obtained with p (yj | x, z,y<j) and p (yj | y<j), which are the output
of the Peptide Decoder #1 and Peptide Decoder #2, respectively. Each data point (x, z, yj) is
independently sampled from the joint distribution uniformly. Therefore, we can measure the depen-
dence between mass spectrometry (x, z) and yj conditioned on y<j using Ij = log

(
p(yj |x,z,y<j)
p(yj |y<j)

)
.

Moreover, to reduce the variances and stabilize the distribution of the amino acid-level CMI in each
peptide, we normalize the CMI values in the peptide using Z-score normalization and then scale the
normalized values to obtain the amino acid-level training weight waa

j for yj ,

waa
j = max(s1 ·

Ij − µaa + σaa

σaa
, 0), (4)

where µaa and σaa are the mean values and the standard deviations of all the CMI values in each
peptide, and s1 is a hyperparameter that controls the effect of amino acid-level adaptive training.

3.3.2 PSM-level Training Objective

As we introduced before, the training PSMs samples are of different matching levels because of
the unexpected signal noise and missing peaks. To alleviate the negative effect of poorly matched
mass spectrometry and peptide pairs and encourage the well-matched ones, we adopt the mutual
information between them as a measure of matching levels. Formally,

I(X,Z;Y ) = E(X,Y,Z)

{
log

(
p(y | x, z)

p(y)

)}
= E(X,Y,Z)

{
log

(∏N
j=1 p (yj | x, z,y<j)∏N

j=1 p (yj | y<j)

)}

= E(X,Y,Z)


N∑
j=1

log

(
p (yj | x, z,y<j)

p (yj | y<j)

) = E(X,Y,Z)


N∑
j=1

Ij

 .

(5)

In other words, the mutual information can be derived by summarizing all the amino acid-level CMI
over the peptide. Similarly, we can measure the matching level between mass spectrometrometry
(x, z) and the peptide (y) using MI =

∑N
j=1 Ij . And then, we normalize all the MI values across all

the PSMs in each mini-batch and scale the normalized values to obtain the PSM-level training weight
wpsm.

wpsm = max(s2 ·
MI−µpsm + σpsm

σpsm
, 0), (6)

where µpsm and σpsm are the mean values and the standard deviations of the MI values of all the
PSMs in each minibatch, and s2 is a hyperparameter that controls the effect of PSM-level adaptive
training. We studied the influence of s1 and s2 in Section 4.7.
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3.3.3 Overall Training Objective

In the proposed method, we re-weight each target amino acid yj with the following loss,

L1(θ1) = −
N∑
j=1

wj log p (yj | y<j ,x, z; θ1) , (7)

where θ1 are the parameters of MS Encoder and Peptide Decoder #1, and

wj = waa
j · wpsm. (8)

Additionally, Peptide Decoder #2 is trained with the following loss,

L2(θ2) = −
N∑
j=1

log p (yj | y<j ; θ2) , (9)

where θ2 are the parameters of Peptide Decoder #2. The overall training loss is,

LAda(θ1, θ2) = L1(θ1) + L2(θ2). (10)

3.4 Inference Strategies

In the inference phase, we feed the mass spectrometry to the encoder MS Encoder and the decoder
Peptide Decoder #1 predicts the highest-scoring amino acid for each peptide sequence position.
The decoder is then fed its preceding amino acid predictions at each decoding step. The decoding
process concludes upon predicting the [stop] token or reaching the predefined maximum peptide
length of ℓ = 100 amino acids. We discuss the computational overhead of AdaNovo in Section 4.8.

4 Experiments

4.1 Datasets

We employ the nine-species benchmark initially introduced by DeepNovo [27]. This dataset amal-
gamates approximately 1.5 million mass spectra from nine distinct species, all employing the same
instrument but analyzing peptides from different species. Each spectra is associated with a ground-
truth peptide sequence, which comes from database search identification with a standard false
discovery rate (FDR) set at 1%. Following previous works [27, 19, 37], we adopt a leave-one-out
cross-validation framework. This entails training a model on eight species and testing it on the species
held out for each of the nine species. We also split the eight species into training set and validation
set with the ratio 9:1. This framework facilitates the testing of the model on peptide samples that
have never been encountered before, which is precisely the advantage of de novo peptide sequencing
methods over database search methods.

4.2 Evaluation Metrics

In our assessment of model predictions, we employ precision calculated at both the amino acid and
peptide levels, following methodologies presented by previous works [15, 27]. We first calculates
the number of matched amino acid predictions, Naa

match, which are defined as predicted amino acids
that exhibit a mass difference of < 0.1Da from the real amino acids and have either a prefix or
suffix with a mass difference of ≤ 0.5Da from the corresponding real amino acid sequence in the
ground truth peptide. Amino acid-level precision is then defined as Naa

match /N
aa
pred , where Naa

pred
represents the number of predicted amino acids in predicted peptide sequences. Similarly, PTMs
identification precision can be formulated as Nptm

match /N
ptm
pred , where Nptm

match and Nptm
pred denote the

number of matched PTMs and predicted amino acids with PTMs, respectively. For peptide prediction,
a predicted peptide is deemed a correct match only if all of its amino acids are matched. In a collection
of Np

all spectra, if a model accurately predicts Np
match peptides, the peptide-level precision are defined

as Np
match/N

p
all. Kindly note that peptide-level performance measures are the primary quantifier of the

model’s practical utility because the goal is to assign a complete peptide sequence to each spectrum.
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4.3 Baselines and Experimental Settings

We compare AdaNovo with protein database search tool Peaks [15] and previous de novo peptide
sequencing methods including DeepNovo [27], Casanovo [35] and PointNovo [19]. The MS Encoder,
Peptide Decoder # 1 and Peptide Decoder # 2 in AdaNovo are 9-layer Transformers, all of which
come with 512 feed forward dimensions. During the training process, we used one Nvidia A100
GPU with the batchsize as 32. We set the learning rate at 0.0004 and applied a linear warm-up. For
gradient updates, we used the AdamW optimizer [9]. The hyperparameters s1 and s2 are tuned within
the range {0.05, 0.1, 0.3} using the validation set.

4.4 Main Results

Table 1: Empirical comparison of previous models on 9-species benchmark. The best and the second
best results are highlighted with bold and underlined, respectively. The reproduced performance of
Casanovo is denoted as Casanovo (rep.). Following Casanovo [35], we train 5 models with different
random initializations and report the standard deviation when the test dataset is Mouse or Human.
The other standard deviations are not reported because it would be too computationally expensive.

Species Peptide-level precision Amino acid-level precision
DeepNovo PointNovo Casanovo Casanovo (rep.) AdaNovo DeepNovo PointNovo Casanovo Casanovo (rep.) AdaNovo

Mouse 0.286 0.355 0.443 ± 0.019 0.449 ± 0.010 0.493 ± 0.015 0.623 0.626 0.562 ± 0.021 0.612 ± 0.015 0.667 ± 0.018
Human 0.293 0.351 0.367 ± 0.017 0.343 ± 0.016 0.373 ± 0.012 0.610 0.606 0.424 ± 0.019 0.585 ± 0.010 0.618 ± 0.013
Yeast 0.462 0.534 0.561 0.568 0.612 0.750 0.779 0.591 0.753 0.825
M. mazei 0.422 0.478 0.486 0.474 0.523 0.694 0.712 0.518 0.686 0.757
Honeybee 0.330 0.396 0.408 0.422 0.431 0.630 0.644 0.461 0.640 0.650
Tomato 0.454 0.513 0.460 0.463 0.552 0.731 0.733 0.471 0.720 0.767
Rice bean 0.436 0.511 0.437 0.549 0.546 0.679 0.730 0.442 0.727 0.719
Bacillus 0.449 0.518 0.540 0.513 0.561 0.742 0.768 0.573 0.711 0.788
Clam bacteria 0.253 0.298 0.371 0.347 0.397 0.602 0.589 0.405 0.617 0.656
Average 0.376 0.439 0.453 0.459 0.499 0.673 0.687 0.494 0.672 0.716

Mouse Human Yeast M. mazei Honeybee Tomato Rice bean Bacillus Clam bacteria
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Figure 4: Empirical comparison of de novo sequencing models in terms of PTMs identification.

AdaNovo frequently outperforms previous methods on 9-species benchmark and notably excels
in PTMs identification. As can be observed in Table 1, AdaNovo outperforms competitive models
on most (8 out of 9) species in peptide-level precision compared to DeepNovo, PointNovo and
CasaNovo. At amino acid-level, AdaNovo also outperforms baselines on most datasets. Also, as
demonstrated in Figure 4, we compare AdaNovo with other methods in terms of identifying amino
acids with PTMs because AdaNovo is designed to accurately identify the amino acids with PTMs.
The results in the table indicate that AdaNovo consistently exceeds other competitors by significant
margins (3.6% - 9.4%) in identifying amino acids with PTMs, verifying the effectiveness of the amino
acid-level adaptive training objective. We further evaluate the stability of AdaNovo in Appendix B.

4.5 Ablation Study

Ablations on amino acid-level and peptide-level adaptive training strategies. To investigate the
influence of the amino acid-level and peptide-level adaptive training strategies, we remove each
of them from AdaNovo and evaluate the models’ performance using the experimental settings in
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Table 2: Ablations on amino acid-level (AA-level) and peptide-level training strategies. The results
are reported using the Human datasets as test set.

Model AA. Prec. Peptide Prec. PTM Prec.

Casanovo 0.585 0.343 0.300
AdaNovo (w/o PSM-level objective) 0.607 0.360 0.478
AdaNovo (w/o AA-level objective) 0.594 0.349 0.314

AdaNovo 0.618 0.373 0.483

Section 4.3. The results shown in Table 2 indicate that both modules are necessary and effective for
the AdaNovo model. More specifically, when we remove the AA-level training strategy in AdaNovo,
the precision of the amino acids with PTMs identification drops significantly because the amino
acid-level training strategy is designed for identifying amino acids with PTMs.

Table 3: Models’ Performance on mass spectrum dataset with synthetic noise. The results are reported
using the Clam bacteria as test set.

Model AA. Prec. Peptide Prec.

CasaNovo 0.582 0.297
AdaNovo (w/o PSM-level objective) 0.617 0.336
AdaNovo (w/o AA-level objective) 0.644 0.372

AdaNovo 0.656 0.397

Performance on mass spectra with synthetic noise. To verify the effectiveness of the PSM-level
adaptive training strategy, we randomly choose 20% spectrum in the training datasets, and add
synthetic noise peaks or remove original peaks with higher intensity values. We report the results in
Table 3, from which we can observe that the performance would degrade sharply when we remove
the PSM-level training strategy. This indicates that PSM-level adaptive training strategy can enhance
models’ robustness against data noise in mass spectrum.

4.6 Comparisons with Alternative Methods for identifying amino acids with PTMs

Table 4: Comparisons with alternative methods in terms of identifying amino acids with PTMs. All
results are reported using the yeast dataset as test set.

Model AA. Prec. Peptide Prec. PTM prec.

Casanovo 0.753 0.568 0.552
+ Re-weight (Upsampling) 0.762 0.576 0.564
+ Focal loss 0.745 0.543 0.550

AdaNovo (w/o PSM-level objective) 0.793 0.594 0.616
AdaNovo 0.825 0.612 0.665

In this section, we show the performance of AdaNovo only with amino acid-level loss (denoted
as ‘AdaNovo w/o PSM-level objective’) and compare to some alternative methods in terms of
identifying amino acids with PTMs. The first alternative is to re-weight each amino acid yj with
wj = Ntotal/Nyj

, where Ntotal and Nyj
represent the total number of amino acids and the number

of amino acids in the yj category in the dataset, respectively. The second alternative is the focal
loss [13], we replace the cross entropy loss of Casanovo [35] with the focal loss,

L = −(1− αp(yj | x, z,y<j))
γ log p(yj | x, z,y<j),

where α and γ are hyperparameters to adjust the loss weight. The results shown in Table 4 indicate
that both AdaNovo and the first alternative can help improve Casanovo’s ability. Moreover, AdaNovo
outperforms the first alternative by a notable margin probably because the training and testing datasets
are derived from different species, there exists a significant difference in the distribution of PTMs
quantities. Therefore, the above wj obtained with the train set is not suitable for test set. Also,
AdaNovo is inspired by the domain knowledge that the mass shift of PTMs only be manifested in the
mass spectra, thus shows superiority over the re-weighting methods in long-tailed classification.
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4.7 Sensitivity Analysis
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Figure 5: The effects of the two hyperparameters s1 and s2 for AdaNovo.

In this section, we investigate the effects of the two hyperparameters s1 and s2, which determines the
influence of amino acid-level and PSM-level training strategy. As shown in Figure 5, we tune both
s1 and s2 within the range [0.05, 0.1, 0.3] and observe that the values of these two hyperparameters
significantly affect the final performance of the model. Additionally, the optimal hyperparameters
for peptide-level metrics may be sub-optimal to amino acids-level metrics. It is necessary to finely
adjust the values of s1 and s2 based on the dataset, striking the balance between amino acid-level and
PSM-level training strategies.

4.8 Costs of Computing and Storage

Table 5: Comparisons with competitive methods in terms of computational overhead. The training
and inference time are evaluated on Honeybee dataset with the same Nvidia A100 GPU.

Model #Params (M) Training time (h) Inference time (h)

Casanovo 47.35 56.52 7.14
AdaNovo 66.31 60.17 7.09

In this part, we compare AdaNovo with Casanovo in terms of the number of model parameters,
training time and inference time. The results shown in Table 5. Although AdaNovo outperforms
Casanovo in peptide sequencing and PTMs identification, it inevitably introduced extra parameters
(Peptide Decoder #2), resulting in a 40.04% increase in parameter count (from 47.35M to 66.31M).
Also, under the same hardware settings (1 Nvidia A100-SXM4-80GB GPU), the training time of
AdaNovo increased by 6.3% (from 56.52h to 60.17h) over Casanovo. However, AdaNovo and
Casanovo share the similar inference speed, which is more important in real-world applications.

5 Conclusion and Future Work

In this paper, we discern that data biases limit progress in de novo peptide sequencing by hindering
the accurate identification of PTMs and reducing the reliability of PSMs due to low PTM frequency
and spectral noise. To address these issues, we introduce a novel approach involving the calculation of
conditional mutual information between the spectrum and each amino acid, followed by re-weighting
the training loss of corresponding amino acids. Extensive experiments on 9-species datasets affirm
that AdaNovo surpasses previous de novo sequencing methods, showcasing superior performance
in both amino acid- and peptide-level precision. Notably, AdaNovo exhibits a distinct advantage in
identifying amino acids with PTMs. Despite the significant progress made by AdaNovo, identifying
previously unseen PTMs remains challenging, prompting the need for further research in the future.
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A Peak Embedding Methods

In order to feed the MS2 peaks to MS Encoder, we regard each mass spectrum peak (mi, ti) as
a ‘word’ in natural language processing and obtain its embedding by individually encoding its m/z
value and intensity value before combining them through summation. For a given peak, we consider
its m/z as its position and employ positional encoding with reference to [29],

fij = sin

(
mi

n1n
2j/d
2

)
, for j ≤ d

2
, (11)

fij = cos

(
mi

n1n
2j/d
2

)
, for j >

d

2
, (12)

where fij is the value of fi in the j-th dimension, d is the embedding size of fi, and n1 and n2 is
an user-defined scalar and can be set to any value. Specifically, we set n1 = mmax

mmin
and n2 = mmin

2π

where mmax = 10,000 and mmin = 0.001 in our work. The input embeddings furnish a detailed
portrayal of high-precision m/z information. Analogous to the consideration of relative positions in
the initial transformer model [29], these embeddings potentially facilitate the model’s attention to m/z
variations between peaks. Such attention to detail is crucial for the accurate identification of amino
acids within the peptide sequence. The intensity information ti is directly encoded through a linear
layer Wg and mapped to the d-dimensional space Rd,

gi = Wgti, (13)

where Wg ∈ Rd denote the parameters of the linear layer. Subsequently, the input peak (mi, ti)
embedding hi generated through summation,

hi = gi + fi. (14)

The input to adanovo’s MS Encoder is the embedding of each peak, h = {hi}Mi=1, where M is the
number of peaks in mass spectra. Similarly, for the precursor z = {(mprec, cprec)} to be fed into
the Peptide Decoder #1, we embed mprec using the same sinusoidal position embedding as the
peaks in the spectrum. Additionally, the charge state cprec is embedded using the embedding layer in
PyTorch.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please see the abstract and the introduction section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see section 4.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have released the code in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see section 4.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The error bars are not reported because it would be too computationally
expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see section 4.8.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential positive societal impacts in section 5. It has
no negative societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited related papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release the code in the supplement.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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well as details about compensation (if any)?
Answer: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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