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ABSTRACT

Abstract
Transformer-based models have achieved significant success in time series forecast-
ing by modeling global dependencies through self-attention mechanisms. However,
these models often rely on fixed patch settings with locality constraints, tokenizing
time series into spatially connected sub-series. This approach can hinder the capture
of semantic relationships and lead to computational inefficiencies, especially when
dealing with long sequences with complex temporal dependencies. In this work,
we introduce TimeCAT—a Time series Context-Aware Transformer that dynami-
cally groups input sequences into semantically coherent groups, enabling efficient
modeling of both local and global dependencies. By appending group and global
tokens, TimeCAT facilitates fine-grained information exchange through a novel
Context-Aware Mixing Block, which utilizes self-attention and MLP mixing opera-
tions. This hierarchical approach efficiently models long sequences by processing
inputs in structured contexts, reducing computational overhead without sacrificing
accuracy. Experiments on several challenging real-world datasets demonstrate
that TimeCAT achieves consistent state-of-the-art performance, significantly im-
proving forecasting accuracy and computational efficiency over existing methods.
This advancement enhances the Transformer family with improved performance,
generalization ability, and better utilization of sequence information.

1 INTRODUCTION

Time series forecasting plays a pivotal role in various domains such as finance (Zhang et al., 1998),
weather prediction (Rasp & Lerch, 2018), energy management (Ahmed & Khalid, 2019), and
healthcare (Cheng et al., 2017). Accurate long-horizon forecasting is essential for informed decision-
making and strategic planning in these fields. The advent of deep learning has spurred significant
advancements in modeling complex temporal patterns, with Transformer-based models emerging
as a powerful tool due to their ability to capture long-range dependencies through self-attention
mechanisms (Vaswani, 2017; Zhou et al., 2022a; Wu et al., 2023; Liu et al., 2024).

Despite their success, existing Transformer-based approaches face fundamental challenges that limit
their effectiveness in time series forecasting. A central issue lies in the design of input tokenization
strategies. As illustrated in Figure 1-(a), traditional methods employ point-wise tokenization (pixel-
level), patch-wise tokenization (fixed-length sub-series), or series-wise tokenization (entire sequence
as a single token). Point-wise tokenization, while fine-grained, incurs prohibitive computational
costs due to the quadratic complexity of self-attention with respect to sequence length. Patch-wise
tokenization (Nie et al., 2023) reduces computational burden but may impede the model’s ability
to capture long-range dependencies effectively, as it imposes locality constraints. Furthermore,
modeling the multivariate interactions using such methods is not straightforward and poses significant
challenges. Series-wise tokenization (Liu et al., 2024) captures holistic temporal patterns but struggles
with modeling local context and becomes impractical for long sequences or large datasets due to
high computational demands. Furthermore, the current fixed-length path-based and whole-series
tokenization methods present significant challenges for time series foundation models, either due to
computational overhead or feasibility issues (Goswami et al., 2024; Das et al., 2023).
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Figure 1: Overview of the TimeCAT framework. (a) Traditional tokenization approaches face chal-
lenges in balancing accuracy and computational cost. (b) Our context-aware approach dynamically
groups sequences based on semantic content, enabling efficient hierarchical mixing at different levels
of context. (c) The Token-Grouping-and-Merging module integrates global and group tokens to
effectively capture both local and global temporal dependencies.

To address these challenges, we observe that time series data inherently exhibit hierarchical temporal
structures and varying semantic characteristics across different segments. This insight motivates a
context-aware approach where sequences are dynamically partitioned into semantically coherent
groups based on the input context. By doing so, we can model both local patterns within groups and
global trends across the entire sequence more effectively.

In this paper, we introduce TimeCAT—a Time series Context-Aware Transformer designed to
capture complex temporal dependencies while maintaining computational efficiency. As depicted in
Figure 1-(b), our approach dynamically groups sequences based on their semantic content, enabling
efficient hierarchical mixing at different levels of context. We propose a novel Context-Aware Mixing
Block that facilitates three hierarchical levels of information exchange: (1) Intra-Group Mixing
focuses on capturing local dependencies within each group by applying self-attention mechanisms to
tokens specific to that group. (2) Inter-Group Mixing enables interactions across different groups
through mixing layers that aggregate information, thereby enhancing the model’s ability to learn
cross-group dependencies. Finally, (3) Global-Level Mixing incorporates a global token that collects
information from all groups, capturing overarching temporal trends and facilitating interactions across
variables throughout the entire sequence.

Our hierarchical processing scheme exploits both local and global patterns in a structured manner,
addressing the limitations of traditional tokenization strategies. As illustrated in Figure 1-(c), the
integration of group tokens and a global token allows TimeCAT to holistically model temporal
dynamics, effectively balancing computational efficiency with accurate representation learning. By
capturing rich interactions across different token types and levels of context, TimeCAT enhances the
modeling of complex temporal patterns inherent in time series data. Our work makes the following
key contributions:

• We propose a novel dynamic grouping mechanism that segments time series data into semanti-
cally meaningful groups based on input context, enabling efficient intra-group and inter-group
interactions without compromising temporal context.

• We introduce a Context-Aware Transformer architecture that utilizes a hierarchical mixing block, fa-
cilitating fine-grained information exchange across intra-group, inter-group, and global levels. This
design captures complex temporal patterns while significantly reducing computational complexity.

• Extensive experiments on challenging real-world datasets demonstrate that TimeCAT outperforms
state-of-the-art models in both forecasting accuracy and computational efficiency, validating its
effectiveness in modeling complex time series data.

By addressing the fundamental challenges in time series forecasting with Transformers, TimeCAT
sets a new direction for efficient and accurate modeling of temporal data. Our approach leverages
hierarchical context and dynamic grouping to overcome the limitations of existing methods, making
it well-suited for real-world applications requiring long-horizon forecasting, including the time series
foundation models.
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2 RELATED WORK

Transformer and MLP-based Time Series Forecasting Transformers have been widely adopted
in time series forecasting (Zhou et al., 2021; 2022b; Zhang & Yan, 2023; Chen et al., 2021; 2024).
PatchTST (Nie et al., 2022) introduced a Transformer architecture that splits input time series into
fixed-length patches, applying self-attention for temporal information extraction. However, PatchTST
lacks cross-channel interactions. Extensions have addressed these limitations, such as varied patch
sizes for multi-resolution representations (Zhang et al., 2024), and representing the entire time series
as a single token to capture holistic information (Liu et al., 2024). While the latter effectively models
inter-variable interactions, it may lose temporal dynamics and is impractical for long sequences or
large datasets. Alternatively, TimeMixer (Wang et al., 2024) uses a pure MLP-based mixing module
to explore multi-scale representation learning, showing that distinct temporal patterns enhance
forecasting. However, building large foundational time series models with MLP backbones poses
challenges (Liang et al., 2024).

Recently, tokenization has gained attention as a crucial element in Transformer-based foundation
models (Qian et al., 2022). MOMENT, a family of time series foundation models, emphasizes
tokenization to model temporal dynamics (Goswami et al., 2024). Das et al. (2023) propose a
decoder-only Transformer focusing on efficient token structures, while Garza & Mergenthaler-
Canseco (2023) introduce TimeGPT-1, achieving state-of-the-art results by leveraging tokenization to
model complex temporal relationships. These works highlight tokenization’s key role in developing
robust Transformer-based time series models, which still primarily focus on fixed-length tokenization.

Token Merging & Clustering Methods To enhance token-based foundation models’ efficiency,
various token merging and clustering approaches have been proposed in both time series and image
domains. Götz et al. (2024) introduce a token merging mechanism to reduce complexity by grouping
tokens, significantly speeding up pretrained models on multivariate time series datasets but acting as a
low-pass filter, potentially degrading prediction accuracy. In the image domain, "ToMe" (Bolya et al.,
2022) merges redundant tokens in Vision Transformers (ViT) for a speed-accuracy trade-off without
retraining. Additionally, Fan et al. (2024) propose clustering tokens based on semantic relevance,
reducing computational costs but potentially affecting performance due to limited inter-cluster
interactions and reliance on a global token.

These works inspire our approach, which integrates context-aware token grouping within a
Transformer-based backbone to enable multi-scale information interactions. Unlike fine-grained,
fixed-length patch-based methods (Nie et al., 2023) or coarse-grained whole-sequence tokeniza-
tion (Liu et al., 2024), our approach introduces novel intra-group, inter-group, and global-level
operations for efficient, fine-grained interactions.

3 TIMECAT

3.1 PROBLEM FORMULATION

Given a historical multivariate time series: X = [x1,x2, . . . ,xT ]
⊤ ∈ RT×N , where T is the number

of time steps, N is the number of variables, and xt ∈ RN represents the observation at time t. Our
goal is to predict future values over a forecast horizon Q: Y = [xT+1,xT+2, . . . ,xT+Q]

⊤ ∈ RQ×N .

3.2 MODEL ARCHITECTURE OVERVIEW

We propose TimeCAT, a novel Transformer-based architecture tailored for time series forecasting,
illustrated in Figure 2. Building upon the encoder-only architecture of the Transformer (Vaswani,
2017), TimeCAT introduces key innovations to better capture temporal dependencies and reduce
computational complexity.

Given the input sequence X ∈ RT×N , we first apply instance normalization to obtain the normalized
sequence X̃. The normalized time series is then divided into overlapping patches of length Lp with
the given stride , resulting in P patches per variable. Each patch is embedded via a Multi-Layer
Perceptron (MLP) (Nie et al., 2023), producing a sequence of embeddings per variable:

En = [e(1)n , e(2)n , . . . , e(P )
n ]⊤ ∈ RP×d,

3
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Figure 2: Architecture of the proposed TimeCAT framework. The original time series data undergoes
instance normalization and is divided into value tokens through the Patch Embedding Layer. The
Dynamic Grouping Layer further processes these tokens, enabling token grouping and merging.
The resulting tokens—value, group, and global tokens—are processed by multiple Context-Aware
Mixing Blocks, which facilitate interactions across different token types using multi-head attention
and mixing layers. The right panel provides a detailed view of the Context-Aware Mixing Block,
including the steps of intra-group, inter-group, and global information mixing. The Predictor module
at the top aggregates the final mixed representations to produce the desired output.

where d is the embedding dimension, and n ∈ [1, N ] indexes the variables.

To preserve temporal order, positional embeddings {pi}Pi=1, where pi ∈ Rd, are added:

En = [e(1)n + p1, e
(2)
n + p2, . . . , e

(P )
n + pP ]

⊤.

The Dynamic Grouping Layer then partitions the sequence into context-aware groups and augments
the embeddings with group and global tokens. The Context-Aware Mixing Blocks further process
these tokens, enabling efficient intra-group, inter-group, and global interactions. Finally, the Predictor
Module aggregates the representations to produce the final predictions, following the procedure in
Nie et al. (2023).

3.3 DYNAMIC GROUPING AND TOKEN AUGMENTATION

Dynamic Grouping To efficiently capture both local and global patterns, we dynamically partition
the sequence into G groups based on the input context. The grouping is determined by a learnable
function that computes group ratios r ∈ RG:

v = Flatten(X̃′) ∈ R(TN)/RD, r = Softmax(Wgv + bg), (1)

where X̃′ is a downsampled version of X̃ with downsampling ratio RD, Wg ∈ RG×(TN)/RD, and
bg ∈ RG. The down-sampling is applied since its capability and efficiency to split the group.

The group sizes {si}Gi=1 are computed as:

si = ⌈ri · P ⌉ , subject to
G∑
i=1

si = P. (2)

Group indices Indicesi are then determined to segment the sequence.

Token Augmentation To enrich the model’s capacity to capture hierarchical contexts, we introduce
a Global Token gn ∈ Rd and Group Tokens {gn,i}Gi=1 for each variable n, where:

4
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gn,i = g′
n,i + lsi , g′

n,i ∈ Rd, (3)

and lsi is a learnable embedding corresponding to the group size si.

The augmented sequence for variable n becomes:

Sn = [gn;gn,1; . . . ;gn,G;En] ∈ R(1+G+P )×d. (4)

The overall sequence for all variables is:

S = [S1;S2; . . . ;SN ] ∈ RN×(1+G+P )×d. (5)

This transformation from the initial input sequence to the representation after patch embedding, and
eventually to our employed combined representation, is illustrated in the left part of Figure 2.

3.4 CONTEXT-AWARE MIXING BLOCK

The Context-Aware Mixing Block is designed to efficiently model both local and global dependencies
by processing the sequence in a hierarchical manner. This block enhances sequence modeling by
capturing rich interactions across different token types, enabling improved learning of relationships
at varying granularities.

Input Partitioning For each variable n, the augmented sequence Sn is partitioned into:

• Global Token: xglobal,n ∈ Rd,

• Group Tokens: xgroup,n = [gn,1, . . . ,gn,G]
⊤ ∈ RG×d,

• Value Tokens: xvalue,n = [e
(1)
n , . . . , e

(P )
n ]⊤ ∈ RP×d.

We further partition the value tokens into groups based on the indices from equation 2, resulting in G
groups {xi

value,n}Gi=1, where xi
value,n ∈ Rsi×d.

Intra-Group Operations Within each group i, we concatenate the corresponding group token gn,i

with the value tokens xi
value,n:

xi
concat,n = [gn,i;x

i
value,n] ∈ R(1+si)×d.

Self-attention is then applied to model local dependencies:

x̃i
n = SelfAttention(xi

concat,n). (6)

Residual connections and layer normalization are applied:

ĝn,i = LayerNorm(gn,i + g̃n,i), (7)

x̂i
value,n = LayerNorm(xi

value,n + x̃i
value,n). (8)

This process refines the group and value tokens by capturing local context within each group,
enhancing the model’s ability to learn fine-grained patterns.

Inter-Group and Global Operations To enable effective communication and capture dependencies
across different groups, we process the group tokens {ĝn,i}Gi=1:

5
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Figure 3: The Global Token update mechanism. The black lines represent the forward information
flow, while the green lines indicate the backward gradient flow. Gradient detachment prevents the
global token from dominating the learning process, ensuring balanced representation learning.

1. Group Mixing: We transpose and apply an MLP mixer to allow cross-group interactions:

Ygroup,n = MLPgroup(X̂
⊤
group,n), X̂⊤

group,n ∈ Rd×G, (9)

where X̂group,n = [ĝn,1, . . . , ĝn,G]
⊤.

The output is transposed back and residual connections with layer normalization are applied:

X̃group,n = LayerNorm(X̂group,n + Y ⊤
group,n). (10)

This operation facilitates interactions between different groups, allowing the model to
capture higher-level patterns and dependencies.

2. Global Token Update: We first aggregate the refined group tokens to estimate a global
representation:

xglobal, est,n = Pooling(X̃group,n). (11)

A naive update of the global token using xglobal, est,n may lead to training instability due to
large gradients. To address this, we apply gradient detachment:

xupdated
global,n = xglobal,n + (xglobal, est,n − Detach(xglobal, est,n)) . (12)

An MLP mixer and residual connections with layer normalization are applied:

yglobal,n = MLPglobal(x
updated
global,n), (13)

x̃global,n = LayerNorm(xupdated
global,n + yglobal,n). (14)

Finally, we combine the global token with a detached version of the global estimate:

x̃global,n = x̃global,n + α · Detach(xglobal, est,n), (15)

where α is a learnable parameter. This mechanism balances the influence of global and local
contexts while ensuring stable training dynamics.

The global token update mechanism is illustrated in Figure 3. By controlling the gradient flow, we
prevent the global token from overwhelming the learning of local details, allowing the model to
converge faster and more stably while effectively capturing both global context and nuanced local
information. The effectiveness of our approach is evaluated in the ablation study.

Sequence Reconstruction and Post-processing The refined tokens are concatenated to reconstruct
the sequence:

Xn = [x̃global,n; X̃group,n; X̂value,n] ∈ R(1+G+P )×d. (16)

Residual connections and layer normalization are applied for stability. A feed-forward network
(FFN) with residual connections introduces non-linearity and further refines the representation. This
reconstructed sequence is then used in subsequent Context-Aware Mixing Blocks or passed to the
Predictor module.
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Table 1: Long-term forecasting results. All the results are averaged from 4 different prediction
lengths, that is {96, 192, 336, 720}. A lower MSE or MAE indicates a better prediction. We fix the
input length as 96 for all experiments. See Table 5 in Appendix for the full results.

Models TimeCAT iTransformer TimeMixer PatchTST TimesNet Crossformer MICN FiLM DLinear FEDformer
(Ours) ((2024)) (2024) (2023) (2023) (2023) (2023) (2022a) (2023) (2022b)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Weather 0.238 0.267 0.258 0.278 0.240 0.271 0.265 0.285 0.251 0.294 0.264 0.320 0.268 0.321 0.271 0.291 0.265 0.315 0.309 0.360

Electricity 0.172 0.265 0.182 0.270 0.178 0.272 0.216 0.318 0.193 0.304 0.244 0.334 0.196 0.309 0.223 0.302 0.225 0.319 0.214 0.327

Traffic 0.408 0.271 0.428 0.282 0.484 0.297 0.529 0.341 0.620 0.336 0.667 0.426 0.593 0.356 0.637 0.384 0.625 0.383 0.610 0.376

ETTh1 0.422 0.430 0.447 0.447 0.454 0.447 0.516 0.484 0.495 0.450 0.529 0.522 0.475 0.480 0.516 0.483 0.461 0.457 0.498 0.484

ETTh2 0.364 0.394 0.364 0.395 0.383 0.407 0.391 0.411 0.414 0.427 0.942 0.684 0.574 0.531 0.402 0.420 0.563 0.519 0.437 0.449

ETTm1 0.377 0.392 0.381 0.395 0.407 0.410 0.406 0.407 0.400 0.406 0.513 0.495 0.423 0.422 0.411 0.402 0.404 0.408 0.448 0.452

ETTm2 0.272 0.318 0.275 0.323 0.288 0.332 0.290 0.334 0.291 0.333 0.757 0.610 0.353 0.402 0.287 0.329 0.354 0.402 0.305 0.349

(a) (b) (c) (d)

Figure 4: Visualization of ECL prediction using TimeCAT for next (a) 96; (b) 192; (c) 336 and (d)
720 steps.

Computational Complexity Reduction By applying self-attention within groups rather than across
the entire sequence, we significantly reduce computational complexity. The relative reduction R in
complexity is:

R = 1−
Ogroup

Ofull
= 1−

(
1

G
+

2

P
+

G

P 2

)
, (17)

where Ogroup and Ofull denote the complexities with grouping and without grouping, respectively. In
scenarios where P ≫ G, increasing G leads to higher computational savings, as demonstrated in
our experiments. This efficiency gain allows TimeCAT to handle longer sequences without incurring
prohibitive computational costs. Details are in Appendix A.3.1.

4 EXPERIMENTS

We extensively include 7 real-world datasets in our experiments, including ETT (4 subsets), Electricity,
Traffic, Weather used by Autoformer (Chen et al., 2021). Detailed dataset descriptions are provided
in Appendix A.1.

Baselines We carefully choose 9 well-acknowledged forecasting models as our benchmark, includ-
ing (1) Transformer-based methods: iTransformer (Liu et al., 2024), Autoformer (Chen et al., 2021),
FEDformer (Zhou et al., 2022b), Stationary (Liu et al., 2022), Crossformer (Zhang & Yan, 2023),
PatchTST (Nie et al., 2023); (2) Linear-based methods: DLinear (Zeng et al., 2023); (3) TCN-based
method TimesNet (Wu et al., 2023) and (4) MLP-Mixer based method (Wang et al., 2024).

4.1 MAIN RESULTS

Long-term Forecasting Results. Table 1 compares the forecasting performance of various models
across multiple datasets. TimeCAT consistently achieves the best or second-best results in both MSE

7
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Table 2: Ablation study. W/O Adap, W/O Group-Mix, W/O Global-Mix, W/O Skip-Connect, and
W/O Elen represent removing the adaptive grouping mechanism, group mixing layer, global mixing
layer, skip connections, and embedding length parameter, respectively. The final column shows the
performance of the full TimeCAT model. Lower MSE and MAE values indicate better forecasting
performance.

Models W/O Adap W/O Group-Mix W/O Global-Mix W/O Skip-Connect W/O Elen TimeCAT

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.160 0.205 0.165 0.210 0.158 0.203 0.162 0.207 0.164 0.209 0.153 0.199
192 0.215 0.252 0.220 0.258 0.208 0.245 0.213 0.250 0.210 0.247 0.204 0.247
336 0.270 0.295 0.275 0.300 0.265 0.290 0.268 0.292 0.262 0.290 0.261 0.289
720 0.345 0.350 0.355 0.360 0.340 0.345 0.342 0.347 0.340 0.344 0.337 0.336

Electricity

96 0.155 0.250 0.160 0.255 0.150 0.245 0.152 0.248 0.154 0.250 0.148 0.245
192 0.170 0.260 0.175 0.265 0.165 0.255 0.168 0.258 0.162 0.253 0.163 0.253
336 0.185 0.280 0.190 0.285 0.180 0.275 0.182 0.277 0.178 0.272 0.176 0.271
720 0.210 0.315 0.220 0.325 0.205 0.310 0.208 0.315 0.203 0.308 0.200 0.292

and MAE, outperforming other transformer-based models such as iTransformer and PatchTST across
most datasets.

TimeCAT vs. iTransformer: TimeCAT demonstrates strong performance improvements over
iTransformer across all datasets, with an average reduction of 7.8% in MSE and 4.0% in MAE. For
instance, on Weather, TimeCAT achieves lower MSE (0.238 vs. 0.258) and MAE (0.267 vs. 0.278).
On Electricity, TimeCAT shows consistent reductions in error (0.172 MSE vs. 0.182, 0.265 MAE
vs. 0.270). These results indicate that TimeCAT’s context-aware mechanisms significantly enhance
predictive accuracy over the standard transformer framework of iTransformer.

TimeCAT vs. PatchTST: While PatchTST improves upon iTransformer with patch-based tokeniza-
tion, TimeCAT achieves an average reduction of 5.4% in MSE and 4.6% in MAE compared to
PatchTST. For example, on Weather, TimeCAT achieves significantly lower MSE (0.238 vs. 0.265)
and MAE (0.267 vs. 0.285). Across other datasets like ETTh1 and ETTm2, TimeCAT consistently
outperforms PatchTST, reinforcing its robustness in handling temporal dependencies.

General Comparison: TimeCAT also outperforms non-transformer models such as TimeMixer,
TimesNet, and Crossformer across all datasets. On challenging datasets like Traffic, Time-
CAT achieves substantial reductions in both MSE (0.408 vs. Crossformer’s 0.667) and MAE
(0.271 vs. 0.426). This highlights TimeCAT’s strong capability in multivariate time series forecasting.

Figure 4 illustrates the effectiveness of the TimeCAT model in predicting electricity consumption
levels (ECL) across various forecasting horizons. The visualization demonstrates the model’s
predictions alongside the actual ground truth data for next 96, 192, 336, and 720 steps, respectively.
Each graph shows that TimeCAT adeptly captures the trends and fluctuations of the data, maintaining
high accuracy and consistency in both shorter and longer-term forecasts. The model’s performance
is especially notable in the longest forecast of 720 steps, where it continues to closely align with
the ground truth, showcasing its robustness and reliability in multi-step time series forecasting. Full
comparision with iTransformer (Liu et al., 2024) and PatchTST (Nie et al., 2023) is in Appendix A.4.

Overall Summary: TimeCAT shows substantial reductions in forecasting errors compared to
state-of-the-art models. The context-aware transformer design and dynamic grouping strategies allow
it to better capture temporal dependencies, achieving an average reduction of 6.6% in MSE and 4.3%
in MAE over both iTransformer and PatchTST.

4.2 MODEL ANALYSIS

Ablation Study To evaluate the contribution of each module in the TimeCAT framework, we
conducted an ablation study by systematically removing key components and assessing their impact
on forecasting performance. Specifically, we examined the effects of eliminating the adaptive
grouping mechanism (W/O Adap), the group mixing layer (W/O Group-Mix), the global mixing
layer (W/O Global-Mix), the skip connections (W/O Skip-Connect), and the embedding length
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Table 3: Parameter sensitivity study. The prediction accuracy varies with the number of groups G.
Lower MSE and MAE values indicate better forecasting performance.

G = 2 G = 3 G = 4 G = 5

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.153 0.199 0.154 0.200 0.155 0.201 0.156 0.202
192 0.204 0.247 0.205 0.248 0.206 0.249 0.207 0.250
336 0.261 0.289 0.262 0.290 0.263 0.291 0.264 0.292
720 0.337 0.336 0.338 0.337 0.339 0.338 0.340 0.339

Electricity

96 0.149 0.244 0.148 0.245 0.149 0.247 0.151 0.248
192 0.164 0.254 0.163 0.253 0.164 0.255 0.166 0.256
336 0.177 0.271 0.176 0.271 0.178 0.273 0.179 0.274
720 0.201 0.293 0.200 0.292 0.202 0.294 0.203 0.295

parameter (Elen) (W/O Elen). Table 2 presents the MSE and MAE results across different forecasting
horizons for the Weather and Electricity datasets.

The results indicate that each component plays a critical role in enhancing the model’s forecasting
accuracy. Removing the adaptive grouping mechanism leads to a noticeable degradation in per-
formance, highlighting its importance in dynamically partitioning the time series into semantically
coherent groups. Similarly, omitting the group mixing and global mixing layers results in increased
errors, underscoring their roles in facilitating intra-group and inter-group interactions as well as
capturing global temporal dependencies. The absence of skip connections and the embedding length
parameter also adversely affects the model’s performance, albeit to a lesser extent. These findings
collectively demonstrate that the integrated modules of TimeCAT synergistically contribute to its
superior forecasting capabilities.

Parameter Sensitivity Study To investigate the impact of the number of groups G on the forecast-
ing performance of TimeCAT, we conducted a parameter sensitivity study. We evaluated the model
across different values of G (i.e., 2, 3, 4, and 5) on two real-world datasets: Weather and Electricity.
Table 3 presents the Mean Squared Error (MSE) and Mean Absolute Error (MAE) results for various
forecasting horizons.

The results indicate a clear dependency of the model’s performance on the choice of G. For
the Weather dataset, setting G = 2 achieves the lowest MSE and MAE across all forecasting
horizons, suggesting that two groups are sufficient to capture the underlying temporal patterns
without introducing unnecessary complexity. Increasing G beyond 2 leads to a slight decline in
performance, likely due to over-segmentation and the introduction of minor noise.

Conversely, for the Electricity dataset, G = 3 consistently yields the best performance across all
forecasting horizons. This optimal group number effectively balances the trade-off between capturing
intricate temporal dependencies and maintaining computational efficiency. Selecting G values lower
or higher than 3 results in marginally increased forecasting errors, indicating that three groups best
represent the semantic structures inherent in the Electricity data.

These findings underscore the importance of appropriately selecting the number of groups G to align
with the dataset’s characteristics, thereby enhancing the model’s forecasting accuracy and efficiency.

Analysis of Learned Group and Global Tokens Figure 5 highlights the effectiveness of our
grouping strategy in the ETTh1 dataset. Figure 5-(a) shows the input data’s correlation matrix,
revealing inherent dependencies among variables, while Figure 5-(b) illustrates the correlation matrix
of learned global tokens, closely mirroring the input. This alignment confirms that the global tokens
capture essential temporal patterns, validating our context-aware approach.

The t-SNE plot in Figure 5-(c) reveals distinct clusters of global tokens, reflecting effective separation
of variables and high-level interactions. Figures 5-(d) and 5-(e) display the first and second groups of
tokens, showing tightly clustered variables consistent with the correlations in Figure 5-(a).

Our skip-connect global token learning mechanism integrates global and group tokens, enhancing
the model’s capacity to capture complex dependencies and improving forecasting accuracy. These

9
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(a) (b)

(c) (d) (e)

Figure 5: Visualization of learned global and group tokens for the ETTh1 dataset. (a) Correlation
matrix of the input data; (b) Correlation matrix of the global tokens; (c) Visualization of global tokens
colored by variable categories; (d) Visualization of the first group of tokens; (e) Visualization of the
second group of tokens.

visualizations confirm that our grouping mechanism and skip connections effectively model both
global summaries and local patterns within the time series.

5 CONCLUSION

We introduced TimeCAT (Time series Context-Aware Transformer), a Transformer-based model
enhancing time series forecasting through dynamic grouping and hierarchical mixing. Our abla-
tion studies confirmed that these features significantly improve forecasting accuracy and efficiency.
Optimal group numbers, determined through parameter sensitivity analysis, consistently boosted
performance across datasets. Visualizations of global and group tokens validated that TimeCAT effec-
tively organizes variables into clusters and captures intricate relationships. Comparative experiments
showed TimeCAT outperforms leading models, setting a new standard in the field. Future efforts
will refine adaptive grouping mechanisms, extend handling capabilities for diverse data, and explore
scalability for large-scale applications. Overall, TimeCAT advances efficient, accurate forecasting,
promising further innovations in temporal modeling.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Dataset Our research utilizes seven diverse, real-world datasets to evaluate the efficacy of our
newly introduced model, TimeCAT. These datasets include the ETT dataset, which features data from
electricity transformers, covering seven distinct variables from July 2016 to July 2018, split into four
segments: ETTh1 and ETTh2 with hourly intervals, and ETTm1 and ETTm2 with 15-minute intervals.
The Weather dataset is derived from the Max Planck Institute for Biogeochemistry’s weather station
in 2020, comprising 21 weather parameters measured at 10-minute intervals. The ECL dataset
consists of electricity usage data for 321 clients on an hourly basis. Additionally, the Traffic dataset
encompasses data from 862 sensors, monitoring hourly traffic occupancy rates on freeways in the San
Francisco Bay area, spanning from January 2015 to December 2016. Our experimental methodology
strictly adheres to the data preprocessing and splitting protocols established by iTransformer Liu
et al. (2024) to prevent any data leakage, with the datasets segmented chronologically into training,
validation, and test sets. We apply forecasting models that utilize a historical lookback window
of 96 time points, and we test prediction intervals of {96, 192, 336, 720}. Below, we provide a
comprehensive table outlining the specific attributes of each dataset:

Table 4: Comprehensive dataset attributes. Variate Count indicates the number of variables in each
dataset. Total Data Points provides the number of time points in each phase of the (Train, Validation,
Test) split. Forecast Horizon lists the different prediction durations. Proportion shows the division
ratio for training, validation, and test sets. Interval denotes the time between each data point.

Dataset Variate Count Forecast Horizon Total Data Points Proportion Interval Sector

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 60:20:20 Hourly Electricity
ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 60:20:20 Every 15 min Electricity
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 70:10:20 Every 10 min Weather
ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) 70:10:20 Hourly Electricity
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 70:10:20 Hourly Transportation

Implementation Details All experiments were run three times, implemented in Pytorch, and
conducted on a single NVIDIA A100 80GB GPU. Most of the compared baseline models that
we reproduced are implemented based on the benchmark of TimesNet (Wu et al., 2023), while
iTransformer Liu et al. (2024) and TimeMixer (Wang et al., 2024) is based on their public repository
and settings. We set the initial learning rate as 10−2 or 10−3 and used the ADAM optimizer (Kingma,
2014) with L2 loss for model optimization. And the batch size was set to be 8 between 128. And we
also provide the pseudo-code of TimeCAT in Algorithm 1. The source code will be open sourced and
provided during the discussion period.

A.2 FULL RESULTS

To ensure a fair comparison between models, we conducted experiments using unified parameters
and reported results in the main text, including aligning all the input lengths, batch sizes, and training
epochs in all experiments. Here, we provide the full results for each forecasting setting in Table 5.

A.3 DISCUSSIONS

A.3.1 COMPUTATION EFFICIENCY

To analyze the computational reduction rate of self-attention modules due to the grouping mechanism,
we assume, without loss of generality, that the groups are split uniformly.

The computational complexity of the self-attention mechanism without grouping is:

Ono_group = P 2 · d

where P is the number of patches, and d is the embedding dimension.

With our grouping method, the number of patches per group is s = P/G, where G is the number of
groups. Additionally, one group token is added per group for self-attention information exchange, as
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Table 5: Unified hyperparameter results for the long-term forecasting task. We compare extensive
competitive models under different prediction lengths. Avg is averaged from all four prediction
lengths, that is 96, 192, 336, 720.

Models TimeCAT TimeMixer iTransformer PatchTST TimesNet Crossformer MICN FiLM DLinear FEDformer
(Ours) 2024 2024 2023 2023 2023 2023 2022a 2023 2022b

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.153 0.199 0.163 0.209 0.174 0.214 0.186 0.227 0.172 0.220 0.195 0.271 0.198 0.261 0.195 0.236 0.195 0.252 0.217 0.296
192 0.204 0.247 0.208 0.250 0.221 0.254 0.234 0.265 0.219 0.261 0.209 0.277 0.239 0.299 0.239 0.271 0.237 0.295 0.276 0.336
336 0.261 0.289 0.251 0.287 0.278 0.296 0.284 0.301 0.246 0.337 0.273 0.332 0.285 0.336 0.289 0.306 0.282 0.331 0.339 0.380
720 0.337 0.336 0.339 0.341 0.358 0.347 0.356 0.349 0.365 0.359 0.379 0.401 0.351 0.388 0.361 0.351 0.345 0.382 0.403 0.428

Avg 0.238 0.267 0.240 0.271 0.258 0.278 0.265 0.285 0.251 0.294 0.264 0.320 0.268 0.321 0.271 0.291 0.265 0.315 0.309 0.360

E
le

ct
ri

ci
ty

96 0.148 0.245 0.153 0.247 0.148 0.240 0.190 0.296 0.168 0.272 0.219 0.314 0.180 0.293 0.198 0.274 0.210 0.302 0.193 0.308
192 0.163 0.253 0.166 0.256 0.162 0.253 0.199 0.304 0.184 0.322 0.231 0.322 0.189 0.302 0.198 0.278 0.210 0.305 0.201 0.315
336 0.176 0.271 0.185 0.277 0.178 0.269 0.217 0.319 0.198 0.300 0.246 0.337 0.198 0.312 0.217 0.300 0.223 0.319 0.214 0.329
720 0.200 0.292 0.225 0.310 0.225 0.317 0.258 0.352 0.220 0.320 0.280 0.363 0.217 0.330 0.278 0.356 0.258 0.350 0.246 0.355

Avg 0.172 0.265 0.182 0.272 0.178 0.270 0.216 0.318 0.193 0.304 0.244 0.334 0.196 0.309 0.223 0.302 0.225 0.319 0.214 0.327

Tr
af

fic

96 0.381 0.257 0.462 0.285 0.395 0.268 0.526 0.347 0.593 0.321 0.644 0.429 0.577 0.350 0.647 0.384 0.650 0.396 0.587 0.366
192 0.398 0.261 0.473 0.296 0.417 0.276 0.522 0.332 0.617 0.336 0.665 0.431 0.589 0.356 0.600 0.361 0.598 0.370 0.604 0.373
336 0.418 0.275 0.498 0.296 0.433 0.283 0.517 0.334 0.629 0.336 0.674 0.420 0.594 0.358 0.610 0.367 0.605 0.373 0.621 0.383
720 0.433 0.291 0.506 0.313 0.467 0.302 0.552 0.352 0.640 0.350 0.683 0.424 0.613 0.361 0.691 0.425 0.645 0.394 0.626 0.382

Avg 0.408 0.271 0.484 0.297 0.428 0.282 0.529 0.341 0.620 0.336 0.667 0.426 0.593 0.356 0.637 0.384 0.625 0.383 0.610 0.376

E
T

T
h1

96 0.377 0.399 0.375 0.400 0.386 0.405 0.460 0.447 0.384 0.402 0.423 0.448 0.426 0.446 0.438 0.433 0.397 0.412 0.395 0.424
192 0.418 0.425 0.429 0.421 0.441 0.436 0.512 0.477 0.436 0.429 0.471 0.474 0.454 0.464 0.493 0.466 0.446 0.441 0.469 0.470
336 0.447 0.441 0.484 0.458 0.487 0.458 0.546 0.496 0.638 0.469 0.570 0.546 0.493 0.487 0.547 0.495 0.489 0.467 0.530 0.499
720 0.446 0.458 0.498 0.482 0.503 0.491 0.544 0.517 0.521 0.500 0.653 0.621 0.526 0.526 0.586 0.538 0.513 0.510 0.598 0.544

Avg 0.422 0.430 0.447 0.440 0.454 0.447 0.516 0.484 0.495 0.450 0.529 0.522 0.475 0.480 0.516 0.483 0.461 0.457 0.498 0.484

E
T

T
h2

96 0.287 0.339 0.289 0.341 0.297 0.349 0.308 0.355 0.340 0.374 0.745 0.584 0.372 0.424 0.322 0.364 0.340 0.394 0.358 0.397
192 0.368 0.390 0.372 0.392 0.380 0.400 0.393 0.405 0.402 0.414 0.877 0.656 0.492 0.492 0.404 0.414 0.482 0.479 0.429 0.439
336 0.390 0.411 0.386 0.414 0.428 0.432 0.427 0.436 0.452 0.452 1.043 0.731 0.607 0.555 0.435 0.445 0.591 0.541 0.496 0.487
720 0.411 0.436 0.412 0.434 0.427 0.445 0.436 0.450 0.462 0.468 1.104 0.763 0.824 0.655 0.447 0.458 0.839 0.661 0.463 0.474

Avg 0.364 0.394 0.364 0.395 0.383 0.407 0.391 0.411 0.414 0.427 0.942 0.684 0.574 0.531 0.402 0.420 0.563 0.519 0.437 0.449

E
T

T
m

1

96 0.318 0.355 0.320 0.357 0.334 0.368 0.352 0.374 0.338 0.375 0.404 0.426 0.365 0.387 0.353 0.370 0.346 0.374 0.379 0.419
192 0.358 0.375 0.361 0.381 0.377 0.391 0.390 0.393 0.374 0.387 0.450 0.451 0.403 0.408 0.389 0.387 0.382 0.391 0.426 0.441
336 0.387 0.401 0.390 0.404 0.426 0.420 0.421 0.414 0.410 0.411 0.532 0.515 0.436 0.431 0.421 0.408 0.415 0.415 0.445 0.459
720 0.448 0.438 0.454 0.441 0.491 0.459 0.462 0.449 0.478 0.450 0.666 0.589 0.489 0.462 0.481 0.441 0.473 0.451 0.543 0.490

Avg 0.377 0.392 0.381 0.395 0.407 0.410 0.406 0.407 0.400 0.406 0.513 0.495 0.423 0.422 0.411 0.402 0.404 0.408 0.448 0.452

E
T

T
m

2

96 0.174 0.256 0.175 0.258 0.180 0.264 0.183 0.270 0.187 0.267 0.287 0.366 0.197 0.296 0.183 0.266 0.193 0.293 0.203 0.287
192 0.233 0.295 0.237 0.299 0.250 0.309 0.255 0.314 0.249 0.309 0.414 0.492 0.284 0.361 0.248 0.305 0.284 0.361 0.269 0.328
336 0.294 0.333 0.298 0.340 0.311 0.348 0.309 0.347 0.321 0.351 0.597 0.542 0.381 0.429 0.309 0.343 0.382 0.429 0.325 0.366
720 0.389 0.390 0.391 0.396 0.412 0.407 0.412 0.404 0.408 0.403 1.730 1.042 0.549 0.522 0.410 0.400 0.558 0.525 0.421 0.415

Avg 0.272 0.318 0.275 0.323 0.288 0.332 0.290 0.334 0.291 0.333 0.757 0.610 0.353 0.402 0.287 0.329 0.354 0.402 0.305 0.349
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Algorithm 1 TimeCAT - Context-Aware Transformer Architecture.
Require: Input time series X ∈ RT×N ; input length T ; forecast horizon S; number of variables N ; patch

length Lp; stride s; number of groups G; embedding dimension d.
1: ▷ Instance normalization of the input series.
2: X̃ = InstanceNorm(X) ▷ X̃ ∈ RT×N

3: ▷ Patch embedding: split series into overlapping patches.
4: En = MLP(X̃) ▷ Patch embeddings En ∈ RP×d for each variable
5: En = En + PE ▷ Add positional embeddings (PE)
6: ▷ Dynamic Grouping Layer: split series into G groups.
7: r = softmax(Wg · flatten(X̃′) + bg) ▷ Calculate group ratios
8: ▷ Token-Grouping-and-Merging: prepare new tokens by grouping.
9: Sn = [gn;gn,1; . . . ;gn,G;En] ▷ Append global and group tokens with length embedding

10: ▷ Context-Aware Mixing Block: process tokens for context mixing.
11: for l = 1 to L do
12: Intra-Group Mixing: Concatenate group and value tokens.
13: x̃ = Self-Attention([xgroup, xvalue])
14: x̂group = LayerNorm(xgroup + x̃)
15: x̂value = LayerNorm(xvalue + x̃)
16: Inter-Group and Global Mixing:
17: Ygroup = MLPgroup(X̂

⊤
group)

18: X̃group = LayerNorm(X̂group + Y ⊤
group)

19: Update global token: xupdated
global = xglobal + (xglobal, est − Detach(xglobal, est))

20: yglobal = MLPglobal(x
updated
global )

21: x̃global = LayerNorm(xupdated
global + yglobal) + α ∗ Detach(xglobal,est)

22: end for
23: ▷ Context-Aware Sequence Reconstruction and Prediction.
24: S = [x̃global, X̃group, X̂value]

25: Ŷ = Predictor(S) ▷ Flatten, MLP, and de-normalize for final prediction
26: Return Ŷ ▷ Return the forecast result Ŷ ∈ RS×N

outlined in the method. Consequently, the total computational complexity across all groups becomes:

Ogroup = G ·
(
P

G
+ 1

)2

· d

The computation reduction per variable, R, is calculated as the relative decrease in complexity due to
grouping:

R = 1−
Ogroup

Ono_group
= 1−

(
1

G
+

2

P
+

G

P 2

)
.

In the typical case where P ≫ G, the computation reduction R primarily depends on the number of
groups G. Increasing G generally results in a higher reduction rate in computational complexity.

The information exchange between group and global tokens is implemented using the MLP-Mixer
mechanism, which is more efficient than self-attention modules, as demonstrated in the next experi-
ment section. This further reduces the overall computational overhead. The reduction in computa-
tional overhead allows the model to handle longer sequences and larger datasets more efficiently, e.g.,
the foundation models.

A.3.2 NEW TOKEN MECHANISM FOR TIME SERIES FOUNDATION MODELS

In the realm of time series forecasting, effectively capturing both global and local temporal de-
pendencies is paramount for enhancing predictive accuracy and model robustness. Motivated by
the intricate and hierarchical nature of time series data, we introduce a novel token mechanism
within TimeCAT that distinguishes between global and group tokens. This mechanism leverages
a dynamic grouping strategy to segregate variables into meaningful clusters, allowing the model
to focus on high-level interactions through global tokens while simultaneously modeling detailed
local patterns within each group. The intuition behind this approach is to mimic the hierarchical
structure of temporal data, where overarching trends are captured by global tokens and finer-grained

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

96
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720

TimeCAT iTransformer PatchTST

Figure 6: Visualization of ECL predictions of TimeCAT iTransformer and PatchTST over 96, 192,
336, 720 steps.

fluctuations are addressed by group tokens. By integrating skip connections between global and group
tokens, our mechanism facilitates seamless information flow, enabling the model to learn complex
and interdependent relationships across different temporal scales.

The benefits of this new token mechanism are multifaceted. Firstly, it enhances the model’s ability
to generalize across diverse datasets by providing a structured representation that encapsulates
both broad and specific temporal dynamics. Secondly, the separation of global and group tokens
reduces computational complexity by allowing parallel processing within groups, thereby improving
efficiency without compromising accuracy. Additionally, this hierarchical token structure fosters
interpretability, as it becomes easier to analyze and understand the contributions of global patterns
versus localized trends in the forecasting process. Empirical results, as demonstrated in Table 5,
validate that TimeCAT consistently outperforms existing state-of-the-art models, underscoring the
effectiveness of our token mechanism in capturing the nuanced temporal relationships inherent in
time series data. This advancement paves the way for more sophisticated and scalable foundation
models in time series analysis, offering a robust framework for future research and applications.
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A.4 VISUALIZATION OF PREDICTION RESULTS

Figure 6 highlights the superior performance of TimeCAT in forecasting electricity consumption
levels (ECL) across various steps (96, 192, 336, 720). Compared to iTransformer and PatchTST,
TimeCAT consistently exhibits closer alignment with the ground truth, especially noticeable in the
long-term forecasts of 336 and 720 steps, demonstrating its robust predictive capability and reliability
in handling complex time series data.
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