
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIERARCHICAL GRAPH LEARNERS
FOR CARDINALITY ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Cardinality estimation – the task of estimating the number of records that a
database query will return – is core to performance optimization in modern
database systems. Traditional optimizers used in commercial systems use heuris-
tics that can lead to large errors. Recently, neural network based models have been
proposed that outperform the traditional optimizers. These neural network based
estimators perform well if they are trained with large amounts of query samples.
In this work, we observe that data warehouse workloads contain highly repetitive
queries, and propose a hierarchy of localized on-line models to target these repet-
itive queries. At the core, these models use an extension of Merkle-Trees to hash
query graphs which are directed acyclic graphs. The hash values can divisively
partition a large set of graphs into many sets, each containing few (whole) graphs.
We learn an online model for each partition of the hierarchy. No upfront training
is needed; on-line models learn as the queries are executed. When a new query
comes, we check the partitions it is hashed to and if no such local model was suf-
ficiently confident along the hierarchy, we fall-back onto a default model at the
root. Our experimental results show that not only our hierarchical on-line models
perform better than the traditional optimizers, they also outperform neural models,
with robust errors rates at the tail.

1 INTRODUCTION

Cardinality estimation plays a pivotal role in query optimization of relational databases, as the query
optimizer uses these estimates to order the operators in the query graph and minimize data move-
ment. The goal of cardinality estimation is to estimate the number of records returned by each query
operator to answer a SQL query, without actually executing the query. Traditional cardinality esti-
mation methods in databases like PostgreSQL rely on single column statistics (e.g., histogram and
sketches), sampling, and sometimes “magic” constants. These methods, however, can lead to sig-
nificant estimation errors when underlying data assumptions, such as independence between table
column and uniform data distribution within columns, are violated (Leis et al., 2015).

Recently, several methods propose neural models for cardinality estimation (Kipf et al., 2019; Zhu
et al., 2021; Negi et al., 2023), without making such simplifying assumptions. The core idea frames
cardinality estimation as supervised learning and train machine learning models on representative
(query, cardinality) observations. While learned methods show promising results, they require a
large number of training data. Note that running lots of queries, especially over large collections
of data, to collect training labels is very expensive, probably requiring hours-to-days of human and
machine time.

We observe that database workloads in cloud databases for analytical workloads such as Google
BigQuery or Amazon Redshift contain highly repetitive queries (van Renen et al., 2024) - 50% of
the real world clusters have more than 90% queries repeated in templates (only changing the constant
parameters). In this paper, we focus on these workloads and propose a hierarchy of localized on-line
models to target these repetitive queries. Our method falls back to a default model for non-repetitive
queries. These models use an extension of Merkle-Trees to hash query graphs which are directed
acyclic graphs. The hash values can divisively partition a large set of graphs into many sets, each
containing few (whole) graphs. We learn a separate model for each partition of the hierarchy. While

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

graph sizes can vary, graphs of identical structure (within a partition) must all have the same total
feature dimensionality.

Briefly, to enable this, our method employs templatizers. Each templatizer removes features X from
the input graph G emitting remaining graph structure (“template”) T . We then compute a hash #T

of the template T . A canonical and permutation-invariant ordering of nodes, preserves their position
within the feature vector. For inference on test query, cardinality is estimated using all X’s sharing
the same hash of the test graph. We start searching the hierarchy at the leaves; if the current template
has enough data points to make a prediction, then we use the model at that level, otherwise to move
to the next level, until we fall back to a default model at the root, which can be a traditional optimizer
or a learned cardinality estimator.

Our experimental studies show that our model can already learn to predict cardinality with a high
accuracy especially if repetitiveness is high. Our models outperform traditional and neural models,
and produce better accuracy even at the tail (P90 and P95). Moreover, by organizing the templates
in a hierarchy, we show that we can learn robust models since leaf templates are more specific and
thus can be trained with a few examples while templates in the higher levels need more examples
but are better in generalizing in case queries are different from what we have seen so far.

Outline. The rest of the paper is organized as follows: In §2, we define hierarchical graph tem-
plates and discuss the core method. §3 describes how these hierarchical graph learners are used
for cardinality estimation. §4 and §5 contain the detailed experimental study and the related work,
respectively. Finally, we conclude in §6.

2 HIERARCHICAL GRAPH TEMPLATES

2.1 DEFINITIONS

Basic Notation. Let [n] be the set of integers {1, 2, . . . , n}. Let π ∈ Zn be a permutation of
[n]. Let {0, 1}h be a bit-vector of length h and let {0, 1}∗ denote a bit-vector of arbitrary length.
We denote a (cryptographic) hashing function $: {0, 1}∗ → {0, 1}h. Functional dom(.) accepts a
function as an argument and returns the domain of the argument.

Heterogeneous Directed Acyclic Graphs. Let G denote the space of heterogeneous directed
acyclic graphs (DAGs). An instance G ∈ G has three parts: G = (V, E , f), respectively, (nodes,
edges, features). Let |V| denote the cardinality of V . For simplicity, we assume nodes are integers,
i.e., V , [|V|]. We assume edge-set E ⊂ V × V encodes a DAG. This assumption is necessary for
our DAG hashing function (§2.4). Finally, every node v ∈ V has an associated “feature dictionary”
f (v). We demonstrate two example f (v)’s (pertaining to our application, §3):

f (v) = {n: “movies”, c: 10000, i: 5days }, for v = movies table in Fig. 2a; (1)

f (v) = {n: “year”, t: int, u: 65, min: 1960, max: 2024} , for v = year column in Fig. 2a (2)

f (v) : Z → Ψ can be interpreted as a function that maps categories (∈ Z) onto arbitrary objects
(∈ Ψ). Our algorithm handles any object types, however, objects (1) must be representable as
{0, 1}∗ (see §2.4) and (2) if it is used for learning, must be accompanied with featurizer function
ψ : Ψ → Rdψ , where dψ ∈ Z+ is dimensionality of extracted feature (see §3.2). We use subscript
notation to access feature values: f (v)u denotes the value at key u (in Eq. 2, f (v)u = 65). Notation
f
(v)
S reads a set of features. Formally,

f
(v)
S = {s: f (v)s | s ∈ S} for all S ⊆ dom(f (v)). (3)

For instance, f (v)S = {c: 10000, i: 5days } when S = {c, i} and f (v) is defined per Eq. 1.

Definition 1 (GRAPH ISOMORPHISM) G1 = (V, E1, f) is isomorphic to G2 = (V, E2, z), de-
noted as G1

∼= G2 (equivalently, G2
∼= G1), if-and-only-if there exists a permutation π such that

E1 = {(πu, πv) | (u, v) ∈ E2} and f (v) = f (πv) for all u ∈ V .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

movies

year

>

2020

n: movies
t: str
u: 10,000

v: 2020
%: 90

o: >
x: …n: year

t: int
u: 65
max: 2024
min: 1960

movies

year

>

2015 v: 2015
%: 70

movies

year

=

2015 v: 2015
%: 70

movies

likes

>

500K v: 500K
%: 97

n: likes
t: int
u: 1M
max: 1M
min: 0

movies

year

>

2015
lang

=

en

&

957

G

y 2777 158 1987

movies

year

>

2020 v: 2020
%: 90

70

select * from movies
where movies.year > 2020

select * from movies
where movies.year > 2015

select * from movies
where movies.year = 2015

select * from movies
where movies.likes > 500,000

select * from movies
where movies.year = 2015
and movies.lang = ‘en’

Q

(true cardinality)

Query Stream newold

(a) Query stream. Queries arrive from left-to-right.

t: int

2020

2015

2020 > 65

2015 > 65

2015 = 65

2777

70

1987

957

158

2777
957

movies

root

H3 H2 H1
St

 {table name, column type} {table & column name} {table & column name, predict op}

Sx {constant value, predict op, unique value} {constant value, predict op} {constant value}

movies

year

movies

2020 >

2015 >

2015 =

2777

70

957

50K = 1M

year

movies

>T X y

(b) Template Hierarchy. Columns correspond to template functions Hi ∈ H, with Feature-Label (Xi,yi) per
template. Leaf templatizer H1 is the most-granular, grouping identical graphs with constant feature removed.
Inference invokes models within each group, along one path from root to leaf (determined by T).

Figure 1: Stream of query graphs get indexed into the template hierarchy. Every graph will store its
features on a path from root-to-leaf. Border-colors of stream queries correspond to (X,y) pairs.

Definition 2 (TOPOLOGICAL ORDER) For any directed acyclic graph G = (V, E , f), there exists
one-or-more valid topological orderings. Let π ∈ Z|V| denote one valid ordering. π is considered a
valid ordering if πv < πv′ for all (v, v′) ∈ E .

Definition 2 implies that v should be ordered before v′ for all edges v→v′. However, it is important
to remember that topological order is not unique. DAGs can have many valid topological orderings.

2.2 TASK: ONLINE SUPERVISED LEARNING ON GRAPHS

Our task falls under supervised learning on graphs (not within1 graphs). For each graph G ∈ G, we
can obtain its (ground-truth) training label as y(G) ∈ Y . We are interested in model ŷ : G → Y
to approximate y(G) for every G ∈ G. Graph Neural Networks (GNNs) (Chami et al., 2022), with
graph-pooling, are valid candidates for ŷ.

Further, we are interested in an online setting. Databases can receive query stream from users,
during which, cardinality estimates can be obtained per incoming query (e.g., to optimize join-
order). We wish to incrementally improve our models, as we collect observations from the stream.

2.3 GRAPH TEMPLATE EXTRACTIONS

We define “templatizer” function H : G → G × Rd. Given graph G ∈ G, The outputs of H(G) are
(1) “template” T ∈ G, i.e., copy of the graph structure of G but many features are removed and (2)

1While many recent GNN methods focus on node- or edge-level tasks, e.g., node-classification or link-
prediction, our method is designed for graph-level tasks, e.g., graph classification or regression.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

movies movies_actorsdirectors actors

movie_id actor_ididid id

=

director_id

= =

year

>

scan

join

2020

scan

join
join

scanscan

select actors.*, directors.* from actors, directors, movies, movie_actor where
directors.id = movies.directors.id and movies.id = movie_actor.movie_id and
actors.id = movie_actors.actor_id and movies.year > 2000

(a) SQL statement and its corresponding graph.

1987
1987

n: movies
t: str
u: 10,000

q: 2020
%: 90

o: >n: year
t: int
u: 65
max: 2024
min: 1960

inputs:
Sx
St
G

const.q{tab.n, col.n, pred.o}

>

movies

year

n: movies

o: >

n: year

outputs:
T

[2020]

X

H

year

movies

>

2020

(b) Template function H templatizes on
S
(table)
t = S

(col)
t = {name}, S

(pred)
t =

{op-code}, and keeps S(const)
x = {quantity}

Figure 2: Query Graph. Features shown in zoom around year node, depicting templatization (§2.3).

x ∈ RdT the removed features. Note: T determines the dimension of x.

(T,x)← H(G), with graph “template” T and “specialization values” x. (4)

Importantly, T has the same structure as G. However, T is likely to miss many node features of G.
Instead those features are folded onto x.

Now, suppose two graphs, e.g., G1 ∈ G and G2 ∈ G, (i) share the same structure but (ii) have
different feature values. Given an H , let (T1,x1)← H(G1) and let (T2,x2)← H(G2). We desire
H such that T1 ∼= T2 due to (i) and that x1 6= x2 due to (ii).

We write-down general form for all H ∈ H. Specifically, each H has the following form, though
different H’s only differ in their hyperparameters.

(T,x)← H(G; {S(v)
t ,S(v)

x }); with input G = (V, E , f), hyperparameters S(v)
t ,S(v)

x ⊆ dom(f (v)),

and outputs T = (V, E , fSt) and x = CONCAT
v∈V,s∈S(v)

x

(ψ(f (v)s)). (5)

In other words, the output template graph T keeps only features of G that are listed in (hyper-
parameters) {S(v)

t }v∈V , and the output features x is a concatenation of node features specified in
(hyperparameters) {S(v)

x }v∈V . Figure 2b depicts an example H . Further, §2.5 utilizes family of
templatizersH = {H1, H2, . . . }. We discuss the design ofH in §3.1.

2.4 ONE-WAY HASHING OF DIRECTED ACYCLIC GRAPHS

Hashing functions $: {0, 1}∗ → {0, 1}h convert a bit-vector of arbitrary length into a hash value: a
fixed-size bit-vector. In our work, we desire a function that can hash DAGs, specifically, we desire:

: G → {0, 1}h, and denote #G , #(G), (6)

such that, if #G1 = #G2 , then G1
∼= G2 with high probability.

We design graph hash function # by generalizing the celebrated Merkle Trees (Merkle, 1988)—
well-established in cryptography and computer security—onto DAGs (represneting query graphs).
Merkle Trees can verify if a large file (with n blocks) has been tampered with, and if so, can (effi-
ciently) determine which block has been modified (in O(log n) time). While Merkle Trees satisfy
its intended use-cases, it does not naively operate on arbitrary DAGs where all nodes have features.
We propose a generalization onto (i.) DAGs, (ii.) where all node may have features and (iii.) order
of children is irrelevant (for most nodes). Table 6 (Appendix) summarizes the generalization.

The algorithm is relatively simple: locally hash the features in all nodes. Then, in topological order,
update every node’s hash to incorporate the hash of its predecessors. Finally, combine all hashes
according to topological order, breaking ties using hash values. Algorithm. 2 is listed in Appendix.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Procedures of Template History Learner

1: input hyperparameter: H = {H1, H2, . . . } (defined in Eq. 5)
2: initialize: F ← {}
3: initialize: ŷ ← MASTERMODEL() per Eq.10
4: function ADDEXAMPLE(G, y(G))
5: for Hi ∈ H do
6: (T,x)← Hi(G)

7: X
[#T]
i ← X

[#T]
i ∪ {x}

8: Y
[#T]
i ← Y

[#T]
i ∪ {y(G)}

9: function INFER(G)
10: z←

{
F [#T]
i (G,x)

∣∣∣ Hi ∈ H and (T,x)← Hi(G)
}

11: return ŷ(z)

2.5 ONLINE LEARNING OF TEMPLATE HIERARCHIES

Outline. Given a stream of graphs D = (G1, G2, . . .), we design an algorithm that can make
prediction on every Gj ∈ D using all prior {Gk ∈ D | k < j} , D<j . The main idea is to learn
many (simple) models. All graphs whose templates are isomorphic share the same model. Each
Hi ∈ H processes every G ∈ D. Templatizer Hi(G) extracts graph template T and features x.
For inference, model associated with #T is retrieved2, then invoked to predict y from x. All |H|
predictions can be combined with high-level master model ŷ : R|H| → Y . For training, once the
ground-truth answer y(G) is retrieved, models update to learn from (x, y(G)).

Feature-Label Matrices per (templatizer, template)-Pair. Given templatizer Hi ∈ H, an arbi-
trary template T produced by Hi, and timestamp j ≤ |D|, then the set

X
[#T]
i,<j = { xk | (Tk,xk)← Hi(Gk) if #Tk = #T }Gk∈Dj (7)

Can be cast as matrix, since its rows of xj ∈ RdT are of the same3 dimensionality, whose graph
templates are isomorphic. Hence, X[#T]

i,<j ∈ R◦×dT and label matrix

Y
[#T]
i,<j = { y(Gk) | #T = #Hi(Gk) }Gk∈D<j ∈ Y

◦ where ◦ =
∑
k<j

1[#T=#Hi(Gk)]. (8)

Model per (templatizer, template)-Pair. Let F [#T]
i : RdT → Y denote model specialized for

template T of Hi. There are many possibilities for F [#T]
i , which we co-design with corresponding

Hi (see §3.3). Inference on subsequent G can run |H| (parallel) invocations:

zG =
{
F [#T]
i (x) | Hi ∈ H and (T,x)← Hi(G)

}
∈ Rm. (9)

then invoke ŷ(zG). For training, some models F [#T]
i update periodically using

(
X

[#T]
i,<j ,Y

[#T]
i,<j

)
,

while others incrementally absorb each incoming observation (Gj , y(Gj)) – see, §3.3). Nonetheless,
learning can happen in parallel for all F [#T]

i .

Algorithm 1 defines routines (ADDEXAMPLE, INFER), initializes master model ŷ, and initializes
data structure F to a Hashtable. At every Gj ∈ D, routine INFER(Gj) can return the estimated
quantity of interest (e.g., cardinality), by invoking ŷ on the output of |H| invocations of F . Once the
caller retrieves the ground-truth value y(Gj) (e.g., as the query results are assembled) then routine
ADDEXAMPLE can incorporate the example (Gj , y(Gj)) into the (simple) models within F .

2All models are small (kept in RAM). In practice, since probability of false collision is low albeit non-zero,
the actual hashtable keys we use are (#T , dT), i.e., pairing with dimension of the x produced alongside T .

3dT =
∑
v∈V

∑
(j,ψ)∈S

(v)
x

dψ .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 HIERARCHICAL GRAPH LEARNERS FOR CARDINALITY ESTIMATION

3.1 TEMPLATIZATION

We studied three templatization strategies, H1, H2, H3, ranging from fine-grained to coarse-grained
templates. Table 1 shows the feature sets kept in the template T VS extracted to the dense vector
x, for every Hi. For example, The fine-grained H1 removes just the {constant value} from the
template. Hence query graphs found in the same H1 template differ only by the constant values.

Table 1: Templatization Strategies. Each Hi templatizes as (Ti,xi) ← Hi(G) where T and x
include features listed in, respectively, St and Sx. The choices St induce a divisive hierarchy as
every St row includes the information of the next row (column name determines column type).

.
Templatizer Hash features St Dense (model) features Sx

H1 {Table name, column name, predicate op} {constant value}
H2 {Table name, column name} {constant value, predicate op}
H3 {Table name, column type} {constant value, predicate op,

column unique value}

3.2 FEATURIZERS

The templatizer extracts features of many types into x, including numeric, string, date, time,
boolean, respectively, we use featurizers ψ as, identity, ASCII of first-3 characters (in base 256),
as numeric YYYYMMDD, as numeric hhmmss, as {0, 1}. Finally, we map each into the range [0, 1].
We explore two scaling techniques: normalizing (ie. v−min

max−min) and replacing with percentile. We
map predicate operators (>,<,=, or, and, . . .) to unique integers.

Further, we add one more feature that our models find useful: combining combine the constant with
the predicate operator to produce range vector. For example, “≤ 2000” is featurized as [0, 0.3],
“= 2000” becomes [0.3, 0.3], and “≥ 2000” becomes [0.3, 1] (supposing constant 2000 scales to
0.3); all other predicate operators are currently featurized as [0, 1] for simplicity.

3.3 LEARNING

We use a rule-based ŷ. Its output ŷ(G) can be concisely described with a flow-chart:

ŷ(G) =start s(#T1) > τ1

F [#T1]
1 (x1)

s(#T2) > τ2

F [#T2]
2 (x2)

s(#T3) > τ3

F [#T3]
3 (x3)

root(G)

if else if else if

then then then

else

, (10)
where the history size s(#Ti) equals the number of observations that hash to #Ti , i.e., the height of
matrices X[#Ti]

i and Y
[#Ti]
i . Given graph G ∈ G, let (Ti,xi) ← Hi(G) for i ∈ {1, 2, 3}. Further,

let τ1 < τ2 < τ3 denote “activation thresholds”4. If the size of #Ti meets the threshold τi, we
invoke the corresponding Fi. If not, we move on to the next hierarchy level.

• root(G) will be invoked when incoming query G has an unfamiliar template (a.k.a, the
cold-start problem). We propose to set root(G) to a default estimator, eg. Postgres.

• We try-out several choices for F . All showing incremental and/or instant training, e.g.,

Linear Regression: F [#T]
i (x) =

(
X

[#T]
i

)†
Y

[#T]
i x (11)

Gaussian Kernel: F [#T]
i (x) =

∑
jY

[#T]
i,j e−d(x,X

[#T]
i,j)∑

j e
−d(x,X[#T]

i,j)
(12)

Gradient-Boosted Decision Trees: implementation of (Chen & Guestrin, 2016) (13)
4It will always be that s(#T1) < s(#T2), due to the divisive hierarchy

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where (.)† denotes Moore-Penrose inverse and d(., .) denotes distance function (see Appendix). For
linear regression (Eq. 11), we add5 column of 1 to x and to X

[#T]
i . As observations

(
X

[#T]
i ,Y

[#T]
i

)
grow, it is unnecessary to re-compute (from scratch) the pseudo-inverse (.)†. It can be incrementally
updated, e.g., with rank-1 changes to the Singular Value Decomposition of X[#T]

i , per Brand (2006).

4 EXPERIMENTAL EVALUATION

Metrics. We quantify the error of cardinality estimate ŷ(G) and true (label) cardinality y(G) with:

Qerr = max

(
y

ŷ
,
ŷ

y

)
(14) Aerr = |ŷ − y| (15) Rerr = 1− min(ŷ, y)

max(ŷ, y)
(16)

respectively known as Q-error, absolute error, and relative error.

Datasets. We run experiments on several database workloads, downloaded from benchmark
(Cardbench, Chronis et al., 2024) (prefixed “binaryjoin-” within figures). Further, we extend their
query generator to: 1) enable multi-way join queries (up-to 5 joins) to increase the query complex-
ity; 2) incorporate the high repetiveness feature of data warehouse workloads as in Redshift (van
Renen et al., 2024) (prefixed “multijoin-”). For all multijoin datasets, we fixed the sample constant
size at 10 and varied the sample size (repetition rate) to evaluate its impact on accuracy in Fig 4.

Models. We use Cardinality Estimation models – Postgres, MSCN, ours {Hi,Fi}i.

(1) Postgres: Traditional histogram-based estimator implemented in open-source PostgreSQL
(PostgreSQL Group). This estimator can be invoked on any query (100% admit rate).

(2) MSCN: Neural-based estimator (Kipf et al., 2019). We train two model copies, per database
workload: “MSCN” and “MSCN+”, respectively, on 1000 query graphs and on 25% of the
graphs (3.3X-10X vs MSCN). Crucially, MSCN cannot admit queries containing “or” predi-
cates6. On our workloads, MSCN admits 61% of the queries.

(3) Ours: History-based estimator. We infer using (Fi, Hi) per Eq.11–13, either for singular i = 1
or multiple {(Fi, Hi)}i∈{1,2,3} that live on a hierarchy (§2.5). Singular (Fi, Hi) can estimate
only if there are enough observations of template {Ti ← Hi(G)}.

Overview. We conduct three kinds of experiments: §4.1 evaluates the practical scenario that
inference is required for all queries. Here, a method can fall-back onto another. §4.2 conducts
apples-to-apples comparison of our models against prior work; §4.3 Ablates our models;

4.1 HIERARCHICAL MODELS

In this set of experiments, methods must always make a prediction. Our method defaults to the
Postgres estimator, in cases, where the graph structure is novel (has not appeared earlier in the online
setting). Our full hierarchy, depicted in Figure 1b and formalized in Equation 10, is abbreviated
(H1, H2, H3,P), where P denoting Postgres estimator. We set thresholds (τ1, τ2, τ3) in Eq.10 to (3,
10, 100) and employ Gradient-Boosted Decision Trees (GBDT) at each hierarchical level.

How effective are hierarchical learners? Table 2 compares hierarchical models with different
hierarchy combinations. Comparing (H1, H2, H3,P), (H2, H3,P), (H3,P), and Postgres, we can
see the models keep improving when we add more levels of hierarchy and the full hierarchy of
models is always better than Postgres at all metrics. In addition, The full hierarchy leverages each
level effectively, as evidenced by the activation ratios (0.69, 0.04, 0.01, 0.26) for H1, H2, H3, and
Postgres, respectively. These results demonstrate the effectiveness of our hierarchical models in
leveraging historical data to enhance the cardinality estimation capabilities of traditional optimizers.

The necessity of multiple hierarchy? Table 2 also shows the need of hierarchy. Comparing
(H1,P), (H1, H2,P), (H1, H2, H3,P), the latter two consistently outperform the first. This in-
dicates that a simple hierarchy (H1,P) is insufficient, highlighting the importance of multi-level
hierarchies.

5Equivalent to adding bias-term to one-layer model.
6As-is, MSCN (Kipf et al., 2019) was developed for conjunctions only, its extension is beyond our scope.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Hierarchical models. Median relative error, median absolute error and Q-Error percentiles.

hierarchy Rerr Aerr Q50
err Q90

err Q95
err Rerr Aerr Q50

err Q90
err Q95

err

multijoin-cms multijoin-stackoverflow

Postgres 0.70 2.4e5 3.33 112 2.3e3 0.79 2.8e5 4.85 360 3.1e3

(H3,P) 0.69 2.2e5 3.21 110 2.2e3 0.77 1.8e5 4.30 367 3.8e3

(H2, H3,P) 0.13 2.0e4 1.15 46.67 159 0.14 1.7e3 1.16 44.33 464
(H1,P) 0.06 9.1e3 1.07 22.22 97.00 0.10 456 1.12 21.03 200

(H1, H2,P) 0.06 8.5e3 1.06 20.10 94.48 0.10 388 1.11 18.01 182
(H1, H2, H3,P) 0.06 8.5e3 1.06 20.10 94.48 0.10 388 1.11 18.01 182

multijoin-accidents multijoin-airline

Postgres 0.39 8.8e7 1.65 10.31 18.29 0.39 2.6e4 1.63 97.30 216
(H3,P) 0.25 3.1e7 1.34 8.93 20.60 0.37 2.4e4 1.59 97.00 216

(H2, H3,P) 0.13 1.2e7 1.15 4.81 15.42 0.17 6.0e3 1.20 13.88 91.00
(H1,P) 0.13 1.1e7 1.15 4.95 17.25 0.12 3.2e3 1.13 4.50 29.20

(H1, H2,P) 0.13 1.1e7 1.15 5.02 17.70 0.12 3.1e3 1.13 4.29 25.00
(H1, H2, H3,P) 0.13 1.1e7 1.15 5.02 17.70 0.12 3.1e3 1.13 4.29 25.00

multijoin-employee multijoin-geo

Postgres 0.35 1.2e3 1.54 3.38 4.83 1.00 9.2e6 224 2.1e5 1.2e6

(H3,P) 0.26 961 1.35 3.14 4.42 1.00 8.9e6 218 2.1e5 1.2e6

(H2, H3,P) 0.04 481 1.05 2.11 2.98 0.09 1.6e4 1.10 5.8e3 7.3e4

(H1,P) 0.03 297 1.03 2.09 3.07 0.08 4.3e3 1.09 192 1.1e4

(H1, H2,P) 0.03 269 1.03 2.03 3.01 0.07 3.3e3 1.08 66.38 7.0e3

(H1, H2, H3,P) 0.03 269 1.03 2.03 3.01 0.07 3.3e3 1.08 66.38 7.0e3

binaryjoin-stackoverflow binaryjoin-airline

Postgres 0.69 1.5e7 3.28 160 470 0.55 9.3e4 2.22 37.17 127
(H3,P) 0.66 9.0e6 2.93 149 382 0.53 2.0e5 2.11 63.00 206

(H2, H3,P) 0.42 1.8e6 1.74 60.48 183 0.45 1.5e5 1.82 51.55 190
(H1,P) 0.43 1.7e6 1.76 53.33 175 0.44 5.3e4 1.80 28.15 112

(H1, H2,P) 0.40 1.5e6 1.66 44.00 174 0.44 5.3e4 1.80 28.24 112
(H1, H2, H3,P) 0.39 1.5e6 1.63 45.15 175 0.44 1.4e5 1.80 43.00 179

4.2 COMPARING INDIVIDUAL MODELS

In this section, we compare all methods on the intersection of queries they are able to admit –
about 25% of queries. While §4.1 shows practical hierarchies that are able to process any query, this
provides a sound apples-to-apples comparison.

Table 3 summarizes the performance of four models: Postgres, MSCN, MSCN+, and only one
model-templatizer pair (F1, H1), specifically, GBDT (Eq. 13) with H1. MSCN+ (trained on ≈ 5X
more data) is much better than MSCN and is frequently better than Postgres. Overall, our method
is competitive and produces higher accuracy majority of the time. In particular, H1 is substantially
better (10X-50X+) than Postgres half-of-the-time. We also observe that our model is more robust at
the tail of the error distribution (P90 and P95).

4.3 ABLATION STUDIES

Model Choice. We compare across choices of models F (Eq. 11–13) and Hi’s in Fig 3. We find
that Gradient-Boosted Decision Trees (GBDT) are consistently strong across different datasets and
level of hierarchy, so we choose GBDT for Table 3, and on every level of hierarchy in Table 2.

Repetition Rate. We modify the workload generator in Chronis et al. (2024) to enable more
constants for each predicate in the query. For example, instead of generating a query with predicates
“a > 5 AND b = 2”, our modified generator will generate “a > 5 AND b = 2”, “a > 5 AND b
= 20”, “a > 1 AND b = 2”, “a > 1 AND b = 20” when the sample size is 2, meaning that each
predicate will have 2 constants to choose from (ie. a > [1, 10], b = [2, 20]). The constant sample
sizes in the experiment we choose are [1, 3, 10], therefore it generates the repetition rate of 20%,
81% and 91% in query templates. As shown in Fig 4, all templatization strategies exhibit improved
performance with increasing workload repetition, while maintaining low q-error levels.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Model Errors at various percentiles, per dataset. We bold strongest number per (database,
q-error percentile).

model Rerr Aerr Q50
err Q90

err Q95
err Rerr Aerr Q50

err Q90
err Q95

err

multijoin-cms multijoin-stackoverflow

postgres 0.68 2.5e5 3.17 53.79 3.0e3 0.74 4.2e4 3.87 149 1.6e3

MSCN 0.56 3.7e5 2.28 13.06 30.33 0.89 1.6e4 8.86 62.77 167
MSCN+ 0.41 2.4e5 1.69 4.65 7.08 0.50 9.7e3 2.00 10.99 30.98

H1 0.02 5.1e3 1.02 1.69 2.74 0.05 30.03 1.05 2.19 5.46

multijoin-accidents multijoin-airline

postgres 0.42 6.0e7 1.73 11.04 20.21 0.20 1.3e5 1.25 8.68 44.04
MSCN 0.74 5.4e7 3.82 17.82 46.64 0.37 3.0e5 1.59 7.71 14.09

MSCN+ 0.54 3.1e7 2.20 8.31 15.22 0.39 3.3e5 1.65 7.28 12.32
H1 0.08 4.0e6 1.09 3.31 19.13 0.11 6.6e4 1.13 3.24 8.98

multijoin-employee multijoin-geo

postgres 0.35 2.6e3 1.53 3.46 5.26 0.99 4.7e6 161 1.7e5 9.0e5

MSCN 0.38 1.9e4 1.61 4.20 7.18 0.51 8.0e3 2.03 9.87 15.50
MSCN+ 0.17 7.1e3 1.20 1.74 2.10 0.49 7.1e3 1.98 5.68 9.35

H1 0.01 268 1.01 1.59 2.23 0.02 99.00 1.02 1.67 3.05

binaryjoin-stackoverflow binaryjoin-airline

postgres 0.68 2.4e7 3.16 161 332 0.38 2.2e6 1.62 6.43 23.40
MSCN 0.41 2.6e6 1.68 10.96 29.36 0.73 3.1e6 3.71 60.08 91.24

MSCN+ 0.29 2.3e6 1.41 3.34 5.43 0.79 3.5e6 4.78 39.58 45.57
H1 0.02 1.2e5 1.02 1.41 2.14 0.01 2.2e4 1.01 1.32 1.70

Figure 3: 50th percentile Q-error per database, comparing templatization strategies and learners.

1 2 3
Repetitions

1

10

100

H1

1 2 3
Repetitions

H2

1 2 3
Repetitions

H3

Q50
err our GBDT Q90

err our GBDT Q50
err Postgres Q90

err Postgres

Figure 4: Accuracy of our learners, as a function of repetition amount. Each chart shows one
templatization strategy, containing 4 lines: {Gradient Boosted Decision Tree (Eq. 13), Postgres
Estimator } × {50th, 90th Q-errors}. The Y-axis displays Q-errors.

History Size. We assess the performance of learners as a function of history size, in the Appendix.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 RELATED WORK

Learned Cardinality Estimation. In the recent years, several lines of approach learned cardinally
estimation have been proposed (Han et al., 2021; Sun et al., 2021; Kim et al., 2022). The first line
is workload-driven learning (Kipf et al., 2019; Negi et al., 2023; Reiner & Grossniklaus, 2024),
which requires pre-collected workload queries and their executions against the database to collect
true cardinalities as the training data. To reduce cost of acquiring training data, the second direction
explores data-driven learning (Yang et al., 2019; 2021; Hilprecht et al., 2020; Wu et al., 2023; Kim
et al., 2024), which learns a model only on the data capturing its distributions without running any
queries. While these models do not have the overhead of running queries, for large databases it could
still take hours to train such models. Kim et al. (2024) develops auto-regressive model that samples
queries matching filters, crucially supporting string and disjunctive filters. Another line includes
localized-models which learn lightweight models that can to capture certain query patterns and can
adapt online. Our own work falls into this category. Our method is most-similar to (Malik et al.,
2007), since they also group queries by templates, and also do learning-and-inference on dense-
vectors within each template. However, we differ in two ways: (1) The templates of (Malik et al.,
2007) use a flat vector representation for queries, our are graphs and for grouping we use graph
hashes – as such, ours are invariant to node orderings (2) We learn hierarchies of models rather than
a flat grouping of models. Moreover, other approaches have explored also different directions to
represent queries for localized models. For comparison, Dutt et al. (2019) creates conjunction trees
made of simple predicates while Woltmann et al. (2019) learn models on groups of related tables.
All these representations are less expressive than query graphs to provide a direct way to represent
queries in databases. In fact, our modeling approach to represent queries is very similar to methods
used to learn query cost prediction (e.g., execution time) (Hilprecht & Binnig, 2022; Wu et al., 2024)
which also uses a query graph representation while our approach uses them to represent groups of
similar queries for cardinality estimation.

Graph Hashing. Helbling (2020) compute hash values for directed graphs, also by extending
Merkle Trees (Merkle, 1988). There are also other methods that can operate on directed but also
undirected graphs, including (Portegys, 2008) and WL (Shervashidze et al., 2011). These methods
iteratively update node’s hash using itself and its neighbors. Each update-round incorporates infor-
mation from further neighbors. The number of iterations could be set to the graph diameter. Our
algorithm slightly differs as our graph nodes could be invariant neighbor orders sometimes (e.g., or
junction), while being variant at other times (e.g.,> operator). In addition, we only work with DAGs
and therefore iterating in topological order terminates the algorithm.

Decoupled Graph Neural Nets. Our method is also linked to methods that “decouple” the graph-
processing step from the learning. Specifically, methods that extract features using the graph and no
longer need the graph for learning. These methods include (Wu et al., 2019; Frasca et al., 2020). In
that regard, our method also uses the graph for pre-processing. We differ than those methods as they
use the structure to propagate information along edges whereas we hash the structure.

6 CONCLUSION

In this paper, we propose a localized on-line models for cardinality estimation. Queries with isomor-
phic structures will be grouped-together, with different templatization strategies forming a hierarchy.
Within each group, a simple model, e.g., linear regression or gradient-boosted decision trees, can
be trained to estimate cardinality of a given query. A predictions is always made at the lowest-level
node with sufficient observations, and falls back onto either neural or traditional methods at the root.
However, this new query already establishes an observation when the pattern is repeated. In the ex-
periments, we show that our models outperform traditional and neural models, and produce robust
accuracy even at the tail (P90 and P95). Moreover, H1 is substantially better (10X-50X+) than Post-
gres half-of-the-time. As future work, we plan to explore different grouping methods, increasing the
hierarchy with more templatization strategies, and explore different default models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Matthew Brand. Fast low-rank modifications of the thin singular value decomposition. In Linear
Algebra and its Applications, 2006.

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine
learning on graphs: A model and comprehensive taxonomy. In Journal on Machine Learning
Research, 2022.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In SIGKDD Conference
on Knowledge Discovery and Data Mining, 2016.

Yannis Chronis, Yawen Wang, Yu Gan, Sami Abu-El-Haija, Chelsea Lin, Carsten Binnig, and Fatma
Özcan. Cardbench: A benchmark for learned cardinality estimation in relational databases. In
arxiv:2408.16170, 2024.

Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya, and Surajit Chaud-
huri. Selectivity estimation for range predicates using lightweight models. Proceedings of the
VLDB Endowment, 2019.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Benjamin Chamberlain, Michael Bronstein, and
Federico Monti. Sign: Scalable inception graph neural networks. In ICML 2020 Workshop on
Graph Representation Learning and Beyond, 2020.

Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai Zeng, Gao Cong,
Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren Zhou, Jiangneng Li, and Bin Cui. Car-
dinality estimation in dbms: a comprehensive benchmark evaluation. Proc. VLDB Endow., 2021.

Caleb Helbling. Directed graph hashing. In International Conference on Combinatorics, Graph
Theory & Computing, 2020. URL https://arxiv.org/abs/2002.06653.

Benjamin Hilprecht and Carsten Binnig. Zero-shot cost models for out-of-the-box learned cost
prediction. Proc. VLDB Endow., 2022.

Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and
Carsten Binnig. DeepDB: learn from data, not from queries! Proceedings of the VLDB Endow-
ment, 2020.

Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and Jaehyok Chong.
Learned cardinality estimation: An in-depth study. In Proceedings of the 2022 International
Conference on Management of Data, 2022.

Kyoungmin Kim, Sangoh Lee, Injung Kim, and Wook-Shin Han. Asm: Harmonizing autoregressive
model, sampling, and multi-dimensional statistics merging for cardinality estimation. In Proc.
ACM Manag. Data, 2024.

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons Kemper.
Learned cardinalities: Estimating correlated joins with deep learning. In Biennial Conference
on Innovative Data Systems Research, 2019.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neu-
mann. How good are query optimizers, really? Proceedings of the VLDB Endowment, 2015.

Tanu Malik, Randal Burns, and Nitesh Chawla. A black-box approach to query cardinality estima-
tion. In Biennial Conference on Innovative Data Systems Research (CIDR), 2007.

R. C Merkle. A digital signature based on a conventional encryption function. In Advances in
Cryptology – CRYPTO ’87. Lecture Notes in Computer Science, 1988.

Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam Madden, Tim Kraska,
and Mohammad Alizadeh. Robust query driven cardinality estimation under changing workloads.
Proc. VLDB Endow., 2023.

Tom Portegys. General graph identification by hashing. In arxiv:1512.07263, 2008.

11

https://arxiv.org/abs/2002.06653

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

PostgreSQL Group. Postgresql documentation 17.68.1: Row estimation examples.

Silvan Reiner and Michael Grossniklaus. Sample-efficient cardinality estimation using geometric
deep learning. Proc. VLDB Endow., 2024.

R.L. Rivest. The md5 message-digest algorithm. In Internet Activities Board, 1992.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler lehman graph kernels. In Journal of Machine Learning Research, 2011.

Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. Learned cardinality estimation: a
design space exploration and a comparative evaluation. Proceedings of the VLDB Endowment,
2021.

Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Eknath Vaidya, Wenjian Dong, Murali
Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim Kraska. Why tpc is not
enough: An analysis of the amazon redshift fleet. In VLDB 2024, 2024.

Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolfgang Lehner. Cardinality
estimation with local deep learning models. In Proceedings of the Second International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management, 2019.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In International Conference on Machine Learning, 2019.

Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel Madden. FactorJoin:
A New Cardinality Estimation Framework for Join Queries. 2023.

Ziniu Wu, Ryan Marcus, Zhengchun Liu, Parimarjan Negi, Vikram Nathan, Pascal Pfeil, Gaurav
Saxena, Mohammad Rahman, Balakrishnan Narayanaswamy, and Tim Kraska. Stage: Query
execution time prediction in amazon redshift. In Companion of the 2024 International Conference
on Management of Data, 2024.

Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter Abbeel,
Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. Deep unsupervised cardinality estimation.
In Proceedings of the VLDB Endowment, 2019.

Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica.
NeuroCard: One cardinality estimator for all tables. VLDB Endowment, 2021.

Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian, Jingren Zhou, and
Bin Cui. Flat: Fast, lightweight and accurate method for cardinality estimation, 2021. URL
https://arxiv.org/abs/2011.09022.

12

https://arxiv.org/abs/2011.09022

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DATASET STATS

This section presents the statistics of the datasets used in this paper. Importantly, Table 4 presents
the repetition rates at different template levels, following the definition from van Renen et al. (2024).
Our multi-join workloads, with H1 repetition rates between 83% and 96%, closely mimic the
90% template repetition rate reported in van Renen et al. (2024). Table 5 summarizes the diverse
databases used in our experiments. The smallest databases (accidents and employee) have 3 and
6 tables, respectively, while the largest database (cms synthetic patient data omop) comprises 24
tables and 32 billion rows.

Table 4: Workload Statistics.

Repetition Rate (%)
Workload Database # Queries

H1 H2 H3

multijoin-stackoverflow 16k 91 94 95
binaryjoin-stackoverflow stackoverflow 13k 67 85 96

multijoin-airline 20k 93 95 96
binaryjoin-airline airline 13k 34 56 94

multijoin-accidents accidents 29k 95 97 98
multijoin-cms cms synthetic patient data omop 14k 83 87 88
multijoin-geo geo openstreetmap 13k 94 96 96

multijoin-employee employee 62k 96 98 98

Table 5: Database Statistics.

Database # Tables # Columns # Rows # Join Paths
stackoverflow 14 187 3.0B 13

airline 19 119 944.2M 27
accidents 3 43 27.4M 2

cms synthetic patient data omop 24 251 32.6B 22
geo openstreetmap 16 81 8.3B 15

employee 6 24 48.8M 5

A.2 HASHING FUNCTION EXTENDED

In this section, we includes the algorithm (Algorithm 2) and comparison table (Table 6) to further
illustrate the hashing function in Section 2.4.

Table 6: Input data requirements. Merkle’s method is designed for balanced search trees (BSTs),
with features only on leaf nodes. Our generalization (Alg. 2) produces identical output to Merkle’s
when input is BST, additionally generalizing to DAG inputs.

Comparison Merkle Trees (Merkle, 1988) DAG Hashing (Alg. 2)
Hashable Structure is: Tree (w/ virtual edges) DAG (edges from query graph)

Input Data (features) are on: only leaf nodes all nodes
Neighbors are: always ordered can be order-invariant

A.3 ABLATION STUDIES EXTENDED

We also conduct ablation experiments to show that, in general, our simple models improve as data
accumulates in each template (Fig. 5). As H1 is the most-grained, it stabilizes earlier and has

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 2 Hashing function # : G → {0, 1}h for Directed Acyclic Graphs (DAGs).

1: input: hashing function of bit-vectors ($: {0, 1}∗ → {0, 1}h), e.g., MD5 (Rivest, 1992).
2: input: Directed Acyclic Graph T = (V, E , f).
3:
4: for v ∈ V do
5: µv ← $(f (v))

6: for v ∈ π do // process in topological order
7: if operation v is invariant to order of predecessors then
8: µv ← $(µv||UNORDEREDCOMBINE({µu | (u, v) ∈ E})
9: else // Sometimes, order matters. E.g., A > B differs from B > A

10: µv ← $(µv||ORDEREDCOMBINE({µu | (u, v) ∈ E})
11: π∗ ← DETERMINISTICTOPOLOGICALORDER(T, µ)
12: return $ (ORDEREDCOMBINE({µv | v ∈ π∗})
13:
14: function ORDEREDCOMBINE({z ∈ {0, 1}h})
15: return CONCAT(z)
16: function UNORDEREDCOMBINE({z ∈ {0, 1}h})
17: return CONCAT(sorted(z))
18: function DETERMINISTICTOPOLOGICALORDER(G, µ)
19: π∗ ← []
20: UNPROCESSEDPREVv ← {u | (u, v) ∈ E}, for all v ∈ V
21: while π∗.size < V.size do
22: q ← q ∪ {(µv, v) | v ∈ V if UNPROCESSEDPREVv = ∅ and v /∈ π∗}
23: (, u)← max(q)
24: π∗.APPEND(u)
25: for v ∈ {v′ | (u, v′) ∈ E} do
26: UNPROCESSEDPREVv ← UNPROCESSEDPREVv\{u}

lower tail errors. Notably, the accuracy of coarser templatization, e.g., H3, combining records from
multiple (columns, predicate operators), needs more training history data to converge. It also shows
that GBDT always has better performance than Linear Regression (LR) and Gaussian Kernel(GK)
models accross different datasets. This also matches our observation in Figure 3.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

100

101

102

103

104

105

106

107

ai
rli

ne

H1 H2 H3

101

103

105

107

109

m
ul

tij
oi

n-
ac

cid
en

ts

100

101

102

103

104

105

106

107

m
ul

tij
oi

n-
ai

rli
ne

0 20 40 60 80 100

101

103

105

107

109

m
ul

tij
oi

n-
cm

s

0 20 40 60 80 100 0 20 40 60 80 100

LR 50p LR 90p GK 50p GK 90p GBDT 50p GBDT 90p

Figure 5: Each subplot shows Q-error percentiles as function of amount of history per workload &
templatization strategy. In particular, each line color represents learner (Eq.11–13) and each line
style represents percentile. History size is less than or equal to x-axis value.

15

	Introduction
	Hierarchical Graph Templates
	Definitions
	Task: Online Supervised Learning on Graphs
	Graph Template Extractions
	One-way Hashing of Directed Acyclic Graphs
	Online Learning of Template Hierarchies

	Hierarchical Graph Learners for Cardinality Estimation
	Templatization
	Featurizers
	Learning

	Experimental Evaluation
	Hierarchical Models
	Comparing Individual Models
	Ablation Studies

	Related Work
	Conclusion
	Appendix
	Dataset Stats
	Hashing Function Extended
	Ablation Studies Extended

