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Abstract

Causal inference, especially in observational studies, relies on untestable assumptions about
the true data-generating process. Sensitivity analysis helps us determine how robust our
conclusions are when we alter these underlying assumptions. Existing frameworks for
sensitivity analysis are concerned with worst-case changes in assumptions. In this work,
we argue that using such pessimistic criteria can often become uninformative or lead to
conclusions contradicting our prior knowledge about the world. To demonstrate this claim,
we generalize the recent s-value framework (Gupta & Rothenhäusler, 2023) to estimate the
sensitivity of three different common assumptions in causal inference. Empirically, we find
that, indeed, worst-case conclusions about sensitivity can rely on unrealistic changes in the
data-generating process. To overcome this, we extend the s-value framework with a new
sensitivity analysis criterion: Bayesian Sensitivity Value (BSV), which computes the expected
sensitivity of an estimate to assumption violations under priors constructed from real-world
evidence. We use Monte Carlo approximations to estimate this quantity and illustrate its
applicability in an observational study on the effect of diabetes treatments on weight loss.

1 Introduction

Causal inference offers powerful tools for decision-making across high-stakes domains, but both its internal
and external validity rely on assumptions that cannot be verified from data alone (Bareinboim et al., 2022;
Pearl & Bareinboim, 2011). Sensitivity analysis (Rosenbaum & Rubin, 1983a) has emerged as a critical
tool to assess the robustness of causal conclusions to violations of these assumptions. Existing frameworks
typically focus on the unconfoundedness assumption (VanderWeele & Ding, 2017; Zhao et al., 2019; Cinelli &
Hazlett, 2020; Lu & Ding, 2023) — all confounding variables have been measured and controlled for. However,
the internal validity of causal inference depends not only on unconfoundedness, but also on other model
specification assumptions (Bang & Robins, 2005). As for external validity, even randomized trials are exposed
to selection and outcome biases in their data collection mechanisms. For instance, participants included in a
study may differ systematically from the broader population of interest, or certain outcomes may be reported
only by a non-random subset of the study population.

The key question asked by a sensitivity analysis is: What extent of violation of assumptions can an experiment
tolerate, before its conclusions are reversed? This is often useful when deciding whether a study provides
strong enough evidence to make a decision, such as approving a drug for use. Further, practitioners are
often interested in comparing subpopulations and prioritizing high-sensitivity ones when considering resource
allocation and data collection for future experimentation (Razavi et al., 2021). However, since considering
every possible combination of assumption violations is usually infeasible, common approaches estimate
sensitivity in a worst-case sense and search for the smallest violation that reverses the study’s conclusion
(Cinelli & Hazlett, 2020; Gupta & Rothenhäusler, 2023). When applying these approaches to multi-dimensional
settings, practitioners often consider smaller spaces of possible assumptions, e.g. one confounder at a time, a
simplification that can render the analysis uninformative or even deceiving (Saltelli et al., 2019). Moreover,
these practices can be entirely incompatible with real-world scenarios. First, worst-case violations may not be
plausible in the real world, resulting in overly pessimistic results. Second, violations are likely to occur along
multiple dimensions simultaneously, producing combinatorial effects that single-dimensional analyses fail to
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capture. Finally, trivially extending worst-case analyses to multi-dimensional settings can be particularly
problematic as they tend to become uninformative as dimensionality increases.
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Figure 1: Let π be a prior distribution over the covariate distri-
bution pX . The closest (worst-case) distribution over covariates
that reverses the causal decision defined by a threshold δ has low
probability under π, and more realistic distributions are further
away from the observed and assumed p̂X (Left). Further, samples
from this prior that reverse the decision highlight sensitive distri-
butions that are different from the worst-case one (Right).

In this work, we start by formalizing and
showcasing the above challenges. To that
end, we extend the s-value method of
Gupta & Rothenhäusler (2023) to a more
general sensitivity framework for causal
inference. The s-value measures the min-
imum amount of shift in the covariate
distribution that changes the sign of an av-
erage treatment effect estimate and hence
reverses the corresponding causal conclu-
sion. We generalize this to include other
common assumptions in causal inference,
including no unmeasured confounding,
well-specified conditional models of out-
comes given treatment and covariates, and
external validity with respect to the dis-
tribution over covariates. This extended
framework defines an assumption variable,
the space of its possible values, a divergence metric to measure violations in this space, and constraints that
enable practitioners to target particular sensitivity questions of interest.

Through simulation studies, we find that standard worst-case sensitivity analyses often provide limited
actionable information when trying to distinguish between and prioritize directions in the space of an
assumption’s possible values. These approaches tend to be overly pessimistic because they treat all possible
violations as equally likely and rarely reflect realistic violations. For instance, given our world knowledge, it is
very unlikely to have a real-world shift both increasing family income and decreasing education level. Can we
avoid attributing high sensitivity to an experiment based on such violations that contradict well-established
knowledge of real populations? To address these limitations, we propose a Bayesian alternative, called
the Bayesian Sensitivity Value (BSV), including its Empirical Bayes version (EBSV), which computes the
expected sensitivity to assumption violations under a prior constructed from real-world evidence (data).
Importantly, unlike existing Bayesian Causal Inference frameworks (McCandless et al., 2007; Li et al., 2023)
that assume priors to compute posteriors for the treatment effect, BSV defines a posterior over changes in the
data-generating process, while using existing established frequentist estimators. Further, EBSV incorporates
data-driven priors instead of arbitrary ones. We review related frameworks in detail in section 5.

As an illustrative example, fig. 1 shows a toy setting to assess the sensitivity of a causal effect estimate with
respect to the covariate distribution pX , defined as the joint distribution over independent binary confounders
X1 and X2. A worst-case analysis yields the closest distribution that reverses a causal decision based on a
threshold δ, despite having low probability under an empirical prior distribution. In contrast, distributions
sampled from an empirical prior that reverse this decision indicate lower sensitivity in magnitude and lie
in a different direction in the space of possible assumptions on pX . While the worst-case analysis might
lead practitioners to direct resources towards distributions with small P (X1 = 1) and small P (X2 = 1),
incorporating the empirical prior would instead prioritize those with small P (X1 = 1) and large P (X2 = 1).

Our work provides strategies to leverage large demographic and medical databases as well as detailed subgroup
analyses of previous studies to construct empirical priors in a data-driven manner for a real-world diabetes
study. The empirical priors allow us to analyze the sensitivity of an estimator to realistic violations of
its assumptions. We provide practical algorithms to implement both, worst-case and Bayesian, sensitivity
analyses. While worst-case analyses typically reduce to constrained optimization problems, Bayesian sensitivity
computations reduce to a constrained sampling problem. Our empirical results demonstrate that sensitivity
values in expectation differ substantially from worst-case scenarios, corroborating that conventional sensitivity
analysis methods often fail to reflect realistic conditions. Moreover, we show how BSV can distinguish between
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directions in assumption space better than worst-case analyses, hence providing more informative guidance
for critical experiment design decisions, such as defining appropriate study populations.

Contributions. The main contributions of our work are:

• We present a sensitivity analysis framework to unify different types of assumptions required by a given
estimator, that allows practitioners to ask targeted questions about the sensitivity of a study.

• Our simulation studies and real-world application empirically demonstrate that worst-case analyses indeed
often fail to reflect plausible scenarios, leading to overly pessimistic and uninformative results.

• We propose a new sensitivity criterion, the Bayesian Sensitivity Value (BSV), which is grounded in
real-world evidence, is more realistic, and remains useful in high-dimensional spaces of assumptions.

• Finally, we illustrate BSV’s ability to address the above limitations in our experiments, along with strategies
to construct empirical priors from real-world evidence and practical algorithms for both criteria.

2 Sensitivity Analysis

To formalize our study of the effect of assumption violations on a causal decision, we will first define required
notation and state three typical assumptions under which the popular outcome imputation estimator can
identify average treatment effects. We then present our framework for sensitivity analysis with respect to
each individual assumption in our notation, of which existing worst-case analyses are special cases.

2.1 Assumptions for Average Treatment Effect Identification

We consider the archetypal causal inference task: binary treatment effect estimation. In this task, we want
to estimate the causal effect of a treatment relative to either another treatment or no treatment (control)
in a population of interest. Then, we want to make a binary decision with respect to this estimate, e.g.,
a treatment has a relative positive or negative effect. Concretely, consider a binary treatment variable
T ∈ {0, 1} and corresponding binary potential outcomes Y (1), Y (0) ∈ {0, 1} under each treatment, as defined
in the Neyman–Rubin model (Holland, 1986). In decision–focused causal inference Jaeschke et al. (1989);
Hedayat et al. (2015), we translate estimates of the statistic called average treatment effect (ATE),

τ := E
[
Y (1)− Y (0)

]
, (1)

into binary choices such as I
(

τ > δ
)

for a user–specified threshold δ. See a full list of notation in Appendix A.

The fundamental problem in causal inference is that we never observe the potential outcomes (Y (0), Y (1)).
Instead, we observe the treatment T and an outcome Y = T · Y (1) + (1 − T ) · Y (0). Therefore, different
studies require assumptions of different forms and strengths to estimate the ATE consistently from observed
data. Specifically, observational methods like inverse propensity score weighting (Horvitz & Thompson, 1952;
Rosenbaum, 1987) and outcome regression (Rubin, 1977) convert eq. (1) into identifiable forms via a series of
assumptions on its non-identifiable components. In this work, we treat these components as a collection of
functions a, and parameterize the ATE as a function of these unknown functions: τ(a).

To illustrate this framework, consider the outcome imputation estimator. We start with the form of the ATE
proposed in Lu & Ding (2023, Theorem 1) and then state the typical assumptions that make it identifiable
from data. Given discrete covariates X ∈ X , drawn from a distribution pX and observed jointly with
treatment T and outcome Y , we have

τ(ε, µ, pX) =
∑
x∈X

pX(x)
[
E

[
µ1(x) ·

(
T + 1− T

ε1(x)

) ∣∣∣∣ X = x

]
− E

[
µ0(x) ·

(
1− T + Tε0(x)

) ∣∣∣∣ X = x

]]
. (2)

This equality holds, when the odds ratio function, ε : X → R2
+, is given by ε(x) = (ε0(x), ε1(x)) where

ε0(x) = E[Y (0)|T = 1, X = x]
E[Y (0)|T = 0, X = x] , ε1(x) = E[Y (1)|T = 1, X = x]

E[Y (1)|T = 0, X = x] ,
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the conditional outcome function, µ : X → [0, 1]2, is given by µ(x) = (µ0(x), µ1(x)) where

µ0(x) = E[Y |T = 0, X = x], µ1(x) = E[Y |T = 1, X = x],

and the covariate distribution, pX ∈ ∆|X |−1 gives the probability pX(x). See Lu & Ding (2023) or appendix B
for a proof of the equivalence between eqs. (1) and (2). The functions (ε, µ, pX) are either non-identifiable
from observational data or challenging to estimate. For this reason, causal inference makes assumptions on
the possible values of a = (ε, µ, pX). Below, we discuss each function and its typically assumed value.

The common no unmeasured confounding (Rosenbaum & Rubin, 1983b; Imbens & Rubin, 2015) assumption
is that true odds ratios are identically 1, i.e., (ε0(x), ε1(x)) = (1, 1). Equivalently, potential outcomes are
independent of treatment assignment, given observed covariates, i.e. (Y (0), Y (1)) ⊥⊥ T |X. Note that this
assumption holds true in randomized experiments, but may be violated in observational studies due to
unobserved confounders. Under the no unmeasured confounding assumption, eq. (2) reduces to

τ(1, µ, pX) =
∑
x∈X

pX(x)
[
µ1(x)− µ0(x)

]
, (3)

where the conditional outcomes are defined as before and pX is the target distribution of covariates X.

Assumptions of well-specified conditional outcome models (e.g., Rubin, 1977) typically state that
the conditional outcome distributions µ can be learned from observed data by modeling the mapping from
covariates and treatments to expected outcome, i.e., the risk-minimizing models of outcomes µ∗ are the
true conditional outcome distributions µ. This assumption may be violated due to model misspecification
or reporting biases that modify the outcome distribution. Under no unmeasured confounding and correct
specification of conditional outcome models, we now have

τ(1, µ∗, pX) =
∑
x∈X

pX(x)
[
µ∗

1(x)− µ∗
0(x)

]
, (4)

where pX remains the target distribution over covariates.

External validity (Shadish et al., 2002; Pearl & Bareinboim, 2011) assumptions typically state that the
sampled population is the same as the target population of interest. In particular, in the context of a
population distribution over covariates, an assumption of external validity would state that the sampled
population’s distribution over covariates qX is the same as the target distribution pX . This assumption can
be violated due to selection biases in data collection such that the observed population is not representative
of the true target population. Under all three assumptions above, we have

τ(1, µ∗, qX) =
∑
x∈X

qX(x)
[
µ∗

1(x)− µ∗
0(x)

]
≈ 1

n

n∑
i=1

[
µ̂1(x(i))− µ̂0(x(i))

]
, (5)

which is the standard and popular outcome imputation estimator, computed using a study population,
(x(i), t(i), y(i))n

i=1, of n individuals and (usually) fitted regression models µ̂ for conditional outcome distributions.
While the example above corresponds to outcome imputation, it is straightforward to derive analogous
parameterizations of assumptions for other estimators. As another example, we include the inverse propensity
score weighting estimator in appendix C. Throughout this work, we present sensitivity criteria and algorithms
with a focus on the setting with binary treatments and outcomes and discrete covariates. These may be
applied to continuous-valued variables via discretization or continuous extensions that are left to future work.

Note that the three assumptions above are fundamentally distinct in that pX and µ are observable, though it
may be challenging to access or represent all populations of interest, while ε is inherently unobservable.

2.2 Our Sensitivity Analysis Framework

To quantify how violations of different assumptions affect causal decisions, we generalize the s-value of
Gupta & Rothenhäusler (2023) with the following framework. For a given choice of assumption functions,
a = (ε, µ, pX), our goal is to quantify the impact of deviations from a on the downstream decision function
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Assumption Function Space A Divergence D Typical assumption
Unconfoundedness ε R2d

+ Euclidean 1
Conditional Outcome Distributions µ [0, 1]2d KL µ∗

Covariate Distribution pX ∆d−1 KL qX

Table 1: Typical assumptions required for ATE identification.

I
(

τ(a) > δ
)

. For ease of interpretation, we will consider each of these functions one at a time, each of which
can individually belong to very high-dimensional spaces. For any given function, we define:

(i) A as a subset of possible triplets (ε, µ, pX) over which possible values of that function range, and
(ii) a divergence D(a∥â) to quantify the degree of violation from an assumed value â if the correct one had

been some a ∈ A.

For binary outcomes and covariates that can take d possible values (|X | = d), the function of odds ratios ε be-
long to R2d

+ , conditionals µ are defined in [0, 1]2d, and the covariate distribution lies in the simplex ∆d−1. Hence,
A respectively corresponds to the subsets {(ε, µ∗, qX)}ε∈R2d

+
, {(1, µ, qX)}µ∈[0,1]2d , and {(1, µ∗, pX)}pX ∈∆d−1 .

We take D as the Kullback-Leibler (KL) divergence for distributions µ and pX and Euclidean distance for
the vectors ε. Table 1 summarizes these functions and their assumptions in our sensitivity framework.

Assume, without loss of generality, that under default values, τ
(
1, µ∗, qX

)
> δ. Then, the region in A where

τ(a) ≤ δ represents a reversal of the causal decision.

2.3 Worst-case Sensitivity Criterion

A special case of the framework described in section 2.2, the s-value, was introduced by Gupta & Rothenhäusler
(2023) to measure the minimum amount of shift in the covariate distribution that changes the sign of an
ATE estimate. In other words, they considered sensitivity to the pX function with decision threshold δ = 0.
Generalizing this s-value, we can characterize the worst-case sensitivity criterion for a study for any function.
Definition 1 (Worst-case Sensitivity). For a given function that has possible values in A, its assumed value
â, and convex divergence measure D, e.g. Bregman divergences, if τ(â) > δ, the worst-case sensitivity of a
study to this assumption is defined as

sup
a∈A
{exp(−D(a∥â)) | τ(a) ≤ δ}. (6)

Equation (6) ensures that the sensitivity values are bounded in [0, 1] for non-negative divergences and that
higher values indicate higher sensitivity, since smaller deviations would be required to reverse the decision.

The analysis of odds ratio functions ε by Lu & Ding (2023) can also be reinterpreted under this framework.
Lu & Ding (2023) visualized the ATE estimates under different values of ε0 and ε1, assuming each to be
constant in X, i.e. ε ∈ R2

+. Hence, A was restricted to be 2-dimensional. In their work, the visual gap
between (1, 1) and the closest (ε0, ε1) that changed the sign of the ATE estimate was used to characterize
sensitivity of the estimate to unobserved confounding. Our framework quantifies this worst-case sensitivity
to the unconfoundedness assumption with a single scalar given by eq. (6). Importantly, it does not assume
that ε is a constant function of the covariates X, but instead belongs to R2d

+ . Closely related is also the
sensitivity analysis of Franks et al. (2020), with respect to the unconfoundedness assumption. This work
defines sensitivity parameters (γ0, γ1), which can be interpreted as the differences of expected conditional
potential outcomes under the two treatments instead of the ratios (ε0, ε1) used by Lu & Ding (2023), but are
similarly treated as being constant in covariates X for ease of visualization.

The absolute value of the scalar from eq. (6) is difficult to interpret. It is more practically useful to compare
subsets of the (ε, µ, pX) triplets that differ meaningfully, e.g. different A range over changes in selected subsets
of the covariates. Then, each subset A is a collection of possible subpopulations varying in these covariates and
practitioners may accordingly direct resources towards the A with high sensitivity. We describe constrained
optimization algorithms to compute worst-case sensitivity values for all assumptions in section 4.1.
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3 Bayesian Sensitivity Value

While sensitivity analyses are critical for decision-making under assumptions, they have not enjoyed widespread
practical adoption (Tarantola et al., 2024) and have not always proved to be practically useful (Saltelli et al.,
2019). In this work, we take a critical view of the worst-case sensitivity paradigm in particular, and highlight
pitfalls that can render it uninformative or unrealistic in practical settings. The following real-world diabetes
example is one such instance and motivates the need for alternate sensitivity criteria, beyond the worst-case.

Motivating Example. Worst-case analyses compute the solution to the optimization problem in eq. (6)
and we can compare this solution to empirical realizations of a found in real populations. We did so
in a diabetes application setting for the assumption on the joint distribution over binarized covariates,
Weight and HbA1c, described in section 6.1. We also calculated the empirical distribution over the same
variables in diabetes patients according to data collected by the National Health and Nutritional Examination
Survey (National Center for Health Statistics, 2023, NHANES). Both distributions are visualized in fig. 2.
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Figure 2: Optimum found by a worst-case analysis (Left)
is significantly different from the real-world empirical dis-
tribution over the same variables recorded in the NHANES
dataset (Right) and contradicts prior knowledge.

Note that the empirical distribution from the
NHANES data puts highest probability on low
HbA1c and low Weight values, in agreement
with the well-established correlation between
glycated hemoglobin reduction and weight loss
(Gummesson et al., 2017). However, the worst-
case analysis suggests sensitivity due to a distri-
bution that puts large probability on low HbA1c
and high Weight and is unlikely to appear in
real diabetic populations. This exemplifies how
worst-case analyses, once interpreted, may be
based on optima that contradict known rela-
tionships between variables of interest and fail
to reflect realistic scenarios.

To tackle limitations of worst-case analyses, demonstrated above as well as in further experiments in section 6,
we argue in favor of accounting for how likely any given assumption violation is in settings of interest. To
this end, we treat the each of the functions (ε, µ, pX) as random variables and propose a novel sensitivity
criterion, called the Bayesian Sensitivity Value (BSV), defined as follows.
Definition 2 (Bayesian Sensitivity Value). Given an assumption â ∈ A, divergence D, and a random
assumption A taking values in A with distribution πA, if τ(â) > δ, the Bayesian Sensitivity Value is

EA∼πA
[exp (−D(A∥â)) | τ(A) ≤ δ]. (7)

The BSV given by eq. (7) replaces the supremum of eq. (6) with an expectation computed with respect to a
specified prior distribution over the assumption variable. This criterion has several advantages for sensitivity
analyses over its worst-case counterpart: (i) it is no more pessimistic than the worst-case sensitivity value,
by definition, and far less pessimistic in practice,; (ii) the BSV is a direct result of the chosen prior πA and
different values can be computed and interpreted under different choices of this prior; (iii) when available,
this criterion allows practitioners to leverage large demographic, medical, or other domain-specific databases
to construct evidence-based priors and compute an Empirical Bayesian Sensitivity Value (EBSV).

The EBSV grounds sensitivity analyses in real-world evidence and prior knowledge. For example, it is often
possible to derive empirical distributions over common covariates from large demographic databases and
surveys to construct a prior distribution over pX . We can also use ATE estimates and subgroup analyses for
different covariates and treatments from previous studies to construct priors over µ. The resulting EBSV
quantifies the sensitivity of a new study under the prior of previous findings. Empirically, we find that it also
distinguishes between different subpopulations better than worst-case sensitivity values can, especially when
assumptions can take values in high-dimensional spaces, as illustrated in section 6. We describe constrained
sampling algorithms to compute Bayesian sensitivity values for all assumptions in section 4.2.
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4 Practical Algorithms

Computation of the worst-case sensitivity value in eq. (6) and the BSV in eq. (7) requires solving constrained
optimization and constrained sampling problems, respectively. Gupta & Rothenhäusler (2023) exploited the
linearity of τ in pX to derive closed-form solutions for sensitivity to pX . We can generalize their solutions by
noticing that the constrained problem in eq. (6) is convex in each of (ε, µ, pX) (or a one-to-one transformation
of it), even if it isn’t linear. We accordingly adapted existing optimization strategies via Lagrange multipliers
to compute worst-case sensitivity values. The optimization algorithm presented here can be extended and
applied to any causal estimand that can be written as a convex function of its assumption a, divergence D
that is convex in a, and convex assumption space A. We used existing constrained sampling schemes for the
BSV, though more efficient samplers may be derived by exploiting the convexity of eq. (7).

4.1 Constrained Optimization

We formulate eq. (6) as an equivalent minimization problem, with the following Langrangian.

max
λ

min
a∈A

D(a∥â) + λ(τ(a)− δ), (8)

where λ ≥ 0 is a Lagrange multiplier enforcing the threshold constraint on the ATE. We include any
assumption-specific constraints on a, e.g. ε0(x) ≥ 0, ε1(x) ≥ 0 for all covariate sets x, with their own Lagrange
multipliers. Due to its convexity, the above problem is solved exactly by an ascent-descent algorithm that
alternates between updating the primal variable a and performing gradient ascent on the dual variable λ
(Boyd & Vandenberghe, 2004; Boyd et al., 2011). For assumptions that represent probability distributions (µ
and pX), we used Entropic Mirror Descent (Beck & Teboulle, 2003) to solve the optimization problem under
simplex constraints efficiently. For odds ratios ε ∈ R2d

+ , we folded the non-negativity constraints into eq. (8)
with its own Lagrange multipliers and used Gradient Descent to update a. We state the corresponding convex
optimization problem for each assumption function and the standard dual ascent algorithm in appendix E.

4.2 Constrained Sampling

We compute a rejection-based Monte Carlo estimate (Robert et al., 1999) of the conditional expectation in
eq. (7). Specifically, we drew samples from the given prior distribution, A(i) ∼ πA i.i.d., accepted them if
they satisfy the constraint τ(A(i)) ≤ δ, and repeated this procedure until we obtain M accepted samples, for
some M . In all our experiments, we set M = 5000. Then, the BSV estimate is given by

1
M

N∑
i=1

exp(−D(A(i)|a)) · I
(

τ(A(i)) ≤ δ
)

where N = min
{

n

∣∣∣∣∣
n∑

i=1
I
(

τ(A(i)) ≤ δ
)
≥M

}
. (9)

Hence, samples of the assumption parameters are accepted with the prior probability that they reverse the
causal decision. Note that if this probability is very small, rejection sampling can be very inefficient. In this
case, more sophisticated sampling techniques like Markov Chain Monte Carlo methods (Gilks et al., 1995)
may be adapted, though we found rejection sampling sufficient for our experiments.

Samples from the prior πA also allow us to estimate the probability of reversal of causal decisions due to
assumption violations drawn from πA, i.e. Pπ(τ(A) ≤ δ) via the empirical probability 1

K

∑K
i=1 I

(
τ(A(i)) ≤ δ

)
,

for large K = 1000000. It is useful to jointly report the probability of decision reversal with the BSV and
since the former accounts for how likely decision reversals are under the given prior and the latter provides
information about the average “size” (via divergence D) of the assumption violation that reverses the decision.
In our experiments, we additional report the acceptance rate M

N .

5 Related Work

Sensitivity analyses have long been recognized as critical for causal inference, particularly in observational
studies (Rosenbaum, 1987). Traditional approaches, that typically consider worst-case violations of the
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unconfoundedness assumption, include Tan (2006); VanderWeele & Ding (2017); Cinelli & Hazlett (2020);
Veitch & Zaveri (2020). Lu & Ding (2023) also proposed a flexible analysis for the unconfoundedness
assumption that may be applied to different estimators. There are also Bayesian approaches to causal
inference (Li et al., 2023) and sensitivity analysis (McCandless et al., 2007) in the context of this assumption.
These works typically employ expert-elicited or uninformative priors. Gupta & Rothenhäusler (2023) tackled
sensitivity to covariate distribution shifts and proposed the s-value framework, which we generalized to other
assumptions, including those on conditional outcome distributions and unconfoundedness.

Causal sensitivity analyses have been adapted to several applications in fairness (Fawkes et al., 2024),
optimization of operating characteristics of clinical trial design (Han et al., 2024) and evaluation of con-
strained selection biases (Cortes-Gomez et al., 2023). Recent critiques have highlighted limitations and
misinterpretations associated with sensitivity analyses in practice, emphasizing a need for more realistic and
informative methodologies (Ioannidis et al., 2019; Saltelli et al., 2019; de Souza et al., 2016). Our work takes
a step towards addressing these limitations by grounding sensitivity analyses in real-world evidence.

Several large databases, collected and curated nationally or globally, provide empirical data on demographic
and medical variables (Clore et al., 2014; CDC, 2023). Additionally, post-hoc analyses of subgroup effects are
commonly found in medical literature (Tchang et al., 2025; Kadowaki et al., 2024; Ma et al., 2024; Ryan et al.,
2024). Our proposed Bayesian Sensitivity Value provides a way to leverage these sources of information to
understand sensitivity with respect to pX and µX , respectively, while representing real-world populations.

6 Empirical Analysis

Our experiments use sensitivity analyses to compare and rank subsets of the (ε, µ, pX) triplets, denoted A,
that differ meaningfully, so that high-sensitivity subgroups may be discovered, for instance, for resource
prioritization. We computed worst-case sensitivity value, the BSV under a uniform or uninformative prior,
and the EBSV under evidence-based priors, when they are available, to investigate the following questions: (i)
How do the different sensitivity analysis criteria scale with dimensionality of the space of possible assumptions
A, specifically in their ability to distinguish between different A? (ii) Do BSV analyses, including EBSV,
differ meaningfully from worst-case analyses, specifically to uncover different sensitivity rankings across A?
(iii) How does BSV perform in real-world applications, compared to worst-case analyses?

6.1 Experimental Settings

Simulation. We constructed a simulation study to generate data with binary covariates and heterogeneous
treatment effects, where the true treatment effect varies across subgroups defined by covariate values.
Observational data was generated to reflect realistic biases commonly encountered in practice: confounding
through treatment assignment and selection bias based on outcomes, treatment assignment, and covariates.
We used settings with varying numbers of covariates (4, 6, 8) to explore how the dimensionality of the problem
affects sensitivity analyses. See full details of the data generation in appendix D.1. For BSV computations,
we considered an idealistic setting and constructed empirical prior distributions for pX and µ using samples
from the true data-generation mechanism without confounding or selection biases.

Diabetes Application. As a real-world application, we adapted the Semaglutide vs. Tirzepatide dataset and
large-language-model (LLM) based causal estimator from Dhawan et al. (2024). This study leveraged patient-
reported data from relevant subreddits, employed large language models to extract observational distributions,
accounted for confounding due to Age, Sex, BMI (Body Mass Index), HbA1c (Glycated Hemoglobin), and
Weight, and estimated the relative effect of diabetes treatments on a weight loss outcome. Given the potential
selection biases in both the data collection and modeling via LLMs, informative sensitivity analyses are
crucial for reliable inference in this setting. See appendix D.2 for complete details.

This setting is also useful to demonstrate the construction of empirical priors and practical instantiation
of an EBSV analysis when true priors are unavailable. Here, we leveraged previous databases and studies
for information relevant to the assumptions of interest, pX and µ. Specifically, we extracted distributions
over Age, Sex, HbA1c, and Weight across different races using the Diabetes dataset from the UCI repository
(Clore et al., 2014) and used them to fit a Dirichlet distribution that serves as a prior over the covariate
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distribution pX . We obtained distributions over the conditional outcome distributions for Semaglutide
(T = 0) from subgroup analyses conducted in previous studies (Kadowaki et al., 2024) and similarly fit a
Dirichlet distribution to use as the empirical prior. We note that constructing empirical priors on odds
ratios ε from data remains a challenge since they are inherently unobserved quantities. Hence, we use
user-defined priors which are, in this case, truncated Gaussians, centered at 1, with scales σ ∈ {1.0, 1.5}.
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Figure 3: For high-dimensional A, worst-case sensitiv-
ity values for covariate distributions are all close to 1
(mean ≈ 1, variance ≈ 0), while BSVs, both Uniform
and Empirical, distinguish between different A better.

Comparing different A. Following the compari-
son of sensitivity values across covariates in Gupta
& Rothenhäusler (2023), we constructed compar-
isons between different A for all our assumptions,
where possible elements of each A range over par-
ticular covariates and treatments. Concretely, this
corresponds to calculating sensitivity values when
elements of A differ in their values of either the
odds ratios εXj

for covariates Xj , outcome distri-
butions µt,Xj = E[Y |T = t, Xj ] conditioned on a
treatment t and covariates Xj , or distributions pXj

over covariates Xj . Here, Xj is any subset of all
the covariates X, and including more covariates re-
sults in higher dimensional A. For example, to find
the pair of binary covariates whose joint distribu-
tion τ(ε, µ, pX) is most sensitive to, we compared
sensitivity values given by eq. (6) or eq. (7) with
A = {(1, µ∗, qX−j

, pXj
)}pXj

∈∆3 for different pairs of covariates Xj , where X−j includes all other covariates.
This results in a sensitivity ranking according to either the worst-case or the Bayesian criterion.

6.2 Simulations

To study the behavior of sensitivity criteria at scale and answer item (i), we simulated a setting with eight
binary covariates and measured sensitivity to the covariate distribution where A has increasing dimensionality.
For k ∈ {1, . . . , 7}, we considered every possible subset of covariates of size k, set A to be the space of possible
joint distributions over this covariate subset, which is ∆2k−1, and solved for the worst-case and Bayesian
sensitivity values in each case. Figure 3 shows the mean and standard deviation of these sensitivity values
against the dimensionality of A. As dimensionality increases, worst-case sensitivity values quickly tend toward
a mean of 1 and standard deviation of 0, hence attributing highest possible sensitivity to all high-dimensional
A, regardless of the plausibility of the worst-case violation in practice. In contrast, the BSV does not appear
to suffer from this curse of dimensionality in our settings, maintaining variability across different A even in
high dimensions and yielding a sensitivity ranking that may be used to inform resource allocation in practice.

Next, we investigated the actual sensitivity rankings produced by BSV versus a worst-case analysis to answer
item (ii). Figure 4 shows the correlation between these rankings for assumptions on εXj

, µt,Xj
, and pXj

(with four or six total covariates) for different Xj and t. Again, worst-case analyses are relatively pessimistic,
assigning very similar and high sensitivity values, especially when A is high-dimensional. Moreover, the
worst-case sensitivity rankings are uncorrelated or even negatively correlated with BSV rankings. Hence,
BSV produces different trends in sensitivity across A. Sensitivity values for different Xj and t under the
worst-case, empirical BSV, and BSV with uniform priors are presented in figs. 6 to 8 of appendix F.

For some intuition on this behavior, consider the space of assumption violations. Adding more dimensions
to this space allows violations in more variables. This is likely to increase the worst-case sensitivity, as the
feasible region of the constrained optimization problem becomes larger. In contrast, adding dimensions to the
space of assumption violations in the constrained sampling problem that yields the BSV also adds dimensions
to the prior distribution π. Empirical joint priors over more variables can effectively constrain the space of
likely assumption violations, especially when these variables are correlated with each other. Sampling from
this prior results in BSVs that account for the choice of variables and provides more meaningful trends.
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(a) Sensitivity to pXj with four covariates.
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(b) Sensitivity to pXj with six covariates.
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Figure 4: For all assumptions and different choices of subsets A, Bayesian sensitivity is uncorrelated or
negatively correlated with worst-case sensitivity, revealing different trends in sensitivity rankings.

6.3 Diabetes application

We conducted similar sensitivity analyses under the worst-case criterion, the BSV with uniform priors, and
the empirical BSV, on the diabetes study, with their results visualized in fig. 5. Here, we consider individual
covariates as well as Covariate pair indices, which lexicographically index all possible pairs of covariates
in {Age, Sex, BMI, HbA1c, Weight}. In the analyses with respect to pX and µ, shown in figs. 5b and 5c
respectively, worst-case values and BSV always agree in zero-sensitivity settings as expected. However, BSV
highlights informative trends in others, which can support targeted future experimentation and data collection.
Notably, they suggest that the estimated ATE is less sensitive than what a worst-case analysis would indicate
in the Weight > 220 lbs subpopulation. Similar to the simulation study, fig. 5a shows BSV for odds ratios
under truncated Gaussian priors. While differences are small between choices of observed covariates, sensitivity
is lower whenever Weight is among them. Further, table 2 lists the sensitivity values given by worst-case,
uniform Bayesian, and empirical Bayesian criteria, along with acceptance rates and probabilities of decision
reversal under uniform and empirical priors. Notably, a small BSV and large probability of decision reversal
indicate that decision reversals are likely under the given prior but the corresponding assumption violations
are far from the observed or assumed value of A, as measured by divergence D.

7 Limitations

While this work has taken a critical view of worst-case sensitivity analyses, the proposed Bayesian Sensitivity
Value is not without limitations in its real-world application. (i) Our experiments suggest that the empirical
BSV under data-driven priors can be practically useful. However, constructing such priors on odds ratios
ε from data remains fundamentally challenging since they are inherently unobservable quantities. (ii) We
considered and compared different subsets A of possible assumptions that were of the same form and
admitted the same divergence metric, e.g. KL divergence for distributions lying in a simplex. However,
combining different spaces of possible assumptions, along with their corresponding divergence metrics may
allow practitioners to ask more interesting questions about sensitivity and capture interactions between
different assumptions. (iii) The practical implementation of BSV computations is a simple rejection-based
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Table 2: In a real-world diabetes experiment, the probabilities of decision reversal Pπ(τ(A) ≤ δ) and
corresponding BSVs under uniform and empirical priors indicate how likely a decision reversal is and the
average size of assumption violation required for reversal, respectively. Here, AR = acceptance rate.

Worst-case Uniform BSV (AR) PU (τ(A) ≤ δ) (E)BSV (AR) Pπ(τ(A) ≤ δ)
Covariate distributions pX

Age 0.00 0.00 (0.00) 0.00 0.00 (0.00) 0.00
Sex 0.00 0.00 (0.00) 0.00 0.00 (0.00) 0.00
HbA1c 0.00 0.00 (0.00) 0.00 0.00 (0.00) 0.00
Weight 0.52 0.30 (0.57) 0.58 0.14 (1.00) 0.99
Age, Sex 0.00 0.00 (0.00) 0.00 0.00 (0.00) 0.00
Age, HbA1c 0.00 0.00 (0.00) 0.00 0.00 (0.00) 0.00
Age, Weight 0.57 0.31 (0.57) 0.57 0.10 (1.00) 1.00
Sex, HbA1c 0.00 0.00 (0.00) 0.00 0.00 (0.00) 0.00
Sex, Weight 0.64 0.27 (0.50) 0.51 0.08 (1.00) 1.00
HbA1c, Weight 0.66 0.29 (0.48) 0.49 0.09 (1.00) 1.00
Conditional outcome distributions µ
Age≤ 45, T = 0 0.97 0.97 (0.06) 0.06 0.94 (0.38) 0.37
Age> 45, T = 0 0.97 0.97 (0.03) 0.03 0.95 (0.66) 0.67
Age≤ 45, T = 1 0.88 0.48 (0.90) 0.89 0.42 (0.83) 0.83
Age> 45, T = 1 0.95 0.33 (0.95) 0.95 0.30 (0.88) 0.88
Sex=M, T = 0 0.96 0.97 (0.06) 0.06 0.95 (0.37) 0.37
Sex=F, T = 0 0.96 0.97 (0.03) 0.03 0.95 (0.41) 0.41
Sex=M, T = 1 0.84 0.46 (0.91) 0.91 0.40 (0.84) 0.84
Sex=F, T = 1 0.85 0.32 (0.95) 0.95 0.30 (0.88) 0.88
BMI≤ 28.5, T = 0 0.98 0.97 (0.08) 0.08 0.94 (0.51) 0.50
BMI> 28.5, T = 0 0.99 0.98 (0.04) 0.04 0.96 (0.29) 0.29
BMI≤ 28.5, T = 1 0.95 0.48 (0.92) 0.92 0.51 (0.75) 0.76
BMI> 28.5, T = 1 0.97 0.40 (0.96) 0.96 0.32 (0.90) 0.89
HbA1c≤ 7.5, T = 0 0.96 0.97 (0.06) 0.06 0.94 (0.52) 0.52
HbA1c> 7.5, T = 0 0.96 0.97 (0.03) 0.03 0.96 (0.12) 0.12
HbA1c≤ 7.5, T = 1 0.85 0.46 (0.91) 0.91 0.41 (0.84) 0.84
HbA1c> 7.5, T = 1 0.84 0.32 (0.95) 0.94 0.29 (0.88) 0.88
Weight≤ 220, T = 0 0.00 0.00 (0.00) 0.00 0.00 (0.00) 0.00
Weight> 220, T = 0 1.00 0.56 (1.00) 1.00 0.75 (1.00) 1.00
Weight≤ 220, T = 1 0.30 0.10 (0.77) 0.76 0.08 (0.70) 0.71
Weight> 220, T = 1 1.00 0.76 (0.52) 0.51 0.82 (0.51) 0.51
Odds ratio functions ε
Age 0.98 — — 0.61 (0.37) 0.37
Sex 0.98 — — 0.61 (0.38) 0.38
BMI 0.99 — — 0.61 (0.38) 0.39
HbA1c 0.98 — — 0.61 (0.38) 0.38
Weight 0.98 — — 0.59 (0.42) 0.42
Age, Sex 0.99 — — 0.57 (0.31) 0.32
Age, BMI 0.99 — — 0.58 (0.30) 0.31
Age, HbA1c 0.99 — — 0.57 (0.31) 0.32
Age, Weight 0.99 — — 0.56 (0.35) 0.35
Sex, BMI 0.99 — — 0.57 (0.31) 0.31
Sex, HbA1c 0.99 — — 0.56 (0.36) 0.36
Sex, Weight 0.99 — — 0.56 (0.36) 0.36
BMI, HbA1c 0.99 — — 0.57 (0.32) 0.32
BMI, Weight 0.99 — — 0.56 (0.36) 0.36
HbA1c, Weight 0.99 — — 0.56 (0.36) 0.36
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Figure 5: BSV for odds ratios in fig. 5a, covariate distributions in fig. 5b, and conditional outcome distributions
fig. 5c in a real-world diabetes experiment can be more informative than worst-case analyses. In particular,
BSV suggests relatively low sensitivity in the Weight > 220 lbs subpopulation, as compared to the worst-
case analysis which assigns it the highest possible sensitivity value.

sampling technique, which can be very inefficient for small prior probability of reversing a causal decision.
More involved and efficient techniques would help improve the adoption of this sensitivity criterion in practice.
(iv) Finally, while the BSV captures the variation and plausibility of assumptions under a given prior, this
also means that it is highly prior-dependent and may be susceptible to prior misspecification.

8 Conclusions

In this work, we generalized the s-value framework to three common assumptions in causal inference and
proposed a new sensitivity criterion, the Bayesian Sensitivity Value, that can leverage real-world evidence.
Our empirical studies demonstrated that worst-case sensitivity analyses can be overly pessimistic and
uninformative, especially for high-dimensional spaces of possible assumptions, and rarely reflect realistic
shifts in assumptions. However, the BSV distinguished between different A even in high-dimensional spaces
and revealed trends that differ from worst-case analyses. There are several exciting directions for future
research: (i) constructing informative priors for different assumptions, including odds ratios, using varied
sources of real-world evidence, (ii) adapting more sophisticated sampling techniques than rejection sampling to
improve efficiency of BSV computations, and (iii) deriving mathematically rigorous strategies to operationalize
sensitivity analyses for future experiment design. Given the critical importance of sensitivity analyses for
causal decision-making in high-stakes domains like medicine, it is essential to improve their practically utility.
While traditional analyses have typically focused on worst-case violations of assumptions, the BSV is a step
towards a more informative criterion for real-world applications and improved resource prioritization.

Broader Impact Statement

Any sensitivity analysis framework has important societal implications for causal inference in high-stakes
domains like healthcare. While the BSV can improve decision-making by providing more realistic sensitivity
analyses and a better understanding of treatment effects across subpopulations, it also carries risks: the
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quality of analyses depends critically on the representativeness of real-world evidence used to construct priors,
and the method could be misused to justify decisions that appear more robust than they actually are. To
mitigate these risks, we recommend transparent documentation of prior construction and use of multiple
sensitivity criteria, including our Bayesian criterion as well as traditional worst-case analyses.

References
Heejung Bang and James M Robins. Doubly robust estimation in missing data and causal inference models.

Biometrics, 61(4):962–973, 2005.

Elias Bareinboim, Juan D Correa, Duligur Ibeling, and Thomas Icard. On pearl’s hierarchy and the foundations
of causal inference. In Probabilistic and causal inference: the works of judea pearl, pp. 507–556. 2022.

Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. The pushshift
reddit dataset. In Proceedings of the international AAAI conference on web and social media, volume 14,
pp. 830–839, 2020.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31(3):167–175, 2003.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in
Machine learning, 3(1):1–122, 2011.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

CDC. Diabetes health indicators dataset, 2023. URL http://archive.ics.uci.edu/dataset/891/cdc+
diabetes+health+indicators.

Carlos Cinelli and Chad Hazlett. Making sense of sensitivity: Extending omitted variable bias. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 82(1):39–67, 2020.

John Clore, Krzysztof Cios, Jon DeShazo, and Beata Strack. Diabetes 130-us hospitals for years 1999-2008.
UCI Machine Learning Repository, 10:C5230J, 2014.

Santiago Cortes-Gomez, Mateo Dulce, Carlos Patino, and Bryan Wilder. Statistical inference under constrained
selection bias. arXiv preprint arXiv:2306.03302, 2023.

Russell J de Souza, Rebecca B Eisen, Stefan Perera, Bianca Bantoto, Monica Bawor, Brittany B Dennis,
Zainab Samaan, and Lehana Thabane. Best (but oft-forgotten) practices: sensitivity analyses in randomized
controlled trials. The American journal of clinical nutrition, 103(1):5–17, 2016.

Nikita Dhawan, Leonardo Cotta, Karen Ullrich, Rahul Krishnan, and Chris J Maddison. End-to-end causal
effect estimation from unstructured natural language data. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Jake Fawkes, Nic Fishman, Mel Andrews, and Zachary Lipton. The fragility of fairness: Causal sensitivity
analysis for fair machine learning. Advances in Neural Information Processing Systems, 37:137105–137134,
2024.

AlexanderM Franks, Alexander D’Amour, and Avi Feller. Flexible sensitivity analysis for observational
studies without observable implications. Journal of the American Statistical Association, 2020.

Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte Carlo in practice. CRC
press, 1995.

Anders Gummesson, Elisabeth Nyman, Mikael Knutsson, and Martin Karpefors. Effect of weight reduction
on glycated haemoglobin in weight loss trials in patients with type 2 diabetes. Diabetes, Obesity and
Metabolism, 19(9):1295–1305, 2017.

13

http://archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators
http://archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators


Under review as submission to TMLR

Suyash Gupta and Dominik Rothenhäusler. The s-value: evaluating stability with respect to distributional
shifts. Advances in Neural Information Processing Systems, 36:72058–72070, 2023.

Larry Han, Andrea Arfè, and Lorenzo Trippa. Sensitivity analyses of clinical trial designs: selecting scenarios
and summarizing operating characteristics. The American Statistician, 78(1):76–87, 2024.

AS Hedayat, Junhui Wang, and Tu Xu. Minimum clinically important difference in medical studies. Biometrics,
71(1):33–41, 2015.

Paul W Holland. Statistics and causal inference. Journal of the American statistical Association, 81(396):
945–960, 1986.

Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement from a finite
universe. Journal of the American statistical Association, 47(260):663–685, 1952.

Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical sciences.
Cambridge university press, 2015.

John PA Ioannidis, Yuan Jin Tan, and Manuel R Blum. Limitations and misinterpretations of e-values for
sensitivity analyses of observational studies. Annals of internal medicine, 170(2):108–111, 2019.

Roman Jaeschke, Joel Singer, and Gordon H Guyatt. Measurement of health status: ascertaining the minimal
clinically important difference. Controlled clinical trials, 10(4):407–415, 1989.

Takashi Kadowaki, Sang Yeoup Lee, Wataru Ogawa, Tomoyuki Nishida, Maria Overvad, Kazuyuki Tobe,
Toshimasa Yamauchi, Soo Lim, et al. Clinical characteristics affecting weight loss in an east asian population
receiving semaglutide: A step 6 subgroup analysis. Obesity Research & Clinical Practice, 18(6):457–464,
2024.

Fan Li, Peng Ding, and Fabrizia Mealli. Bayesian causal inference: a critical review. Philosophical Transactions
of the Royal Society A, 381(2247):20220153, 2023.

Sizhu Lu and Peng Ding. Flexible sensitivity analysis for causal inference in observational studies subject to
unmeasured confounding. arXiv preprint arXiv:2305.17643, 2023.

Jianhua Ma, Ming Liu, Rui Wang, Liying Du, and Linong Ji. Efficacy and safety of tirzepatide in people
with type 2 diabetes by baseline body mass index: An exploratory subgroup analysis of surpass-ap-combo.
Diabetes, Obesity and Metabolism, 26(4):1454–1463, 2024.

Lawrence C McCandless, Paul Gustafson, and Adrian Levy. Bayesian sensitivity analysis for unmeasured
confounding in observational studies. Statistics in medicine, 26(11):2331–2347, 2007.

National Center for Health Statistics. National health and nutrition examination survey data, 2023. URL
https://www.cdc.gov/nchs/nhanes/.

Judea Pearl and Elias Bareinboim. External validity and transportability: a formal approach. In JSM
Proceedings, pp. 157–171, 2011.

Saman Razavi, Anthony Jakeman, Andrea Saltelli, Clémentine Prieur, Bertrand Iooss, Emanuele Borgonovo,
Elmar Plischke, Samuele Lo Piano, Takuya Iwanaga, William Becker, et al. The future of sensitivity
analysis: an essential discipline for systems modeling and policy support. Environmental Modelling &
Software, 137:104954, 2021.

Christian P Robert, George Casella, and George Casella. Monte Carlo statistical methods, volume 2. Springer,
1999.

Paul R Rosenbaum. Model-based direct adjustment. Journal of the American statistical Association, 82(398):
387–394, 1987.

14

https://www.cdc.gov/nchs/nhanes/


Under review as submission to TMLR

Paul R Rosenbaum and Donald B Rubin. Assessing sensitivity to an unobserved binary covariate in an
observational study with binary outcome. Journal of the Royal Statistical Society: Series B (Methodological),
45(2):212–218, 1983a.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational studies for
causal effects. Biometrika, 70(1):41–55, 1983b.

Donald B Rubin. Assignment to treatment group on the basis of a covariate. Journal of educational Statistics,
2(1):1–26, 1977.

Donna H Ryan, Ildiko Lingvay, John Deanfield, Steven E Kahn, Eric Barros, Bartolome Burguera, Helen M
Colhoun, Cintia Cercato, Dror Dicker, Deborah B Horn, et al. Long-term weight loss effects of semaglutide
in obesity without diabetes in the select trial. Nature medicine, 30(7):2049–2057, 2024.

Andrea Saltelli, Ksenia Aleksankina, William Becker, Pamela Fennell, Federico Ferretti, Niels Holst, Sushan
Li, and Qiongli Wu. Why so many published sensitivity analyses are false: A systematic review of sensitivity
analysis practices. Environmental modelling & software, 114:29–39, 2019.

William R Shadish, Thomas D Cook, and Donald T Campbell. Experimental and quasi-experimental designs
for generalized causal inference. Houghton, Mifflin and Company, 2002.

Zhiqiang Tan. A distributional approach for causal inference using propensity scores. Journal of the American
Statistical Association, 101(476):1619–1637, 2006.

Stefano Tarantola, Federico Ferretti, Samuele Lo Piano, Mariia Kozlova, Alessio Lachi, Rossana Rosati,
Arnald Puy, Pamphile Roy, Giulia Vannucci, Marta Kuc-Czarnecka, et al. An annotated timeline of
sensitivity analysis. Environmental Modelling & Software, 174:105977, 2024.

Beverly G Tchang, Andreea Ciudin Mihai, Adam Stefanski, Luis-Emilio García-Pérez, Donna Mojdami, Irina
Jouravskaya, Sirel Gurbuz, Rebecca Taylor, Chrisanthi A Karanikas, and Julia P Dunn. Body weight
reduction in women treated with tirzepatide by reproductive stage: a post hoc analysis from the surmount
program. Obesity, 33(5):851–860, 2025.

Tyler J VanderWeele and Peng Ding. Sensitivity analysis in observational research: introducing the e-value.
Annals of internal medicine, 167(4):268–274, 2017.

Victor Veitch and Anisha Zaveri. Sense and sensitivity analysis: Simple post-hoc analysis of bias due to
unobserved confounding. Advances in neural information processing systems, 33:10999–11009, 2020.

Qingyuan Zhao, Dylan S Small, and Bhaswar B Bhattacharya. Sensitivity analysis for inverse probability
weighting estimators via the percentile bootstrap. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 81(4):735–761, 2019.

15



Under review as submission to TMLR

A Notation

A Assumption random variable whose value must be assumed for causal inference.

πA Prior distribution over assumption variable A.

X Random variable corresponding to features of an individual in a causal inference
dataset.

T Random variable corresponding to treatment or intervention assigned to an individual
in a causal inference dataset.

Y Random variable corresponding to outcome observed for an individual in a causal
inference dataset.

x Possible instance of X from its support X .

t Possible instance of T from its support T = {0, 1} (binary treatments).

y Possible instance of Y from its support Y = {0, 1} (binary outcomes).

a Possible instance or sampled value of A from its support A.

Y (t) Random variable corresponding to potential outcome observed for an individual
after receiving treatment t.

ε(X) Unconfoundedness assumption parameters, (ε0(X), ε1(X)).

µ(X) Conditional outcome distributions given covariates and treatment, (µ0(X), µ1(X)).

pX Distribution over covariates X.

x(i) Sampled value of X for individual i.

t(i) Sampled value of T for individual i.

y(i) Sampled value of Y for individual i.

τ Average treatment effect (ATE) given by E[Y (1)− Y (0)], where the expectation is
over some defined population of individuals.

τ(a) ATE computed or estimated under the assumption a.

δ Decision threshold on the (estimated) ATE to choose between treatments.

n Total number of individuals.
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B ATE Identification Proof

We reproduce a proof of the result in Lu & Ding (2023) for eq. (2), in our notation, for completeness.

τ := E
[
Y (1)− Y (0)

]
= E

[
Y (1) | T = 1

]
P (T = 1) + E

[
Y (1) | T = 0

]
P (T = 0)

− E
[
Y (0) | T = 1

]
P (T = 1)− E

[
Y (0) | T = 0

]
P (T = 0),

= E
[
Y | T = 1

]
P (T = 1) + E

[
Y (1) | T = 0

]
P (T = 0)

− E
[
Y (0) | T = 1

]
P (T = 1)− E

[
Y | T = 0

]
P (T = 0),

where the last equality follows from the definition of Y .

For µ0(X) = E[Y |T = 0, X] and µ1(X) = E[Y |T = 1, X],

E
[
Y | T = 1

]
P (T = 1) = E

[
E

[
Y | T = 1, X

]
| T = 1

]
P (T = 1)

= E
[
µ1(X) | T = 1

]
P (T = 1).

E
[
Y | T = 0

]
P (T = 0) = E

[
E

[
Y | T = 0, X

]
| T = 0

]
P (T = 0)

= E
[
µ0(X) | T = 0

]
P (T = 0).

For ε0(X) = E[Y (0)|T = 1, X]
E[Y (0)|T = 0, X] and ε1(X) = E[Y (1)|T = 1, X]

E[Y (1)|T = 0, X] ,

E
[
Y (1) | T = 0

]
P (T = 0) = E

[
E

[
Y (1) | T = 0, X

]
| T = 0

]
P (T = 0)

= E
[

µ1(X)
ε1(X) | T = 0

]
P (T = 0).

E
[
Y (0) | T = 1

]
P (T = 1) = E

[
E

[
Y (0) | T = 1, X

]
| T = 1

]
P (T = 1)

= E
[
µ0(X)ε0(X) | T = 1

]
P (T = 1).

Plugging the above back into the equation for τ , we have,

τ = E
[
Y | T = 1

]
P (T = 1) + E

[
Y (1) | T = 0

]
P (T = 0)

− E
[
Y (0) | T = 1

]
P (T = 1)− E

[
Y | T = 0

]
P (T = 0)

= E
[
µ1(X) | T = 1

]
P (T = 1) + E

[
µ1(X)
ε1(X) | T = 0

]
P (T = 0)

− E
[
µ0(X)ε0(X) | T = 1

]
P (T = 1)− E

[
µ0(X) | T = 0

]
P (T = 0)

= E
[
µ1(X) ·

(
T + 1− T

ε1(X)

)]
− E

[
µ0(X) ·

(
Tε0(X) + 1− T

)]
,

which is equivalent to eq. (2) by the law of iterated expectations.
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C Assumptions for Inverse Propensity Score Weighting

Consider the inverse propensity score weighting estimator. Equivalent to the form of the ATE proposed in
Lu & Ding (2023, Theorem 2), we have

τ(ε, e, pXT Y ) =
∑
x∈X

(t,y)∈{0,1}2

pXT Y (x, t, y)
[
w1(x) ·

(
ty

e(x)

)
− w0(x) ·

(
(1− t)y
1− e(x)

)]
, (10)

where w1(x) = e(x) + 1−e(x)
ε1(x) and w0(x) = e(x)ε0(x) + 1− e(x).

This equality holds, when the odds ratio function, ε : X → R2
+, is given by ε(x) = (ε0(x), ε1(x)) where

ε0(x) = E[Y (0)|T = 1, X = x]
E[Y (0)|T = 0, X = x] , ε1(x) = E[Y (1)|T = 1, X = x]

E[Y (1)|T = 0, X = x] ,

the propensity scores, e : X → [0, 1]2, are given by

e(x) = E[T |X = x],

and the joint distribution, pXT Y ∈ ∆4|X |−1 gives the probability pXT Y (x, t, y).

The functions (ε, µ, pXT Y ) are either non-identifiable from observational data or challenging to estimate. So
we must make the following assumptions on the possible values of a = (ε, µ, pXT Y ).

Once again, the no unmeasured confounding assumption is that true odds ratios are identically 1, i.e.,
(ε0(x), ε1(x)) = (1, 1), as discussed in section 2. Under this assumption, eq. (10) reduces to

τ(1, e, pXT Y ) =
∑
x∈X

(t,y)∈{0,1}2

pXT Y (x, t, y)
[

ty

e(x) −
(1− t)y
1− e(x)

]
, (11)

where the propensity scores e and jont distribution pXT Y are defined as before.

Assumptions of well-specified propensity score models (e.g., Horvitz & Thompson, 1952) typically state
that the propensity scores e can be learned from observed data by modeling the mapping from covariates to
treatments, i.e., the risk-minimizing models of outcomes e∗ are the true propensity scores e. This assumption
may be violated due to model misspecification or reporting biases that modify the treatment assignment
distribution. Under no unmeasured confounding and correct specification of propensity score models, we have

τ(1, e∗, pXT Y ) =
∑
x∈X

(t,y)∈{0,1}2

pXT Y (x, t, y)
[

ty

e∗(x) −
(1− t)y

1− e∗(x)

]
. (12)

External validity of pXT Y assumptions typically state that the sampled population is the same as the target
population of interest. Here, an assumption of external validity would state that the sampled population’s
distribution over covariates, treatments, outcomes qXT Y is the same as the target distribution pXT Y . This
assumption can be violated due to selection biases in data collection such that the observed population is not
representative of the true target population. Under all three assumptions above, we have

τ(1, e∗, qXT Y ) =
∑
x∈X

(t,y)∈{0,1}2

qXT Y (x, t, y)
[

ty

e∗(x) −
(1− t)y

1− e∗(x)

]
(13)

≈ 1
n

n∑
i=1

[
t(i)y(i)

ê(x(i)) −
(1− t(i))y(i)

1− ê(x(i))

]
, (14)

which is the standard and popular inverse propensity weighting estimator, computed using a study population,
(x(i), t(i), y(i))n

i=1, of n individuals and (usually) fitted regression models ê for propensity scores.

18



Under review as submission to TMLR

D Dataset Details

D.1 Simulation Study

We simulated datasets with four binary covariates and binary treatments and outcomes, as follows.

1. Sample covariates independently as Xi ∼ Ber(·), where there the Bernoulli parameter for each covariate is
in [0.4, 0.5, 0.6, 0.7] for i ∈ {1, 2, 3, 4}.

2. Simulate observational data by setting a propensity score between 0 and 1 that depends on covariates
X, given by ps = expit ( X.dot(t-coeff) ) and sampling treatments as T ∼ Ber(ps). Here, we set
t-coeff = [0,−3, 0, 0] and expit denotes the logistic sigmoid function.

3. Assign outcomes based on treatments and covariates via a logistic model that includes non-linear
interactions between treatment and covariates. Outcome Y ∼ Ber ( expit (logits) ) where
logits = beta * T + X.dot(gamma) X.dot(delta) * T. Here, we set beta = 4, gamma = [1,−1, 1, 0],
and delta = [−2,−3,−1,−2].

4. To further simulate real-world selection biases, we sampled a mask S ∼ Ber ( expit (sel-logits) ),
with sel-logits = delta-y * Y + delta-t * T + X.dot(delta-x), and selected only datapoints for
which S(i) = 1. Here, we set delta-y = 2, delta-t = 1, and delta-x = [10, 10, 5, 1].

For the setting with six covariates, we take X5 and X6 as copies of X3 and X4, respectively, and similarly
repeat all the corresponding coefficients that determine relationships with T , Y , and S. Note that our choices
of coefficients here ensure that treatment effects are heterogeneous across subgroups.

D.2 Diabetes Application

We followed the dataset curation and set-up of the Semaglutide vs. Tirzepatide experiment in Dhawan et al.
(2024).

1. There are five binary covariates constructed by binning values into discrete categories:
• Age: [≤ 45, > 45] years,
• Sex: [Male,Female],
• BMI (Body Mass Index): [≤ 28.5, > 28.5] kgs per meter squared,
• HbA1c (Glycated Hemoglobin): [≤ 7.5, > 7.5] %, and
• Weight: [≤ 220, > 220] lbs.

2. Possible treatments are Semaglutide (T = 0) and Tirzepatide (T = 1).
3. Outcome is whether the user lost 5% or more of their intital weight (Y = 1) or not (Y = 0).

This dataset was constructed using unstructured text data found in the PushShift collection (Baumgartner
et al., 2020) of Reddit posts upto December 2022. It has been curated to contain submissions and comments
that describe users’ lived experiences with the treatments and outcome above. Hence, it is naturally prone
to the selection biases typical of such a platform, and exemplifies a real-world use-case of the sensitivity
analyses discussed in this work. Further, observational distributions were estimated by computing conditional
probabilities given by a large language model (LLM), before plugging them into standard causal estimators.
Specifically, we followed Dhawan et al. (2024) to sample covariates for each each report in this dataset using
GPT-4 and computed the conditional distributions of treatments and outcomes given the covariates and
reports using LLAMA-2-70B. This leaves the estimated distributions prone to biases of the LLMs as well.
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E Dual Ascent for Constrained Optimization

Here we describe a standard convex optimization problem with convex constraints, present a standard dual
ascent algorithm to solve it, and show that the constrained optimization problem for each of the assumptions
in (ε, µ, pX) can be written in terms of this standard problem.

min
a

f(a)
s.t. hi(a) ≤ 0, i = 1, . . . , m,

ℓj(a) = 0, j = 1, . . . , n,

where (f, hi, ℓj), are all convex functions of a. The corresponding Lagrangian function is given by

L(a; u, v) := f(a) +
m∑

i=1
ui hi(a) +

n∑
j=1

vj ℓj(a), u ≥ 0,

the Lagrange dual objective is g(u, v) := mina L(a; u, v), and the Lagrange dual problem is

max
u,v

g(u, v)
s.t. u ≥ 0.

Under convexity and the Slater conditions (Boyd & Vandenberghe, 2004), strong duality holds and the dual
optimum equals the primal optimum. The following dual ascent algorith solves this optimization problem for
differentiable g and small enough learning rate η.

Algorithm 1: Dual Ascent
Require : Initial u(0) ≥ 0, v(0), learning rate η

1 for k = 1, 2, . . . do
2 a(k) ∈ arg mina L

(
a; u(k−1), v(k−1))

3 u(k) ← max
(

u(k−1) + η h
(
a(k)), 0

)
4 v(k) ← v(k−1) + η ℓ

(
a(k))

5 if Slater’s condition holds then
6 return a(k), u(k), v(k)

The following define convex constrained optimization problems for each of our assumption functions.

a =
(

ε0(x), 1
ε1(x)

)
, f(a) = ||a − 1||22, h1(a) = τ(a, µ, pX), h2(a) = −a

a = µ(x), f(a) = DKL(a, µ∗), h1(a) = τ(ε, a, pX)

a = pX , f(a) = DKL(a, qX), h1(a) = τ(ε, µ, a)

Notice from eq. (2) that τ(·) as given by eq. (2) is convex in each a defined above. Further notice that L(·) is
also convex in each a. The optimization problems for µ and pX have additional simplex constraints, which we
fold into the minimization in line 2. Hence, we can use Gradient Descent for the unconstrained minimization
of L with respect to

(
ε0(x), 1

ε1(x)

)
and Entropic Mirror Descent for the simplex-constrained minimization of

L with respect to µ(x) or pX .
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F Further Results

In our simulation study, we visualize subpopulation comparisons of sensitivity values with respect to ε, µ,
and pX in figs. 6 to 8, respectively. When comparing distributions over covariate pairs or triplets in fig. 7,
the empirical BSV uncovers trends that are significantly different from not only worst-case sensitivity but
also the BSV under uniform priors, highlighting the usefulness of priors that reflect real populations.
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Figure 6: Worst-case sensitivity to unconfoundedness parameter ε increases as number of observed confounders,
and hence, dimension of A, increases. BSV with respect to ε(X) in the simulation study reveals a different
trend.
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(a) Simulation with four covariates
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(b) Simulation with six covariates

Figure 7: Worst-case sensitivity to shifts in pX over single, pairs, or triplets of covariates becomes increasingly
uninformative as the dimensionality of the corresponding assumption parameter spaces increases. Bayesian
sensitivity is more informative than the worst-case, with empirical priors revealing different trends than
uninformative ones.

Figures 6 and 7 show increasingly high sensitivity when considering joint distributions over more covariates
and can not meaningfully distinguish between different sets of covariates, especially as the dimensionality of
the corresponding assumption parameter space increases. In fact, worst-case sensitivity to unconfoundedness is
greater in settings with pairs of observed covariates, relative to single observed covariates, which is unintuitive
and unlikely to reflect real scenarios. We attribute this limitation to the large dimension of assumption
parameter spaces, where the space of possible violations grows exponentially and a worst-case analysis becomes
increasingly pessimistic, regardless of the plausibility of the worst-case violation in practice. However, BSV
does not suffer as much from this curse of dimensionality and better distinguishes between subpopulations
even in high-dimensional parameter spaces.

High sensitivity scenarios are precisely the ones where we would like to identify subpopulations for further
experimentation or data collection. The assumption on conditional outcome distributions is especially prone
to exhibiting high sensitivity because shifts in µ very easily shift the ATE across the decision threshold δ.
Figure 8 shows worst-case sensitivity values for this parameter for different covariate and treatment values,
indicating highest possible sensitivity in every case. Without incorporating any information on how likely the
shifts in this parameter space are in practice, the worst-case analysis tends to be binary in nature, attributing
either zero or full sensitivity to different subpopulations. This would be uninformative for practitioners trying
to decide where to allocate resources for more robust ATE estimation. In contrast, BSV also reveals lower
overall sensitivity for the treatment T = 0, whereas worst-case sensitivity values are too pessimistic to find
this insight.
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Figure 8: In the simulation study, BSV with respect to conditional outcome distributions in µ(X) attributes
lower sensitivity to T = 0, while worst-case analyses attribute maximum possible sensitivity to all settings,
making it impossible to meaningfully distinguish between subpopulations.
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