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Abstract

The partially observable Markov decision process (POMDP) provides a general
framework for modeling an agent’s decision process with state uncertainty, and
online planning plays a pivotal role in solving it. A belief is a distribution of
states representing state uncertainty. Methods for large-scale POMDP problems
rely on the same idea of sampling both states and observations. That is, instead
of exact belief updating, a collection of sampled states is used to approximate
the belief; instead of considering all possible observations, only a set of sampled
observations are considered. Inspired by this, we take one step further and propose
an online planning algorithm, Adaptive Online Packing-guided Search (AdaOPS),
to better approximate beliefs with adaptive particle filter technique and balance
estimation bias and variance by fusing similar observation branches. Theoretically,
our algorithm is guaranteed to find an ε-optimal policy with a high probability given
enough planning time under some mild assumptions. We evaluate our algorithm
on several tricky POMDP domains, and it outperforms the state-of-the-art in all of
them. Codes are available at https://github.com/LAMDA-POMDP/AdaOPS.jl.

1 Introduction

POMDPs generalize the MDPs by considering the state uncertainty [1]. In MDPs, the agent knows
its state exactly. In POMDPs, though an MDP determines the underlying dynamics, the agent cannot
access its actual state at each timestep and, instead, receives an observation serving as a clue. In order
to make decisions in POMDPs, the state uncertainty must be handled. A popular method for tackling
the uncertainty is to maintain a belief, a distribution on the state space, where the probability of a state
indicates how possible the agent believes it is. However, an exact belief updating requires O(|S|2)
computations, which is unaffordable in immense state space. A practical way is to approximate the
belief with a collection of weighted particles (or samples) and update it with particle filtering [2].

Finding an optimal solution for finite-horizon POMDPs or a near-optimal solution for discounted
infinite-horizon POMDPs is proved to be PSPACE-complete [3, 4]. Therefore, online planning,
which computes a real-time solution, plays a crucial role in solving POMDPs, following for two
reasons. The first is that online planning searches for a solution for not all possible beliefs but the
current belief alone, relieving the computational load significantly. Second, online planning can take
advantage of the approximate offline solution and other heuristics to expedite the tree search process.

Online planning algorithms have made substantial progress in solving large-scale POMDP problems
[5–9]. These methods approximate the belief with a collection of sampled states instead of updating
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it exactly and consider a set of sampled observations instead of all possible observations. However,
the estimation derived by simple belief approximation methods that have been applied, such as direct
sampling and sequential importance sampling [10], have a variance increasing exponentially with
searching depth. Besides, naive sampling for observations, either the direct sampling as in [7] or
importance sampling as in [9], yields a large variance when the sample size is small. Inspired by this,
we take one step further and propose an online planning algorithm, Adaptive Online Packing-guided
Search (AdaOPS), to better approximate beliefs and better balance estimation bias and variance. It
features two innovations, adaptive particle filtering, and belief packing.

The adaptive particle filter is designed for online planning. During the belief updating, it resamples
adaptively and adjusts the sample size on the fly according to the dispersion of the belief distribution,
which allows achieving high approximation accuracy with only a handful of particles.

AdaOPS forms a belief packing by merging similar beliefs. Only beliefs in the packing are explored,
hence the name “packing-guided search”. Belief packing is meant to balance estimation bias and
variance. With the use of beliefs in their exact form, it is guaranteed that similar beliefs yield a slight
difference in their optimal values [11]. We further extend this conclusion to cases where beliefs are
approximated by a collection of weighted particles and prove that by merging similar beliefs, our
algorithm can converge to the ε-optimal policy with high probability under some mild assumptions.

2 Background

2.1 POMDPs

An MDP is mathematically defined as a tuple (S,A, T,R, γ), where S and A are the state and action
spaces, respectively, and T and R are the transition and reward functions, respectively. γ ∈ [0, 1]
is the discount factor. A POMDP problem can be seen as an extension to an MDP problem, which
introduces two additional components, the observation space O and the observation function Z. At
each timestep, instead of observing the actual state as an MDP agent does, a POMDP agent can
only get an observation according to the observation function Z(o | s′, a) = Pr(o | s′, a), which
determines the probability of observing o ∈ O after executing action a ∈ A and reaching state s′ ∈ S .
The transition function T and observation function Z are sometimes hard to define explicitly. An
alternative is the generative model s′, o, r ← G(s, a), which implicitly defines the transition and
observation distributions by randomly generating a possible combination of next state s′, observation
o, and reward r given state s and action a. The POMDP agent maintains a belief b in states, a
distribution on S, and seeks to find a policy π mapping beliefs to actions, which maximizes the
expected sum of discounted rewards, E[

∑∞
t=0 γ

tR(st, π(bt)].

2.2 Particle Filters

Bayes filter recursively updates the posterior of the hidden states from a sequence of noisy and incom-
plete observations. In POMDPs, this technique is usually used to maintain a belief approximation.

Particle filter [10] is an essential class of Bayes filter, which approximates the belief with a collection
of weighted particles, {(wi, si)}i∈[N ], where si is the i-th particle, and wi is the corresponding
normalized weight. Sequential importance sampling (SIS) is a widely used particle filtering method.
It updates the belief by propagating particles with action a, s′i ∼ T (· | si, a), and reweighting
particles with observation o, i.e., w′i = wiZ(o | s′i, a)/ρ, where ρ is a normalizing factor. However,
continuously updating weights will lead to sample degeneracy where most particles become impos-
sible and have negligible weights. This problem causes the estimation variance of SIS to increase
exponentially with depth [10].

In another particle filtering method, sequential importance resampling (SIR), the weight updating
is followed by a resampling step, which samples N particles from {(w′i, s′i)}i∈[N ] with probability
proportional to the weights, and the weights of the resampled particles are set to be 1/N . Resampling
alleviates the sample degeneracy by replicating high-weight particles and dropping low-weight ones.
Theoretically, resampling is critical, without which we cannot derive the uniform convergence in the
time horizon for particle filters [12]. However, frequent resampling induces sample impoverishment,
which means that particles’ diversity is diminished, and the whole collection of particles contains
few distinct ones. In practice, resampling is only performed when necessary. A rule of thumb is
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to resample when the ratio of particle number N to effective sample size (ESS) is greater than a
threshold, say two. Here, ESS is the sample size required from the true distribution to achieve the
same sampling error as sampling N samples from the proposal distribution and can be approximately
calculated [13, 14]:

ESS ≈ 1∑N
n=1 w

2
n

. (1)

Intuitively, this strategy ensures that we only resample when the weight disparity is significant.

2.3 KLD-Sampling

Instead of using a fixed sample size, [15] proposes KLD-Sampling for adapting the sample size
in particle filters according to the dispersion of the posterior distributions. Assuming the true
posterior can be represented by a discrete piece-wise constant distribution consisting of k different
multidimensional bins, it calculates the number of samples needed to ensure that the Kullback-Leibler
divergence (KLD) between the approximated distribution and the true distribution is less than an
error ζ with a confidence level 1− η. The number of samples N is given by

N ≈ k − 1

2ζ

(
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−η

)3

, (2)

where z1−η is the 1− η quantile of the standard normal distribution. This dynamic strategy ensures
approximation quality while uses less particles on average. During the sampling, one should keep
track of the number of bins that the approximated distribution occupies and estimate the number of
samples needed accordingly.

2.4 Belief Packing

Definition 1 (δ-packing). Let (X , ‖ · ‖) be a normed space and Y ⊆ X . {y1, y2, . . . , yn} ⊆ Y is
a δ-packing of Y if mini 6=j ‖yi − yj‖ > δ. The δ-packing number of Y , denoted P δ(Y ), is the
maximum cardinality of any δ-packing of Y .
Remark. If X is totally bounded and Y ⊆ X , then we have P δ(Y ) <∞ for all δ > 0.

A belief packing is a special case of δ-packing, where the X is the belief space, a probability simplex
of |S| − 1 dimensions, and the norm ‖ · ‖ is the L1 norm. Since a simplex is totally bounded, it
follows that the packing number of a belief packing is finite.

2.5 Related Work

The covering number is the minimum number of balls needed to cover the entire space. It is closely
related to the packing number and is extensively used to identify the complexity of POMDP problems
[11, 16–18]. SARSOP [19] is an offline solver which builds an approximate cover of the beliefs space
reachable by the optimal policy and performs point-based backup at beliefs in the cover. PGVI [17]
improves SARSOP by maintaining belief packings and only expanding beliefs in the packing. FMP
[20] applies the idea of PGVI to online planning and builds a δ-cover of beliefs. Notwithstanding, all
these methods only work in discrete state spaces and require enumerating all observations.

Online POMDP solvers mainly include POMCP [5], DESPOT [6], and their variants [7–9]. We will
introduce them in terms of approximating beliefs and addressing large observation spaces.

On the belief approximation, DESPOT and POMCP sample from the joint distribution of states and
observations and approximate a belief with samples having consistent observations. These methods
are doomed to failure in large or continuous observation space because the same observation is
unlikely to be produced twice. POMCPOW [7] weights particles according to the likelihood, which
makes its belief updating close to SIR. Nonetheless, most of its beliefs are approximated by merely
several particles causing the approximation to be inaccurate. PTF-DPW [7] updates beliefs with SIR
particle filters. However, standard particle filters are excessively costly. The best performance of
PTF-DPW is achieved when the number of particles used is only 20. DESPOT-α [9] and LABECOP
[21] approximate beliefs with SIS, which is, as explained, ineffective compared to SIR.

On addressing observations, DESPOT and POMCP expand all sampled observations, which causes
the observation branches to explode quickly. POMCPOW and PTF-DPW introduce the progressive
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widening technique [22], which restricts the number of observation branches and gradually relaxes
the restriction when a node is revisited multiple times. DESPOT-α instead fixes the maximum
number of observation branches to be C. However, restricting the number of observation branches
inevitably produces extra estimation variance, damaging the performance. LABECOP adopts the lazy
belief extraction technique, which always extracts the belief from scratch with the newly sampled
observation sequence. This method naturally comes with a higher computational cost.

3 Method

Algorithm 1 General Procedure

Input: initial belief bel
1: b← bel
2: while True do
3: a∗ ← PLANNING(b)
4: Execute action a∗
5: Receive observation o
6: Update the belief b with a∗ and o

Online planning (Alg. 1) consists of two alter-
nating stages, planning and execution. A look-
ahead search is conducted during the planning
stage to find the best action for the current be-
lief. At the execution stage, the algorithm per-
forms in the real environment the action found,
gets a new observation, and updates the belief
with a Bayes filter. Then a planning stage fol-
lows. AdaOPS follows the general procedure
and makes changes in the planning part.

3.1 Planning

𝑎1 𝑎2

𝑜1 𝑜3

𝑜9 𝑜10𝑜7 𝑜8

Belief Nodes

Belief Packing

Weighted Particles

Action Nodes

Resample

𝑜13 𝑜14𝑜11 𝑜12

𝑜4 𝑜6

𝑎1 𝑎2 𝑎1 𝑎2

𝑜2 𝑜5

Merge

Figure 1: A belief tree built by AdaOPS. The sibling beliefs
share the same particles and differ in the corresponding weights,
forming a belief packing. The blue arrow indicates that similar
nodes are merged. Beliefs with high-weight disparity will be
resampled using KLD-Sampling as the red arrow shows.

At each timestep, AdaOPS gradu-
ally builds up a belief tree (as shown
in Figure 1) consisting of alternating
action and belief nodes, of which
the root belief b̄0 is sampled from
the current belief b0 using KLD-
Sampling. Each belief b̄ on the
tree is represented by a collection
of weighted particles and is an ap-
proximation to a corresponding true
belief b. Note that an approximated
belief also corresponds to a belief
node, and we will not distinguish
between them in the following. Sib-
ling beliefs on the tree share the par-
ticles and differ in the correspond-
ing weights. Initially, the belief tree
is comprised of the root node alone.
A series of explorations will then be made, each traversing a path on the tree and expanding new
nodes in the meantime. The complete pseudocode of AdaOPS is shown in Appendix A.

AdaOPS maintains an upper bound u(b̄, a) and a lower bound l(b̄, a) of the optimal value for every
action node a of belief b̄. During the exploration, the action a∗ with the highest upper bound will be
chosen (Line 10 in Alg. 2). This strategy ensures that an action branch gets explored only when its
upper bound is higher than or equal to the optimal value. AdaOPS also maintains lower and upper
bounds, l(b̄) and u(b̄), for each belief node b̄. After choosing the action, it will choose (Line 11
in Alg. 2) the child belief with the highest probability-weighted excess uncertainty (EU) [6, 23],
p̂(o | b̄, a∗)EU(τ(b̄, a∗, o)), where p̂(o | b̄, a∗) is an estimation of the probability Pr(o | b̄, a∗), and
τ(b̄, a∗, o) is the belief reached after executing a∗ and receiving o. The way to estimate Pr(o | b̄, a∗)
is stated in Section 3.2.1. The excess uncertainty is defined as

EU(b̄) = u(b̄)− l(b̄)− ξ · (u(b̄0)− l(b̄0))/γdepth(b̄), (3)

where ξ is a parameter for adjusting the desired gap between upper and lower bounds at the root
and defaults to 0.95, and depth(b̄) is the depth of belief b̄ on the belief tree. The excess uncertainty
measures how much uncertainty we need to eliminate at the belief node b̄ if we want the gap at the
root, u(b̄0)−l(b̄0), to be reduced to ξ ·(u(b̄0)−l(b̄0)). The excess uncertainty has a desirable property:
EU(b̄) ≤

∑
o∈Ob̄,a∗

p̂(o | b̄, a∗)EU(τ(b̄, a∗, o)), where Ob̄,a∗ is the set of expanded observations
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Algorithm 2 PLANNING(b0)

1: b̄0 ← KLD-SAMPLING(b0)
2: while time permitting and l(b̄0) < u(b̄0) do
3: b̄← b̄0
4: while depth(b̄) < D do
5: if b̄ is a leaf node then
6: EXPAND(b̄)
7: BACKUP(b̄)
8: if best action branch changes for some ancestors of b̄ or EU(b̄) ≤ 0 then
9: break

10: a∗ ← arg maxa∈A u(b̄, a)
11: o∗ ← arg maxo∈Ob̄,a p̂(o | b̄, a)EU(τ(b̄, a∗, o))

12: b̄← τ(b̄, a∗, o∗)

13: if depth(b̄) ≥ D then
14: u(b̄)← l(b̄)

15: return arg maxa∈A l(b̄0, a)

under the action branch a∗ of belief b. So, we can reduce the excess uncertainty on b by reducing the
excess uncertainty on its child beliefs. Note that minimizing the excess uncertainty on the root belief
is equivalent to minimizing u(b̄0)− l(b̄0).

Each time a leaf node is encountered (Line 6 in Alg. 2), all valid actions will be tried with new belief
nodes expanded. For new belief nodes, the lower and upper bounds will be initialized with heuristics.
This process of expanding leaf nodes is detailed in Section 3.2. After expanding a leaf node, a backup
will be performed (Line 7 in Alg. 2) to update the bounds of ancestor nodes, which is realized by
recursively applying the Bellman equation:

U(b) = max
a

U(b, a) = max
a

{∫
S
b(s)R(s, a)ds+

∫
O

Pr(o | b, a)U(τ(b, a, o))do

}
≈ U(b̄) = max

a

{∑
s∈S

b̄(s)R(s, a) +
∑

o∈Ob̄,a
p̂(o | b̄, a)U(τ(b̄, a, o))

}
,

(4)

where U(b) and U(b, a) can be either upper or lower bound of the optimal value, b̄(s) =
∑
i I(si =

s)wi is the probability of state s estimated by the weighted particle collection of belief b̄, and
I(·) is the indicator function. After backup, the upper bounds of ancestor nodes tend to decrease,
approaching the optimal value. According to Equation (4), the upper bound of a belief node is only
determined by its best action branch, i.e., the action branch with the highest upper bound. Therefore,
if the best action branch changes for some ancestor nodes during the backup due to the decreasing of
the upper bound, expanding the current branch will no longer decrease the upper bound of the root.
In this case, AdaOPS will end the exploration and restart from the root node (Line 8 in Alg. 2). The
exploration will also end if the excess uncertainty is less than or equal to 0 since we want to focus
on branches with high uncertainty. Moreover, if a belief exceeds the maximum depth D (Line 13 in
Alg. 2), its upper bound will be set to its lower bound so as to prevent further searching.

With the process of explorations, the bounds on the root will progressively approach the optimal
value. Nevertheless, the planning time is often not adequate for it to converge. When the allocated
time is up, the highest lower-bound action at the root belief will be chosen for execution.

3.2 Expanding Leaf Nodes

During the expansion of leaf nodes, AdaOPS first checks if the resampling condition is met (Line 1
in Alg. 3). If it does, AdaOPS performs the KLD-Resampling [24], which means we apply the
KLD-Sampling method to the resampling procedure. Then, for each action a ∈ A, AdaOPS will
propagate particles in belief b̄ with a generative model (Line 4 in Alg. 3). This process is further
discussed in Section 3.2.1. Particle propagation will produce a set of sampled observations and their
corresponding beliefs, Bb̄,a, the average reward Rb̄,a for performing action a at belief b̄, and an
estimate p̂(· | b̄, a) for the probability Pr(o | b̄, a). With the sample observations, AdaOPS generates
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a belief packing (Line 5 in Alg. 3), Pb̄,a, as described in Section 3.2.2. Finally, all beliefs in the belief
packing will be expanded to the belief tree, and their upper and lower bounds will be initialized with
some value approximation techniques [25], which are outlined in Appendix B.

3.2.1 Adaptive Particle Filter

Algorithm 3 EXPAND(b̄)

1: if |b̄|/ESS(b̄) > µ then
2: b̄← KLD-SAMPLING(b̄)

3: for a ∈ A do
4: Bb̄,a, Rb̄,a, p̂(· | b̄, a)← PROPAGATE(b̄, a)

5: Pb̄,a ← GENERATEPACKING(Bb̄,a, p̂(· | b̄, a))
6: Expand action node a
7: Expand beliefs in Pb̄,a as child beliefs of a

Algorithm 4 KLD-SAMPLING(b̄)

1: Count the number of bins with support for belief b̄
2: Calculate the number N satisfying Equation (2)
3: Sample N particles in belief b̄

According to Equation (4), we need
to approximate beliefs accurately so
that the estimation for the first integral∫
S b(s)R(s, a)ds ≈

∑
s∈S b̄(s)R(s, a)

is accurate. However, in online plan-
ning, we cannot afford tons of particles
for belief approximation and need a par-
ticle filter that works well with merely
a few particles. That is why we intro-
duce the adaptive resampling (Lines 1-
2 in Alg. 3) and the KLD-Sampling
method. When the sample size is small,
the particle impoverishment issue will
be prominent, which can be alleviated
with adaptive resampling. Moreover,
KLD-Sampling ensures the approxima-
tion quality while using fewer particles.

AdaOPS performs the KLD-Resampling adaptively (Lines 1-2 in Alg. 3) when the particle number of
the leaf belief b̄ is greater than µESS(b̄), where µ ≥ 1 adjusts the frequency of resampling and is set
to 2 throughout the paper. According to Equation (1), a low effective sample size indicates a high
level of weight disparity. It is also illustrated in Figure 1 that AdaOPS resamples when the weight
disparity of a belief is high. In order to determine the particle number for resampling, the state space
is partitioned into a grid (described in Appendix D.2, Figure 5). Then, we can count the number
of bins occupied by belief b̄ and calculate the particle number for resampling with Equation (2).
The hyperparameter η is set to be 0.05, and the ζ is tuned such that mmin is the minimal number

satisfying Equation (2) when k = 2, i.e., ζ = 1
2mmin

(
1− 2

9 +
√

2
9z0.95

)3

, where mmin is another
hyperparameter representing the minimum number of particles needed for approximating the belief.

Algorithm 5 PROPAGATE(b̄, a)

1: O ← ∅, B ← ∅, R← 0, p̂(·)← 0

2: Initialize b̃ as an empty weighted particle collection
3: for (w, s) ∈ b̄ do
4: s′, o, r ← G(s, a)

5: b̃← b̃ ∪ {(w, s′)}, O ← O ∪ {o}, R← R+ wr
6: p̂(o)← p̂(o) + w

7: for o ∈ O do
8: Initialize b̄′ as an empty weighted particle collection
9: for (w, s′) ∈ b̃ do

10: b̄′ ← b̄′ ∪ {wZ(o | s′, a)/ρ, s′} . ρ =
∑

(w,s′)∈b̃ wZ(o | s′, a)

11: B ← B ∪ {(o, b̄′)}
12: return B,R, p̂

For each action a ∈ A, AdaOPS propagates all particles (wi, si) of b̄ through a generative model,
i.e., s′i, oi, ri ← G(si, a) (Line 4 in Alg. 5) and calculates the average reward, R =

∑
i wiri (Line 5

in Alg. 5). We estimate the probability of generating an observation o, Pr(o | b̄, a), by the sum of
weights of particles generating it (Line 6 in Alg. 5), i.e., Pr(o | b̄, a) ≈ p̂(o | b̄, a) =

∑
i I(o = oi)wi.

The belief τ(b̄, a, o) for sampled observation o is approximated by the same collection of particles
but assigns a different weight for each (Line 10 in Alg. 5). The weight for the i-th particle under
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Figure 2: The solid orange line stands for an observation distribution Pr(· | b, a) distributed between
0 to 10. The dashed blue line illustrates the optimal values of observations, V ∗(τ(b, a, ·)). (a) shows
10 samples from the observation distribution, forming an unbiased estimator for the first integral in
Equation (4). Nonetheless, this estimator has a high variance since the sample size is too small. (b)
shows 50 samples from the observation distribution. By building a belief packing, only 10 dissimilar
beliefs having distinct optimal values are retained for evaluation. Each solid red line in the figure
corresponds to a belief in the packing. The values of beliefs on the line are set to the value of the
corresponding belief in the packing. By doing so, we obtain a low variance estimator with slight bias
at the cost of 10 evaluations.

observation o is w′i = wiZ(o | s′i, a)/ρ, where ρ =
∑
i wiZ(o | s′i, a) is a normalizing factor. The

set of sampled observations and their corresponding beliefs is denoted as Bb̄,a.

3.2.2 Belief Packing

Algorithm 6 GENERATEPACKING(B, p̂)

1: P ← ∅
2: for (o, b̄) ∈ B do
3: covered← false
4: for (o′, b̄′) ∈ P do
5: if ||b̄′ − b̄||1 ≤ δ then
6: p̂(o′)← p̂(o′) + p̂(o)
7: p̂(o)← 0
8: covered← true
9: break

10: if not covered then
11: P ← P ∪ {(o, b̄)}
12: return P

Equation (4) reveals that we can approximate
the integral

∫
O Pr(o | b, a)U(τ(b, a, o))do with

the value of some sampled observations. The
more observations we sample, the lower the es-
timation variance is. However, each sampled ob-
servation corresponds to an observation branch.
Suppose we expand all observations in Bb̄,a as
new branches, the induced branching factor is
often beyond our computational capability. Nev-
ertheless, restricting the number of observations
renders high estimation variance. Inspired by
[16–18], we introduce belief packing to fuse
similar beliefs and only evaluate the distinct
ones, balancing estimation bias and variance.

Since the sibling beliefs b̄ and b̄′ share the same particles, we can calculate their L1 distance with
‖b̄− b̄′‖1 =

∑
s∈S |b̄(s)− b̄(s′)| =

∑
i |wi−w′i|, where wi and w′i are the weights of the i-th particle

for beliefs b̄ and b̄′, respectively. As will be shown in Lemma 1, when the belief approximation is
accurate, and the L1 distance between two approximated beliefs is small, the true optimal value are
also close. In other words, it is safe to fuse similar beliefs. The formal convergence analysis is given
in Theorem 1.

In AdaOPS, a belief packing is maintained under each action branch a of belief b̄ as illustrated
in Figure 1. We merge two observation branches when their beliefs are within a distance of δ
(Line 5 in Alg. 6). Specifically, if the distance between b̄1 in the packing and b̄2 is within δ, we set
p̂(o1 | b̄, a)← p̂(o1 | b̄, a) + p̂(o2 | b̄, a) and p̂(o2 | b̄, a)← 0 for their corresponding observations
o1 and o2, which is equivalent to approximate the value of b̄2 with that of b̄1. If the belief b̄2 is not
covered by any δ-ball centered at beliefs in the packing, then we add it to the packing (Line 10 in
Alg. 6).

As shown in Figure 2, by setting the value of a belief to that of the closest belief in the δ-packing,
we obtain a piece-wise constant approximation to V ∗(τ(b, a, ·)), which avoids evaluating V ∗(·) at
similar beliefs at the cost of introducing limited bias.

4 Theoretical Analysis

This section demonstrates some theoretical results and provides some insights on why and when
AdaOPS works. The proof, along with a running time analysis, is detailed in Appendix C.

7



Assuming the reward function is Borel measurable and bounded, we denote Rmax = ‖R‖∞. It
is already proved in [11] that the value function of POMDPs satisfies the Lipschitz condition, i.e.,
|V (b)− V (b′)| ≤ Rmax

1−δ δ, if ‖b− b′‖1 ≤ δ. We present another theorem extending this conclusion to
the case where we only have access to sets of weighted samples approximating the beliefs.

Lemma 1. By assigning the same set of N samples different weights, we get b̄(s) =
∑N
i=1 wiI(s =

si) and b̄′(s) =
∑N
i=1 w

′
iI(s = si) approximating beliefs b and b′. There exist bounded functions α

and α′ such that V ∗(b) =
∫
α(s)b(s) ds, and V ∗(b′) =

∫
α′(s)b′(s) ds. Supposing that ‖b̄− b̄′‖1 ≤

δ, |V ∗(b)−
∑N
i=1 wiα(si)| ≤ λ, and |V ∗(b′)−

∑N
i=1 w

′
iα
′(si)| ≤ λ, it follows that

|V ∗(b)− V ∗(b′)| ≤ 2λ+
Rmax

1− γ
δ. (5)

This result indicates that merging similar beliefs works well when the approximated beliefs are indeed
good approximations to the original beliefs.

In the following, we will present the convergence analysis of AdaOPS. In other words, we will
bound the difference between the real optimal value V ∗0 (b0) of the current belief b0 and the estimated
optimal value V̂ ∗0 (b̄0) of the root belief b̄0. As the resampling will cause the particles to be interrelated
and significantly increase the difficulty of analysis, we follow the proof in [26] and disables the
resampling for now. The effectiveness of the adaptive particle filter is empirically demonstrated in
Section 5.2. Our convergence analysis is built upon the following assumptions:

1. The ESS threshold µ for adaptive resampling is set to∞.
2. The reward function is Borel measurable and bounded.
3. The upper bound of AdaOPS is initialized to +∞. Its lower bound is initialized with any

function bounded by Rmax

1−γ .

4. The state and observation spaces are continuous, and the action space is finite.
5. For all d ∈ {0, 1, . . . , D − 1} and all observation sequences {on}, the essential supremum

of the importance weight ess supx∼Qd wPd{on}/Q
d(x) is upper bounded by dmax, where

wP/Q(x) = P(x)
Q(x) .

Theorem 1. Suppose that all assumptions listed above hold. Let N = |b̄0| ≥ mmin. For ε > 0,

|V ∗0 (b0)− V̂ ∗0 (b̄0)| ≤ ε (6)

holds with a probability of at least

1− 15|A|N(|A|min(N,P δmax))D exp
(
−N · t2max

)
, (7)

where tmax = (1−γ)λ
Rmaxdmax

− 1√
N

, δ = (1−γ)2ε
3γRmax

, λ = (1−γ)ε
3(1+5γ/2) , D = logγ

(1−γ)ε
6Rmax

, P δmax =

supb,a P
δ(Yb,a), and Yb,a is the set of reachable beliefs after executing action a at belief b.

The sample size N in Theorem 1 is at an order of Õ
(
R2

maxd
2
max

(1−γ)4ε2

)
, where the tilde means to omit the

logarithmic part. Since the term dmax can increase exponentially w.r.t. the depth D, the sample size
could scale poorly, highlighting the importance of sample-efficient belief approximation.

The benefit of belief packing is not evident from the convergence result. In fact, it affects the
performance by controlling the tree size. AdaOPS builds a tree of size O((|A|min(P δmax, Nmax))D),
where Nmax is the maximum sample size given by KLD-Sampling. For discrete state spaces, the
maximum packing number P δmax is always finite and will not increase w.r.t. depth D. Although this
may not hold in every continuous state problem, belief packing still shows great potential empirically.

5 Experiments

This section evaluates our method on four domains based on the POMDPs.jl framework [27] and
conducts an ablation study showing the contribution of each component. Besides, we compare the
adaptive particle filter with other particle filter variants demonstrating that the adaptive particle filter
can approximate the belief better.
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5.1 Performance Comparison

In what follows, we compare AdaOPS with DESPOT [6] and POMCPOW [7] on four domains, Laser
Tag [6], Rock Sample (RS) [23], Roomba [28], and Light Dark [7]. These domains are carefully
chosen so that they can cover various types of POMDPs. The details of these domains are shown
in Appendix D.1. In order to understand the contribution from adaptive resampling (AR), KLD-
Sampling (KLD-S), and belief packing (BP), respectively, we remove one component at a time and
tune the hyperparameters to achieve the best performance for others. Specifically, the removal of
adaptive resampling means we resample at each timestep as a standard particle filter does.

5.1.1 Experiment settings

In all these tasks, solvers are allocated 1s for planning per step. Since the obstacle positions in
Laser Tag and the rock positions in Rock Sample greatly influence the optimal value, tests on these
domains are conducted with one hundred randomly generated maps so that the result is trustworthy.
Hyperparameters for each algorithm are tuned via grid search, and another independent experiment is
conducted to test their performance. DESPOT and AdaOPS initialize upper and lower bounds with
heuristics, and POMCPOW evaluates nodes it encountered for the first time with a value estimator.
All experiments were conducted on a computer with Intel(R) Core(TM) i7-10750H, 6vCPUs running
at 2.6GHz, and 32G main memory. Please refer to Appendix D.2 for the ranges of grid search and
the hyperparameters and heuristics selected for each algorithm. Besides, a time sensitivity analysis is
presented in Appendix D.3.

5.1.2 Results

In Table 1, the average discounted return is shown along with the corresponding standard error of
mean (SEM) in the form of Return±SEM. In all these domains, AdaOPS outperforms other solvers
with statistical significance (p < 0.0001). A hyperparameter sensitivity analysis in Light Dark is
presented in Appendix D.4.

Table 1: Performance Comparison

Laser Tag RS(15,15) Bumper Roomba Lidar Roomba Light Dark

|S| 4, 830 7, 372, 800 ∞ ∞ ∞
|A| 5 20 9 6 3
|O| ∼ 1.5× 106 3 2 ∞ ∞
DESPOT −10.71± 0.22 15.67± 0.20 −2.18± 0.11 −0.84± 0.06 2.50± 0.10

POMCPOW −10.15± 0.17 10.40± 0.18 −2.28± 0.09 −0.50± 0.07 3.23± 0.11

AdaOPS −8.31± 0.18 17.16± 0.21 −1.48± 0.11 −0.09± 0.07 3.79± 0.07
AdaOPS(AR) −8.79± 0.17 16.73± 0.21 −1.63± 0.11 −0.21± 0.06 3.62± 0.07

AdaOPS(KLD-S) −8.79± 0.18 \ −1.71± 0.11 −0.20± 0.07 3.72± 0.07

AdaOPS(BP) −9.84± 0.18 17.10± 0.21 \ −0.51± 0.07 1.50± 0.20

Note: RS(n,m) stands for the Rock Sample with n× n map andm rocks.∞ means continuous state (or observation) space.
AdaOPS(XX) denotes AdaOPS without component XX. AR = Adaptive Resampling. KLD-S = KLD-Sampling. BP = Belief Packing.

Laser Tag In Laser Tag, an agent tries to tag an escaping target. Initially, the agent knows nothing
about its own position and the target’s position, and the belief is spread over the entire grid. It can
then access the map and infer the positions from the sensor information. After several steps, the belief
will shrink into a small region. Since the dispersion of beliefs varies considerably, the KLD-Sampling
is advantageous. The adaptive resampling avoids sample impoverishment and contributes equally
with KLD-Sampling. The belief packing contributes most by allowing AdaOPS to handle massive
observation space effectively.

Rock Sample In Rock Sample, a Mars rover intends to sample as many good rocks as possible
while only inferring the goodness of rocks from its noisy sensor measurements. It maintains a belief
of the goodness for each rock, which is always comprised of two bins, good and bad. Thus, the
particle number given by Equation (2) is always mmin, i.e., KLD-Sampling makes no difference in
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the Rock Sample problem. Besides, belief packing is also unproductive since there are only two
observations. The improvements of AdaOPS mainly come from the fact that AdaOPS maintains
an accurate belief approximation in the depth of the tree using particle filter techniques. Contrarily,
DESPOT and POMCPOW tend to be overoptimistic on future uncertainty.

Roomba Roomba is a robotic vacuum cleaner that attempts to locate itself in a familiar room and
reach the target region. It can equip either a Bumper sensor that senses the collision or a Lidar sensor
that measures the distance to the obstacle in the front. As a state is either collided or not, the beliefs
corresponding to different observations in Bumper Roomba always have an L1 distance 2, which
means there are no similar beliefs, and belief packing is of little avail in this case. However, in Lidar
Roomba, belief packing handles continuous observation gracefully, making a significant contribution.
The KLD-Sampling fails to contribute much as expected in the Roomba domain. A possible reason is
that according to Equation (2), high state uncertainty comes with a large number of particles and,
consequently, observations, making online planning extremely hard given limited planning time. The
above analysis is corroborated by an additional result presented in Appendix D.5.

Light Dark Light Dark is an information-gathering task. With the aim of reaching the target area,
the agent needs to find its way to the light region, gathering intelligence. This requires the agent to be
fully aware of the state uncertainty while factoring in all possible observations. The belief packing
empowers AdaOPS to consider only distinct observations. On the KLD-Sampling, the problem in
Roomba also occurs in Light Dark, resulting in little improvement.

5.2 Benefits of Adaptive Particle Filters

Figure 3: The belief approximated via the adaptive
particle filter is the closest to the real posterior, using
the same amount of particles.

We present a comparison between different
particle filters on the Laser Tag domain, in-
cluding SIS, SIR, and Adaptive particle fil-
ter. Each particle filter is given the same
sequence of action-observation history for
belief updating. The approximation error
(measured by total variation distance) is
checked after 10 steps. As illustrated in Fig-
ure 3, the adaptive particle filter gets the
lowest approximation error and the lowest
variance using the same amount of parti-
cles. This result supplements the conver-
gence analysis in Section 4 since a better
approximation of beliefs will not undermine
the convergence.

6 Discussion

This paper presents an online planning algorithm, AdaOPS, featuring adaptive particle filter and
belief packing, which is able to solve most POMDP problems optimally, given enough planning time.
The success of the adaptive particle filter points out that in previous methods [6, 7], the inaccurate
belief updating is a detriment to the performance, outweighing the potential benefit of efficiency.
Furthermore, it is demonstrated that forming a belief packing with approximated beliefs is an effective
tool for handling large observation spaces. We believe it could find itself extensive use in POMDP
planning.

The size of the tree AdaOPS built could go unmanageable when |A| and P δmax are large. Though it
is caused by the complexity of the problem itself [11], we can abate this problem by implementing
a parallel version following [8]. Furthermore, it is possible to improve the search efficiency with
sawtooth approximation [25] and alpha vectors as described in [9]. We will also explore the possibility
of handling large-scale or continuous action spaces.
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