
Anomaly Detection for Additive Manufacturing with Antenna-Based Embedding
Sensors: An Explainable, Instructive Learning Framework

Wenkai Tan1, Houbing Song1

PCAM Team12

1University of Maryland, Baltimore County
Baltimore, MD, USA

2 Embry-Riddle Aeronautical University
Daytona Beach, FL, USA

Abstract

Additive manufacturing enables the layer-by-layer fabrica-
tion of complex and customizable structures but remains
prone to internal defects that are difficult to detect dur-
ing fabrication. This work presents an anomaly detection
framework for real-time defect monitoring using a custom-
designed wireless antenna sensor. The sensor consists of an
aluminum split-ring resonator patterned with gold conduc-
tive ink and mounted on a ceramic substrate. It passively re-
sponds to structural and thermal changes during the manu-
facturing process by producing frequency-domain scattering
parameter signals. To process these high-dimensional signals
without requiring defect-labeled data, we develop a zero-bias
deep neural network trained exclusively on normal-class sam-
ples. The model constructs a class-structured latent space us-
ing cosine similarity to learned templates and applies Ma-
halanobis distance to define statistical decision boundaries.
Anomalies are identified when inputs deviate significantly
from the expected distribution of normal data. The framework
is designed around two deployment-oriented principles. Ex-
plainability enables users and domain experts to understand
detection decisions through latent space visualization, feature
attribution, and statistical reasoning that connects model out-
puts to interpretable signal characteristics. Instructibility al-
lows users to tune detection sensitivity through threshold con-
trol without retraining, adapting the system to different qual-
ity requirements and process tolerances. The system is evalu-
ated using experimental data collected from the antenna sen-
sor under controlled thermal variation. Results demonstrate
that the proposed method accurately detects anomalous signal
patterns without using defect supervision, while maintaining
interpretability and user control. This approach offers a trans-
parent, adaptive, and data-efficient solution for in situ defect
monitoring in additive manufacturing environments.

Code — https://colab.research.google.com/drive/
1ljGlaFfSnwMrycLCk2k3fM-hB2hRTqSm?usp=sharing

Datasets — https://drive.google.com/drive/folders/
1kQet4mDaNtM3hL 8mj0BLa5rJy3aMiJo?usp=sharing

Introduction
Additive manufacturing (AM), commonly referred to as
3D printing, has become a cornerstone of Industry 4.0,
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enabling layer-by-layer construction of highly customized
components with complex internal geometries. This pro-
cess reduces material waste and allows for greater de-
sign flexibility, making it attractive in domains such as
aerospace, biomedical implants, and microelectronics fabri-
cation (Vaezi, Seitz, and Yang 2013; Khorasani et al. 2022).
However, the intrinsic complexity of AM introduces signif-
icant challenges in process stability and defect control. De-
fects such as incomplete fusion, delamination, or geomet-
ric distortion may arise unpredictably during printing, often
remaining undetected until post-fabrication testing (Francis
et al. 2018).

To address these challenges, real-time monitoring using
embedded or external sensors has been proposed. Among
various sensing modalities, resonator-based antenna sen-
sors, including microwave and acoustic resonators, have
shown promise due to their sensitivity to changes in ma-
terial properties, temperature, and structural integrity (Mo-
hammadi et al. 2020; Fieber et al. 2020; Peng et al.
2020). These sensors generate scattering parameter data
(S-parameters), which capture dynamic electromagnetic re-
sponses of the printed material. While rich in information,
these signals are typically high-dimensional, nonlinear, and
context-dependent, making manual interpretation difficult.
Further, variations in geometry, material composition, or
antenna placement can result in overlapping signal signa-
tures, even between normal and defective samples. Tradi-
tional threshold-based detection methods are often inade-
quate, as they fail to generalize across different printing con-
ditions or defect types (Kumar et al. 2023).

In this context, machine learning (ML) emerges as a pow-
erful approach to extract latent patterns from sensor data.
Techniques such as neural networks and kernel-based classi-
fiers have been explored to detect AM defects or predict res-
onator responses (Ghosal et al. 2020; Rooney 2023). How-
ever, several practical limitations hinder their real-world de-
ployment. First, supervised learning methods typically re-
quire large amounts of labeled data, especially defective
samples, which are difficult to obtain in low-defect-rate pro-
duction environments or regulated industries like aerospace
and medical devices (Zhang et al. 2023). Second, many
ML models operate as black boxes, offering limited inter-
pretability for engineers or operators, which impedes their
integration into safety-critical workflows (Jagatheesaperu-



Figure 1: The framework of quick anomaly detection with latent space explanation.

mal et al. 2022; Sharma, Zhang, and Rai 2021; Singh, Rathi,
and Antony 2023). Third, many state-of-the-art models are
computationally demanding, making them impractical for
embedded, in-situ monitoring systems that require fast and
lightweight inference (Fan et al. 2023).

To overcome these barriers, we propose an anomaly de-
tection framework for antenna-based defect detection in AM
emphasizing explainability and instructibility. Explainabil-
ity ensures detection decisions can be understood and vali-
dated through geometric reasoning in latent space and visual
interpretation using dimensionality reduction techniques. In-
structibility enables users to adjust latent-space thresholds
without retraining, reflecting known tolerances or process-
specific characteristics. Together, these principles facilitate
transparent operation and enable domain experts to maintain
control over detection sensitivity.

Our main contributions are summarized as follows:

• A Defect Detection Framework Without Defective
Data in Antenna Embedded AM: We develop a
classification-based anomaly detection framework us-
ing only normal antenna signal data, addressing defect-
labeled signal scarcity in additive manufacturing and en-
abling multiclass discrimination and anomaly identifica-
tion.

• Explainable Latent-Space Reasoning with Statistical
Decision Boundaries: We formulate the decision space
using cosine similarity and Mahalanobis distance for ge-
ometric class separation and deviation detection. This en-
ables interpretability through statistical reasoning and vi-
sual analysis, linking decisions to antenna signal charac-
teristics.

• Controllable Detection Logic via Instructible Deci-
sion Thresholds: Our architecture enables controllable
detection sensitivity through latent-space thresholds

without retraining, allowing user-defined robustness-
sensitivity tradeoffs for diverse AM processes.

• Antenna Dataset for Frequency-Domain Defect De-
tection in Manufacturing: We construct a dataset
from S-parameter measurements of flexible slot anten-
nas across multiple AM configurations, supporting mul-
ticlass learning and anomaly evaluation.

Background and related work
AM systems increasingly rely on intelligent quality mon-
itoring, where learning-based models must operate under
physical constraints, limited supervision, and real-time deci-
sion demands. Among various sensing modalities for in-situ
monitoring, antenna systems have shown particular promise
due to their sensitivity to dielectric and structural variations
(Mohammadi et al. 2020; Fieber et al. 2020). By sweeping
across frequency ranges and measuring scattering responses,
antennas generate S-parameter data that reflect subtle mate-
rial or geometric changes, making them useful for detecting
defects such as deformation, voids, and layer discontinuities.
However, these high-dimensional frequency-domain signals
are challenging to interpret manually and often require ad-
vanced analytical methods. This section reviews the key re-
search areas that form the foundation of our work.

Unsupervised Anomaly Detection
Unsupervised anomaly detection identifies outliers without
labeled defect samples, suitable for manufacturing where
defect data are scarce. These approaches construct statisti-
cal models or decision boundaries from normal data and flag
significant deviations.

ECOD (Li et al. 2022) detects outliers by analyzing tail
probabilities of empirical marginal distributions. It com-
putes empirical cumulative distribution functions per dimen-
sion and identifies samples with low joint tail probabilities



as anomalies. This parameter-free approach is computation-
ally efficient and robust to diverse data characteristics.

SUOD (Zhao et al. 2021) addresses computational chal-
lenges of applying multiple detectors to large-scale datasets
by approximating base detector outputs through random pro-
jection and model selection. It combines algorithms like iso-
lation forests, k-nearest neighbors, and local outlier factor,
balancing accuracy with efficiency for real-time industrial
monitoring.

Other methods include one-class SVM (Schölkopf et al.
2001), which separates normal data from the origin in high-
dimensional space, and autoencoders (Zhou and Paffenroth
2017), which identify anomalies via reconstruction error.
These have been applied in fraud detection, network intru-
sion detection, and industrial quality control.

Deep Learning for High-Dimensional Sensor
Signals
DL demonstrates superior capabilities in modeling high-
dimensional, nonlinear relationships in antenna-based sig-
nal responses. Unlike traditional models requiring manual
feature extraction, DNNs directly process raw or minimally
preprocessed sensor inputs and learn hierarchical represen-
tations capturing local and global patterns.

In AM, these models predict defect types, classify ma-
terial states, and estimate process parameters (Ghosal et al.
2020; Rooney 2023). However, most DL methods rely on
supervised training using labeled defective data, often un-
available in real-world AM (Zhang et al. 2023). Addition-
ally, standard architectures with bias terms and fully con-
nected layers entangle decision logic, hindering feature iso-
lation and unseen anomaly identification.

Explainability and Instructibility in AI Systems
As AI systems are deployed in manufacturing and high-
stakes domains, ensuring compatibility with human under-
standing and operational requirements has become critical,
articulated through explainability and instructibility con-
cepts from trustworthy and human-centered AI (Bender and
Koller 2020; Gabriel 2020; Bommasani 2021).

Explainability refers to producing outputs whose reason-
ing can be understood, validated, and traced to meaningful
inputs. Feature attribution methods like Grad-CAM (Sel-
varaju et al. 2017), LayerCAM (Jiang et al. 2021), and in-
tegrated gradients identify input regions contributing most
to predictions. Dimensionality reduction techniques includ-
ing PCA (Jolliffe and Cadima 2016) and t-SNE (Maaten and
Hinton 2008) enable visualization of learned representations
(Tan et al. 2024). Attention mechanisms reveal input focus
during decision-making (Vaswani et al. 2017). In manufac-
turing, explainability validates model decisions against do-
main knowledge and identifies failure modes (Jagatheesape-
rumal et al. 2022).

Instructibility emphasizes incorporating human direc-
tion and responding to task-specific constraints with-
out retraining. Interactive machine learning research ex-
plores adjustable thresholds, calibrated scoring, and user-
configurable parameters for adaptability (Das, Adepu, and

Zhou 2020; Ruff et al. 2020). In manufacturing, domain
knowledge guides preprocessing, feature selection, or regu-
larization. Sharma et al. (Sharma, Zhang, and Rai 2021) re-
view how process information informs representation learn-
ing, while Feng et al. (Feng et al. 2020) show engineering
heuristics improve deep learning generalization in industrial
settings, highlighting the need for human-guided decision
logic in environments requiring model auditing and revali-
dation.

Statistical distance metrics support interpretability in
anomaly detection. Mahalanobis distance evaluates devia-
tions from known distributions while accounting for fea-
ture correlations (Yan et al. 2023), widely adopted to define
class-consistent boundaries and quantify abnormality.

Current Limitations
The reviewed literature highlights several gaps that motivate
our approach. First, while antenna-based sensing provides
rich frequency-domain signals for AM monitoring, exist-
ing methods often rely on manual threshold tuning or re-
quire extensive labeled defect data. Second, although un-
supervised anomaly detection methods can operate without
defect labels, classical approaches typically analyze feature-
level statistics without learning hierarchical representations,
while deep learning methods often lack transparency and
controllability. Third, explainability and instructibility are
recognized as important but remain underexplored in the
context of antenna-based defect detection for AM. Our work
addresses these gaps by developing a zero-bias deep neural
network framework that combines several key innovations.

Methodology
Problem Definition
Given antenna signal responses collected exclusively under
normal additive manufacturing conditions, the task is to con-
struct a model that classifies signals into predefined cate-
gories and identifies defects as anomalies, without using any
defect-labeled data. The model must produce decisions that
are grounded in signal structure, instructible through human-
adjustable thresholds, and aligned with manufacturing ob-
jectives such as quality control and defect rejection.

Sensor Design and Experimental Setup
The sensor used in this study is based on a planar split-ring
resonator (SRR) fabricated on a ceramic substrate. The res-
onator itself is made from aluminum, selected for its sta-
ble electromagnetic properties and compatibility with high-
temperature environments. A gold-based conductive ink is
applied to define the SRR pattern on the aluminum sur-
face, forming the resonant structure required for frequency-
domain sensing. The substrate underneath the resonator is a
ceramic platform that provides mechanical support and elec-
trical isolation. Multiple SRR units with different gap sizes
ranging from 100 to 400 µm were fabricated to examine the
effect of geometric variation on resonant behavior. A close-
up view of the fabricated sensor is shown in Figure 2.

Sensor characterization was conducted using a Keysight
PNA network analyzer (model N5227B), which measured



Figure 2: Fabricated split-ring resonator (SRR) on alumina
substrate. The SRR was printed using gold-based conduc-
tive ink with a slot gap of 100–400 µm.

Figure 3: Experimental setup for sensor testing. The SRR
sensor is measured using a Keysight N5227B network ana-
lyzer and heated on a programmable hot plate.
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Network

the reflection coefficient (S11) over the frequency range of
8 to 12GHz. A waveguide probe setup enabled non-contact
interrogation of the sensor. The device was mounted on a
programmable hot plate to enable temperature control dur-
ing testing. Measurements were recorded at discrete temper-
ature points ranging from 23°C to 200°C. At each step, the
S11 response was captured and later used to extract the res-
onant frequency of the SRR. The full experimental setup is
shown in Figure 3.

The acquired S-parameter data are used as the input to the
anomaly detection framework described in Section .

Zero-bias DNN
DNN models are capable of learning complex patterns from
large sets of preprocessed signal response data and can
perform accurate classification when provided with suffi-
cient training samples. These models are typically trained
on labeled datasets that include examples from all relevant
classes. In a typical DNN, shallow layers extract basic fea-
tures from the input and pass them through intermediate lay-
ers, while deeper layers learn to recognize high-level pat-

terns associated with specific categories. In the case of an-
tenna signal responses, this includes learning to distinguish
patterns related to the presence of defects. However, tradi-
tional deep learning approaches rely on extensive training
data that include both normal and defective samples. A ma-
jor limitation is that such models are unable to detect defects
effectively unless defect-labeled training data are available.

In this study, we adopt a recently proposed Zero-bias
DNN (ZBDNN) (Liu et al. 2020) to address the limitations
of conventional DNN training in defect detection for AM.
The structure of the Zero-bias model, along with its compar-
ison to a traditional DNN, is illustrated in Figures 4a and
4b. A standard DNN for classifying signal response data
typically consists of multiple one-dimensional convolutional
layers for latent feature extraction, followed by fully con-
nected layers that reduce dimension and generate the final
classification output. In contrast, the ZBDNN replaces the
final fully connected layer L with two sequential layers de-
fined as:
L = L1(dimension reduction) + L2(Zero-bias matching).

(1)
The Zero-bias layer replaces the standard fully connected

classifier with a normalized projection that computes the
similarity between latent features and learned class tem-
plates. By removing bias terms and applying L2 normal-
ization to both inputs and weights, this layer transforms the
classification process into a direction-aware comparison in
latent space.

Replacing the final fully connected layer in a traditional
DNN with a two-stage Zero-bias structure is mathematically
equivalent in terms of representational capacity. Therefore,
the ZBDNN maintains classification accuracy comparable
to conventional DNNs while fundamentally improving the
interpretability and geometric structure of the decision pro-
cess. In the L2 stage, cosine similarity is computed between
the latent representation of an input and the weight vec-
tors representing each class. This produces a similarity score
vector that reflects how closely the input aligns with each
class template in latent space. These similarity scores serve
as the basis for interpretable and efficient anomaly detection.

To apply the ZBDNN for defect detection, we follow a
three-step process. First, a traditional DNN is trained us-
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Figure 5: Smith plot and Magnitude response plot of antenna S-parameter signals under three conditions: room temperature
(red), high temperature (green), and defect slot (blue). The trajectory shifts reflect impedance changes caused by thermal and
geometric defects.

ing only normal-class antenna data to verify the quality of
the preprocessed dataset. Its performance is validated us-
ing cross-validation, accuracy metrics, and confusion ma-
trices. Second, the same normal dataset is used to train the
ZBDNN. Once the model achieves performance comparable
to the traditional DNN, training is stopped to avoid overfit-
ting. A final evaluation is performed to confirm consistency
in classification accuracy and stability.

In the final stage, the trained ZBDNN is used to extract
latent features and detect potential defects. Each input sig-
nal passes through the network, and its corresponding latent
representation is computed by the L2 layer. The L1 layer
performs a standard projection:

Y1 = W1X + b1, (2)

where Y1 is the output of the L1 layer, W1 is the trained
projection weight, and b1 is the bias term. This intermedi-
ate result is then passed into the Zero-bias L2 layer, which
eliminates bias and computes a final linear transformation:

Y2 = W2Y1 = W2W1X +W2b1. (3)

The output vector Y2 can be expanded into individual sim-
ilarity scores for each class:

Y2[y1k] = [w21 · y1k, w22 · y1k, . . . , w2n · y1k]. (4)

Each term in this vector corresponds to the dot product be-
tween the latent feature and a class fingerprint. This can be
reformulated as a cosine similarity:

w2n · y1k = |w2n| · |y1k| · cos(w2n, y1k). (5)

To quantify the boundary between normal and abnormal
samples, we compute the covariance matrix of the latent out-
puts:

Cov[X ] = cov(Y2[yk], Y2[yk]). (6)

Each class’s centroid is defined as the mean of its corre-
sponding latent vectors:

Ci
0 = mean(Y2[yk]). (7)

We then use the Mahalanobis distance to measure the devi-
ation of an input sample from its class centroid:

MD =
√
(Y2[yk]− Ci

0)
T · Cov[X]−1 · (Y2[yk]− Ci

0).

(8)
A cut-off distance is defined as the largest Mahalanobis dis-
tance observed among the training samples for a given class:

COD = max(MD(Y2[yk], C
i
0)) (9)

Based on this threshold, a binary decision rule for anomaly
detection is defined:

Anomaly =

{
0 if MD(Y2[yk], C

i
0) ≤ COD

1 otherwise.
(10)

For an unknown dataset that includes both normal and
defective samples, each input is passed through the trained
ZBDNN. Its feature vector is extracted via the L2 layer,
and its Mahalanobis distance to the class centroid is com-
puted. If this distance exceeds the cut-off threshold, the in-
put is classified as defective. This process is illustrated in
Figure 4c, where feature extraction is highlighted in green
and the anomaly decision logic in red.

Evaluation and Discussion
Dataset and Pre-processing
To evaluate the proposed anomaly detection framework, we
collected scattering parameter data from the fabricated an-
tenna sensor under various thermal and geometric condi-
tions. The measurements include three representative signal
groups: (1) a normal baseline collected at standard tempera-
ture and gap size, (2) a temperature-induced defect set col-
lected using the same sensor geometry but under elevated
thermal conditions that fall outside the process tolerance,
and (3) a geometric deviation set collected under the same
temperature as the baseline but with a modified resonator
gap. These three signal categories are visualized for compar-
ison in both the Smith chart and the magnitude response plot
(in decibels), as shown in Figures 5a and 5b, respectively.



Figure 6: Visualization on latent representation.

Figure 7: Voronoi diagram of Anomaly Detection with ZBDNN.

Dataset S-parameter MNIST
F1 score Training (s) F1 score Training (s)

ZBDNN (Ours) 0.9091 29 0.8006 84
ECOD 0.823 286 0.769 >600
SUOD 0.841 332 0.785 >600

Table 1: Performance Comparison

The temperature-induced variation causes a leftward shift
in the resonant frequency while preserving the original spec-
tral features, reflecting a change in the effective dielectric
environment. The geometric deviation introduces a local-
ized structural disturbance that disrupts the original reso-
nance behavior and results in the emergence of an entirely
new reflection pattern.

The normal signal group is used to construct the training
dataset for the proposed model. Prior to training, each sig-
nal is normalized using zero-mean normalization, where the

mean and standard deviation are computed across the train-
ing set and stored for later use. This normalization is ap-
plied independently to each frequency bin in the magnitude
response to eliminate scale-related bias during training.

To evaluate the method’s robustness under realistic de-
ployment conditions, we construct an additional testset re-
ferred to as the unknown dataset. This dataset is composed
of a randomly shuffled mixture of normal and defect sam-
ples, including both thermal and geometric variations. To
reflect a practical inference scenario, the unknown dataset



Layer Output Shape Description
Input [batch size, 2, 401] Two-channel input (real + imaginary)

Conv Block 1 [batch size, 10, 397] Conv1D(kernel=5) + BatchNorm + ReLU
Conv Block 2 [batch size, 10, 397] Conv1D(kernel=3, padding=1) + ReLU
Conv Block 3 [batch size, 10, 397] Conv1D(kernel=3, padding=1) + ReLU
Concatenation [batch size, 20, 397] Skip connection: Block 1 + Block 3

Flatten [batch size, 7940] Flatten for fully connected input
Fully Connected [batch size, 4] Linear layer before fingerprint layer

Zero-Bias Fingerprint [batch size, 4] Cosine-similarity-based projection
Custom Softmax [batch size, 4] Softmax for classification output

Table 2: ZBDNN architecture for S-parameter classification

(a) (b)

Figure 8: Evaluation matrix of proposed anomaly detection pipeline.

is normalized using the stored statistics from the training set
without any additional adjustment. This allows the model to
operate under the assumption that only normal-class param-
eters are known a priori.

Experimental Details
The proposed anomaly detection system is implemented us-
ing a ZBDNN trained solely on normal sensor data. Each
input sample consists of a two-channel representation of the
antenna’s S-parameter signal, with real and imaginary com-
ponents sampled across 401 frequency points. The network
architecture includes three one-dimensional convolutional
layers followed by feature concatenation, flattening, and a
dense projection layer. The full architecture is summarized
in Table 2, and the final latent vector has a dimensionality of
7940, which feeds into the Zero-bias similarity-based clas-
sification structure described in Section 3.3.

Training is performed on a dataset containing four dis-
tinct configurations of normal sensor behavior, representing
acceptable variations in temperature and antenna gap geom-
etry. The model is optimized using stochastic gradient de-
scent with a cross-entropy loss. To verify its classification
capability, we evaluate it on a held-out testset of the nor-
mal dataset. The confusion matrix in Figure 9 confirms that

the model successfully distinguishes among normal process
classes using the learned latent representation.

Figure 9: Model evaluation on normal testset.

After training, we extract the latent feature vectors for all
normal samples. For each class, we compute the mean fea-



ture vector and define it as the class fingerprint. This finger-
print acts as a geometric reference in latent space. To estab-
lish decision boundaries for anomaly detection, the Maha-
lanobis distance is computed between each training sample
and its corresponding class fingerprint. The maximum dis-
tance observed for each class is stored as a cut-off threshold,
which defines the boundary of normal variation. Figure 6
presents a t-SNE visualization of the latent space, where
distinct clusters represent the normal classes, and the fin-
gerprints appear near the center of each cluster. This vi-
sualization demonstrates that the model has formed well-
separated, class-structured representations suitable for geo-
metric anomaly detection.

To simulate a realistic deployment scenario, we construct
an unknown dataset consisting of a randomly mixed collec-
tion of normal and defective samples. These include both
thermal anomalies and geometry-induced defects. All sam-
ples are normalized using the mean and standard deviation
computed from prior knowledge. During inference, each test
sample is passed through the trained network to obtain its
latent feature representation. The cosine similarity and Ma-
halanobis distance to all class fingerprints are calculated and
will be used for anomaly detection.

Results and Discussion
With the ZBDNN trained and class-specific fingerprints con-
structed, we now evaluate the anomaly detection perfor-
mance of the proposed framework on an unknown dataset
containing both normal and defective samples. The objective
is to assess the system’s ability to distinguish in-distribution
samples from out-of-distribution behavior without requiring
any defective data during training.

The evaluation considers multiple defect scenarios, in-
cluding thermal anomalies and structural perturbations in-
troduced by geometric deviation. These cases simulate re-
alistic variations encountered in sensor-embedded additive
manufacturing processes. We report classification results in
terms of accuracy, precision, F1 Score, and compare the pro-
posed Zero-bias framework with two representative base-
lines. In addition to quantitative metrics, we provide visu-
alizations and analysis to highlight the interpretability and
stability of the latent decision space.

Figure 7 illustrates the t-SNE projection of latent features
extracted from the zero-bias deep neural network, overlaid
with Voronoi regions constructed from the class fingerprints.
Light-colored clusters represent the training samples from
each class, while blue and red points denote predicted nor-
mal and anomalous samples, respectively. The black stars
(C0–C3) indicate the latent centroids (fingerprints) of the
four training classes.

This diagram visualizes how test samples are positioned
relative to the class regions in latent space. Samples falling
within a region but beyond the cut-off radius from its fin-
gerprint are flagged as anomalies. The observed separation
confirms the consistency of the learned latent structure and
the effectiveness of the Mahalanobis-based anomaly detec-
tion strategy.

The t-SNE projection of test samples with anomaly de-
tection results from the ZBDNN is shown in Figure 8a.

True positives (red), true negatives (blue), and false nega-
tives (purple triangles) are plotted with respect to the learned
class centroids (black stars). The false negatives are pri-
marily located in the lower right region and correspond to
temperature-induced anomalies. Because these thermal con-
ditions did not significantly alter the resonator’s spectral re-
sponse, the resulting latent representations remained close to
those of normal data, leading the model to misclassify them
as normal.

The corresponding confusion matrix in Figure 8b summa-
rizes the overall classification results. The model correctly
identifies 448 normal and 320 anomalous samples, demon-
strating high precision and recall. The 64 false negatives
align with the thermal anomalies discussed above, confirm-
ing the challenge of detecting subtle signal shifts when the
antenna response remains largely unchanged.

Table 1 presents a comparison of anomaly detection per-
formance across two datasets using three different methods:
the proposed ZBDNN method, ECOD (Li et al. 2022), and
SUOD (Zhao et al. 2021). For both the antenna S-parameter
dataset and the MNIST benchmark, ZBDNN achieves com-
parable or superior F1 scores while significantly reducing
training time.

Notably, ZBDNN completes training on the S-parameter
dataset in only 29 seconds, compared to the 286 seconds and
332 seconds required by ECOD and SUOD, respectively. On
the MNIST dataset, ZBDNN maintains reasonable perfor-
mance while the other two methods require over 600 sec-
onds to complete training. This efficiency arises from the
lightweight architecture and the absence of ensemble or it-
erative model components.

Furthermore, both ECOD and SUOD require the contam-
ination rate (i.e., the proportion of anomalies in the dataset)
to be specified as a hyperparameter, which can be difficult
to estimate in real-world scenarios. In contrast, ZBDNN op-
erates entirely without this prior knowledge, learning class
boundaries from normal data alone and enabling flexible de-
ployment in low-defect-rate industrial settings.

Conclusion
This work presents an explainable and instructible anomaly
detection framework for additive manufacturing using an-
tenna sensor feedback and a Zero-bias DNN. The method
eliminates dependence on defective training data by con-
structing a process-consistent latent space for anomaly
identification through cosine similarity and Mahalanobis
distance-based reasoning.

The framework achieves explainability through latent
space visualization, feature attribution, and statistically in-
terpretable scoring, enabling domain experts to validate
model decisions. Instructibility is realized via adjustable de-
cision thresholds, allowing users to control detection sensi-
tivity without retraining. Integration into antenna-embedded
AM platforms demonstrates practical feasibility, offering
real-time defect detection with minimal computational over-
head.

Future work will explore multi-modal sensing, domain
adaptation across materials and geometries, and enhanced
interpretation techniques.
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