
Under review as a conference paper at ICLR 2022

DELVING INTO CHANNELS: EXPLORING
HYPERPARAMETER SPACE OF CHANNEL BIT WIDTHS
WITH LINEAR COMPLEXITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Allocating different bit widths to different channels and quantizing them indepen-
dently bring higher quantization precision and accuracy. Most of prior works use
equal bit width to quantize all layers or channels, which is sub-optimal. On the
other hand, it is very challenging to explore the hyperparameter space of channel
bit widths, as the search space increases exponentially with the number of chan-
nels, which could be tens of thousand in a deep neural network. In this paper, we
address an important problem of efficiently exploring the hyperparameter space
of channel bit widths. We formulate the quantization of deep neural networks
as a rate-distortion optimization problem, and present an ultra-fast algorithm to
search the bit allocation of channels. Our approach has only linear time complex-
ity and can find the optimal bit allocation within a few minutes on CPU. In addi-
tion, we provide an effective way to improve the performance on target hardware
platforms. We restrict the bit rate (size) of each layer to allow as many weights
and activations as possible to be stored on-chip, and incorporate hardware-aware
constraints into our objective function. The hardware-aware constraints do not
cause additional overhead to optimization, and have very positive impact on hard-
ware performance. Experimental results show that our approach achieves state-
of-the-art quantization results on four deep neural networks, ResNet-18, ResNet-
34, ResNet-50, and MobileNet-v2, on ImageNet. Hardware simulation results
demonstrate that our approach is able to bring up to 3.5× and 3.0× speedup on
two deep-learning accelerators, TPU and Eyeriss, respectively.

1 INTRODUCTION

Deep Learning (LeCun et al., 2015) has become the de-facto technique in Computer Vision, Natural
Language Processing, Speech Recognition, and many other fields. However, the high accuracy of
deep neural networks (Krizhevsky et al., 2012) comes at the cost of high computational complexity.
Due to the large model size and huge computational cost, deploying deep neural networks on mobile
devices is very challenging, especially on tiny devices. It is therefore important to make deep neural
networks smaller and faster through model compression (Han et al., 2016), to deploy deep neural
networks on resource-limited devices.

Quantization (Han et al., 2016) is one of the standard techniques for neural network compression.
One problem existed in prior works is that they typically use equal bit width to quantize weights and
activations of all layers, which is sub-optimal because weights and activations in different layers
react differently on quantization. They should be treated independently and quantized with un-
equal bit widths. Moreover, most of prior works only consider the model size and accuracy in their
methods and do not consider the system-level performance when deploying quantized models on
hardware platforms. As has been illustrated (Wang et al., 2019), a well quantized network can not
guarantee superior performance on hardware platforms. To address these two issues, the recently
proposed mixed-precision quantization methods assign un-equal bit widths across layers, and opti-
mize the hardware metrics directly in the quantization mechanism. For example, HAQ (Wang et al.,
2019) proposed a reinforcement learning method to learn the bit widths of weights and activations
across layers and minimize latency and energy in objective function directly.

1

Under review as a conference paper at ICLR 2022

90

100

110

120

130

140

68 69 70 71 72

In
fe

re
nc

e
R

at
e

Top-1 (ImageNet)

1500

1700

1900

2100

2300

2500

68 69 70 71 72

In
fe

re
nc

e
ra

te

Top-1 (ImageNet)

MIT Eyeriss Google TPU

MobileNet-V2
(Channel-wise + HA)

MobileNet-V2
(Channel-wise)

MobileNet-V2
(Layer-wise)

MobileNet-V2
(Channel-wise + HA)

MobileNet-V2
(Channel-wise)

MobileNet-V2
(Layer-wise)

Figure 1: Channel-wise bit allocation plus hardware-aware constraints (HA) achieves the best per-
formance on Eyeriss and TPU. Channel-wise bit allocation outperforms layer-wise bit allocation
because of higher quantization precision. Inference Rate: number of images per second.

Although noticeable improvement has been obtained by mixed-precision quantization, the layer-
wise bit allocation scheme is still sub-optimal, since all channels in a CONV layer are quantized
with equal bit width. In fact, different channels react very distinctively to quantization. Higher
precision can be obtained if allocating un-equal bit widths to channels. However, the challenge
is that the hyperparameter space of channel bit widths increases exponentially with the number of
channels. Given N channels and C bit widths, the search complexity is O(CN), where in a deep
neural network, N can be tens of thousand or even more. Such huge search space could make it
unaffordable for a heuristic search method, like reinforcement learning (Sutton & Barto, 2018), to
find solution within limited time.

In this paper, we propose a new approach to efficiently explore the hyperparameter space of channel
bit widths. We apply the classic coding theories (Taubman & Marcellin, 2002), and formulate the
quantization of weights and activations as a rate-distortion optimization problem. Since the output
distortion is highly related to accuracy, by minimizing the output distortion induced by quantization,
our approach is able to well maintain the accuracy at very low bit widths. We then search the optimal
bit allocation across channels in a rate-distortion optimized manner. Through utilizing the additivity
property of output distortion, we present an ultra-fast algorithm with linear time complexity to find
the optimal channel-wise bit allocation, by using Lagrangian formulation. Our algorithm only costs
a few minutes on CPU for a deep neural network.

What’s more, we present an alternative way to improve the system-level performance when deploy-
ing quantized networks on target hardware platforms. Prior works typically optimize the hardware
metrics of a whole network directly, and need real-time feedback from simulators in their learning
procedure, which could cause additional overhead to optimization. Instead, our approach improves
hardware performance by restricting the size of each individual layer, and does not require feedback
from simulators. Our key insight is that the volume of weights and activations in some layers is
particularly significant, which exceeds the capacity of on-chip memory. As a result, these layers
significantly prolong the inference time due to the necessity of slow data access to off-chip memory.
We thus constrain the size of these large layers to ensure that all variables can be stored on-chip.

To our best knowledge, only one prior work, AutoQ (Lou et al., 2020), finds channel-wise bit al-
location, and optimizes the performance on hardware platforms simultaneously. AutoQ employs
reinforcement learning to solve the bit allocation problem, which is time-consuming, and could fall
into a local optimum in their heuristic search method. Our approach adopts Lagrangian formula-
tion for fast optimization, and is able to find global optimum solution in a rate-distortion optimized
manner. We summarize the main contributions of our paper as following:

• We formulate the quantization of deep neural networks as a rate-distortion optimization
problem, and optimize the channel-wise bit allocation for higher accuracy. We present an
ultra-fast algorithm with linear time complexity to efficiently explore the hyperparameter
space of channel bit widths.

• We present a simple yet effective way to improve the performance on target hardware plat-
forms, through restricting the size of each individual layer and incorporating hardware-

2

Under review as a conference paper at ICLR 2022

aware constraints into our objective function. The hardware-aware constraints can be inte-
grated seamlessly, without causing additional overhead to optimization.

• Our approach achieves state-of-the-art results on various deep neural networks on Ima-
geNet. Hardware simulation results demonstrate that our approach is able to bring consid-
erable speedups for deep neural networks deployed on hardware platforms.

2 APPROACH

We utilize classic coding theories (Taubman & Marcellin, 2002), and formulate the quantization of
deep neural networks as a rate-distortion optimization problem. The differentiability of input-output
relationships for the layers of neural networks allows us to relate output distortion to the bit rate
(size) of quantized weights and activations. We discuss the formulation of our approach and its
optimization in this section.

2.1 FORMULATION

Let f denote a deep neural network. Given an input I, we denote y as the output of f , i.e. y = f(I).
When performing quantization on weights and activations, a modified output vector ŷ would be
received. The output distortion is measured by the distance between y and ŷ, which is defined as

δ = ‖y − ŷ‖22 (1)

Here Euclidean distance ‖.‖2 is adopted. Our approach allocates different quantization bit widths
to different weight channels and layer activations. We aim to minimize the output distortion under
the constraint of bit rate. Given the bit rate constraint r, the rate-distortion optimization problem is
formulated as

min δ = ‖y − ŷ‖22 s.t.

l∑
i=1

ni∑
j=1

Rwi,j +

l∑
i=1

Rai ≤ r, (2)

where Rwi,j denotes the bit rate of weight channel j in layer i, Rai denotes the bit-rate of activations
in layer i, ni denotes the number of channels in layer i, and l denotes the total number of layers.
Specifically, Rwi,j equals to the quantization bit width of channel j in layer i, Bwi,j , multiplied by the
number of weights in that channel; Rai equals to the quantization bit width of activations in layer i,
Bai , multiplied by the number of activations in that layer.

We notice that output distortion is highly related to network accuracy. By minimizing output dis-
tortion induced by quantization, our approach is able to well maintain the accuracy at very high
compression ratio. We provide an analysis regarding the relationship between output distortion and
accuracy in appendix.

2.2 OPTIMIZING CHANNEL-WISE BIT ALLOCATION

We explore the additivity property of output distortion when performing quantization on weight
channels and layer activations, and find that the additivity property holds, similar to the observation
made in (Zhou et al., 2018; Zhe et al., 2019). Utilizing the additivity property, we develop an efficient
Lagrangian formulation method to solve the bit allocation problem.

Let δwi,j and δai denote the output distortion caused by quantizing an individual weight channel and
an individual layer activation, respectively. The output distortion δ, caused by quantizing all weight
channels and layer activations, equals the sum of output distortion due to the quantization of each
individual part

δ =

l∑
i=1

ni∑
j=1

δwi,j +

l∑
i=1

δai (3)

Equation (3) can be derived mathematically by linearizing the output distortion using Taylor series
expansion with the assumption that the neural network is continuously differentiable and quantiza-
tion errors can be considered as small deviations. The detailed mathematical derivation of Equation
(3) is provided in appendix.

3

Under review as a conference paper at ICLR 2022

Weights 2×2×6×3
Activations 6×6×3 Weights 2×2×3×2 Activations 6×6×2 Weights

2×2×2×1
Activations 6×6×1

Conv 1 Conv 2 Conv 3

5 Bits

4 Bits

5 Bits

5 Bits

5 Bits

5 Bits

4 Bits

Rate-Distortion Curves and Bit Allocation

6 Bits

5 Bits

5 Bits

3 Bits

4 Bits

4 Bits

4 Bits

4 Bits

3 Bits

Rate-Distortion Curves with Hardware-Aware Constraints

5 Bits

4 Bits

Slope

Selected
Points

Removed by
Constraints

Selected
Points

Slope

Removed by
Constraints

Figure 2: Examples of finding optimal bit allocation w/ and w/o hardware-aware constraints.

We then apply Lagrangian formulation (Shoham & Gersho, 1988) to solve objective function (2).
The Lagrangian cost function of (2) is defined as

J = δ − λ ·
(l∑
i=1

ni∑
j=1

Rwi,j +

l∑
i=1

Rai − r
)
, (4)

in which λ decides the trade-off between bit rate and output distortion. Setting the partial derivations
of J to zero with respect to each Rwi,j and Rai and utilizing the additivity property in (3), we obtain
the optimal condition

∂δw1,1
∂Rw1,1

= ... =
∂δw1,n1

∂Rw1,n1

=
∂δa1
∂Ra1

= =
∂δwl,1
∂Rwl,1

= ... =
∂δwl,nl
∂Rwl,nl

=
∂δal
∂Ral

= λ (5)

Equation (5) expresses that the slopes of all rate-distortion curves (output distortion versus bit rate
functions) should be equal to obtain optimal bit allocation with minimal output distortion. Accord-
ing to (5), we are able to solve objective function (2) efficiently by enumerating slope λ and then
choosing the points on rate-distortion curves with slope equal to λ as solution.

The algorithm works as follows. Before optimization, we quantize each weight channel and layer
activation with different bit widths and calculate the output distortion caused by quantization to
generate the rate-distortion curve for each weight channel and layer activation. After that, we assign
a real value to λ, and select the point with slope equal to λ on each curve. The selected points on all
curves correspond to a group of solution for bit allocation. In practice, we explore multiple values
for λ until the network bit rate exceeds constraint R. We random select 50 images from training
dataset to calculate output distortion caused by quantization. Given the number of λ evaluated, t,
and the total number of quantization bit widths, b, the time complexity of optimization is O((l +∑l
i=1 ni) · t · b). The algorithm is ultra-fast with only linear time complexity. It is able to find the

answer in a few minutes on an Intel i7-6600U CPU with 2.6 GHz.

2.3 CHOICE OF QUANTIZER

We adopt uniform quantizer for weights and activations. The quantization step size ∆ is defined as
a value of a power of 2, ranging from 2−16 to 20, where the one with minimal quantization error is
selected. We clip all weights by (−2b−1 · ∆, (2b−1 − 1) · ∆) and all activations by (0, (2b − 1)),
in which b is the quantization bit width. Note that our approach is compatible with any quantization
techniques, including both uniform quantizer and non-uniform quantizer (e.g., K-Means (Gersho
& Gray, 1991)). Since the focus of this paper is not the design of quantizer, we only evaluate

4

Under review as a conference paper at ICLR 2022

uniform quantizer in our approach. It is worth mentioning that applying a non-uniform quantizer
could further improve the accuracy, but non-uniform quantizers are more complicated for compu-
tation, and require additional resources (e.g., look-up tables) for implementation. Similar as prior
mixed-precision methods (Wang et al., 2019; Lou et al., 2020; Wu et al., 2019), we employ uniform
quantizer in our paper, which is more hardware-friendly and is straightforward for implementation.

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

0 10 20 30 40 50

#V
ar

ia
bl

es

Layer Number

(b) MobileNet-v2, ImageNet (224×224)

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

0 10 20 30 40 50

#V
ar

ia
bl

es

Layer Number

(a) ResNet-50, ImageNet (224×224)

10!

1

10"

10#

10$

10!

1

10"

10#

10$

6 MB on-chip memory
NVIDIA Volta V100

2 MB on-chip memory
Myriad VPU2

182 KB on-chip memory
MIT Eyeriss v1

Weights

Activations

Figure 3: Number of weights and activations of layers and on-chip capacity on hardware platforms.

2.4 IMPROVING PERFORMANCE ON HARDWARE PLATFORMS

We consider improving inference rate as a guide to the design of our quantization mechanism. In-
ference rate is defined as the maximum number of images that a neural network can process per unit
time. Memory access, especially data movement from off-chip memory to on-chip memory, domi-
nates inference time, rather than convolutional operations (Han et al., 2015; 2016). We thus aim to
maintain as many weights and activations as possible stored on-chip, and avoid data movement from
off-chip memory to improve inference speed.

Our key insight is that the volume of weights and activations in some layers is particularly significant.
As a result, part of weights and activations can not be stored on-chip, which leads to lots of memory-
access traffic to off-chip DRAM. Fig. 3 illustrates the number of parameters across layers and the
on-chip memory capacity on different hardware platforms. As we can see, on-chip memory capacity
is very limited, and the size of part of layers exceeds the capacity. To this end, we restrict the
quantization bit widths in these large layers to make sure that the size of these layers is less than
on-chip memory capacity. Specifically, for each layer i, we have an independent bit rate constraint,

ni∑
j=1

Kw
i,j ·Bwi,j +Ka

i ·Bai ≤ mon, (6)

in which Kw
i,j denotes the number of weights of channel j in layer i, Ka

i denotes the number of
activations in layer i, and mon denotes the on-chip memory capacity. In practice, we relax (6) into
two items, and incorporate them to objective function (2),

Bwi,j ≤
mon∑

j K
w
i,j + β

1−β ·K
a
i

, Bai ≤
α ·mon

1−β
β ·

∑
j K

w
i,j +Ka

i

, (7)

for all 1 ≤ i ≤ l and 1 ≤ j ≤ ni, where α and β are two hyper-parameters, ranging from 0 to 1.
Incorporating constraints (7) into (2), we have the objective function with the bit rate of each weight
channel and layer activation constrained to improve hardware performance

min δ = ‖y − ŷ‖22 s.t.

l∑
i=1

ni∑
j=1

Rwi,j +

l∑
i=1

Rai ≤ r,

Bwi,j ≤
mon∑

j K
w
i,j + β

1−β ·K
a
i

, Bai ≤
α ·mon

1−β
β ·

∑
j K

w
i,j +Ka

i

(8)

Note that the optimization of (8) is the same as that of (2). The only difference is that in (8) we have
different search range for quantization bit widths. In (2), the range is from 1 to b where b = 16 is

5

Under review as a conference paper at ICLR 2022

the maximal bit width, while in (8), it is from 1 to mon∑
jK

w
i,j+

β
1−β ·K

a
i

for weight channels, and is

from 1 to α·mon
1−β
β ·

∑
jK

w
i,j +Ka

i
for layer activations. Incorporating bit rate constraints into objective

function does not increase the search time. Actually, it slightly decreases the time as it reduces
the search range of bit widths. Fig. 2 illustrates examples of the optimization procedure with and
without constraints (7). Examples of distributions of bit rate across layers, implementation details
of optimization, and the pseudo-codes are provided in appendix.

2.5 DISCUSSION

Prior works (Wang et al., 2019; Lou et al., 2020) typically use hardware simulators to guide the de-
sign of quantizatino mechanism. Implementing a simulator is complicated and calculating simula-
tion results costs time. Alternatively, we provide a simple yet effective way to improve performance
on hardware platforms. We directly restrict the bit rate of each layer to get weights and activations
saved on-chip. Our method is easy to implement and does not cause additional overhead to opti-
mization. Another advantage is that, once the rate-distortion curves are generated, our approach is
able to find the bit allocation under any network size, by just changing the slope λ. This is better than
most prior works which need to re-run the whole methods every time searching the bit allocation for
a network size.

3 EXPERIMENTS

We report experimental results in this section. We first show quantization results on four deep
neural networks, ResNet-18 (He et al., 2016), ResNet-34, ResNet-50 and MobileNet-v2 (Sandler
et al., 2018), on the ImageNet dataset (Deng et al., 2009). We then provide results of inference rate
on two hardware platforms, Google TPU (Jouppi et al., 2017) and MIT Eyeriss (Chen et al., 2016).

3.1 PARAMETER SETTINGS

We set hyper-parameters α and β as 0.3 and 0.5, respectively. We enumerate slope λ from −2−20

to −220 until network size meets constraint r. Similar as prior works (Wang et al., 2019; Lou et al.,
2020), we fine-tune the model after quantization up to 10 epochs with learning rate 0.0001. Straight-
through estimator (ETS) (Bengio et al., 2013) is applied to perform back-propagation through non-
differentiable quantization functions in fine-tuning.

3.2 QUANTIZATION RESULTS

Table 1 and Table 2 list the results of state-of-the-arts on four deep neural networks, ResNet-18,
ResNet-34, ResNet-50, and MobileNet-v2, when weights and activations are quantized to very low
bit width (i.e., 2 bits or 4 bits). As our approach allocates unequal bit widths to different weight
channels and layer activations, we report the results when networks are quantized to the target size
on average for fair comparison, same as prior works (Uhlich et al., 2019; Lou et al., 2020). Our
approach, named as Rate-Distortion Optimized Quantization (RDOQ), improves state-of-the-arts
on the four neural networks. Specifically, our approach outperforms STOA by 1.0%, 0.5%, and
1.2%, on ResNet-18, ResNet-34, and ResNet-50, respectively.

Note that the focus of our paper is on optimizing the bit allocation of channels, and we so adopt the
normal uniform quantizer, while most of prior works in Table 1 and Table 2 focus on improving the
quantizers. We notice that bit allocation strategies and quantizer techniques compensate each other.
We expect to obtain higher accuracy by combining our bit allocation method with state-of-the-art
quantizers, although this is out of the scope of our paper.

3.3 PERFORMANCE ON HARDWARE PLATFORMS

We examine the inference rate on two hardware platforms, Google TPU (Jouppi et al., 2017) and
MIT Eyeriss (Chen et al., 2016), both of which are state-of-the-art architectures, inspired by current
embedded and high-performance neural-network-targeted accelerator. We adopt the SCALE-Sim

6

Under review as a conference paper at ICLR 2022

Table 1: Top-1 accuracy of state-of-the-art methods at 2 bits on the ImageNet dataset.
Method ResNet-18 ResNet-34 ResNet-50

Original (He et al., 2016) 69.3 73.0 75.5
LQ-Nets (Zhang et al., 2018) 64.9 68.8 71.5
PTG (Zhuang et al., 2018) - - 70.0
DSQ (Gong et al., 2019) 65.2 70.0 -
QIL (Jung et al., 2019) 65.7 70.6 -
ALQ (Qu et al., 2020) 66.4 71.0 -
APoT (Li et al., 2020) 67.3 70.9 73.4
SAT (Jin et al., 2020) 65.5 - 73.3
LSQ (Esser et al., 2020) 67.6 71.6 73.7
AUXI (Zhuang et al., 2020) - - 73.8
DMBQ (Zhao et al., 2021) 67.8 72.1 -

RDOQ (Ours) 68.8 72.6 75.0

Table 2: Results on MobileNet-v2 at 4 bits on the ImageNet dataset.
Method Top1 Accu. Top5 Accu.

MobileNet-v2

Original (Sandler et al., 2018) 71.8 90.2
HAQ (Wang et al., 2019) 67.0 87.3
DQ (Uhlich et al., 2019) 69.7 -
DSQ (Gong et al., 2019) 64.8 -
AutoQ (Lou et al., 2020) 69.0 89.4
SAT (Jin et al., 2020) 71.1 89.7
LLSQ (Zhao et al., 2020) 67.4 88.0

RDOQ (Ours) 71.3 90.0

software (Samajdar et al., 2018) to simulate the time cycles of ResNet-50 and MobileNet-v2, when
mapped into the two considered hardware platforms.

Table 3 illustrates the inference rate on TPU and Eyeriss. Our approach significantly improves the
reference rate, compared with originally uncompressed neural networks. We speed up the inference
rate by 3.5x and 3.0x for ResNet-50 on TPU and Eyeriss, and by 1.5x and 2.0x for MobileNet-V2
on TPU and Eyeriss, without hurting the accuracy (loss ≤ 0.5%). We also compare our approach
with competitive mixed-precision quantization method HAQ (Wang et al., 2019) and competitive
equal bit quantization method DoReFa+PACT (Zhou et al., 2016; Choi et al., 2018). Our approach
outperforms both HAQ and DoReFa+PACT. We notice that although equal bit quantization method
DoReFa+PACT obtains superior quantization results, the performance on hardware platform is not
high. This is because DoReFa+PACT is not hardware-aware as they do not optimize the hardware
performance in their quantization mechanism.

We should clarify that both TPU and Eyeriss can not support fixed-point computation with mixed-
precision, so 8-bit and 16-bit floating-point computation is performed on TPU and Eyeriss, respec-
tively, as default. As a result, our gains come from the reduction of memory access, but not from
the reduction of computation. Since our approach enables weights and activations saved on-chip,
accessing off-chip memory could be reduced. However, the computation time is the same as that
of the original models, as we perform floating-point computation. We expect to see higher infer-
ence rate if we evaluate the performance on architectures supporting fixed-point computation with
mixed-precision. Fig. 4 illustrates a breakdown of the inference time on TPU and Eyeriss.

3.4 TIME COST

Table 4 lists the time of our approach to find channel-wise bit allocation on four deep neural net-
works. Our approach takes about a few minutes on a normal CPU (Intel Core i7 6600U CPU with
2.60 GHZ) to find the answer. We also evaluate HAQ (Wang et al., 2019) — the competitive mixed-

7

Under review as a conference paper at ICLR 2022

precision quantization method built upon reinforcement learning. As we can see, reinforcement-
learning-based approach requires several days on multiple GPUs to search the bit allocation for
one time, and is orders of magnitude slower, compared with our approach. Our approach provides
an alternative way to very quickly explore the hyperparameter space of bit widths for deep neural
networks, and is particularly suitable for the case without powerful computation resources.

0

0.0007

0.0014

0.0021

0.0028

Original RDOQ

ResNet-50 on TPU

0

0.0002

0.0004

0.0006

0.0008

Original RDOQ

MobileNet-v2 on TPU

0

0.04

0.08

0.12

0.16

Original RDOQ

ResNet-50 on Eyeriss

0

0.004

0.008

0.012

0.016

Original RDOQ

MobileNet-v2 on Eyeriss

Ti
m

e
(S

ec
on

ds
) Memory

Compute

Figure 4: A breakdown for the compute time and memory time on Google TPU and MIT Eyeriss.

Table 3: Inference Rate on Google TPU and MIT Eyeriss. We show the results of our approach with
hardware-aware (HA) constrains in this table.

Method Accuracy Google TPU MIT Eyeriss

ResNet-50

Original (He et al., 2016) 75.5 361 5.6
DoReFa+PACT (Choi et al., 2018) 76.5 646 (1.8×) 12.6 (2.3×)
DoReFa+PACT (Choi et al., 2018) 72.2 920 (2.6×) 13.7 (2.5×)
RDOQ+HA (Ours) 76.5 769 (2.1×) 13.9 (2.5×)
RDOQ+HA (Ours) 76.2 904 (2.5×) 15.0 (2.7×)
RDOQ+HA (Ours) 75.0 1254 (3.5×) 17.0 (3.0×)

MobileNet-V2

Original (Sandler et al., 2018) 71.1 1504 64
DoReFa+PACT (Choi et al., 2018) 71.2 1698 (1.1×) 104 (1.6×)
DoReFa+PACT (Choi et al., 2018) 70.4 1764 (1.2×) 108 (1.7×)
HAQ (Wang et al., 2019) 71.2 2067 (1.4×) 124 (1.9×)
HAQ (Wang et al., 2019) 68.9 2197 (1.5×) 128 (2.0×)
RDOQ+HA (Ours) 71.3 2197 (1.5×) 127 (2.0×)
RDOQ+HA (Ours) 71.0 2207 (1.5×) 128 (2.0×)
RDOQ+HA (Ours) 70.9 2256 (1.5×) 130 (2.0×)

Table 4: Time cost to find bit allocation on deep neural networks.
Method Device ResNet-18 ResNet-34 ResNet-50 Mobile-V2

HAQ (Wang et al., 2019) GPUx4 - - 115 Hours 79 Hours
RDOQ (Ours) CPUx1 2 Mins 3 Mins 7 Mins 6 Mins

4 RELATED WORK AND DISCUSSION

We discuss prior mixed-precision quantization works related to our work. ReLeQ (Elthakeb et al.,
2018) proposed an end-to-end deep reinforcement learning (RL) framework to automate the process
of discovering quantization bit width. Alternatively, HAQ (Wang et al., 2019) leveraged reinforce-
ment learning to determine quantization bit width, and employed a hardware simulator to generate
direct feedback signals to the RL agent. DNAS (Wu et al., 2019) proposed a differentiable neural
architecture search framework to explore the hyperparameter space of quantization bit width. Dif-
ferentiable Quantization (DQ) (Uhlich et al., 2019) learned quantizer parameters, including step size

8

Under review as a conference paper at ICLR 2022

Table 5: A comparison with prior mixed-precision quantization methods.

Approach Bit Allocation Hardware Optimization (Complexity)Scheme -Aware

ReLeQ (Elthakeb et al., 2018) Layer-Wise No Reinforcement Learning (High)
HAQ (Wang et al., 2019) Layer-Wise Yes Reinforcement Learning (High)
DNAS (Wu et al., 2019) Layer-Wise No Architecture Search (High)
DQ (Uhlich et al., 2019) Layer-Wise No Training from Scratch (High)
HAWQ (Dong et al., 2019) Layer-Wise No Retraining (High)
ALQ (Qu et al., 2020) Layer-Wise No Retraining (High)
PTQ (Banner et al., 2018) Channel-Wise No Analytic Solution (Low)
FracBits (Yang & Jin, 2020) Channel-Wise No Training from Scratch (High)
AutoQ (Lou et al., 2020) Channel-Wise Yes Reinforcement Learning (High)
DMBQ (Zhao et al., 2021) Channel-Wise No Retraining (High)
RDOQ (Ours) Channel-Wise Yes Lagrangian Formulation (Low)

and range, by training with straight-through gradients, and then inferred quantization bit width based
on the learned step size and range. Hessian AWare Quantization (HAWQ) (Dong et al., 2019) intro-
duced a second-order quantizatino method to select the quantization bit width of each layer, based
on the layer’s Hessian spectrum. Adaptive Loss-aware Quantization (ALQ) (Qu et al., 2020) directly
minimized network loss w.r.t. quantized weights, and used network loss to decide quantization bit
width. These methods all employed layer-wise bit allocation scheme.

Post Training Quantization (PTQ) (Banner et al., 2018) adopted channel-wise bit allocation to im-
prove quantization precision, and provided an analytic solution for quantization bit width, assuming
that parameters obey certain distributions. FracBits (Yang & Jin, 2020) generalized quantization bit
width to an arbitrary real number to make it differentiable, and learned channel-wise bit allocation
during training. Distribution-aware Multi-Bit Quantization (DMBQ) (Zhao et al., 2021) proposed
loss-guided bit-width allocation strategy to adjust the bit-width of weights and activations channel-
wisely. PTQ, FracBits, and DMBQ all did not take the impact of performance on hardware plat-
forms into account. AutoQ (Lou et al., 2020) proposed a hierarchical deep reinforcement learning
approach to find quantization bit width of channels and optimize hardware metrics (e.g., latency and
energy) simultaneously. Different with AutoQ, our approach provides an alternative way to quickly
explore the hyperparameter space of bit width with linear time complexity, and is able to find global
optimal solution in a rate-distortion optimized manner. Table 5 illustrates the differences between
the mixed-precision quantization approaches.

One prior work (Gao et al., 2019) interpreted neural network compression from a rate-distortion’s
perspective. The main focus of (Gao et al., 2019) was giving an upper bound analysis of compression
and discussing the limitations. (Gao et al., 2019) did not give a way to search bit allocation, and
there was no practical results provided.

5 CONCLUSION

Channel-wise bit allocation brings higher quantization precision and superior accuracy. Our ap-
proach provides an ultra-fast way to explore the hyperparameter space of channel bit widths with
linear time complexity, using Lagrangian Formulation. The quantization of deep neural networks is
formulated as a rate-distortion optimization problem, and the fast optimization method is proposed,
by utilizing the additivity of output distortion. Moreover, we consider the impact on hardware plat-
forms in the design of our quantization mechanism, and present a simple yet effective method to
improve hardware performance. We restrict the bit rate of each layer to allow as many weights and
activations as possible saved on-chip, and add hardware-aware constraints in our objective function
to improve inference rate on target hardware platforms. The hardware-aware constraints can be
incorporated into our objective function seamlessly, without incurring additional overhead for op-
timization. Extensive experiments show that our approach improves state-of-the-arts on four deep
neural networks. Hardware simulation results demonstrate that our approach is able to accelerate
deep learning inference considerably on two hardware platforms.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Post-training 4-bit quantization of
convolution networks for rapid-deployment. arXiv preprint arXiv:1810.05723, 2018.

Y. Bengio, N. Leonard, and A. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. In arXiv:1308.3432, 2013.

Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-efficient re-
configurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State
Circuits, 52(1):127–138, 2016.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, and Kailash Gopalakrishnan Pierce I-
Jen Chuang, Vijayalakshmi Srinivasan. Pact: Parameterized clipping activation for quantized
neural networks. In arXiv, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. Hawq: Hessian
aware quantization of neural networks with mixed-precision. In arXiv, 2019.

Ahmed T. Elthakeb, Prannoy Pilligundla, Fatemehsadat Mireshghallah, Amir Yazdanbakhsh, and
Hadi Esmaeilzadeh. Releq: A reinforcement learning approach for deep quantization of neural
networks. In NeurIPS Workshop on ML for Systems, 2018.

Steven K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. Modha. Learned step size
quantization. In ICLR, 2020.

Weihao Gao, Yu-Han Liu, Chong Wang, and Sewoong Oh. Rate distortion for model compression:
From theory to practice. In International Conference on Machine Learning, pp. 2102–2111.
PMLR, 2019.

A. Gersho and R.M. Gray. Vector quantization and signal compression. In Kluwer Academic Pub-
lishers, 1991.

Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, P. Hu, J. Lin, Fengwei Yu, and J. Yan.
Differentiable soft quantization: Bridging full-precision and low-bit neu- ral networks. In ICCV,
2019.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In ICLR, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.

Qing Jin, Linjie Yang, Zhenyu Liao, and Xiaoning Qian. Neural network quantization with scale-
adjusted training. BMVC, 2020.

N. Jouppi et al. In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th Annual International Symposium on Computer Architecture, ISCA ’17, pp. 1–12, New
York, NY, USA, 2017. ACM. ISBN 978-1-4503-4892-8. doi: 10.1145/3079856.3080246. URL
http://doi.acm.org/10.1145/3079856.3080246.

Sangil Jung, Changyong Son, Seohyung Lee, JinWoo Son, J. Han, Youngjun Kwak, Sung Ju Hwang,
and Changkyu Choi. Learning to quantize deep networks by optimizing quantiza- tion intervals
with task loss. In CVPR, 2019.

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural
networks. In NIPS, 2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. In Nature, 2015.

10

http://doi.acm.org/10.1145/3079856.3080246

Under review as a conference paper at ICLR 2022

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-
uniform discretization for neural networks. In ICLR, 2020.

Qian Lou, Feng Guo, Minje Kim, Lantao Liu, and Lei Jiang. Autoq: Automated kernel-wise neural
network quantizations. In ICLR, 2020.

Zhongnan Qu, Zimu Zhou, Yun Cheng, and Lothar Thiele. Adaptive loss-aware quantization for
multi-bit networks. In arXiv, 2020.

Ananda Samajdar, Yuhao Zhu, Paul N. Whatmough, Matthew Mattina, and Tushar Krishna. Scale-
sim: Systolic CNN accelerator. CoRR, abs/1811.02883, 2018. URL http://arxiv.org/
abs/1811.02883.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In arXiv, 2018.

Y. Shoham and A. Gersho. Efficient bit allocation for an arbitrary set of quantizers (speech coding.
In IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

David S Taubman and Michael W Marcellin. Jpeg2000 image compression fundamentals, standards
and practice. 2002.

Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki Yoshiyama, Javier Alonso Garcia, Stephen
Tiedemann, Thomas Kemp, and Akira Nakamura. Mixed precision dnns: All you need is a good
parametrization. arXiv preprint arXiv:1905.11452, 2019.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: Hardware-aware automated
quantization with mixed precision. In CVPR, 2019.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed
precision quantization of convnets via differentiable neural architecture search. In ICLR, 2019.

Linjie Yang and Qing Jin. Fracbits: Mixed precision quantization via fractional bit-widths. arXiv
preprint arXiv:2007.02017, 2020.

D. Zhang, J. Yang, D. Ye, and G. Hua. Lq-nets: learned quantization for highly accurate and compact
deep neural networks. In ECCV, 2018.

Sijie Zhao, Tao Yue, and Xuemei Hu. Distribution-aware adaptive multi-bit quantization. In CVPR,
2021.

Xiandong Zhao, Ying Wang, Xuyi Cai, Cheng Liu, and Lei Zhang. Linear symmetric quantization
of neural networks for low-precision integer hardware. ICLR, 2020.

Wang Zhe, Jie Lin, Vijay Chandrasekhar, and Bernd Girod. Optimizing the bit allocation for com-
pression of weights and activations of deep neural networks. In ICIP, 2019.

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients. In arXiv preprint arXiv:1606.06160, 2016.

Y. Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and P. Frossard. Adaptive quanti-
zation for deep neural network. In AAAI, 2018.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards effective low-
bitwidth convolutional neural networks. In cvpr, 2018.

Bohan Zhuang, Lingqiao Liu, Mingkui Tan, Chunhua Shen, and Ian Reid. Training quantized neural
networks with a full-precision auxiliary module. In CVPR, 2020.

11

http://arxiv.org/abs/1811.02883
http://arxiv.org/abs/1811.02883

Under review as a conference paper at ICLR 2022

ℱ"($ | &",", … ,&",)*) ℱ,($ | &,,", … ,&,,)-). …… /
0" 0, 01

Neural Network ℱ

2ℱ"($ | &",", … ,&",)*) 2ℱ,($ | &,,", … ,&,,)-). …… /
0" 0, 01

Modified Neural Network 2ℱ

+ + +
0" + 4"

4" 4, 41

0, + 4, 01 + 41

Figure 5: Examples of a neural network F and a modified neural network F̃ .

A APPENDIX

In this appendix, we provide the analysis for the additivity property of output distortion. We show a
mathematical derivation for the additivity property by linearizing the output distortion using Taylor
series expansion. We then illustrate the implementation details of the optimization method and the
pseudo codes, and discuss the intermediary results of our approach.

A.1 ADDITIVITY OF OUTPUT DISTORTION

The output distortion δ, caused by quantizing all weight channels and activations, equals the sum of
all output distortions due to the quantization of each individual weight channel and activation layer

δ =

l∑
i=1

ni∑
j=1

δwi,j +

l∑
i=1

δai (9)

if the neural network is continuously differentiable in every layer, the quantization errors can be
considered as small deviations distributed with zero mean.

We first define the main notations. Let
F(W1,1, ...,W1,n1 , ...,Wl,1, ...,Wl,nl)

denote a neural network and
F̃(W1,1, ...,W1,n1

, ...,Wl,1, ...,Wl,nl , s1, ..., sl)

denote a modified neural networks of F where an element-wise add layer with parameter si is
followed for each activation ai (see Fig. 5). Based on this definition, we have

F(W1,1, ...,Wl,nl) = F̃(W1,1, ...,Wl,nl , 0, ..., 0) (10)
Define two variables X0 and ∆X , where

X0 =
(
W1,1, ...,Wl,nl , 0, ..., 0

)
∆X =

(
∆W1,1, ...,∆Wl,nl ,∆s1, ...,∆sl

)
Assume that the quantization error can be considered as small deviation. We apply the Taylor series
expansion up to first order term on F̃ at X0,

F̃(X0 + ∆X)− F̃(X0) =
∑
i,j

∂F̃
∂Wi,j

·∆Wi,j

+
∑
i

∂F̃
∂si
·∆si.

(11)

Then ‖F̃(X0 + ∆X)− F̃(X0)‖2 can be written as(∑
i,j

∆Wi,j
> · ∂F̃

∂Wi,j

>

+
∑
i

∆si
> · ∂F̃

∂si

>)
·
(∑
i,j

∂F̃
∂Wi,j

·∆Wi,j +
∑
i

∂F̃
∂si
·∆si

) (12)

12

Under review as a conference paper at ICLR 2022

Because quantization errors in different layers are independently distributed with zero mean, the
cross terms of (4) disappear when taking the expectation. That is:

E(∆Wi,j
> · ∂F̃

∂Wi,j

>

· ∂F̃
∂Wk,t

·∆Wk,t)

=E(∆Wi,j
>) · ∂F̃

∂Wi,j

>

· ∂F̃
∂Wk,t

· E(∆Wk,t) = 0

(13)

as is the case also for the cross products between Wi,j and ni (all i, j), and si and sj (i 6= j). Then,
we can obtain

E(‖F̃(X0 + ∆X)− F̃(X0)‖2)

=
∑
i,j

E
(
‖ ∂F̃
∂Wi,j

·∆Wi,j‖2
)

+
∑
i

E
(
‖∂F̃
∂si
·∆si‖2

) (14)

Eq. (14) is the result we want because, again, according to the Taylor series expansion up to first
order terms,

∂F̃
∂Wi,j

·∆Wi,j = F̃(...,Wi,j + ∆Wi,j , ...,Wl,nl , 0, ...)

− F̃(...,Wi,j , ...,Wl,nl , 0, ...)

(15)

∂F̃
∂si
·∆si = F̃(W1,1, ...,Wl,nl , 0, ...,∆si, ...)

− F̃(W1,1, ...,Wl,nl , 0, ..., 0, ...)

(16)

After dividing both sides of (14) by the dimensionality of the output vector of the neural network, the
left side becomes δ and the right side becomes the sum of all output distortion due to the quantization
of each individual weight channel and activation layer.

A.2 IMPLEMENTATION DETAILS OF OPTIMIZATION

in
te

rc
ep

t
d

is
to

rt
io

n

rate0 0

d
is

to
rt

io
n

rate
minimal intercept

0

d
is

to
rt

io
n

rate
λ = −0.5 λ = −2.0

slope=𝜆

Figure 6: Examples of the optimization method. In the left figure, the red point has minimal intercept
on Y-Axis and it is selected. The middle and right figures show the selected points on three curves
when λ = −0.5 and λ = 2.0, respectively.

13

Under review as a conference paper at ICLR 2022

Algorithm 1 Generate rate-distortion curves of channels.
Input: Neural Network F ; Images I.
Output: Rate-distortion curves of channels: G1, G2, ..., GK .

Compute original output vector Y = F(I).
for each channel Ci of F do

for bit-width b ranging from 0 bit to 16 bits do
Calculate quantization step size ∆.
Quantize Ci with ∆ and b: q(Ci).
Compute the bit rate R of q(Ci), and the modified output vector Ŷ.
Compute output distortion d = ‖Y − Ŷ‖2.mean().
Collect point P = (R, d): Gi = Gi ∪ P .

end for
end for

Algorithm 2 Optimize the bit allocation of channels according to Equation 18.
Input: Rate-distortion curves of the channels: G1, G2, ..., GK ; Slope value λ.
Output: Solution of optimal bit allocation S; Bit rate R.

Initialization: S = ∅, R = 0.
for each rate-distortion curve Gi do

Set minimal intercept to infinity, Ymin intercept =∞; Set id = −1.
for each point Pj on Gi do
x0 = Pj → x; y0 = Pj → y; Yintercept = y0 − λ · x0.
if Yintercept < Ymin intercept then

Update Ymin intercept = Yintercept; Update id = j.
end if

end for
Collect the selected point: S = S ∪ {Pid}, R = R+ Pid → x.

end for

We formulate the quantization of weight channels and layer activations as a rate-distortion optimiza-
tion problem, as illustrated in Section 2

min δ = ‖y − ŷ‖22 s.t.

l∑
i=1

ni∑
j=1

Rwi,j +

l∑
i=1

Rai ≤ r, (17)

We utilize the addtivity of the output distortion and apply the classical Lagrangian formulation to
solve 17. The optimal condition is presented as

∂δw1,1
∂Rw1,1

= ... =
∂δw1,n1

∂Rw1,n1

=
∂δa1
∂Ra1

= =
∂δwl,1
∂Rwl,1

= ... =
∂δwl,nl
∂Rwl,nl

=
∂δal
∂Ral

= λ (18)

The above equation expresses the optimal condition that the slopes of all output distortion versus bit
rate functions should be equal. Based on this equation, the optimziation problem can be solved by
enumerating λ and selecting the point with slope equal to λ on each rate-distortion curve.

Specifically, we first generate the rate-distortion curves for each channel and activation layer. In our
case, the rate-distortion curves are discrete points. For example, if the range of bit width is from 1-bit
to 8-bits, then the rate-distortion curve is a discrete curve with 8 points. We enumerate λ and select
the point on each curve with slope equal to λ. We may enumerate many values of λ to find the best
solution with minimal output distortion under the size constraint. Assume that we have N curves
and M points in each curve. The time complexity to find optimum bit allocation is O(K ·M ·N),
where K is the total number of slope λ to be evaluated.

Figure 6 illustrates an example of the optimization method. The blue curves in Figure 6 denote the
rate-distortion curves. We totally show 3 rate-distortion curves in the example. The optimization
starts from enumerating the value λ. Given a λ, we then find the point on each curve. Specifically,
we compute the intercepts on Y-axis for the lines, with slope λ, passing the points on the curve. The
point with minimal intercept on Y-axis will be selected. Note that we only choose the point with

14

Under review as a conference paper at ICLR 2022

minimal Y-axis intercept for each curve. The X-axis value of the selected point corresponds to the
bit rate of the related channel or activation layer.

0

300

600

900

1200

1500

1 6 11 16 21

Si
ze

 (K
B

)

Layer Number

(a) ResNet-18, ImageNet (224×224)

0

300

600

900

1200

1500

1 11 21 31 41 51

Si
ze

 (K
B

)

Layer Number

(b) ResNet-50, ImageNet (224×224)

512 KB

1 MB

w/o hardware-aware constrains w/ hardware-aware constrains
1 MB on-chip memory

w/ hardware-aware constrains
512 KB on-chip memory

Figure 7: Distributions of bit rate across layers given different on-chip memory constraints.

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1 2 4 8 16 32

#V
ar

ia
bl

es

Layer Number

(b) MobileNet-v2, ImageNet (224×224)

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1 2 4 8 16 32

#V
ar

ia
bl

es

Layer Number

(a) ResNet-50, ImageNet (224×224)

10!

1

10"

10#

10$

10!

1

10"

10#

10$

182 KB on-chip memory
MIT Eyeriss v1

2 MB on-chip memory
Myriad VPU2 (Movidius neural stick)

6 MB on-chip memory
NVIDIA Volta V100

1.7 Bits 1.2 Bits

Max Activations
Min Activations

Figure 8: Number of variables that the on-chip memory of specific hardware platforms can accom-
modate, with different bit width per variable. The minimum and maximum numbers of activations
that a single layer can have are highlighted.

A.3 DISTRIBUTIONS OF BIT RATE ACROSS LAYERS

Fig. 7 illustrates an example of the distribution for the bit rate under different hardware-aware
constraints. Intuitively, our approach assigns lower bit width to layers with lots of variables and
higher bit width to layers with just a few variables, to meet constraints by balancing the size across
layers. Fig. 8 illustrates the number of variables that hardware platforms can accommodate, with
different bit width. We can see that on both ResNet-50 and MobileNet-v2, some layers can have
more than 1 million activations, and the bit width assigned to these layers have to be less than two
bits if on-chip memory capacity is 182 KB, which is the case of MIT Eyeriss.

0

20

40

60

80

1 2 3 4 5 6 7 8

A
cc

ur
ac

y

Network Size (Bits)

(a) Top-1 Accuracy

0

2

4

6

8

1 2 3 4 5 6 7 8O
ut

pu
t D

is
to

rti
on

Network Size (Bits)

(b) Output Distortion

MobileNet-v2
ResNet-18

ResNet-50

MobileNet-v2
ResNet-18

ResNet-50

Figure 9: Top-1 accuracy and output distortion under different network size on ResNet-18, ResNet-
50, and MobileNet-v2.

15

Under review as a conference paper at ICLR 2022

A.4 RELATIONSHIPS BETWEEN OUTPUT DISTORTION AND ACCURACY

Fig. 9 illustrate the accuracy and output distortion under different network size on three deep neural
networks. As one can see, accuracy is highly related to output distortion. Large output distortion
also indicates huge accuracy loss. By minimizing the output distortion, our approach is thus able to
well maintain the accuracy at very low bit width.

Table 6: Architecture parameters of considered deep learning hardware platforms.
Paramter MIT Eyeriss Google TPU

On-chip memory 181.5 KBytes 28 MBytes
Off-chip memory-access bandwidth (BW) 1 GByte/sec 13 GBytes/sec

Computing performance (Perf) 34 GOPs 96 TOPs

A.5 CONFIGURATIONS ON HARDWARE PLATFORMS

We have explored the impact our approach has on the inference rate for different hardware archi-
tectures inspired by current embedded and high-performance DNN-targeted hardware accelerators
(i.e., MIT Eyeriss Chen et al. (2016) and Google TPU Jouppi et al. (2017), summarized in Table
6)—such platforms have shown superior inference rate compared to GPUs Jouppi et al. (2017). We
assume that accessing off-chip memory can be done in parallel while computing is performed (i.e.,
weights can be prefetched from off-chip memory).

16

	Introduction
	Approach
	Formulation
	Optimizing Channel-Wise Bit Allocation
	Choice of Quantizer
	Improving Performance on Hardware Platforms
	Discussion

	Experiments
	Parameter Settings
	Quantization Results
	Performance on Hardware Platforms
	Time Cost

	Related Work and Discussion
	Conclusion
	Appendix
	Additivity of Output Distortion
	Implementation Details of Optimization
	Distributions of bit rate Across layers
	Relationships between output distortion and accuracy
	Configurations on hardware platforms

