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Abstract

Pre-trained transformers are at the core of nat-001
ural language processing today. However, the002
understanding of what model learns during003
pre-training is still limited. Existing model004
analysis works usually focus only on one or005
two model families at a time, overlooking006
the variety of existing architectures and pre-007
training objectives. In our work, we utilize008
the oLMpics benchmark and psycholinguistic009
probing datasets for a diverse set of 28 models010
including T5, BART, and ALBERT. Addition-011
ally, we adapt the oLMpics zero-shot setup for012
autoregressive models and evaluate GPT net-013
works of different sizes. Our findings show014
that none of these models can resolve compo-015
sitional questions in a zero-shot fashion, sug-016
gesting that this skill is not learnable using ex-017
isting pre-training objectives. Additionally, we018
find that global model decisions such as archi-019
tecture, directionality, size of the dataset, and020
pre-training objective are not predictive of a021
model’s linguistic capabilities.022

1 Introduction023

After the initial success of pre-training in natural024

language processing (Howard and Ruder, 2018; Pe-025

ters et al., 2018), the number of pre-trained models026

in NLP has increased dramatically (Radford and027

Narasimhan, 2018; Devlin et al., 2018; Lewis et al.,028

2019; Liu et al., 2019b; Raffel et al., 2019; Lan029

et al., 2019; Dong et al., 2019). However, there030

is a limited understanding of why certain models031

perform better than others and what linguistic ca-032

pabilities they acquire through pre-training.033

While a lot of work has been done to evaluate034

these models on general natural language under-035

standing datasets (Wang et al., 2018, 2019; Lai036

et al., 2017), such datasets do not allow researchers037

to identify the specific linguistic capabilities of038

a model. Furthermore, models are fine-tuned on039

these tasks, with their final performance result-040

ing from a combination of pre-trained knowledge041

and task-specific information learned through fine- 042

tuning. 043

Probing tasks (Talmor et al., 2019; Zagoury et al., 044

2021; McCoy et al., 2019; Goldberg, 2019) give a 045

promising solution to this problem, as they evalu- 046

ate specific capabilities of pre-trained models and 047

in many designed for zero-shot evaluation, which 048

reveals the knowledge that models have actually 049

learned purely through pre-training. 050

Currently, most in-depth analysis studies focus 051

on one or two model families. In many cases, anal- 052

ysis papers only probe BERT and similar models 053

(Ettinger, 2020; Kobayashi et al., 2020; Garí Soler 054

and Apidianaki, 2020; Ravichander et al., 2020; 055

Zagoury et al., 2021; Kassner et al., 2020; Mohebbi 056

et al., 2021; Clark et al., 2020; Liu et al., 2021). 057

Fortunately, this trend is changing and now we see 058

more papers that probe models such as ALBERT, 059

T5 or BART (Mosbach et al., 2020; Phang et al., 060

2021; Jiang et al., 2021). However, only a small 061

number of analysis papers have probed multiple 062

(three or more) model families (Zhou et al., 2021; 063

Ilharco et al., 2021). 064

In our work, we test 8 families of models on the 065

oLMpics tasks (Talmor et al., 2019) and 6 families 066

of models on psycholinguistic tasks from Ettinger 067

(2020). These models differ in size, architecture, 068

pre-training objective, dataset size, and have other 069

small yet important differences. Such a diverse 070

set of models provides a broader view of what lin- 071

guistic capabilities are affected by the change of 072

any of these properties. We also include several 073

distilled models in our analysis. We find that differ- 074

ent models excel in different symbolic reasoning 075

tasks, suggesting that slight differences related to 076

optimization or masking strategy might be more 077

important than the pre-training approach, dataset 078

size, or architecture. Furthermore, in contrast to 079

Radford et al. (2019), we find that for oLMpics 080

tasks model size rarely correlates with the model 081

performance. In addition, we observe that all mod- 082
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els fail on composition tasks when evaluated in a083

zero-shot fashion.084

2 Related Work085

Pre-trained model analysis is a rapidly growing086

area in NLP today. There are a number of meth-087

ods for analyzing internal representations of a088

model, including structured head and FCN pruning089

(Michel et al., 2019; Voita et al., 2019; Prasanna090

et al., 2020), residual connection and layer normal-091

ization analysis (Kovaleva et al., 2021; Kobayashi092

et al., 2021), and analyzing attention patterns093

(Clark et al., 2019; Kovaleva et al., 2019).094

Compared to these methods, probing tasks (Con-095

neau et al., 2018; Tenney et al., 2019) provide a096

more direct way to evaluate what a model can097

and cannot accomplish. While it is possible to098

probe embeddings or hidden representations di-099

rectly (Tenney et al., 2019; Liu et al., 2019a), with100

the adoption of pre-trained language models has101

made it possible to evaluate such models by fram-102

ing probing tasks close to the original model ob-103

jective (Radford et al., 2019; Talmor et al., 2019;104

Ettinger, 2020; Goldberg, 2019).105

However, when a research area moves this106

quickly, it can be hard to keep up with many new107

models. Most of the existing research (Garí Soler108

and Apidianaki, 2020; Zagoury et al., 2021; Kass-109

ner et al., 2020) papers compare only one or two110

model families. Even some of the most recent111

works only probe BERT or very similar models112

(Zagoury et al., 2021; Liu et al., 2021). Only a113

small number of analysis papers have probed mul-114

tiple (three or more) model families (Zhou et al.,115

2021; Ilharco et al., 2021).116

In contrast to existing work, we perform a large-117

scale probing of 28 models across 8 different model118

families. We apply the existing probing bench-119

marks, namely, oLMpics (Talmor et al., 2019) and120

psycholinguistic datasets (Ettinger, 2020), to mod-121

els that differ in the pre-training objective, datasets,122

size, architecture, and directionality.123

3 Background124

3.1 Models125

We use 8 different model families in this study. All126

of them are based on the transformer architecture127

and pre-trained on general-domain texts, but this128

is where the similarities end. Their differences are129

1GPTNEO is trained on a 800Gb dataset.

described in Table 1. In this section, we discuss 130

and highlight their differences, from the major ones 131

to the ones that might appear very minor. 132

BERT (Devlin et al., 2018) is pre-trained on 133

Book Corpus and Wikipedia using a combination 134

of Masked Language Modeling (MLM) and Next 135

Sentence Prediction (NSP). It uses GELU acti- 136

vations (Hendrycks and Gimpel, 2016) for fully- 137

connected layers. For the first 90% of the training 138

iterations, the maximum length is 128, but then it 139

is increased to 512. 140

RoBERTa (Liu et al., 2019b) is the most similar 141

to BERT in this study; however, it differs from 142

it in many small but important details: the pre- 143

training dataset is considerably larger and includes 144

OpenWebText (Gokaslan and Cohen, 2019), Sto- 145

ries (Trinh and Le, 2018), and CC-News; does not 146

use Next Sentence Prediction; uses dynamic mask- 147

ing; always trains with 512 max tokens; uses a 148

smaller ADAM β = 0.98; 8 times larger batch size 149

than BERT; and a larger, byte-level BPE vocabu- 150

lary (50K instead of 31K). 151

DistilBERT (Sanh et al., 2019) is a distilled ver- 152

sion of BERT. It has half the layers of BERT and 153

is trained using soft targets produced by BERT. 154

ALBERT (Lan et al., 2019) shares parameters 155

across transformer layers and uses an extra pro- 156

jection between the embedding and the first trans- 157

former layer. It replaces NSP with the sentence- 158

order prediction. ALBERT uses n-gram masking 159

and the LAMB (You et al., 2019) optimizer. The 160

training setup is similar to BERT, but it trains 90% 161

of the time using the sequence length 512 and ran- 162

domly reduces it in 10% of iterations. Parameter 163

sharing allows ALBERT to achieve performance 164

similar to BERT with much fewer trainable pa- 165

rameters. The smallest ALBERT model has 12M 166

trainable parameters and the largest has 235M. 167

ALBERTv2 is a minor modification of ALBERT 168

that was trained without dropout, for twice as many 169

training steps with additional training data 2. 170

GPT-2 (Radford et al., 2019) is a unidirectional 171

transformer language model trained on the Web- 172

Text dataset. Unlike other models, it is a Pre-Norm 173

transformer. Similar to RoBERTa, T5 has a 50K 174

vocabulary and a byte-level BPE but treats spaces 175

as a separate symbol. It also comes in multiple 176

sizes from 124M parameters up to 2.8B parameters. 177

There exist several popular reimplementations of 178

this model, such as GPT-Neo (Black et al., 2021), 179

2github.com/google-research/albert
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Model Parameters Pre-training Data Size Enc-Dec Autoregressive Tokenization Vocab. Size

BERT 110M - 340M 16 GB No No WordPiece 30,522
RoBERTa 355M 160 GB No No BPE 50,265
DistilBERT 66M 16 GB No No WordPiece 30,522
AlBERT 12M - 235M 16 GB No No SentencePiece 30,000
GPT2 124M - 1.5B 40GB1 No Yes BPE 50,257
UniLM 340M 16 GB No N/A WordPiece 28,996
BART 406M 160 GB Yes Yes BPE 50,265
T5 223M-2.8B 750 GB Yes Yes SentencePiece 32,128

Table 1: Model families used in this study. Enc-Dec stands for encoder-decoder architecture. Autoregressive
means that the model was trained with a causal mask. Note that UniLM is trained using a generalized language
modeling objective that includes both unidirectional and bidirectional subtasks and cannot be attributed to either
autoregressive or non-autoregressive.

which generally follow the original paper but differ180

in dataset (Gao et al., 2020), model, and training181

hyperparameters.182

UniLM (Dong et al., 2019) utilizes several at-183

tention masks to control the access to context for184

each word token. It uses a multi-task objective185

that is modeled by applying different attention186

masks. The mix of tasks includes masked language187

modeling, unidirectional language modeling, and188

sequence-to-sequence language modeling. Addi-189

tionally, it employs the NSP objective and is initial-190

ized using BERT model weights. In optimization,191

it generally follows BERT but always uses 512 as192

the maximum sequence length.193

BART (Lewis et al., 2019) is an encoder-decoder194

model that is trained on text infilling and sentence195

permutation tasks. It is trained on the same dataset196

as RoBERTa. Compared to BERT, BART does197

not use an additional projection when predicting198

word logits. In optimization, it closely follows199

RoBERTa, but disables dropout for the final 10%200

of training.201

T5 (Raffel et al., 2019) is also an encoder-202

decoder model. It is trained using a text infilling203

task on the C4 dataset. However, it only gener-204

ates the text in place of the [MASK] token and205

not the full input sentence. Architecturally, it is a206

Pre-Norm model and Layer Norm inputs are only207

rescaled with no additive bias applied. Output pro-208

jection weights are tied with the input embedding209

matrix. It uses 128 relative positional embeddings210

that are added at every layer. Unlike most of the211

models in this study, it uses the ReLU activation.212

The smallest T5 model used in this study has 233M213

parameters and the largest has 2.8B.3214

Unlike the original T5, T5v1.14 does not tie215

3We have not performed evaluation on the 11B model.
4huggingface.co/google/t5-v1_1-base

logit layer with input embeddings, uses GEGLU 216

activations (Shazeer, 2020) and no dropout. It also 217

slightly changes model shapes. 218

3.2 oLMpics 219

The oLMpics benchmark consists of eight tasks 220

that test a model’s ability to draw comparisons, as- 221

sociate properties, and perform multi-hop composi- 222

tion of facts, among others. OLMpics tests multiple 223

specific skills, such as the ability to compare ages, 224

understand negation, and perform simple linguistic 225

composition tasks. Some example questions are 226

shown in Table 2. 227

Zero-Shot vs. Multi-Shot A major advantage 228

of the oLMpics tasks is that zero-shot evaluation 229

can be performed for most tasks due to the task 230

format. Zero-shot evaluation eliminates the am- 231

biguity of whether a model’s knowledge is stored 232

in its pre-trained representations or learned dur- 233

ing fine-tuning. However, a model may possess 234

the necessary information but fail during zero-shot 235

evaluation due to the wording of the task. There- 236

fore, multi-shot evaluation can also be informative, 237

allowing the model to adapt to the input format 238

and possibly learn task-specific features. OLMpics 239

tasks include training sets specifically for this rea- 240

son, in order to separate the impact of fine-tuning 241

from pre-training. 242

MC-MLM vs. MC-QA The oLMpics tasks are 243

framed in one of two ways: MC-MLM (Multi- 244

ple Choice-Masked Language Modeling) and MC- 245

QA (Multiple Choice-Question Answering). MC- 246

MLM tasks are formulated as a masked language 247

modeling task (Devlin et al., 2018), where the 248

model needs to predict the word replaced by the 249

MASK token. An example of an Age Comparison 250

sentence is “A 41 year old is [MASK] a 42 year 251
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Task Name Example Question Choices

Age Comparison A 41 year old person age is [MASK] than a 42 year old person. younger, older
Object Comparison The size of a nail is usually [MASK] than the size of a fork. smaller, larger
Antonym Negation It was [MASK] a fracture, it was really a break. not, really
Taxonomy Conjunction A ferry and a biplane are both a type of [MASK]. airplane, craft, boat
Property Conjunction What is related to vertical and is related to honest? straight, trustworthy, steep
Encyclopedic Composition When did the band where Alan Vega played first form? 1970, 1968, 1969
Hypernym Conjunction A basset and a tamarin are both a type of [MASK] primate, dog, mammal
Multi-hop Composition When comparing a 21 year old, 15 year old, and 19 year old, the

[MASK] is oldest.
third, first, second

Table 2: Examples of oLMpics questions, with the correct answer underlined.

old.” A model’s prediction is determined by the252

probabilities assigned to the [MASK] token, with253

“younger” being selected if its probability is higher254

than “older,” and “older” otherwise.255

MC-MLM restricts the possible answers to sin-256

gle tokens. Tasks with longer answers require MC-257

QA. In this method, a new feedforward neural net-258

work maps the [CLS] token embedding to a single259

logit. For prediction, answer choices are individu-260

ally concatenated to the original question, forming261

a new sentence for each choice. This set of sen-262

tences is input into the model, and the choice corre-263

sponding to the sentence with the largest logit is se-264

lected. While the MC-QA method allows for longer265

choices, the added feedforward network must be266

trained; therefore, zero-shot evaluation is not possi-267

ble for these tasks.268

Extending Beyond MLM The oLMpics MC-269

MLM method relies on the model giving proba-270

bilities of individual words in a bidirectional con-271

text. However, models like GPT2 do not have272

access to the future context, which makes it im-273

possible to resolve examples like “A 41 year old274

is [MASK] than 42 year old.” For these models,275

we sum the log-probabilities of individual words to276

find the probability of the whole sentence. We do277

this for every possible answer, e.g., a sequence with278

“younger” instead of [MASK] and “older”. Then,279

we select the one with the highest total probability.280

Extending BART and T5 is more straightforward281

because their objectives and architecture are very282

flexible. For both of these models, we use the283

original oLMpics input format. T5 has multiple284

[MASK]-tokens and we always use <X> token in285

our evaluation. The biggest difference is that BART286

produces the full sentence and we need to extract287

the probabilities for the masked words and T5 pro-288

duces only the tokens in the place of <X>.289

3.3 Psycholinguistic Data 290

Similar to oLMpics, the datasets used by Ettinger 291

(2020) are framed as “fill in the blank” tasks. Un- 292

like oLMpics, the model always needs to predict 293

only the last word, so both bidirectional and uni- 294

directional models can be evaluated on these tasks 295

directly. 296

The biggest distinction of this dataset is its 297

source. The datasets CPRAG-102 (Federmeier and 298

Kutas, 1999), ROLE-88 (Chow et al., 2016), and 299

NEG-136 (Fischler et al., 1983) come from the psy- 300

cholinguistics and neuroscience studies and were 301

originally evaluated on humans. 302

CPRAG-102 targets commonsense and prag- 303

matic inference e.g. Justin put a second house 304

on Park Place. He and his sister often spent hours 305

playing __, Target: monopoly, other labels: chess, 306

baseball. ROLE-88 aims at evaluating event knowl- 307

edge and semantic roles e.g. The restaurant owner 308

forgot which customer the waitress had __ versus 309

The restaurant owner forgot which waitress the 310

customer had __, target: served. 311

NEG-136 tests how well models understand the 312

meaning of negation and consists of two subsets: 313

simple (SIMP) and natural (NAT). For example, 314

SIMP: Salmon is a fish/dog versus Salmon is not 315

a fish/dog. NAT: Rockets and missiles are very 316

fast/slow versus Rockets and missiles aren’t very 317

fast/slow. Evaluation of this dataset is performed 318

in two ways: affirmative statements and negative 319

statements. For affirmative ones, the model needs 320

to complete a sentence like A robin is a with the 321

expected answer bird. For negative, A robin is not 322

a should not be completed with a bird. (Ettinger, 323

2020) finds that this type of error is very common 324

in BERT, which suggests that the model cannot 325

handle negation correctly. 326

Ettinger (2020) tests BERT models in two ways: 327

using a pre-defined set of answers, similar to 328

oLMpics MC-MLM, or computing top-k accuracy 329
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from the whole model vocabulary. We adopt the330

same approach in this study.331

4 Experiments332

We evaluate 8 models families on the oLMpics (28333

models in total) and 6 families on psycholinguistic334

data (17 models). This extends the (Talmor et al.,335

2019) results with 6 new model families and (Et-336

tinger, 2020) with 4.337

4.1 Language models are not universal338

multitask learners339

Zero-shot evaluation It’s been shown that lan-340

guage models can implicitly learn downstream341

tasks (Radford et al., 2019; Brown et al., 2020).342

However, it is still not obvious what tasks are learn-343

able in this manner without explicit supervision.344

In our study, similar to Talmor et al. (2019), we345

find that none of the models can solve Multi-Hop346

Composition or Always-Never tasks substantially347

better than a majority baseline (see Table 4).348

This holds true not only for masked language349

models but also for unidirectional language models350

such as GPT2 and text-infilling models such as351

T5 or BART. Only small and base versions of352

T5v1.1 outperform the majority baseline on Multi-353

Hop Composition by a small margin.354

Multi-shot evaluation Not surprisingly, fine-355

tuning models on oLMpics improves the scores356

across the board. This is true even for the tasks357

on which zero-shot performance is extremely poor.358

For example, while all models fail on Multi-hop359

Composition during zero-shot evaluation, most360

models can reach perfect or near-perfect accuracy361

on this task after fine-tuning. However, Always-362

Never and Taxonomy Conjunction remain challeng-363

ing for all models. For the full multi-shot evalua-364

tion, see Table 7 in the Appendix.365

4.2 Bigger does not mean better366

To check how the size of a model affects the perfor-367

mance, we evaluated different versions of GPT2,368

T5, and ALBERT models on the oLMpics tasks369

ranging from 14M (smallest ALBERT) to 2.8B370

(largest T5) parameters. All of the models perform371

near-random on 3 out of the 6 tasks, suggesting that372

Multi-Hop Composition, Antonym Negation, and373

Always-Never are hard to learn via the language374

modeling objective. On the rest of the tasks, we375

observe no clear improvement trend for GPT mod-376

els based on the model size. In most of the tasks,377

GPTlarge either performs on par or has higher ac- 378

curacy than GPTxl while being twice as small. 379

We also compute Spearman correlation be- 380

tween model accuracy and model size for GPT2, 381

ALBERT, and T5 models.5 For all GPT2 and 382

ALBERT (v1 and v2) tests, p-value is � 0.05, 383

suggesting that there is no rank-correlation between 384

model size and task performance. However, in the 385

case of T5 models, there is a strong (1.0) and signif- 386

icant correlation (p-value 10−6) for all tasks except 387

Always-Never. We account for multiple hypoth- 388

esis testing using Bonferroni’s method. For the 389

Taxonomy Conjunction, the correlation is negative. 390

4.3 Model properties are not predictive of 391

model performance 392

On the oLMpics tasks, with rare exceptions (Sec- 393

tion 4.1), we do not observe that parameter count, 394

dataset size, model architecture or directionality 395

are predictive of model performance on zero-shot 396

oLMpics (Table 4). 397

RoBERTalarge usually performs amongst the 398

best models, while having a very similar architec- 399

ture and objective to BERTlarge. Reasonable expla- 400

nations would be the dataset size, but this does not 401

align with the BARTlarge results. Encoder-decoder 402

architecture does seem not to be indicative of 403

the performance either, as T5large and BARTlarge 404

have vastly different results. 405

Psycholinguistic datasets (Table 5) demonstrate 406

similar behaviour. RoBERTalarge is generally the 407

stongest model followed by T5xl. We would like to 408

note that these datasets have less than 100 examples 409

and their statistical power (Card et al., 2020) is very 410

small. 411

Our intuitions about the relative suitability of dif- 412

ferent model classes are based on their performance 413

on standard benchmarks (Wang et al., 2018, 2019) 414

and existing investigations of scaling laws (Rad- 415

ford et al., 2019; Kaplan et al., 2020). In contrast 416

to this received wisdom, our experiments suggest 417

that this does not in fact lead to better performance 418

on specific linguistic skills. 419

4.4 RoBERTa is sensitive to negation 420

Ettinger (2020) observed that BERT is not sen- 421

sitive to negation in non-natural (SIMP) or less- 422

natural cases. 423

In our experiments (Table 6), we find that the 424

only model with zero accuracy outside of BERT is 425

5Note that sample size for each test is ≤ 4, so these results
should be taken as anecdotal.
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Input sequence example GPT2B GPT2M GPT2L GPT2XL

(oLMpics) It was really/not sane, it was really insane 53.3 52.8 59.0 60.6

It was really insane. Was it sane ? yes/no 51.6 58.2 55.6 61.4
It was really insane. Was it really sane ? yes/no 50.2 54 50.2 54.4
It was sane entails it was really insane ? yes/no 49.8 50.2 50 50.6
Sentence 1: It was sane. Sentence 2: It was really insane. 59.6 50.2 46.8 48.4
Is Sentence 1 synonym of Sentence 2? yes/no

Table 3: Prompts for the Antonym Negation task. Random baseline accuracy is 50%. The original oLMpics prompt
is the prompt used in Table 4. GPT2B is the base-sized model, GPT2M is medium, and GPT2L is large. Text
highlighted in red/green are correct/wrong labels.

Age
Comp.

Always
Never

Object
Comp.

Antonym
Negation

Taxonomy
Conj.

Multi-hop
Comp.

Majority 50.6 36.1 50.6 50.2 34.0 34.0

BERTbase 49.4 13.3 55.4 53.8 46.7 33.2
BERTlarge 50.6 22.5 52.4 51.0 53.9 33.8
BERTlarge WWM 76.6 10.7 55.6 57.2 46.2 33.8
RoBERTalarge 98.6 13.5 87.4 74.4 45.4 28.0

DistilBERTbase 49.4 15.0 50.8 50.8 46.9 33.4
AlBERTbase 47.0 23.2 50.6 52.6 - 34.0
AlBERTlarge 52.8 30.7 49.2 50.2 - 34.0
AlBERTxlarge 39.8 26.1 50.4 44.6 - 32.2
AlBERTxxlarge 95.4 22.9 61.0 66.4 - 34.0
AlBERTv2base 50.6 21.4 49.4 54.2 - 14.0
AlBERTv2large 51.4 31.7 50.6 55.2 - 34.0
AlBERTv2xlarge 46.2 37.9 50.6 62.4 - 32.4
AlBERTv2xxlarge 93.8 23.9 78.8 64.8 - 34.0
BARTlarge 49.4 14.3 50.8 53.8 42.6 33.8
T5small 49.4 16.1 48.2 47.0 49.3 33.8
T5base 49.4 10.7 59.0 53.4 46.6 33.6
T5large 94.0 25.7 79.8 59.2 42.2 33.8
T5xl 100.0 20.4 90.0 68.4 41.2 34.4
T5v1.1small 49.4 34.3 50.6 51.4 48.2 37.8
T5v1.1base 50.6 11.8 56.0 45.0 49.9 37.6
T5v1.1large 49.6 15.7 50.6 47.0 41.7 33.8
T5v1.1xl 49.4 23.9 49.4 54.2 53.9 33.8
UniLMbase 47.9 15.5 47.8 43.5 45.1 34.9
UniLMlarge 47.9 19.2 61.1 50.8 50.2 33.1
GPT2base−0.1B 47.6 9.0 50.3 53.3 49.1 32.6
GPT2medium−0.3B 50.1 31.3 50.3 52.8 51.9 34.0
GPT2large−0.8B 69.6 26.0 50.5 59.0 46.9 34.0
GPTNEO−1.3B 58.6 29.0 52.1 65.2 50.6 33.3
GPT2xl−1.5B 51.9 26.6 52.6 60.6 45.8 34.0

Table 4: Zero-shot oLMpics evaluation on MC-MLM tasks. “Majority” here is the accuracy when predicting the
most frequent class. The first 4 models are our reproduction of the original oLMpics results. The best result on
each task is highlighted in bold. We do not evaluate ALBERT on Taxonomy Conjunction because its vocabulary
does not contain requires classes as single tokens. A version of this table with confidence intervals can be found in
Table 10 in the Appendix.

.

a distilled version of BERT itself. However, mul-426

tiple models achieve non-zero accuracy on NEG-427

SIMP (neg), while still being insensitive to the428

negation. For example, while ALBERTv1xlarge is429

the best-performing model on NEG-SIMP (neg)430

with 44.4% accuracy, this accuracy is mainly431

caused by mistakes in language modeling while432

still being insensitive to negation (e.g., it predicts433

vegetable for both An ant is a and An ant is not 434

a). Specifically, ALBERTv1xlarge only changes 435

its predictions in 5.5% cases. 436

However, unlike other models, RoBERTalarge 437

actually change its predicitons in 33% cases, sug- 438

gesting that that sensitivity to negation is possible 439

to learn via masked language modeling. 440
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4.5 Models make plausible mistakes441

One drawback of datasets from (Ettinger, 2020)442

that we have noticed was the ambiguity of an-443

swers. For example, many models predict words444

like “this”, “that”, “it” as the next word for “Check-445

mate,” Rosaline announced with glee. She was446

getting to be really good at [MASK] instead of447

the word “chess”. All of these continuations are448

both grammatically and semantically correct, even449

though they do not answer the question. Another450

example would be I’m an animal like Eeyore!” the451

child exclaimed. His mother wondered why he was452

pretending to be a [MASK]. CPRAG expects the453

answer “donkey”, which assumes that the reader454

(or model) is familiar with the English names of455

Winnie-the-Pooh book characters6.456

4.6 Antonym negation: Impact of prompt457

variation458

A number of recent studies have shown that lan-459

guage model performance is sensitive to the task460

prompt (Schick and Schütze, 2020). We have ex-461

perimented with four different prompts for the462

Antonym Negation task. Table 3 shows the patterns463

and the corresponding accuracies of GPT models.464

All experiments use “yes”/“no” verbalizers.465

While some prompts improve the oLMpics466

prompt results substantially (up to +6%), this im-467

provement is not consistent across models show-468

ing that even very similar models are sensitive to469

prompt variation in different ways.470

Additionally, the prompt #4 (Table 3) improves471

the smallest GPT2base model so much that it per-472

forms on par with the largest model, demonstrating473

that parameter count is not a reliable predictor of474

the model performance.475

4.7 Age comparison: Accuracy varies by age476

group477

Similar to Talmor et al. (2019), we find that models478

do not perform equally well on all age ranges. Fig-479

ure 1 shows that with the exception of GPT2base,480

all GPT2 variants perform well on 10-20 years age481

group and badly on the 30-40 age group, with a482

significant drop in performance from 80% to 20%.483

Generally, GPT2 seems to predict younger ages484

more accurately. However, the smallest model,485

GPT2base, exhibits a different trend than other486

models as age increases.487

6Only one of the authors of this paper was able to continue
this correctly

Figure 1: Evaluation of GPT2 variants on Age Com-
parison task for different age groups.

5 Conclusion 488

In this work, we apply a large and diverse set of 489

models to oLMpics and psycholinguistic tasks. The 490

variety of models allows us to investigate the per- 491

formance of different architectures and pre-training 492

methods on a variety of linguistic tasks. Contrary 493

to received wisdom, we find that parameter count 494

within a given model family does not correlate with 495

model performance on these tasks. We find that 496

none of the models, even the 2.8B-sized ones, can 497

resolve Multi-Hop Composition and Always-Never 498

tasks in zero-shot manner, suggesting that the ex- 499

isting pre-training methods cannot learn such tasks. 500

Finally, we find that different models excel in differ- 501

ent symbolic reasoning tasks, suggesting that slight 502

differences related to optimization or masking strat- 503

egy might be more important than the pre-training 504

approach, dataset size, or architecture. 505
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CPRAG-126 ROLE-88 NEG-136
SIMP(Aff)

NEG-136
NAT(Aff)

BERTbase 52.9 27.3 100 43.8
BERTlarge 52.9 37.5 100 31.3

RoBERTabase 50.0 35.0 94.0 56.3
RoBERTalarge 64.7 46.6 88.0 50.0
DistilBERTbase 35.3 20.1 94.4 37.5
AlBERTv1base 17.6 0.0 72.2 12.5
AlBERTv1large 20.6 0.0 72.2 18.8
AlBERTv1xlarge 32.4 2.3 11.1 6.5
AlBERTv1xxlarge 47.1 11.3 88.9 43.8
AlBERTv2base 0.0 0.0 22.2 6.3
AlBERTv2large 29.4 0.0 50.0 6.3
AlBERTv2xlarge 61.8 12.5 94.4 37.5
AlBERTv2xxlarge 61.8 12.5 94.4 37.5
T5small 20.6 9.1 44.4 18.8
T5base 38.2 22.7 88.9 31.3
T5large 50.0 36.4 94.4 43.8
T5xl 55.9 44.3 83.3 62.5

Table 5: Zero-shot top-5 word prediction accuracy. Top-5 is selected over the whole model vocabulary. The first 2
models are our reproduction of the original (Ettinger, 2020) results. The best result on each task is highlighted in
bold. SIMP stands for simple, NAT stands for natural. Both negation tasks are evaluated in the affirmative form.

CPRAG ROLE
NEG
SIMP
(Aff)

NEG
SIMP
(Neg)

NEG
NAT
(Aff)

NEG
NAT
(Neg)

NEG
LNAT
(Aff)

NEG
LNAT
(Neg)

BERTbase 73.5 75.0 100.0 0.0 62.5 87.5 75.0 0.0
BERTlarge 79.4 86.4 100.0 0.0 75.0 100 75.0 0.0

RoBERTabase 26.5 59.0 66.7 33.3 37.5 75.0 75.0 12.5
RoBERTalarge 29.4 68.2 100.0 33.3 25.0 75.0 75.0 12.5
DistilBERTbase 67.6 63.6 100.0 0.0 62.5 62.5 87.5 0.0
AlBERTv1base 5.8 43.2 72.2 22.2 50.0 25.0 62.5 37.5
AlBERTv1large 8.8 54.5 72.2 27.8 25 12.5 75.0 37.5
AlBERTv1xlarge 14.7 52.3 58.3 44.4 37.5 25.0 75.0 12.5
AlBERTv1xxlarge 29.4 45.5 94.4 16.7 24.0 62.5 62.5 25.0
AlBERTv2base 14.7 36.4 61.1 33.3 50 37.5 50.0 12.5
AlBERTv2large 18.0 57.0 61.1 38.9 62.5 25.0 50.0 50.0
AlBERTv2xlarge 26.5 37.5 88.9 11.1 25.0 62.5 37.5 25.0
AlBERTv2xxlarge 26.5 54.5 88.9 11.1 25.0 62.5 37.5 25.0
T5small 5.9 45.5 55.6 33.3 50.0 25.0 37.5 62.5
T5base 14.7 70.5 61.1 27.8 50.0 12.5 37.5 37.5
T5large 17.6 54.5 72.2 16.7 62.5 37.5 37.5 50.0
T5xl 14.7 63.6 66.7 27.8 62.5 50.0 37.5 50.0
GPT2base 14.7 34.1 66.7 38.9 75.0 25.0 37.5 37.5
GPT2medium 17.6 36.4 61.1 22.2 50.0 50.0 50.0 62.5
GPT2large 29.4 45.5 77.8 16.7 62.5 50.0 37.5 50.0
GPTneo 20.6 45.5 77.8 33.3 75.0 37.5 62.5 25.0
GPT2xl 17.6 50 61.1 33.3 62.5 75.0 62.5 37.5

Table 6: Zero-shot sensitivity accuracy. The first 2 models are our reproduction of the original (Ettinger, 2020)
results. Completion sensitivity is the percentage of instances for which the model assigns a higher probability to
the good completion than to the bad completions. The best result on each task is highlighted in bold. SIMP stands
for simple, NAT for natural, LNAT for less natural as defined in (Ettinger, 2020).
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A Additional Tables765

The next pages present additional results, including766

the version of Table 4 with confidence intervals767

(Table 10), oLMpics MC-QA results (Table 7), T5768

zero-shot Encyclopedic Composition and Property769

Conjunction (Table 8), and T5 evaluated on psy-770

cholinguistic datasets when removing stop-words771

from the model output vocabulary (Table 9).772
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Age
Comp.

Always
Never

Object
Comp.

Ant.
Neg.

Tax.
Conj.

Multi-hop
Compos.

Encyc.
Conj.

Prop.
Conj.

Majority 50.6 20.0 50.0 50.0 34.0 34.0 34.0 34.0

BERTbase 86.8 59.3 86.6 92.0 57.4 86.0 56.1 62.6
BERTlarge 98.8 58.9 90.4 94.8 60.8 99.0 57.1 58.3
BERTlarge WWM 100.0 58.9 85.0 95.0 58.8 97.6 56.4 60.1
RoBERTalarge 100 60.4 87.2 96.2 59.9 100.0 55.5 55.5
DistilBERTbase 66.2 60.0 84.2 90.6 55.9 59.4 53.9 56.2

AlBERTlarge 91.6 59.3 66.4 90.4 - 80.0 57.2 60.2
BARTlarge 100.0 36.1 85.6 95.0 59.8 100.0 - -
T5base 77.6 55.7 91.4 94.4 - 64.8 - -
T5large 100.0 57.9 93.2 96.0 - 100.0 - -

Table 7: Multi-shot oLMpics evaluation on MC-MLM and MC-QA tasks. “Majority” here is the accuracy when
predicting the most frequent class.

Encyc. Conj. Prop. Conj.

T5small 29.0 38.72
T5base 31.4 36.2
T5large 31.6 34.6
T5xl 31.2 38.5
T5v1.1small 33.4 38.1
T5v1.1base 31.6 40.0
T5v1.1large 31.4 40.1
T5v1.1xl 33.4 37.1

Table 8: Zero-shot T5 results on MC-QA tasks. As for T5 can generate multiple tokens in place of a single
mask, we evaluate in using similar to MC-MLM. In order to get the probability of the answer, we multiply the
probabilities for every answer word.

CPRAG-126 ROLE-88 NEG-136
SIMP(Aff)

NEG-136
NAT(Aff)

T5small 20.6 9.1 44.4 18.8
T5base 38.2 22.7 88.9 31.3
T5large 50.0 36.4 94.4 43.8
T5xl 55.9 44.3 83.3 62.5

T5small Filtered 20.6 15.9 55.6 25.0
T5base Filtered 42.2 34.1 88.9 37.5
T5large Filtered 52.9 38.6 94.4 43.8
T5xl Filtered 58.8 51.1 88.9 62.5

Table 9: Zero-shot top-5 word prediction accuracy. Top-5 is selected over the whole model vocabulary for the first
4 rows (same as Table 5). In the last 4 rows, we remove the 179 most common English stop words, as well as
the " " token from the vocabulary.
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Age
Comp.

Always
Never

Object
Comp.

Antonym
Negation

Taxonomy
Conj.

Multi-hop
Comp.

Majority 50.6 36.1 50.6 50.2 34.0 34.0

BERTbase 49.4 ± 0.2 13.2 ± 1.2 55.4 ± 1.0 53.8 ± 1.0 46.8 ± 0.6 33.4 ± 0.6
BERTlarge 50.6 ± 0.2 22.5 ± 1.3 52.4 ± 1.6 50.8 ± 0.8 53.9 ± 0.9 33.8 ± 0.7
BERTlarge WWM 76.4 ± 1.7 10.7 ± 1.5 55.8 ± 1.1 57.2 ± 0.7 46.4 ± 0.8 33.8 ± 0.7
RoBERTalarge 98.6 ± 0.1 13.5 ± 1.6 87.4 ± 0.9 74.6 ± 0.8 45.4 ± 0.4 28.0 ± 1.0

DistilBERTbase 49.4 ± 0.2 15.0 ± 1.2 51.0 ± 1.3 50.8 ± 0.7 46.8 ± 0.8 34.0 ± 1.0
DistilRoBERTabase 45.4 ± 1.2 13.9 ± 1.3 50.8 ± 0.7 51.0 ± 1.0 50.6 ± 1.1 34.0 ± 1.0
AlBERTbase 47.0 ± 0.6 23.2 ± 1.2 50.6 ± 0.7 52.6 ± 1.0 - 34.0 ± 1.0
AlBERTlarge 52.8 ± 1.2 30.7 ± 1.0 49.2 ± 0.7 50.2 ± 1.0 - 34.0 ± 1.0
AlBERTxlarge 39.8 ± 0.3 26.1 ± 1.5 50.4 ± 0.8 44.6 ± 1.4 - 32.2 ± 1.2
AlBERTxxlarge 95.4 ± 0.4 22.9 ± 0.5 61.0 ± 0.7 66.4 ± 0.5 - 34.0 ± 1.0
AlBERTv2base 50.6 ± 0.2 21.4 ± 0.9 49.4 ± 0.7 54.2 ± 1.7 - 34.0 ± 1.0
AlBERTv2large 51.4 ± 0.6 31.7 ± 1.5 50.6 ± 0.6 55.2 ± 1.3 - 34.0 ± 1.0
AlBERTv2xlarge 46.2 ± 0.7 37.9 ± 1.9 50.6 ± 0.7 62.4 ± 0.9 - 32.4 ± 0.8
AlBERTv2xxlarge 93.8 ± 0.5 23.9 ± 0.7 78.8 ± 0.8 64.8 ± 0.5 - 34.0 ± 1.0
BARTlarge 49.4 ± 0.2 23.2 ± 1.2 49.4 ± 0.7 49.8 ± 1.0 48.8 ± 0.9 33.8 ± 0.7
T5small 49.4 ± 0.2 16.1 ± 1.6 48.2 ± 0.8 47.0 ± 0.9 49.3 ± 0.4 33.8 ± 0.7
T5base 49.4 ± 0.2 10.7 ± 1.2 59.0 ± 0.7 53.4 ± 0.8 46.6 ± 0.9 33.6 ± 0.7
T5large 94.0 ± 0.4 25.7 ± 0.7 83.2 ± 0.5 64.6 ± 1.4 42.2 ± 1.0 33.8 ± 0.7
T5xl 100.0 ± 0.0 20.4 ± 1.0 90.0 ± 0.5 68.4 ± 0.8 41.2 ± 0.8 34.4 ± 0.6
T5v1.1small 49.4 ± 0.2 34.3 ± 1.8 50.6 ± 0.7 51.4 ± 1.1 48.2 ± 0.7 37.8 ± 0.9
T5v1.1base 50.6 ± 0.2 11.8 ± 1.6 56.0 ± 1.5 45.0 ± 0.8 49.9 ± 0.7 37.6 ± 0.9
T5v1.1large 49.6 ± 0.3 15.7 ± 0.8 50.6 ± 0.8 47.1 ± 1.1 41.7 ± 1.0 33.8 ± 0.7
T5v1.1xl 49.4 ± 0.2 23.9 ± 1.8 49.4 ± 0.7 54.2 ± 1.2 53.9 ± 0.5 33.8 ± 0.7
UniLMbase 47.9±1.6 16.1±0.8 48.0±2.7 43.6±1.3 45.1±1.2 34.8±0.9
UniLMlarge 47.9±1.6 19.9±1.3 61.4±1.8 51.2±1.4 50.2±2.1 33.6±0.7
GPT2base−0.1B 47.6±1.2 50.1±1.5 50.1±1 52.8±1.9 48.4±1.0 32.2±2.4
GPT2medium−0.3B 50.1±1.3 40.8±2.2 49.6±0.9 54.7±2.4 49.1±1.7 29.6±2.1
GPT2large−0.8B 69.6±1.0 20.2±1.7 50.4±1.0 50.1±2.7 46.9±1.5 33.5±1.3
GPTNEO−1.3B 58.6±0.7 29.0±1.0 52.1±0.7 65.2±1.1 50.6±1.5 33.3±1.0
GPT2xl−1.5B 51.9±1.5 26.6±0.7 52.6±0.7 60.6±1.2 45.8±1.3 34.0±1.0

Table 10: Zero-shot oLMpics evaluation on MC-MLM tasks. “Majority” here is the accuracy when predicting the
most frequent class. The first 4 models are our reproduction of the original oLMpics results. The best result on
each task is highlighted in bold. Confidence intervals estimated via bootstrapping 20% of the data show errors
about 1-2 absolute points.
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